
READREAD
RUBYRUBY

1.91.9
Free ebook about the Ruby 1.9 programming

language

ruby.runpaint.org

2011-01-28 20:02:10 +0000

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://ruby.runpaint.org/

CONTENTSCONTENTS
Language

I. Programs ... 23
Lexical Structure ...23

Comments ... 23
Embedded Documentation .. 23
Whitespace.. 24
Literals ... 24
Identifiers .. 24

Syntactical Structure ..25
Expressions ... 25

Operators... 25
Keyword Literals.. 27
true ... 27
false ... 27
nil ... 27
self ... 27
__FILE__ ... 28
__ENCODING__ ... 28

Statements... 28
Statement Terminators & Newlines ... 28

__END__ .. 29

Interpretation ...29
Interpreter ... 29
Source Files ... 32

Shebang ... 32
Source Encoding .. 33
Warnings ... 33
Loading Features.. 33
require ... 33
require_relative... 34
load ... 34

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 2

IRB.. 35
Evaluating Strings ... 35

Tracing ..35

II. Variables.. 38
Constants ..38

References ... 40
Resolution Algorithm.. 41

Scope .. 42
Missing Constants ... 43
Reflection... 43

Local Variables...44
Scope .. 44
Reflection... 45

Instance Variables ...45
Scope .. 45
Reflection... 46

Class Variables ...46
Scope .. 46
Reflection... 48

Global Variables ..49
Scope .. 49
Reflection... 50
Tracing... 50

defined?..50
Assignment...51

Lvalues... 51
Variables .. 51
Constants... 52
Attributes .. 52
Element Reference Lvalues .. 52

Rvalues .. 52
Simple Assignment.. 53
Abbreviated Assignment.. 53
Parallel Assignment .. 54

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 3

Equal Number of Lvalues to Rvalues... 54
Splat Operator .. 55
Splatting an Lvalue .. 55
Empty Splat .. 55

Splatting an Rvalue .. 56
One Lvalue, Many Rvalues .. 56
Many Lvalues, One Rvalue .. 57
Unequal Number of Lvalues to Rvalues.. 58
Sub‐assignment .. 58
Value of a Parallel Assignment Expression .. 59

III. Messages ... 60
Message Expression Syntax...61

Arguments .. 62
Block Literals .. 64
Parentheses ... 64

Chaining.. 66
Dynamic Sending with .. 67

Operators ..67
Conventions ...68

Tone.. 70
Plurality... 71
Responding to Messages... 71

IV. Objects... 74
Instantiation ...74

Constructors ... 74
.new .. 74
Allocation.. 74
Initialization.. 75

Identity ..75
Class...75
Methods ..76
Relations ...76

Order.. 76

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 4

Equivalence... 77

State ...77
Instance Variables.. 77
Attributes .. 78
Mutability ... 78

References & Garbage Collection.......................................78
Listing and Counting..79
BasicObject...80
Duplication...81
Cloning..81
Marshaling..82
Taint...82
Safe Levels ..83

Level 1.. 83
Level 2.. 84
Level 3.. 85
Level 4.. 85
Trust ... 86

Context..86
Conversion ...86

Implicit Conversion... 87
try_convert .. 87
Guidelines ... 87

Explicit Conversion... 88
Summary... 88
Converting to “Boolean” .. 89

V. Classes ... 90
Names..90
Inheritance..90

Superclass.. 91
Ancestors... 91
Class#inherited .. 91

Creation ..91

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 5

class .. 91
Reopening Classes ... 92

Class.new .. 92
Anonymous Classes .. 92

Structs .. 93
Nesting... 94

Context..95
Singleton Classes...95
State ...96

Class Instance Variables ... 97

Instances ...97
Methods ..98
method_defined? .. 98

Missing Classes..99
Enumeration...99
Type ...99

VI. Modules ... 101
Creation ..101
module .. 101

Reopening Modules... 101
Module.new .. 102

Mixins..103
Mixing a Module into a Class ... 103
Mixing a Module into a Module ... 103
Inclusion.. 103
included .. 104
Class#include? .. 104
Class#included_modules.. 104

Extension... 104
Extending ... 105

Namespacing..105
Nesting... 107

Module Functions..108

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 6

Context..110
Module Eval.. 110
Module Exec ... 110

VII. Methods... 111
Instance Methods ..111
Global Methods ...111
Singleton Methods ..112

Class Methods .. 112
Per-Object Behaviour ... 112

Return Values...113
super ..114
Names..115

Operator Methods ... 116

Defining ..116
method_added .. 117
Dynamic Method Definition ... 117

Arguments ..118
Required Arguments... 119
Optional Arguments and Default Values.. 120
Variable-Length Argument Lists .. 121
Named Arguments .. 122
Block Arguments ... 124
Pass By Reference.. 125
Arity... 126

Classification by Arity .. 126

Undefining..126
method_undefined.. 127

Removing..127
method_removed .. 128

Visibility..128
Advisory Privacy ... 130

Aliases ...131
Lookup Algorithm...132

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 7

Missing Methods ...133
Kernel#respond_to_missing? ... 134

Method ..135
Arity... 135
Calling ... 135
Converting to a ... 135
Equality ... 136
Source Location.. 136
Parameters .. 136

UnboundMethod..136

VIII. Closures... 139
Proc ..140
Semantics ..140
#lambda? .. 140
yield .. 141
Invocation Semantics .. 142
Control Flow Statements.. 143

Creation ..144
Proc.new .. 144
proc .. 144
& Parameter.. 144
lambda .. 144
Lambda Literal ... 145

Calling ...145
Parameters ..146

Block-Local Variables.. 147

Binding..148
Kernel.binding .. 149

Methods ..150

IX. Flow ... 151
Conditionals ...151
Boolean Logic ..151

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 8

AND Operator.. 151
OR Operator ... 152
NOT Operator .. 152
Flip Flops ... 152

Branching..153
if .. 153

Postfix Form.. 153
else .. 154
elsif .. 154

unless .. 155
Postfix Form.. 155

Ternary Operator... 155
case .. 156
when .. 156
else .. 157
Evaluation ... 157

Looping ...158
Count-Controlled Loops... 158
Integer#times .. 158
Integer#upto .. 159
Integer#downto .. 160

Condition-Controlled Loops.. 160
while .. 160
Postfix Form .. 160
until .. 161
Postfix Form .. 161

Infinite Loops.. 162
Control Flow Statements.. 162
break .. 162
next .. 163
redo .. 163
throw .. 164
yield .. 165
Arguments ... 165

Iterators ...166
Internal .. 166
for... 167

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 9

Custom Internal Iterators... 167

Begin / Exit Handlers ...168
BEGIN .. 168
END .. 168
Kernel.at_exit .. 169

X. Exceptions... 170
Exception..170

Message ... 171
Backtrace ... 171

raise ..171
Propagation ..173
Handling ...174
begin .. 174
rescue .. 174
Postfix Form.. 175
$! .. 175
else .. 175
ensure .. 176

Class Hierarchy..177

XI. Concurrency ... 182
Threads ..182

Initialisation.. 182
Termination .. 183
Status.. 183
Variables .. 184
Joining.. 184
Exceptions ... 185
Scheduling... 185
Groups ... 186
Synchronisation ... 187

Fibers ...189

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 10

API

I. Numerics ... 191
Integers..191

Immediates.. 192
Bases... 192
Bit Twiddling.. 192

Floats ...193
Constants... 193
Precision & Accuracy ... 195

Rationals ...197
Complex..198

Conjugation .. 199
Arg Function .. 199
Absolute Value ... 200
Polar Form .. 200
Rectangular Form .. 201

Basic Arithmetic..201
Conversion & Coercion..203
Comparison & Equality ...203
Rounding...204
Predicates..205
Moduluar Arithmetic ...206
Exponentiation ..206
Finiteness ..207
Pseudo-Random Numbers ...207
Trigonometry ...208
Logarithms..210

II. Strings.. 211
Literals...211

Single-Quoted Strings... 211

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 11

Alternative Delimiters .. 211
Double-Quoted Strings... 212

String Interpolation ... 212
Alternative Delimiters .. 212

Here Documents .. 213

String Escapes ..214
Character Escapes.. 214
Byte Escapes ... 214

Octal Byte Escapes .. 214
Hexadecimal Byte Escapes... 214

Control Escapes.. 215
Meta Character Escapes ... 215
Unicode Escapes .. 215
Summary... 216

Characters...217
Bytes ..217
Codepoints..218
Iteration...219
Size ...220
Equivalence ..220
Comparison ..220
Concatenation..221
Repetition..221
Substrings ...222
Searching & Replacing ...224
Splitting, Partitioning, & Scanning225
Letter Case..226
Whitespace ...226
Converting to Numeric ..227
Checksums..228
Sets of Characters & Transliteration................................228
Debugging ..230

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 12

Encoding ...230
Forcing an Association ... 230
Valid Encodings ... 231
ASCII Only ... 231

Format Strings ...231
Textual Conversions.. 232
Numbers .. 233

Converting Between Numerical Bases .. 233
Numerical Notation... 234

Hash Interpolation... 235
Field Width & Justification .. 236
Precision .. 237
Relative & Absolute Arguments ... 237

Unpacking...238
Symbols...241

Encoding ... 242

III. Encoding ... 243
Encoding..243
Source Encoding..244
IO Streams ..244
ASCII-8BIT...246
Compatibility ...246
Transcoding..246
Encoding::Converter.. 248

Conversion Path... 248
Piecemeal Conversion... 249
Primitive Conversion .. 250
Error Context.. 253
Recovery from an Invalid Byte Sequence ... 254
Recovery from an Undefined Conversion Error 255

IV. Regexps ... 257
Literals...258

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 13

Options..258
Matching ...259
Metacharacters...259
Escapes ..260
Grouping...261
Capturing..261
Quantifiers..263
Character Classes ..264
Alternation ...266
MatchData..267
Anchoring ...268
Zero-Width Assertions...269
Readability..269
Encoding ...270

Fixed Encoding... 272

Character Properties ...272
General Categories .. 273
Simple Properties ... 274
Derived Properties... 277
Script .. 279

V. Enumerables ... 282
Querying...282
Filtering...283
Transforming..285
Iteration...288
Sorting ...289
Minimums & Maximums ..290
Enumerator..291

Instantiation.. 291
External Iterators ... 292

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 14

Classes with Multiple Iteration Strategies......................293

VI. Arrays.. 294
Literals...294

Alternative Delimiters .. 294

Array.new..295
Lookup...295
Insertion ..297
Replacement ...297
Concatenation..298
Deletion...299
Array ..300
Permutations & Combinations ...301
Iteration...302
Set Operations..303
Ordering..303

VII. Hashes ... 304
Literals...304
Look-up ...304
Default Value ...305
Insertion ..306
Deletion...307
Iteration...308
Keys ...308
Values ..309
Transformations ..309
Merging...310
Size ...311
Sorting ...311

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 15

Equality ...311
Coercion..312
Identity ..313

VIII. Ranges ... 314
Instantiation ...314
Start-points & End-points..315
Membership Testing ...315
Iteration...316
Equality ...317

IX. Files & Directories 318
Files ..318

Paths... 318
Reading.. 320
Opening ... 321
Existence ... 321
Deletion ... 321
Renaming .. 322
Size ... 322
Comparison .. 322
File::Stat .. 322
Types .. 323
Permissions ... 324
Links... 326
Locks .. 327
Filename Matching.. 327
Kernel.test .. 327

Directories ..329
Working Directory .. 329
Home Directory ... 330
Instantiation.. 330
Entries.. 330
Creation... 331

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 16

Existence ... 331
Deletion ... 331
Globbing.. 332
Position & Seeking .. 333

X. Input & Output ... 335
Standard Input, Output, & Error336
Writing ..338
Reading ...339
Access Mode...339
Binary & Text Mode ...340
Opening...341
Encoding String ...341
Initializing...342

Mode String .. 343
Options Hash.. 344

Open Flags ..345
Buffering ...348
Closing ..349
Positions & Seeking ..351
Pipes...352
Asynchronous & Multiplexed ...352
Manipulating File Descriptors ..354
ARGV ..357
ARGF ..357

XI. Processes ... 359
Executing & Forking...359

Backticks.. 359
Kernel.exec .. 360
Kernel.system .. 361
Kernel.spawn .. 361

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 17

Kernel.fork .. 362
IO.popen .. 363
Options ... 364

Terminating ..366
Environment ..366
Status ...366

Waiting .. 367
Process::Status .. 368

Daemons ...369
Scheduling Priorities...369
Resource Limits ...370
IDs..372
Process::GID .. 373
Process::UID .. 374
Process::Sys .. 374

Signalling ..376
Sending .. 378
Trapping .. 378

Times ...379

XII. Times ... 380
Instantiation ...380
Attributes..381
Predicates..382
Arithmetic ..383
Formatting ..383
Coercion..385
Zone Conversions ...386

Reference

I. Array ... 387

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 18

II. BasicObject ... 396

III. Bignum .. 398

IV. Binding .. 402

V. Class... 403

VI. Comparable... 404

VII. Complex .. 405

VIII. Dir .. 409

IX. Encoding ... 412

X. Encoding::Converter.................................... 414

XI. Enumerable ... 417

XII. Enumerator ... 423

XIII. Exception... 425

XIV. FalseClass.. 426

XV. Fiber... 427

XVI. File ... 428

XVII. File::Stat ... 435

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 19

XVIII. FileTest .. 440

XIX. Fixnum .. 443

XX. Float... 446

XXI. GC.. 450

XXII. Hash... 451

XXIII. Integer ... 457

XXIV. IO ... 460

XXV. Kernel .. 469

XXVI. Marshal.. 484

XXVII. MatchData... 485

XXVIII. Math... 487

XXIX. Method .. 490

XXX. Module... 492

XXXI. Mutex... 499

XXXII. NilClass ... 500

XXXIII. Numeric... 501

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 20

XXXIV. Object .. 505

XXXV. ObjectSpace... 506

XXXVI. Proc.. 507

XXXVII. Process... 509

XXXVIII. Process::GID.. 514

XXXIX. Process::Status .. 515

XL. Process::Sys ... 517

XLI. Process::UID.. 519

XLII. Range ... 520

XLIII. Rational ... 522

XLIV. Regexp ... 525

XLV. Signal ... 528

XLVI. String ... 529

XLVII. Struct ... 543

XLVIII. Struct::Tms .. 545

XLIX. Symbol... 546

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 21

LANGUAGELANGUAGE
Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 22

PROGRAMSPROGRAMS
Every entity in Ruby is an object. Objects can remember things and

communicate with each other by sending and receiving messages
[Goldberg76, pp. 44–44] . A Ruby program describes how certain objects
must communicate to achieve some definite ends. This chapter provides an
overview of the structure and interpretation of Ruby programs.

Lexical Structure
Tokens1 are “the mark or series of marks that denote one symbol or word

in the language” [Fischer92, pp. 59–62] . A Ruby program consists of a
combination of the following tokens: comments, literals, punctuation,
identifiers, and keywords.

Comments

Comments are remarks which do not affect the meaning of a program.
They are introduced with a number sign (U＋0023) and continue until the end
of the line: the text between # and the end of the line is ignored by the
interpreter. Comments are not recognised inside of string/regexp
literals—they are interpreted literally—however, regexps support an
alternative form of embedded comment. There is no specific construct for
multiline comments, but they may be approximated with embedded
documentation.

Embedded Documentation

Embedded documentation is a portion of a source file that contains
documentation intended for a postprocessor such as rdoc, and as such is

1. Ripper is a class in the standard library for parsing and analysing Ruby.
The Ripper.tokenize method takes a string of code as an argument and
returns an array of its constituent tokens. Experiment with this method in
IRB (irb -rripper) to test your assumptions of how tokenization works.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 23

ignored by the interpreter. It is introduced by a line beginning =begin, that is
an equals sign (U＋003D) followed by the string begin, and continues until a
line beginning =end is encountered.

Both =begin and =end may be followed by arbitrary text, which is included
in the embedded documentation, as long as it is preceded by a whitespace
character. Conventionally, the text following =begin names the tool for
which the documentation is intended.

Whitespace

Whitespace consists only of U＋0009, U＋000B–U＋000D, and the space
character (U＋0020), i.e. ASCII whitespace other than the newline. Its primary
role in Ruby syntax is to separate tokens and terminate statements. When
whitespace is syntactically significant it is typically collapsed to a single
space. The few areas of syntax where whitespace has different semantics are
clearly labeled.

Newlines may function as whitespace, too, depending on the context in
which they are used. See the Statement Terminators & Newlines for further
details.

Literals

An object literal is a syntactical shortcut for the instantiation of a
particular core object. Literals exist for Arrays, Hashes, Numerics, Procs,
Ranges, Regexps, Strings, and Symbols.

Identifiers

An identifier is the name of a variable or method. It must not contain any
US-ASCII character other than the alphanumerics (A—Z, a—z, 0–9) and the
low line (U＋005F), or begin with a US-ASCII digit. However, it may contain
any other character legal in the source encoding.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 24

Syntactical Structure
Expressions

An expression2 is a syntactical construct that produces a value. Since every
entity is an object, every expression evaluates to an object. It is either
primary or compound.

Primary expressions comprise atomic3 units such as variable references
and numeric, string4, and symbol, regexp5, and keyword, literals.

Operators

Primary expressions can be combined with operators to produce compound
expressions. An operator is a token with precedence, associativity, and arity,
which operates upon one or more values (termed its operands).

Precedence dictates which of two different operations should be carried out
first. It can be overridden by grouping sub-expressions that should be
performed earlier with parentheses. When parenthetical groups contain other
parenthetical groups, the innermost is given the highest precedence.

If both operators have the same precedence, the tie is broken by
considering their associativity: left-associative expressions are evaluated left
to right; right-associative expressions are evaluated right to left. If two
operators have the same precedence and are both non-associative, they
cannot be used in the same expression without parenthesising one or both.

2. We follow the lead of Aho, Sethi, & Ullman in defining expression by
recursion rather than direct description [Aho86] .

3. As Turbak, Gifford, & Sheldon note, this characterisation is patently false
even for toy languages since, in their example, “numerals can be broken
down into digits”, however we, too, will “ignore this detail” [Turbak08, pp.
20–22] .

4. Double‐quoted strings that interpolate other expressions are compound
expressions.

5. Regexps that interpolate other expressions are also compound expressions.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 25

An operator’s arity is the number of arguments it takes. An arity of 1
makes an operator unary, 2, binary, and 3, ternary.

Operators Arity Associativity Function

!, ~, + Unary Right
NOT, bitwise
complement, unary
plus.

** Binary Right Exponentiation
- Unary Right Unary minus.

*, /, % Binary Left
Multiplication,
division, modulus.

+, - Binary Left Addition, subtraction.

<<, >> Binary Left
Left-shift or append,
right-shift.

& Binary Left Bitwise AND.

|, ^ Binary Left
Bitwise OR, Bitwise
XOR.

<, <=, >=, > Binary Left Inequalities.

==, ===, !=, =~, =~, !~, <=> Binary None
Equality and
comparison.

&& Binary Left AND
|| Binary Left OR
.., ... Binary None Range constructor.
…?…:… Ternary Right Conditional
rescue Binary Left Exception handling.
= Binary Right Assignment.
**=, *=, /=, %=, +=, -=, <<=,
>>=, &&=, &=, ||=, |=, ^=

Binary Right
Abbreviated
assignment.

defined? Unary None Variable tests.
not Unary Right NOT
and, or Binary Left AND, OR
if, unless, while, until Binary None Statement modifiers.

Operators in descdending order of precedence

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 26

Keyword Literals

true

The true keyword returns the singleton instance of TrueClass. Its value is,
by definition, true.

false

The false keyword returns the singleton instance of FalseClass. Its value
is, by definition, false.

nil

The nil keyword returns the singleton instance of NilClass. Its value is
represents the absence of a value. The Kernel.nil? predicate returns true if
its value is nil; false otherwise.

self

self always evaluates to the current object. Outside of any class definition,
i.e. at the top‐level, the current object is an instance of Object called main.
Inside a class definition, but outside of a method definition, the current object
is an instance of Class. Within a method definition the current object is the
instance of the containing class.

self #=> main

self.class #=> Object

class Classy

self

end #=> Classy

class Classy

self.class

end #=> Class

class Classy

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 27

def methodical

self

end

end

Classy.new.methodical #=> #<Classy:0x90d2268>

__FILE__ / __LINE__

See Tracing.

__ENCODING__

Evaluates to an Encoding object representing the current source encoding,
i.e. that of __FILE__.

Statements

A statement is an expression whose value is ignored6. In practice, this
implies that a statement is executed for its side-effects, because an expression
executed for neither its value nor effect is semantically meaningless.

Statement Terminators & Newlines

One statement must be separated from the next by a statement terminator.
This may be a semicolon (U＋003B) or newline. The latter is preferred because
it leads to a natural separation: each statement on its own line. However, a
newline does not terminate a statement if:

• It is immediately preceded by a reverse solidus (U＋005C).
• It is preceded by an operator, with optional intervening whitespace.
• It is immediately preceded by a comma (U＋002C) or full stop

(U＋002E) in a message expression or array/hash literal, with optional
intervening whitespace.

6. Turbak, Gifford, & Sheldon offer a further example of distinguishing
between statements and expressions by considering their context [Turbak08,
pp. 472–476] .

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 28

• It is preceded by a left parenthesis, curly bracket, or square bracket,
with optional intervening whitespace. (Allows the argument list of
message expressions, and array or hash literals to span multiple lines).

• The first non-whitespace character on the following line is a full stop
(U＋002E). (Allows chained message expressions to span lines).

• It is preceded by one of the following keywords: alias, and, begin,
def, defined?, case, class, else, elsif, ensure, for, if, in, module,
not, or, then, undef, unless, until, when, or while.

__END__

If the interpreter encounters a line consisting solely of the token __END__, it
ignores any lines that follow. However, they are made available to the
program via a global, read-only File object named DATA.

DATA.lines.map{|l| l.split.first}

#=> ["Lovers", "part", "also", "a", "--"]

__END__

Lovers for the most

part are without hope: passion

also is just

a bridge, a means of connection

-- Marina Ivanovna Tsvetaeva, "The Poem of the End"

Interpretation
Interpreter

The statements and expressions that comprise a program are collectively
known as its source code. To execute a program its source code must be
provided to a Ruby interpreter: the program that executes Ruby source code.
The reference implementation7 of Ruby, or MRI, contains an interpreter
called ruby, so when we speak of executing the interpreter we are referring to
running this program.

7. There are several excellent alternative implementations such as JRuby and
Rubinius. However, for the purposes of this book neither are recommended
because, although JRuby is close, they are not yet compatible with Ruby 1.9.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 29

http://jruby.org/
http://rubini.us/

The ruby program is invoked as ruby options file arguments, all of
which are optional. If the RUBYOPT environment variable includes the -W, -w, -
v, -d, -I, -r, and -K options, they are treated as if they were specified on the
command line.

options is zero or more of the options tabulated below. They are passed to
the interpreter. If the -e option is given, its argument is the Ruby code to
execute. If file is given and it’s the name of a file containing Ruby code, the
file is executed. If file is - or omitted, the Ruby code to execute is read from
standard input. If arguments are given, they are passed to the Ruby program
as elements of ARGV.

Option Description

-0n

Set the record separator to the character with ASCII code n,
which is interpreted as up to three octal digits. If n is omitted,
it is 0; if n explicitly specified as 0, the record separator is
"\n\n"; if n is 777, the record separator is nil.

-a
Auto-split mode: when used in conjunction with -n or -p,
places $F = $_.split at the beginning of the loop body.

-C

directory /
-X

directory

Change to the directory named directory before executing the
program.

-c

Check syntax without executing the program: prints an error
message if there are syntax errors; prints nothing if there
aren’t.

--copyright Display the copyright notice then exits.
-d / --debug Assign true to $DEBUG and $VERBOSE, which enables warnings.
--disable-

gems

Don’t load rubygems implicitly or add gem directories to the
load path.

-E encoding

/ --
encoding

encoding

Set the default encoding. If encoding is a single encoding
name, it is the default external encoding; if it is two encoding
names separated by colons, the first encoding is the default
external, and the second, the default internal.

-e string

Execute string as Ruby code. If this option is given multiple
times, its arguments form successive lines of the same
program.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 30

Option Description

-F sep
Set the input field separator ($;) to sep, where sep is a single
character or regular expression without the /…/ delimiters.

-h / --help Display usage help then exit.

-I

directories

Prepend directories to $LOAD_PATH. If directories contains
multiple directories, they are separated by a colon on Unix-
like systems; a semicolon on Windows systems. May be given
multiple times.

-i

extension

For each file named in ARGV, data written to the standard
output stream will be written to that file. If extension is given,
then before a file, file, is modified it is copied to
fileextension.

-Kcode

Set the default external encoding and source encoding to US-
ASCII if code is a, A, n, or N; UTF-8 if code is u or U; Shift-JIS is
code is s or S; or EUC-JP if code is e or E.

-l Set $\ to $/ and remove $/ from the end of input lines.

-n
Assume a while gets; … ; end loop around the Ruby
program.

-p
Assume a while gets; … ; print; end loop around the Ruby
program.

-rlibrary
Require the library or gem named library before executing the
program.

-S

Try to locate the specified program file relative to the
RUBYPATH or PATH environment variables, before locating it
normally.

-s

Remove any options following the program filename from
ARGV, then create a global variable named after the option and
assign to it the option’s value. Options without values are
assumed to be true.

-Tlevel Set the safe level to level, or 1 if level is omitted.
-U Set the default internal encoding to UTF-8.

-v / --
verbose

Enable warnings by setting $VERBOSE to true, then print the
interpreter version number. If a program is specified, execute
it.

--version Display the interpreter version number then exits.

-w

Enable warnings by setting $VERBOSE to true, then execute the
named program—if given—or read the program from standard
input.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 31

Option Description

-Wlevel

Set the warning level to level: silence all warnings if level is 0;
use standard warning level if level is 1; otherwise, or if level is
omitted, equivalent to -w.

-x

directory

Strip each line of the program file that precede a line
beginning #!ruby, change to the directory named directory—if
given—then execute the program.

Source Files

Ruby programs are typically stored in plain text files with an .rb filename
extension. As explained above, they are typically executed by supplying their
filenames as arguments to the ruby interpreter, e.g. ruby myfile.rb would
execute the source code saved in myfile.rb.

Shebang

The shebang8 is a notation for informing a UNIX-like operating system of
the interpreter with which a script should be executed. If present it must
appear as the first line of a source file. It begins with a number sign (U＋0023)
making it a legal comment line, therefore ignored by the interpreter, which is
followed by an exclamation mark (U＋0021) then the path to the interpreter.

A typical shebang is #!/usr/bin/env ruby which uses env to avoid
hardcoding the path to the interpreter.

If a script containing a shebang is executable, it may be executed by
entering its filename in the shell. This allows the interpreter to be invoked
implicitly, and is a common approach.

#!/usr/bin/env ruby

puts "The whole shebang"

8. A portmanteau of sharp and bang [Wall00, pp. 1001–1001] , colloquial
terms for the number sign (U＋0023) and the exclamation mark (U＋0021),
respectively.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 32

run@paint:~ → chmod +x shebang.rb

run@paint:~ → ./shebang.rb

The whole shebang

Source Encoding

Source files are assumed to only contain US-ASCII characters, unless they
have been explicitly declared to have a different encoding. This topic is
explained fully in Source Encoding.

Warnings

Warnings— notices of deprecated, ambiguous, or otherwise problematic,
code— are enabled when the interpreter is given the -w switch, e.g. ruby -w
myfile.rb. For example, Ruby warns when a constant that has already been
defined is assigned to.

Loading Features

A Ruby program may be entirely self-contained, in which case all the code
it needs is stored in a single source file. Larger programs, however, are often
partitioned such that each major component is stored in a separate file.
Additionally, programs often reuse existing code written by third parties. In
both cases, the program must load and execute these external files, which are
collectively termed features.

A feature must be resolved to a filename: If it begins with / it is already an
absolute filename; ../, it is resolved relative to the current working directory;
~/, it is resolved relative to the user’s home directory; otherwise, it is resolved
relative to a directory in the load path. The load path is an Array—named
$LOAD_PATH or $:—of directories searched for a given feature. It is initialised
by the interpreter, and modified with the -I option or by manipulating
$LOAD_PATH directly.

require

Kernel.require(feature) attempts to load and execute feature. feature is
a String that can be resolved to the name of an file with a supported

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 33

extension: either .rb—implying it contains Ruby source code—or one of the
system’s shared library extensions—implying it is a binary extension.

feature is resolved as explained above. This is repeated for each supported
extension by first appending the extension to feature. Finally, feature is
searched for in the Gem path9. When an existing filename is found, the
remaining steps are skipped; if all fail, a LoadError is raised.

If the filename appears in an Array named $LOADED_FEATURES—alias: $"—it
has already been required so require returns false; otherwise, the filename
is loaded with Kernel.load at a safe level of 0. If the filename was loaded
successfully, it is appended to $LOADED_FEATURES and true is returned.

require_relative

Kernel.require_relative behaves like require, except it resolves the
feature name relative to the file in which it is contained. require_relative
path is equivalent to require File.expand_path(File.dirname(__FILE__))

+ path.

load

Kernel.load(feature) resolves feature to a filename, which it then
executes. Unlike require, feature can’t omit the filename extension, must
contain Ruby source code, is not searched for in the Gem path, is loaded even
if appearing in $LOADED_FEATURES, and is loaded at the current safe level.

Once a file is loaded, its constants—therefore class and module
definitions—method definitions, and global-, class-, and instance variables are
imported into the loading environment. If the optional second parameter is
true, the file is loaded into an anonymous module, to avoid polluting the
caller’s environment.

9. This is returned by gem environment gempath. Each directory in this path,
has its /gems/ sub-directory searched by appending /lib/feature to its
name. If unsuccessful, it is repeated after having appended each supported
extension—.rb first—to feature.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 34

For example, consider a file, a.rb, that comprised the statement @ivar =
:i. Located in the same directory is the following file:

load './a.rb' #=> true

@ivar #=> :i

@ivar = :j

load './a.rb' #=> true

@ivar #=> :i

IRB

Ruby is distributed with a program called irb which provides an
interactive shell, or read‐eval‐print loop, for the interpreter. IRB works as
follows:

1. You enter a statement of Ruby and press Enter.
2. That statement is evaluated and its value printed to the screen.
3. You go back to step 1.

This provides a superb environment for learning Ruby. As you read this
book you can enter the examples in IRB and see for yourself how they work.

Evaluating Strings

Source code can be provided as an command-line argument to the
interpreter if it is invoked with the -e switch, e.g. ruby -e 'puts 1 + 2'
executes the code fragment and displays 3.

The Kernel.eval method provides similar functionality from within a
program. Pass it an arbitrary string of source code as an argument and it will
return the result. Continuing with the above example, eval 'puts 1 + 2',
has the same result.

Tracing
Although Ruby does not include a debugger, she offers a variety of features

to aid debugging. The keyword __FILE__ evaluates to a String naming the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 35

source file currently being executed. The strings (eval) and (irb) are
returned when in an eval context and IRB session, respectively. The keyword
__LINE__ evaluates to a Fixnum specifying the line number in the current
__FILE__ being executed. Taken together, thee keywords can be used to
produce error messages and warnings that identify the errant code. Indeed,
Kernel.eval, Object.instance_eval, and Module.class_eval, accept a
filename and line number as their final two arguments, which they use when
reporting errors: by using __FILE__ and __LINE__ as these values, it becomes
easier to trace dynamically generated code.

Similarly, Kernel.__method__, and its alias: Kernel.__callee__, return the
name of the current method as a Symbol. If the current method was invoked
via an alias, its original name is returned.

Kernel.caller returns a stack trace that culminates with the method that
invoked the current method. The Array returned has one element per stack
frame, organised in reverse chronological order. Each frame is represented as
a String, which usually includes the filename, line number, and method
name. If caller is given an argument, it specifies how many frames to drop
from the beginning.

If a global constant named SCRIPT_LINES__ is assigned a Hash,
Kernel.require, Kernel.require_relative, and Kernel.load, append an
entry to it for each file they load. The key is the filename as a String, and the
value is that file’s contents, also as a String.

Finally, Kernel.set_trace_func(proc) registers the given Proc to be called
when an event occurs. It receives up to six arguments: the event name, a
filename, a line number, an object ID, a binding, and a class name. If proc is
nil, tracing is disabled.

Event Description
c-call A method written in C is invoked.
c-return A method written in C returns.
call A method written in Ruby is invoked.
class A Class or Module is opened.
line A new line of Ruby code is executed.
raise An exception is raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 36

Event Description
return A method written in Ruby returns.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 37

VARIABLESVARIABLES
A variable is a named storage location that holds a value. It is named with

an identifier, possibly preceded by a sigil (a symbol denoting the variable’s
scope).

When the name of a variable appears somewhere other than the left‐hand
side of an assignment expression it is a variable reference which evaluates to
the variable’s value.

A variable’s scope “…is the portion of the program text in which the
variable may be referenced.” [Turbak08, pp. 334–335] . Its lifetime is “the
duration, during a run of a program, during which a location is allocated as
the result of a specific declaration.” [Mitchell04, pp. 167–167] . When the
scope of a variable “contains another declaration of the same name the inner
declaration carves out a hole in the scope of the outer one” [Turbak08, pp.
336–338] . The outer’s lifetime persists through the inner declaration, but its
scope is hidden for the duration.

The specifics of variable references are explained in the following sections,
along with complementary treatment of variable scope, initialization, and
assignment.

Constants
A constant is a variable whose value, once assigned, is not expected to

change. Its constancy is not enforced by Ruby, so repeated assignments are
legal, but cause a warning to be issued.

Constants are, by definition, named with an identifier whose first character
is an uppercase US‐ASCII character (A–Z). It is a strong convention that
constants qua constants are named entirely in US‐ASCII uppercase letters
with low lines to separate words, whereas constants used to name classes or
modules are named in camel‐case: title case with whitespace removed.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 38

They only come into existence when they are assigned a value. Therefore a
constant, unlike the other variables, is never in an uninitialized state.
Referencing a constant that does not exist results in a NameError.

Constant Class Meaning

DATA IO

If the source file contains the line __END__,
the lines that follow are accessible by
reading from DATA.

FALSE FalseClass false

NIL NilClass nil

RUBY_COPYRIGHT String

Copyright statement for the interpreter,
e.g. ruby - Copyright (C)
1993-2010 Yukihiro Matsumoto.

RUBY_DESCRIPTION String

Version number and architecture of the
interpreter, e.g. ruby 1.9.2dev
(2010-02-19 trunk 26715)
[i686-linux].

RUBY_ENGINE String

The implementation of the interpreter,
e.g. ruby.

ruby
MRI: official implementation.

rbx
Rubinius.

macruby
MacRuby.

ironruby
IronRuby.

jruby
JRuby.

Predefined global constants

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 39

http://rubini.us/
http://www.macruby.org/
http://ironruby.net/
http://jruby.org/

Constant Class Meaning
maglev

MagLev

RUBY_PATCHLEVEL Fixnum Patch level of the interpreter, e.g. -1.

RUBY_PLATFORM String
Platform for which the interpreter was
built, e.g. i686-linux.

RUBY_RELEASE_DATE String

Release date, for point releases, or build
date, for trunk builds, of the interpreter,
e.g. 2010-02-19.

RUBY_REVISION Fixnum
Revision of the interpreter, e.g. 26715.
(SVN revision number on MRI).

RUBY_VERSION String
Version number of the interpreter, e.g.
1.9.2.

STDERR IO
Standard error stream. Initial value of
$stderr.

STDIN IO
Standard input stream. Initial value of
$stdin.

STDOUT IO
Standard output stream. Initial value of
$stdout.

SCRIPT_LINES__ Hash

If assigned a Hash, each subsequent file
loaded or required will create an entry in
the hash, whose key is the filename as a
String, and value is the file’s lines as an
Array of Strings.

TOPLEVEL_BINDING Binding

Represents the top‐level execution
environment, i.e. outside of any class,
module, method, block, or other construct.

TRUE TrueClass true

References

A constant reference is an expression evaluating to the named constant.
The simplest constant reference is a primary expression consisting solely of
the constant’s name, e.g. Constant.

A constant reference may also be qualified by prefixing the constant name
with the “scope operator” [Thom09, pp. 336–339] : two consecutive colon

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 40

http://maglev.gemstone.com/

(U＋003A) characters. This causes the constant to be looked up in the global
scope1.

A reference may be qualified further by preceding the scope operator with
an expression evaluating to the Class or Module object in which the constant
was defined.

module Math

PLASTIC = cbrt(0.5 + Rational(1, 6) * sqrt(Rational(23, 3))) +

cbrt(0.5 - Rational(1, 6) * sqrt(Rational(23, 3)))

end

Math::PLASTIC #=> 1.3247179572447458

Resolution Algorithm

To resolve an unqualified constant reference, const, made in a class or
module named container:

1. Let original-container equal container.
2. If const is defined in container, we’ve successfully resolved it.
3. If container has an enclosing class or module, set container to its

name and repeat step 2.
4. Set container to original-container.
5. In the order that they were included, inspect each module mixed‐in to

container. If one contains const, we've successfully resolved it.
6. If container has a superclass assign it to container; otherwise go to

step 8.
7. If const is defined in container, we’ve successfully resolved it;

otherwise, go to step 5.
8. Set container equal to Object, if it hasn’t already been, and repeat step

5.
9. Set container to original-container

10. If container responds to :const_missing, we’ve resolved const to the
value of container.const_missing(const).

11. If container has a superclass, assign it to container and repeat step 10.
12. Raise a NameError exception: constant resolution failed.

1. That is, under Object or Kernel, with the former taking precedence. See
Resolution Algorithm for more details.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 41

This search path can be summarised as: (Module.nesting +
self.ancestors + Object.ancestors).uniq (executed in the context of
original-container).

Some notes on this procedure:

• In the search for a given constant no class or module is examined
more than once: if a previously‐seen location is suggested by the
above algorithm above, it is skipped.

• Step 8 is needed in the case where original-container is a module:
modules don’t inherit from Object, so the preceding steps wouldn’t
have searched it.

• When a constant is referenced in an *_eval or *_exec block, container
is set to that enclosing the block; not the container in whose context
the block is evaluated.

• When original-container’s ancestors are searched for const_missing,
they are not also sent method_missing.

Scope

We can restate the algorithm above to deduce a constant’s scope, namely:
it is established by its lexically enclosing class or module. Inner classes and
modules inherit the scope of their parents, and constants initialized in the
former cause a hole in their parent’s scope.

A constant is accessible throughout its scope by unqualified reference, and
may be accessed from an exterior context by qualifying its name with that of
the defining class/module.

A constant defined in another context may be referred to unqualified or
prefixed with the scope operator. However, it is illegal to define a constant in
a method body as every invocation of the method would cause
re‐assignment, defeating the purpose of a constant.

A qualified constant name may be used as an lvalue, allowing constants to
be defined in the context of a class or module from outside.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 42

Missing Constants

As noted in Resolution Algorithm, before a search terminates a
:const_missing message is sent. This allows classes and modules to create
constants on‐the‐fly or otherwise influence the lookup process.

module Roman

ARABIC = {'I' => 1, 'V' => 5, 'X' => 10, 'L' => 50,

'C' => 100, 'D' => 500, 'M' => 1000 }

def self.const_missing(name)

digits = [*name.to_s.upcase.chars].reverse.map{|r| ARABIC[r] or super}

digits.map.with_index {|d,i| digits[i.zero? ? i : i-1] > d ? -d : d}.reduce(:+)

end

end

Roman::XLVII #=> 47

Reflection

The Module#constants method returns an Array of Symbols naming the
constants defined in the receiver.

The value of a constant may be retrieved from a given class or module by
supplying its name to the Module#const_get method, e.g. Float.const_get
:INFINITY #=> Infinity. Similarly, the value of a constant may be set with
Module#const_set, which takes two arguments: the name of the constant and
its new value.

A predicate method, Module#const_defined?, exists for determining
whether a class or module defines a given constant.

Both #const_get and const_defined? accept an optional second argument
to control whether they look for inherited constants. By default this
argument is true, but if it is set to false the method only considers constants
defined directly in the receiver. Lastly, the private method
Module#remove_const takes the name of a constant to remove from the
receiver.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 43

Local Variables
A local variable is named by an identifier whose first character is a

lowercase US‐ASCII character (a–z) or low line (U＋005F). Conventionally,
the name consists of lowercase words separated by low lines.

It is initialized if it appears on the left‐hand side (before the equals sign
(U＋003D)) of an assignment expression, even if the expression does not
actually execute. Variables of the latter sort have the value nil.

Attempting to use an uninitialized local variable causes the identifier to be
interpreted as a message selector which is sent to the current implicit
receiver. If such a method doesn’t exist a NameError is raised.

Scope

The scope of a local variable is static in that it “can always be determined
from the abstract syntax tree of a program” [Turbak08, pp. 334–335] . It is
established by the block, method/class/module definition, or top‐level
program—hereafter a scope-defining construct— which lexically encloses its
assignment. If a scope-defining construct itself contains a scope-defining
construct, the local variables of the former are not visible in the latter: the
inner construct “carves out a hole in the scope of the outer one” (ibid.,
336–338).

def scope

variable = 1

3.times do

variable += 1

end

variable

end

scope #=> 4

defined? variable #=> nil

However, this picture is complicated by blocks. A block both inherits the
scope of its parent and defines its own scope: it maintains the lifetime of local
variables initialized outside of it without causing a hole in their scope.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 44

Therefore, if a block references, or assigns to, a local variable visible in its
parent scope, it refers to the parent’s variable. Otherwise, a variable
initialized inside a block is not visible outside of it. If it is desired that
variables defined within a block do not clash with those defined outside,
block local variables are appropriate.

v = :out

1.times do

v, w = :in, :in

p [v, w]

end #=> [:in, :in]

v #=> :in

w #=> NameError

Reflection

The Kernel.local_variables method returns an Array of Symbols, each of
which names a local variable defined in the current scope, in reverse
chronological order.

Instance Variables
Instance variables are named by an identifier with a commercial at

(U＋0040) character as the sigil: @identifier. Conventionally, the name
consists of lowercase words separated by low lines.

An instance variable is created by assigning it a value. It is not inherited
from a superclass, so exists for a given object only if an instance method of
that object has assigned it a value. An uninitialized instance variable has the
value nil, but its use results in a warning.

Scope

An instance variable defined in the body of an instance method is
accessible by every instance of that method’s receiver. Its scope is a specific
object. By corollary, an instance variable defined outside of an instance

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 45

method, such as in a class body, is not accessible from instance methods: it is,
even if named identically, entirely separate.

The above describes the typical use for instance variables, namely storing
an object’s state, but they may also be defined inside a class or module body,
outside of any method, in which case their scope is delimited by the class/
module in which they were defined. The former are class instance variables;
the latter module instance variables.

Reflection

The names of an object’s instance variables are returned as an Array of
Symbols by Kernel#instance_variables in the order they were assigned.

Their values may be retrieved and modified from another object with
Kernel#instance_variable_get(ivar) and
Kernel#instance_variable_set(ivar, value), respectively, where ivar is the
variable’s name as a Symbol, including the @ prefix. An instance variable may
be removed with the private
methodKernel#remove_instance_variable(ivar). These methods should be
used sparingly as they break encapsulation.

Class Variables
A class variable is named by an identifier whose sigil is two consecutive

commercial at (U＋0040) characters: @@identifier. Conventionally, the name
consists of lowercase words separated by low lines.

Class variables must be initialized before use. Referencing an uninitialized
class variable results in a NameError.

Scope

A class variable’s scope is the body of the enclosing class or module. It is
shared between all instances of the class and accessible from both the class
body and its methods, but is nevertheless encapsulated: concealed, by default,
from the class’s users.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 46

Unlike instance variables, class variables are inherited by child classes: if a
class modifies a class variable defined in its superclass, the change is visible in
both locations.

class Parent

@@cvar = :parent

def self.cvar

@@cvar

end

end

Child = Class.new Parent

Parent.cvar #=> :parent

Child.cvar #=> :parent

A class variable defined at the top‐level of a program is inherited by all
classes. It behaves like a global variable.

@@cvar = :top

class Top

def self.cvar

@@cvar

end

end

Top.cvar #=> :top

class Top

@@cvar = :class

end

Top.cvar #=> :class

@@cvar #=> :class

Ruby issues a warning—e.g., class variable @@cvar of Top
is overtaken by Object—when a class variable is first defined in a
child class then subsequently assigned to in a parent class, as shown below:

class Top

@@cvar = :class

def self.cvar

@@cvar

end

end

@@cvar = :top

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 47

Top.cvar #=> :top

warning: class variable @@cvar

of Top is overtaken by Object

However, a class variable is not shared between sibling classes, unless
defined in their common parent, or those without a common parent.

class Parent

@@parent = :strict

def self.parent

@@parent

end

end

class Daughter < Parent

@@parent = :unfair!

@@me = :angelic

def self.me; @@me end

end

class Son < Parent

@@parent = :biased

@@me = :unappreciated

def self.me; @@me end

end

Parent.parent #=> :biased

Daughter.parent #=> :biased

Son.parent #=> :biased

Daughter.me #=> :angelic

Son.me #=> :unappreciated

These semantics have led Thomas et al. [Thom09, pp. 337–338] to explicitly
advise against the use of class variables and Perrotta [Per10, pp. 129–129] to
regard them as having “…a nasty habit of surprising you”. An alternative
mechanism for storing class state is class instance variables, which are not
afflicted with either of the above problems, but cannot be referenced from
instance methods.

Reflection

The names of a class’s class variables are returned as an Array of Symbols
by Module#class_variables in the order they were assigned. Their values

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 48

may be retrieved and modified from outside this class with
Module#class_variable_get(cvar) and Module#class_variable_set(cvar,

value), respectively, where cvar is the variable’s name as a Symbol, including
the @@ prefix. A class variable may be removed from a class with
Module#remove_class_variable(cvar). These methods should be used
sparingly as they break encapsulation.

Global Variables
A global variable is named with a dollar sign (U＋0024) sigil: $identifier.

Conventionally, the name consists of lowercase words separated by low lines.

An uninitialised global variable has the value nil, although attempting to
use such a variable results in a warning. The predefined global variables
summarised in Predefined Global Variables are initialised automatically.

A global variable should not be defined with the same name as a
predefined global variable, and indeed cannot if that variable is read‐only.

Scope

A global variable is accessible in every scope. Once set it refers to the same
object wherever it is referenced.

$omnipresent #=> nil

class Diety

$omnipresent = :yes

def preternatural?

$omnipresent == :yes

end

end

$omnipresent #=> :yes

Diety.new.preternatural? #=> true

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 49

Reflection

An Array of global variable names as Symbols can be obtained with
Kernel.global_variables

Tracing

Kernel.trace_var(global) accepts a Symbol naming a global variable and
a block. Every time the named variable is assigned to, the block is called with
the new value.

defined?
defined? is a unary operator which tests whether its operand is defined,

and if so returns a description of it. nil is returned if the operand is an
undefined variable or method, an expression which uses yield without an
associated block, or an expression which uses super without a corresponding
ancestor method. In all cases the test is conducted without evaluating the
operand. Note that although a constant argument does not cause
:const_missing to be called, when the argument is a message expression,
#respond_to_missing? will be used to determine method existence.

defined? $a #=> nil

defined? 3 + 2 #=> "method"

var = defined? true or nil #=> "true"

defined? var #=> "local-variable"

defined? 1.times { :one } #=> "expression"

defined? yield #=> nil

Operand Return Value of
defined?defined?

Defined local variable "local-variable"

Defined global variable "global-variable"

Defined constant "constant"

Defined instance variable "instance-variable"

The return values of the defined? operator.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 50

Operand Return Value of
defined?defined?

Defined class variable "class variable"

nil "nil"

true "true"

false "false"

self "self"

Expression using yield correctly "yield"

Expression using super correctly "super"

Assignment expression "assignment"

Message sending expression (doesn’t check
arity)

"method"

Any other legal expression "expression"

Undefined variable or invalid use of
yield/super

nil

Assignment
An assignment expression sets the value of one or more lvalues to their

corresponding rvalues. Its general form is lvalues = rvalues: one or more
lvalues, an equals sign (U＋003D, then one or more rvalues.

Lvalues

An lvalue is a target of an assignment: an expression that can appear on
the left‐hand side of an assignment expression.

Variables

The name of any variable is a valid lvalue. An assignment expression
involving a variable lvalue causes the variable to take the value of the
corresponding rvalue. This operation occurs without any methods being
invoked or messages sent: it is inbuilt and its semantics cannot be overridden.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 51

Constants

The name of any constant is a valid lvalue. Assignment to a constant has
the same semantics as assignment to a variable, with two caveats:

• If the constant is initialized prior to the assignment, a warning will be
issued.

• Constant assignment is illegal in the body of a method.

Attributes

A message expression of the form receiver.selector is a valid lvalue
unless the last character of selector is a question mark (U＋003F) or
exclamation mark (U＋0021). If the last character of selector is not an equals
sign (U＋003D), it is set to be. Then, receiver is sent selector with the rvalue as
its argument.

An important implication of the above is that the receiver defines the
semantics of assignment. Typically, a selector ending with = will assign its
argument to the corresponding instance variable, but it is free to do
otherwise. However, the return value of an attribute assignment expression is
always the rvalue; the value returned by the receiver is ignored.

Element Reference Lvalues

An element reference expression, i.e. receiver[expression] is a special
case of attribute lvalues. It is equivalent to receiver.[]=(expression,

rvalue).

Rvalues

An rvalue is a value being assigned: appearing on the right‐hand side of an
assignment expression. Any expression is a valid rvalue. The value of the
expression that assigned to the corresponding lvalue.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 52

Simple Assignment

A simple assignment expression consists of a single lvalue and a single
rvalue: lvalue = rvalue. It sets the value of lvalue to rvalue, then returns
rvalue.

If the rvalue is an Array, the lvalue may be followed by a trailing comma
to set the lvalue to the first element of the rvalue, discarding the remaining
rvalues.

Abbreviated Assignment

An abbreviated assignment expression is a syntactical shortcut for an
rvalue consisting of a binary operator whose operands are the lvalue and
rvalue, respectively. It takes the following general form, where operator is
one of thirteen predefined selectors enumerated in the table below: lvalue
operator= rvalue. This is wholly equivalent to: lvalue = lvalue operator

rvalue.

This equivalence means that the abbreviated form results in the lvalue
being sent a message with the selector operator and the argument rvalue,
then the result of this operation being assigned to lvalue.

The value returned by an abbreviated assignment expression is that of its
expanded right‐hand side.

The ||= operator gives rise to a popular idiom Perrotta terms a “Nil Guard”
[Per10, pp. 243–244] . Its purpose is to assign the rvalue to the lvalue iff the
lvalue is false (false or nil). That is, to initialize the lvalue only if it isn’t
already. Perrotta describes an instance variable employing this technique as a
“Lazy Instance Variable” [Per10, pp. 243–244] .

var ||= Time.now

var #=> 2010-02-19 10:51:07 +0000

var ||= Time.now

var #=> 2010-02-19 10:51:07 +0000

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 53

Operator Abbreviation Expansion
+ lvalue += rvalue lvalue = lvalue + rvalue

- lvalue -= rvalue lvalue = lvalue - rvalue

* lvalue *= rvalue lvalue = lvalue * rvalue

/ lvalue /= rvalue lvalue = lvalue / rvalue

% lvalue %= rvalue lvalue = lvalue % rvalue

** lvalue **= rvalue lvalue = lvalue ** rvalue

&& lvalue &&= rvalue lvalue && lvalue = rvalue

|| lvalue ||= rvalue lvalue || lvalue = rvalue

& lvalue &= rvalue lvalue = lvalue & rvalue

| lvalue |= rvalue lvalue = lvalue | rvalue

^ lvalue ^= rvalue lvalue = lvalue ^ rvalue

<< lvalue <<= rvalue lvalue = lvalue << rvalue

>> lvalue >>= rvalue lvalue = lvalue >> rvalue

The abbreviated assignment operators

Parallel Assignment

A parallel assignment expression involves multiple lvalues and/or multiple
rvalues. The values are separated by commas.

The parallel aspect of this operation is that all of the rvalues are evaluated,
left to right, prior to assigning them. This allows the value of two or more
variables to be swapped, as shown in the figure below.

Equal Number of Lvalues to Rvalues

When there are as many lvalues as there are rvalues, each lvalue is
assigned the rvalue in the corresponding position on the right‐hand side of
the expression. That is, the nth lvalue is assigned the nth rvalue.

a, b, c = 1, 2, 3

a #=> 1

b #=> 2

c #=> 3

a, b = b, a

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 54

a #=> 2

a #=> 1

Splat Operator

Lvalues and rvalues may optionally be directly preceded by an asterisk
(U＋002A), termed a splat2 hereafter.

Splatting an Lvalue

A maximum of one lvalue may be splatted in which case it is assigned an
Array consisting of the remaining rvalues that lack corresponding lvalues. If
the rightmost lvalue is splatted then it consumes all rvalues which have not
already been paired with lvalues. If a splatted lvalue is followed by other
lvalues, it consumes as many rvalues as possible while still allowing the
following lvalues to receive their rvalues.

*a = 1

a #=> [1]

a, *b = 1, 2, 3, 4

a #=> 1

b #=> [2, 3, 4]

a, *b, c = 1, 2, 3, 4

a #=> 1

b #=> [2, 3]

c #=> 4

Empty Splat

An lvalue may consist of a sole asterisk (U＋002A) without any associated
identifier. It behaves as described above, but instead of assigning the
corresponding rvalues to the splatted lvalue, it discards them.

2. “This may derive from the ‘squashed bug’ appearence of the asterisk on
many early laser printers.” [Raymond99, pp. 422–422]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 55

a, *, b = *(1..5)

a #=> 1

b #=> 5

Splatting an Rvalue

When an rvalue is splatted it is converted to an Array with
Kernel.Array(), the elements of which become rvalues in their own right.

a, b = *1

a #=> 1

b #=> nil

a, b = *[1, 2]

a #=> 1

b #=> 2

a, b, c = *(1..2), 3

a #=> 1

b #=> 2

c #=> 3

When given an object that does not respond to :to_a, Kernel.Array()
returns an Array with that object as its sole element. Therefore, splatting such
an object causes it to expand to itself, effectively a no‐op.

However, for objects that do respond to :to_a with an Array, such as
Array, Hash, Range, and Enumerator, splatting expands them into a list of their
constituent elements.

One Lvalue, Many Rvalues

When multiple rvalues are assigned to a single lvalue, there is an implicit
splat operator before the lvalue. Therefore, assigning n rvalues to a single
lvalue is equivalent to: lvalue = [rvalue0,…,rvaluen]

If this behaviour is undesirable, the lvalue can be followed by a trailing
comma, assigning rvalue0 to lvalue, and discarding the remaining rvalues.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 56

a = 1, 2, 3

a #=> [1, 2, 3]

colour, = :red, :green, :blue

colour #=> :red

Many Lvalues, One Rvalue

a, b, c = [1, 2, 3]

a #=> 1

b #=> 2

c #=> 3

If there are multiple lvalues and a single rvalue that responds to :to_ary3

with an Array, the elements of this array become rvalues in their own right,
replacing the original rvalue.

coding: utf-8

one, two = [:ūnus, :duo, :trēs]

one #=> :ūnus

two #=> :duo

rvalue = Object.new

def rvalue.to_ary

[:alpha, :beta]

end

a, b = rvalue

a #=> :alpha

b #=> :beta

If there are as many lvalues as there are elements in the splatted rvalue,
assignment proceeds according to Equal Number of Lvalues to Rvalues;
otherwise the following section, Unequal Number of Lvalues to Rvalues,
applies.

3. Note that :to_ary is sent rather than the :to_a used by the splat operator.
In the former case, the programmer did not directly request that conversion
take place so the message for implicit conversion is sent; in the latter, his use
of the splat operator constitutes an explicit conversion, so the more liberal
protocol is followed.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 57

x, y = 47

x #=> 47

y #=> nil

Unequal Number of Lvalues to Rvalues

When the lvalues outnumber the rvalues, assignment proceeds as with
equal numbers of lvalues to rvalues, with the remaining lvalues being
assigned nil. That is, for n rvalues and m lvalues, where n < m,
lvalue0–lvaluen are assigned rvalue0–rvaluen, and lvaluen+1–lvaluem are
assigned nil.

a, b = 1

a #=> 1

b #=> nil

a, b, c = :a, :b

a #=> :a

b #=> :b

c #=> nil

Conversely, when the rvalues outnumber the lvalues, assignment proceeds
as with equal numbers of lvalues to rvalues, with the remaining rvalues
being discarded.

a, b = :a, :b, :c

a #=> :a

b #=> :b

Sub‐assignment

When a group of at least two lvalues are enclosed in parentheses, they are
initially treated as a single lvalue in that, collectively, they are assigned a
single rvalue. After all remaining lvalues have been paired with their
corresponding rvalues, the rules of parallel assignment are applied again to
each of these groups, recursively for each level of parentheticals.

a, (b, c), d = 1, 2, 3, 4

a #=> 1

b #=> 2

c #=> nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 58

d #=> 3

(a, b), c = [1, 2], 3, 4

a #=> 1

b #=> 2

c #=> 3

zero, (one, *rest) = 0, [*1..5, *6..10]

zero #=> 0

one #=> 1

rest #=> [2, 3, 4, 5, 6, 7, 8, 9, 10]

Recall that if multiple lvalues are assigned a single rvalue that responds to
:to_ary, the rvalue is assigned to the first lvalue, and the remaining lvalues
are assigned nil. Therefore, sub‐assignment is most useful when the
corresponding rvalue is array‐like, because it distributes the elements of
potentially nested arrays on the right‐hand side among lvalues.

Value of a Parallel Assignment Expression

A parallel assignment expression involving a single rvalue has that rvalue
as its value. Otherwise, the value is an Array of the rvalues, including any
that were discarded. In both cases, the rvalues are splatted as appropriate
before being returned.

a, b, c = 1.5 #=> 1.5

(a, b), c = 1, *[2, 3] #=> [1, 2, 3]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 59

MESSAGESMESSAGES
…Smalltalk is not only NOT its syntax or the class library, it is not

even about classes. I'm sorry that I long ago coined the term “objects”
for this topic because it gets many people to focus on the lesser idea.

The big idea is “messaging” -- that is what the kernal[sic] of
Smalltalk/Squeak is all about (and it’s something that was never
quite completed in our Xerox PARC phase). The Japanese have a
small word—ma—for “that which is in between”—perhaps the nearest
English equivalent is “interstitial”. The key in making great and
growable systems is much more to design how its modules
communicate rather than what their internal properties and
behaviors should be.

—Kay98

To request that an object perform an operation we send it a message1.
Imagine an envelope: on the front is the name of the object, inside is a sheet
of paper naming the task to be performed and listing any additional
information needed to perform it. The object is the message’s receiver, the
task name its selector, and the list its arguments [Budd87, pp. 16–16] . The
selector is assumed2 is to be the name of a method defined3 upon the

1. Liu suggests envisaging messages as telegrams:

“Message” is too abstract a word. A better word is telegram. A
“telegram” is tangible: I can touch it, I can see the information it
carries, and I can picture the moment it arrives at the door of its
addressee. It is not some vague electronic-sounding thing like a
“message”. Therefore, I encourage you to think of an old-fashioned
telegram whenever you see the term “message”.

—Liu99, pp. 2–2

2. Due to the Method Missing protocol, the sending of the message may
succeed even if this assumption is false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 60

receiver, so it is common4 to describe sending a message as invoking a
method. Accordingly, we shall use the two phrases interchangeably.

Message Expression Syntax
A message is sent with an expression, the simplest of which consists solely

of the selector, e.g. foo. In this case, the receiver is implicit, so assumed to be
self.

def hop

:boing!

end

hop #=> :boing!

hop = :skip

hop #=> :skip

jump = :leap

jump #=> :leap

A message that invokes a private method must always be sent to the
implicit receiver. By contrast, in the following scenarios the receiver must be
specified explicitly:

1. The selector is also a keyword such as class. (An implicit receiver
would create syntactical ambiguity).

2. The selector is that of a non-unary operator method.
3. The selector is used as an lvalue.

3. A message selector may consist of any Symbol, even those which are illegal
when defining a method with the def keyword. Methods with corresponding
names can be defined with Object#define_method, or such messages can be
handled by the Method Missing protocol.

4. For instance, Flanagan & Matsumoto make the popular claim that
“…methods are called ‟messages”” [Flan08, pp. 178–178] . However, in the
definitions of Budd [Budd87, pp. 6–6] , Mitchell [Mitchell04, pp. 279–279] ,
and Klass & Schrefl [Klas95, pp. 13–13] , message refers to the request being
made of an object; whereas Flanagan & Matsumoto use it to refer the means
with which the receiver would respond to such a request. On this point we
grudgingly conceede to Ruby’s convention.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 61

4. The message name is identical to a local variable. (This case can also
be disambiguated by immediately following the selector with a pair of
parentheses, i.e. selector()).

class Schneier

private

def blowfish

"Teach a man to fish..."

end

end

Schneier.new.blowfish #=> NoMethodError

class Schneier

def backdoor

self.blowfish

end

end

Schneier.new.backdoor #=> NoMethodError

class Schneier

def backdoor

blowfish

end

end

Schneier.new.backdoor #=> "Teach a man to fish..."

The receiver is made explicit by concatenating its name and the selector
with a full stop, i.e. receiver.selector. receiver is an arbitrary expression,
the value of which receives the message.

"esrever".reverse #=> "reverse"

(1 + 2).succ #=> 4

The value of a message expression is that of the method it invoked. If no
corresponding method could be found, a NoMethodError exception is raised.

Arguments

A message may be accompanied by one or more arguments: values to be
used in the resulting computations. They are supplied as a parenthesized list

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 62

of expressions separated by commas: receiver.selector(arg0,…,argn). The
number of arguments sent must agree with how the corresponding method
was defined, otherwise an ArgumentError is raised.

cabin_dwellers = []

cabin_dwellers.push(:kaczynski, :roosevelt, :thoreau)

#=> [:kaczynski, :roosevelt, :thoreau]

cabin_dwellers.unshift(cabin_dwellers.pop())

#=> [:thoreau, :kaczynski, :roosevelt]

cabin_dwellers.insert(1, cabin_dwellers.pop)

#=> [:thoreau, :roosevelt, :kaczynski]

Enumerable Arguments
It is often the case that a message needs to be sent with multiple

arguments, yet those arguments are stored in an Enumerable such as Array. If
the message is sent with just the Enumerable argument it will receive a single
argument (a reference to the Enumerable) rather than the constituent
elements thereof. The solution is to prefix the Enumerable argument with an
asterisk (U＋002A), which in this context is termed a splat operator, thus
expanding the Enumerable into its individual elements.

def one(argument)

"One argument: #{argument}"

end

def three(first, second, third)

"Three arguments: #{first}, #{second}, #{third}"

end

array = [1, 2, 3]

one(array) #=> "One argument: [1, 2, 3]"

three(array) #=> ArgumentError: wrong number of arguments (1 for 3)

three(*array) #=> "Three arguments: 1, 2, 3"

three(1, 2, 3) #=> "Three arguments: 1, 2, 3"

This technique works by sending :to_a to the prefixed object, so any object
that responds to this message with an Array can be used in the same fashion.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 63

Block Literals

A message expression followed by a block literal causes the block to be
sent along with the message. A block literal may be enclosed in curly braces
({…}) or a do…end construct. These forms are semantically equivalent ,
however it is conventional to use the former for short blocks that fit on a
single line, and the latter for multi-line blocks.

3.times {|number| print number ** 2, ', ' } #=> 3

0, 1, 4,

(:a..:z).select do |letter|

letter > :r && letter < :y

end #=> [:s, :t, :u, :v, :w, :x]

Proc Arguments
Analogous to the situation described in Enumerable Arguments, is sending

a Proc to a method expecting a block literal. The method cannot be fooled by
simply including the Proc in the argument list: it sees an extra argument it
wasn’t expecting, and no block argument. However, if exactly one Proc

argument is prefixed with an ampersand, and appears as the final argument
in the list, it is automatically converted into an anonymous block. The
method behaves as it should, unaware of your chicanery. This technique
works by sending #to_proc to the object, and using the Proc returned as the
block. By extension, any object that responds to :to_proc in this manner can
be used in the same fashion.

title = ->(name) { %w{Mr Mrs Sir Dr}.sample + ' ' + name }

title.is_a?(Proc) #=> true

['Stephen Hawking', 'R. Feynman', 'Niels Bohr'].map(&title)

#=> ["Dr Stephen Hawking", "Mrs R. Feynman", "Sir Niels Bohr"]

Parentheses

Parentheses may be omitted from message expressions when doing so does
not introduce syntactic ambiguity. They are rarely used when no arguments
are involved, e.g. 'briefcase'.upcase is equivalent to

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 64

'briefcase'.upcase(), with the former style being recommended. However,
they serve to disambiguate a local variable reference from a message
expression with an implicit receiver, so are sometimes necessary.

def ambig

:uous

end

ambig #=> :uous

ambig() #=> :uous

ambig = :uity

ambig #=> :uity

ambig() #=> :uous

Parentheses may usually be omitted even when arguments are involved. If
so, there must be whitespace between the selector name and the first
argument.

"spending".sub(/spend/, 'sav') #=> "saving"

"spending".sub /spend/, 'sav' #=> "saving"

";".gsub(/(.)/, '.' => 'full stop', ',' => 'comma',

';' => 'semicolon') #=> "semicolon"

";".gsub /(.)/, '.' => 'full stop', ',' => 'comma',

';' => 'semicolon' #=> "semicolon"

A common case when parentheses are required to disambiguate is nested
message expressions where multiple arguments are involved, such as abc, d,
where a and b are selectors. To which do the arguments, c and d, belong?
Does the programmer mean a(b(c, d)) or a(b(c), d)? Ruby assumes the
former. However, even if the programmer agrees with Ruby's interpretation,
these forms of expression are seldom as clear to others. Therefore, it is
recommended to employ parentheses in such cases, even if syntactically
unnecessary, as an aid to legibility.

cubes = [1.0]

cubes.push cubes.first * 8, Math.log2 134217728, 64.0

#=> SyntaxError: syntax error, unexpected tINTEGER, expecting $end

cubes.push cubes.first * 8, Math.log2 134217728, 64.0

^

cubes.push cubes.first * 8, Math.log2(134217728), 64.0

#=> [1.0, 8.0, 27.0, 64.0]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 65

When parentheses are used to enclose a message’s arguments, the opening
parenthesis must immediately follow the selector like so: selector(arg0
,…,argn). Whitespace between selector and (will result in a SyntaxError.
This is due to a quirk in Ruby’s syntax inasmuch as parentheses serve two
distinct functions—grouping of expressions and associating an argument list
with a message expression—so the above form is ambiguous.

Chaining

A message expression returns an object, which may in turn receive
messages, i.e. receiver.selector0 .selector1 . receiver is sent selector0
which returns an object; that object is sent selector1 . Message expressions
can be arbitrarily chained in this fashion.

(100..110).map{|n| n / 5 }

#=> [20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22]

(100..110).map{|n| n / 5 }.uniq #=> [20, 21, 22]

(100..110).map{|n| n / 5 }.uniq.first(2) #=> [20, 21]

(100..110).map{|n| n / 5 }.uniq.first(2).reduce(:+) #=> 41

This technique relies on the composite receiver consistently returning an
object responding to the selector; otherwise a NoMethodError will break the
chain. It is unsuitable when the receiver may return a materially different
object for certain arguments. For instance, Array#select always returns an
Array even when it doesn’t select any elements, allowing it to receive any
Array selector. Conversely, methods such as Array#[], which return either the
specified element or nil if it does not exist, make awkward links.

" All propositions are of equal value. ".strip!.sub(/\.$/,'!')

#=> "All propositions are of equal value!"

"All propositions are of equal value.".strip!.sub(/\.$/,'!')

#=> NoMethodError: undefined method `sub' for nil:NilClass

Messages sent purely for their side effects should, and often do, return self

so as to receive any message understood by their receiver.

" All propositions are of equal value. ".strip.sub(/\.$/,'!')

#=> "All propositions are of equal value!"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 66

"All propositions are of equal value.".strip.sub(/\.$/,'!')

#=> "All propositions are of equal value!"

Dynamic Sending with Object#send

A message can also be sent to an object with Object#send, i.e.
receiver.send(selector, arg0 ,…,argn). This allows the message selector
to be determined dynamically, at runtime, as opposed to the syntax described
previously which requires the selector to appear literally in the source file.

name = :size

"wool".name

#=> NoMethodError: undefined method `name' for "wool":String

"wool".send(name) #=> 4

33.send(:/, 3) #=> 11

Object#send is aliased to __send__, so even if the former is overidden, the
alias can be used in its place. A warning is issued if the user overrides
__send__. Object#public_send performs the same function as Object#send,
but raises a NoMethodError if the method is private or protected.

Operators
The following operators are implemented in terms of messages: !, ~, unary

+, **, unary -, *, /, %, +, -, <<, >>, &, |, ^, <, <=, >=, >, ==, ===, !=, =~, !~, <=>.
They are termed operator methods because their usual semantics can be
overidden by defining a method with the corresponding name. In general,
this name is identical to that of the operator, however unary plus and unary
minus are named +@ and -@, respectively. The syntax for invoking an operator
method differs from the general rules set out above in the following ways:

1. Their receiver must always be explicit, i.e. an expression of the form
operator or operator argument is illegal.

2. Unary operator methods may be invoked as operator.receiver
3. Binary operator methods may be invoked as receiver operator

argument as long as they weren’t defined to require multiple
arguments.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 67

4. An expression of the form receiver.operator(arg0,…,argn), where
arg is an argument, is always legal. However, when operator is unary
plus or unary minus, it must be given with an @ suffix, e.g. +@ or -@.

Further, in forms 2 and 3, the expression has the associativity, arity, and
precedence outlined in Operators.

Conventions
Around certain selectors there exist conventions which are established by

the core classes and standard library. Their adoption engenders APIs that are
more coherent and feel familiar to Rubyists. They are, however, merely
suggestions—explanations of traditions; not a list of requirements. Ignore as
you see fit.

#call#call

Accepts a variable-length argument list with which it invokes the
receiver.

#each#each

Yields the next element of a sequence when given a block; otherwise
returns an enumerator.

#each_#each_attribute
Enumerates a collection by attribute. Yields the next element when given
a block; otherwise returns an enumerator.

#empty?#empty?

Returns true if the receiver doesn’t have any content; false otherwise.

#size#size

#length#length

Returns the receiver’s magnitude as an Integer.

_by_by

Selectors with a _by suffix typically imply that the method expects a
block, the results of which constrain the computation.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 68

#to_#to_

Converts the receiver into an object of the corresponding core type.

try_converttry_convert

Class method that implicitly converts the argument to an instance of the
receiver.

#<=>#<=>

Returns 0 if the operands are equal, 1 if the first is greater than the
second, -1 if the first is less than the second, and nil if they are
incomparable.

#<#<

Returns true if the receiver is less than argument; false otherwise.

#>#>

Returns true if the receiver is greater than argument; false otherwise.

#==#==

Returns true if the receiver is equal to the argument; false otherwise.

#[]#[]

Indexes the receiver by the “key” supplied as the argument(s), returning
the requested slice or nil/[] if no corresponding data was found.

#[]=#[]=

The assignment counterpart to #[] the first argument(s) describe the slice,
and the final argument its new value.

#=~#=~

Matches the receiver with the argument.

#<<#<<

For non-Integer receivers, appends the argument to the receiver then
returns the mutated receiver.

#+#+

Returns a new object comprising the concatenation of the operands.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 69

#rewind#rewind

Resets the receiver to its initial state.

#*#*

Multiples the receiver by the numeric argument.

Tone

By convention, a selector with a question mark (?) suffix denotes that the
message poses a polar question to the receiver. Such messages are referred to
as predicates.

33.odd? #=> true

('a'..'z').include? 'd' #=> true

File.exists?(File.expand_path '~/.emacs') #=> false

:roland_barthes.is_a? Symbol #=> true

Etymology
This convention is shared with Scheme and probably derived from that of

Lisp to name predicate functions with a p suffix, e.g. Lisp’s (evenp) ⇒
Scheme’s (even?) ⇒ Ruby’s Fixnum#even?.

3.5.infinite? #=> nil

3.5.fdiv(0.0) #=> Infinity

3.5.fdiv(0.0).infinite? #=> 1

-10.quo(0.0) #=> -Infinity

-10.quo(0.0).infinite? #=> -1

Following similar convention, a selector with an exclamation mark (!)
suffix (colloquially called a bang) is used “…to mark a method as special. It
doesn’t necessarily mean that it will be destructive or dangerous, but it
means that it will require more attention than its alternative.” [Brown09] .
“Usually, the method without the exclamation mark returns a modified copy
of the object it is invoked on, and the one with the exclamation mark is a
mutator method that alters the object in place.” [Flan08]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 70

dungeon = 'oubliette'

dungeon.capitalize #=> "Oubliette"

dungeon #=> "oubliette"

dungeon.capitalize! #=> "Oubliette"

dungeon #=> "Oubliette"

Both suffixes are merely conventional, however; they do not guarantee that
the receiver will respond in the aforementioned manner.

Plurality

Messages whose selectors are plural generally return an Enumerable

collection of objects. For example, String#bytes, String#chars, and
String#codepoints return Enumerators which yield each byte, character, or
codepoint, respectively, in turn. Similarly, Object#methods,
Object#instance_methods, Object#instance_variables, and similar
methods, return Arrays of Symbols.

[*'Ruby'.bytes] #=> [82, 117, 98, 121]

Responding to Messages

An object is said to respond to a given selector if it expects to receive it as
a message. The Kernel#respond_to?(selector) predicate returns true if a
method is defined with the same name as the selector; false otherwise. In
some situations, Module#method_defined? is an alternative, for the reasons
outlined in its description.

Math::PI #=> 3.141592653589793

Math::PI.respond_to? :floor #=> true

Math::PI.floor #=> 3

Math::PI.methods.all?{|m| Math::PI.respond_to? m} #=> true

Math::PI.respond_to? :door #=> false

Math::PI.door #=> NoMethodError

However, by defining method_missing an object may respond to a message
without having a corresponding method defined, making the behaviour of
Kernel#respond_to? insufficient. The solution is
Kernel#respond_to_missing?.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 71

object = Object.new

def object.method_missing(selector)

selector == :colour ? :red : super

end

object.respond_to? :colour #=> false

object.colour #=> :red

Kernel#respond_to? ignores private methods by default. If it is sent with a
second argument of true, private methods are included in its search.

'uninitialized'.private_methods.include? :initialize #=> true

'uninitialized'.respond_to? :initialize #=> false

'uninitialized'.respond_to? :initialize, true #=> true

Kernel#respond_to? is often used to condition a message expression on the
receiver understanding it. That is, before an object is told to perform an
operation it is asked whether it is able. Normally this procedure is
unnecessary because it is known, a priori, what messages the object will
respond to; however, especially when employing metaprogramming
techniques, it is sometimes necessary.

receiver.selector if receiver.respond_to?(:selector)

The following example suggests a simplification of this idiom by defining
Object#send? which returns nil if the named method does not exist. In
addition to the brevity it affords, this approach avoids the aforementioned
weakness of Kernel#respond_to? with respect to messages handled by
Missing Methods, by rescuing NoMethodError if it occurs.

class Object

def send?(selector, *args, &block)

begin

send(selector, *args, &block)

rescue NoMethodError

end

end

end

A closely related related scenario involves wanting to send a message
unless the receiver is nil. It transpires when working with values which

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 72

shouldn’t be nil, but might be. The general solution is one of the following
constructs:

receiver ? receiver.selector : nil

receiver & & receiver.selector

Ruby on Rails defines for this purpose Object#try(selector, arg0
,…,argn), which functions as Object#send, but returns nil when the
receiver is nil, rather than raising a NoMethodError.

class Object

alias_method :try, :__send__

end

class NilClass

def try(*args)

nil

end

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 73

OBJECTSOBJECTS
An object is a compilation of data (attributes) and behaviour (methods)

which encapsulate a specific instance of a class. The String"hello" and the
Integer 3 are both examples of objects, and instances of the String and
Integer classes, respectively. They constitute data (hello and 3, respectively)
and behaviour relevant to that data.

Instantiation
There are five main ways to instantiate, or create, an object:

• Using a literal.
• Sending a constructor message to an existing object (usually a class).
• Cloning or duplicating an existing object.
• Loading a serialized, or Marshaled, object.

In addition, certain core objects always exist without being instantiated:
they are created by the Ruby interpreter.

Constructors

.new

Sending the :new message to a class instantiates that class. For example,
Array.new creates an Array object. A method that instantiates a class is a
constructor: it allocates an object then initializes its state.

Allocation

Class#allocate allocates memory for a new object and returns a reference
to it. It cannot be overridden. If invoked manually, it returns an uninitialized
instance of the class.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 74

Initialization

The newly allocated object is sent an :initialize message along with the
arguments passed to .new. The #initialize method typically validates the
constructor’s arguments then assigns them to instance variables. It is a
private method so cannot be called from outside the class.

The .new constructor ignores the return value of #initialize, so as to
return the initialized object instead.

It is good practice for a class—particularly one with a superclass other than
Object—that defines an #initialize method to call its parent’s #initialize
with super. This allows the superclass and any included modules to perform
their own initialization routines.

Identity
Every object has a numeric identifier that is unique among other objects

and constant for the object’s lifetime. It is returned as a Fixnum by
Object#object_id.

ObjectSpace._id2ref returns a reference to an object given its ID. For
example, ObjectSpace._id2ref([1, 2].object_id) = [1, 2].

An object’s ID should not be confused with its hash code as returned by
Object#hash. Logically identical objects should have the same hash code, yet
will have different object IDs if they are pointed to by different references.
For example, [].object_id != [].object_id yet [].hash == [].hash.

Class
The class of an object is returned by Object#class. To test whether an

object is an instance of a given class, use the Object#is_a?(class) predicate,
where class is a Class object.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 75

Methods
The names of methods defined for an object are returned by

Module#methods as an Array of Symbols. For an object that is neither a class
nor a module, the methods returned are the intersection of its instance and
singleton methods; otherwise, they are its singleton methods only. To view
only the receiver’s singleton methods, use Module#singleton_methods.
Module#public_methods, Module#private_methods, and
Module#protected_methods only return the names of methods with the
corresponding visibility. If a second argument of false is given to any of
these methods, names of inherited methods are omitted from the Array.

Object.new.methods.grep /^[[:alpha:]]+\?/

#=> [:nil?, :eql?, :tainted?, :untrusted?, :frozen?, :equal?]

[].methods.grep /!/

#=> [:reverse!, :rotate!, :sort!, :sort_by!, :collect!, :map!,

:select!, :reject!, :slice!, :uniq!, :compact!, :flatten!,

:shuffle!, :!~, :!, :!=]

String.methods false #=> [:try_convert]

private_methods.grep /[[:upper:]]/

#=> [:Integer, :Float, :String, :Array, :Rational, :Complex]

Object.new.tap{|o| o.define_singleton_method(:s, ->{})}.methods(false)

#=> [:s]

Relations
Order

If instances of a class suggest an ordering relationship such that one
instance is either less than, greater than, or equal to, another, they are said to
be comparable. The class can define a method named <=> (the spaceship
operator) expecting a single argument and following the qsort(3) convention
of returning -1 if self is less than the argument, 0 if they are equal, or 1 if
self is greater.

The class then mixes in the Comparable module, which provides #<, #==,
and #> methods implemented in terms of #<=>.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 76

Equivalence

The means by which objects are compared for equality depend on the type
of equality desired.

Object#equal? considers the receiver equal to the argument if the two
objects are identical, i.e. their object IDs are equal. For example,
[].equal?([]) == false. Classes are discouraged from overriding this
method, so its semantics should not change.

Object#== is an alias of Object#equal?, but is normally overridden in
subclasses to denote logical equivalence. For example, Array#== regards two
Array objects equal if they contain the same number of elements and each
element is == to its corresponding element. So, [O.new] == [O.new] is true if
O.new == O.new.

Object#!= returns the inverse of Object#==, so it does not normally need
to be defined explicitly. It can be, however.

Object#eql? is also an alias of Object#equal? that subclasses often
override. It differs from Object#== in that it denotes strict logical comparison
without performing type conversion. For example, consider 1 and 1.0. The
two are logically equivalent if converted to the same class, so 1 == 1.0.
However, 1.eql?(1.0) == false because Object#eql? does not perform type
conversion.

Flanagan & Matsumoto state that “If two objects are eql?, their hash
methods must also return the same value.” [Flan08, pp. 77–78] , going on to
recommend that classes implement #eql? in terms of #hash.

State
Instance Variables

The state of an object is encapsulated in its instance variables, whose
values are local to that particular object, hidden from others. An object will
not respond to a message selecting one if its instance variables unless a

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 77

corresponding method has been defined, either explicitly, or implicitly with
attr .

An instance variable is typically defined in an instance method. If defined
in the context of a class it is a class instance variable.

Attributes

An attribute, a, is a pair [Flan08, pp. 94–95] of public methods—an accessor
(a) and a writer (a=)—exposing a property of an object’s state to other
objects. They can be created automatically by supplying their names to
Module#attr_accessor or Module#attr_writer inside a class definition. This
assumes, as is typical, that an attribute corresponds to an instance variable of
the same name, i.e. a returns @a; a= sets @a. If the attribute value is not
backed by an instance variable, it should be exposed in the same way
[Meyer00, pp. 55–57] by defining the methods manually.

The writer method behaves specially when used as an lvalue in an
assignment expression.

Mutability

Object#freeze makes the receiver immutable: attempts to change its state
elicit a RuntimeError. The Object#frozen? predicate returns true if the
receiver is frozen. There is not a #thaw method, so this operation is not
reversible. However, duplicating an object removes its frozen state.

Freezing works on objects not variables, so it is permissible to assign a new
value to a “frozen variable”.

References & Garbage Collection
Variables store references to objects. Assignment is, therefore, the copying

of the reference on the right-hand side to the variable named on the left,
leaving both sides referring to the same object. However, a reference may not
be dereferenced; it is not a pointer.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 78

An object is deemed unreachable when there are no references to it, or the
sources of the remaining references are themselves unreachable. Such objects
are subject to garbage collection: automatic destruction by Ruby. The lifetime
of an object is determined by its longest living reference. If an object is
intended to be temporal, its references must be likewise.

The garbage collector can be controlled manually via the GC module. It is
disabled with GC.disable, then re-enabled with GC.enable—both methods
return true if the garbage collector was already disabled; false, otherwise.
The garbage collector normally runs periodically. GC.start initiates it
immediately, while GC.count returns how many times it has run in the
current process. For testing extension libraries it may be useful to run the
garbage collector every time a new object is allocated. To do so, pass true to
GC.stress=; to revert to normal behaviour, pass false. The current status of
this flag is returned by GC.stress.

An object may register Procs that the garbage collector will invoke just
prior to destroying the object. These are called finalizers, and are registered
with ObjectSpace.define_finalizer(obj, proc), where proc is a Proc that
should be called when obj is about to be garbage collected. If multiple
finalizers are attached to a single object, they are invoked in the order they
were attached. The Proc is passed the object’s ID as an Integer block
parameter, but must not attempt to reference the object being destroyed. The
finalizers associated with obj can be unregistered with
ObjectSpace.undefine_finalizer(obj).

Listing and Counting
The list of non-immediate objects currently defined is returned as an

Enumerator by ObjectSpace.each_object. If given a Class or Module
argument, it only returns objects with this class, module, or a subclass
thereof. When a block is supplied, each object is yielded to it in turn.

ObjectSpace.count_objects returns a Hash whose keys are names of the
interpreter’s internal data types, and values the number of existing objects
with the corresponding type.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 79

Data Type Ruby Class
T_ARRAY Array

T_BIGNUM Bignum

T_CLASS Class

T_COMPLEX Complex

T_DATA Data

T_FALSE FalseClass (false)
T_FILE IO

T_FIXNUM Fixnum

T_FLOAT Float

T_HASH Hash

T_ICLASS N/A
T_MATCH N/A
T_NIL NilClass (nil)
T_NODE N/A
T_MODULE Module

T_OBJECT Any class not specified in this table.
T_RATIONAL Rational

T_REGEXP Regexp

T_STRING String

T_STRUCT Struct

T_SYMBOL Symbol

T_TRUE TrueClass (true)
T_UNDEF N/A
T_ZOMBIE N/A

BasicObject
BasicObject is the root of the class hierarchy: from this all other classes

ultimately inherit. Its superclass is nil. It defines the bare minimum of
methods so as to be a “blank slate”: “…useful as the superclass of delegating
wrapper classes…” [Flan08, pp. 235–235] . (A thorough explanation of “blank
slate” classes in Ruby is found in Ruby Best Practices [Brown09, pp. 57–62] .

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 80

Duplication
Object#dup creates a shallow copy of the receiver. A new instance of the

receiver’s class is allocated, tainted if the original object was, then populated
with shallow copies of the receiver’s instance variables. Neither singleton
methods nor frozen state are duplicated1. Corresponding instance variables
will refer to the same object because they are copied by reference; not
referent.

If the duplicated object responds to :initialize_dup, it will be sent this
message with the receiver as an argument. Its return value is ignored. A
common use is to perform a deep copyَ2 of instance variables by explicitly
duplicating them. If an object may only be duplicated under certain
circumstances, #initialize_dup may choose to raise an exception.

If an object doesn’t respond to :initialize_dup, but does respond to
:initialize_copy, it is sent the latter instead, with the same semantics as
:initialize_dup.

Objects that shouldn’t be duplicated can privatise their #dup method or
define it to raise an informative exception [Flan08, pp. 243–245] .

Cloning
Kernel#clone, behaves like Kernel#dup except it also copies singleton

methods and frozen state. Further, instead of sending :initialize_dup to its
receiver it sends :initialize_clone, falling back to :initialize_copy, if the
former isn’t defined.

1. To copy these items use Object#clone instead.
2. Another way to perform a deep copy of an object is:
Marshal.load(Marshal.dump(object)).

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 81

Marshaling
An object may be serialized as a binary String by supplying it to

Marshal.dump. If an IO object is supplied as the second argument, the
marshaled object is written to it. Marshal.load reverses this process by
recreating the object from its marshaled form, which may be a string or IO
object.

The Marshal data format is versioned with a major and minor number,
which are stored in the first two bytes of marshaled data. Marshal.load raises
a TypeError unless the data has the current major version and a minor
version ≤ the current minor version.

Objects may control how they’re dumped by responding to :marshal_dump

with another object to be serialized in their place. If so, they must also
respond to :marshal_load, which is sent to an allocated, uninitialized
instance of their class with the recreated object as an argument. It is expected
to initialize the state of the receiver from that of its argument. The return
value is ignored.

Taint
Data derived from an external source is potentially unsafe, so should be

explicitly validated before use. Taint checking is a security mechanism
designed to aid this process. Objects derived from IO streams, environment
variables3, the command line, and user input are automatically marked as
tainted. Further, any object ultimately derived, duplicated, or cloned from a
tainted object is also tainted: the trait is contagious. The Object#tainted?

predicate returns true if its receiver is tainted; false, otherwise. An object
may be explicitly tainted with Object#taint. Once a tainted object is known
to be safe, it can be untainted with Object#untaint.

3. The PATH environment variable is only tainted if one of its directories are
world-writable.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 82

Safe Levels
When Ruby is used in an untrusted environment, such as a CGI script on a

public web server, a safe level can be set to prevent potentially dangerous
methods from being invoked. The safe level is an Integer between 0—no
restrictions—and 4—the most restrictive. It can be set when the interpreter is
invoked by supplying a -Tlevel argument, where level is the desired safe
level; if level is omitted, it defaults to 1. Otherwise, the safe-level is initially 0,
and can be set by assigning the appropriate Integer to the thread-local $SAFE
variable. The value of $SAFE can’t be lowered.

Level 1

At a safe level of 1 or more, potentially dangerous methods are prohibited
from accepting tainted arguments:

• Certain methods of Dir, IO, File, and FileTest refuse to accept
tainted arguments.

• Tainted arguments are forbidden by Kernel.eval,
Kernel.load—unless the load is wrapped—Kernel.require,
Kernel.test, and Kernel.trap.

• The RUBYLIB and RUBYOPT environment variables are ignored at
startup.

• The following command-line options are prohibited: -e, -i, -I, -r, -s,
-S, and -x.

• Methods that execute programs prohibit tainted arguments or
executing a program relative to PATH when a directory in PATH is
world-writable.

• Instruction sequences can’t be compiled or disassembled:
VM::InstructionSequence.compile,
VM::InstructionSequence.compile_option=,VM::InstructionSequence.disasm,
VM::InstructionSequence.disassemble,
VM::InstructionSequence#diasm,
VM::InstructionSequence#disassemble,
VM::InstructionSequence#eval, VM::InstructionSequence.new, and
VM::InstructionSequence#to_a are disabled.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 83

Level 2

At a safe level of 2 or higher, the following additional constraints are
imposed on the manipulation of files and processes:

• Directories can not be created, deleted, or changed: Dir.chdir,
Dir.chroot, Fir.mkdir, and Dir.rmdir are disabled.

• File metadata can not be changed: File.chmod, File#chmod,
File.chown, File#chown, IO#ioctl, File.lchmod, File#lchown,
File.umask, and File.utime are disabled.

• File metadata can not be queried: File.executable?,
File.executable_real?, File.ftype, File.identical?, File.lstat,
File#lstat, File.readable?, File.readable_real?, File.readlink,
File.realpath, File.setuid?, File.stat, File::Stat.new,
File.symlink?, Kernel.test, File.writable?, and
File.writable_real? are disabled.

• Files can not be deleted, renamed, or locked: File.delete, File.flock,
File#flock, File.rename, File.truncate, File#truncate, File.unlink
are disabled.

• Symbolic and hard links can not be created: File.link and
File.symlink are disabled.

• Syscalls can not be made: Kernel.syscall is disabled.
• Process IDs can not be queried: Process.getpgid, Process.getpgrp,

Process::Sys.issetugid, Process.pid, and Process.ppid are
disabled.

• Process IDs can not be changed: Process.setpgrp, Process.setpgid,
Process.setsid, Process::Sys.setgid, Process::Sys.setrgid,
Process::Sys.setegid, Process::Sys.setregid,
Process::Sys.setresgid, Process.gid=,
Process::GID.change_privilege, Process::GID.grant_privilege,
Process.egid=, Process::GID.eid=, Process::GID.re_exchange,
Process::GID.switch, and Process::UID.switch are disabled.

• Processes can not be manipulated: Process.daemon, Process.detach,
Process.wait, and Process.waitall are disabled.

• Processes can not be executed: Kernel.`, Kernel.exec, Kernel.fork,
Kernel.spawn, and Kernel.system are disabled.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 84

• Process priorities and limits can neither be queried nor set:
Process.getpriority, Process.getrlimit, Process.setpriority, and
Process.setrlimit are disabled.

• Signals can be neither sent nor trapped: Process.kill and
Process.trap are disabled.

• Garbage collection can not be disabled: GC.stress is disabled.

Level 3

At a safe level of 3 or higher, objects other than those predefined in the
global environment, are tainted and untrusted by default. Further, objects can
neither be untainted or trusted because Object#untaint and Object#trust

are disabled.

Level 4

At a safe level of 4, the following additional restrictions are imposed:

• Object and untainted Arrays, Hashs, and Strings can’t be modified.
• Neither global variables nor environment variables can be modified.
• Instance variables in untainted objects can neither be accessed nor

removed.
• Untainted files neither be closed nor reopened. Neither files nor pipes

can be written to.
• Untainted objects can’t be frozen, and those created at a lower safe

level can’t be modified either. No object can be tainted or untrusted.
• Method visibility can’t be changed.
• In untainted classes and modules, modules can’t be included, and

methods can’t be aliased, defined, redefined, undefined, or removed.
• Objects can’t be queried for metadata such as method and variable

lists.
• Threads can not be manipulated, terminated—unless the thread is the

current thread—use Thread.abort_on_exception= or
Thread#abort_on_exception=, moved between thread groups, or have
thread-local variables.

• The interpreter can’t be terminated with Kernel.abort, Kernel.exit,
or Kernel.exit!.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 85

• Files can not be loaded with Kernel.autoload,
unwrapped-Kernel.load, or Kernel.require.

• Symbols can’t be converted to object references.
• The pseudo-random number generator can’t be seeded with

Kernel.srand or Random.srand.
• Kernel.eval can be passed a tainted String; this was prohibited at

safe level 1, but safe level 4 is so restrictive that it’s allowed again.

Trust

New objects and running code are trusted unless the safe level is at least 3,
in which case they are untrusted. Untrusted code is prohibited from
modifying trusted objects, so at safe level 3 and 4 code will not be able to
modify objects created at a lower safe level.

An object may be explicitly trusted with Object#trust when $SAFE < 3;
Object#untrust does the converse when $SAFE < 4. The Object#untrusted?

predicate returns true when the receiver is not trusted; false, otherwise.

Context
BasicObject#instance_eval takes a string or block which it evaluates in

the receiver’s context, setting self to the receiver. The evaluated code can
access the object’s instance variables, invoke its private and protected
methods, and define methods on its singleton class.

BasicObject#instance_exec is similar, but accepts any number of
arguments which it passes to the required block.

Conversion
Selectors whose names begin with to_ are expected to return the receiver

converted to an object of the indicated class. A conversion is either implicit
or explicit, as explained below:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 86

Implicit Conversion

A method may expect an argument of a particular class. If it receives an
object of another class it wishes to automatically convert that object into one
of the desired class.

For example, Array.new may be called with an Array as an argument,
which is copied to produce a new Array. If the argument is not of class Array,
Array.new sends :to_ary to the argument, implicitly converting it to an
Array.

Array.new sent :to_ary because it is part of the implicit conversion
protocol. By responding to this message with an Array objects are declaring
that they may be used in place of an Array.

If the argument responds to :to_a it can also be automatically converted to
an Array. However, Array.new does not send this message for it is part of the
explicit conversion protocol; the sender of the message must send the
argument :to_a himself if he requires the conversion.

Flanagan & Matsumoto suggest that objects should implement an implicit
conversion protocol if they have “strong characteristics” of the target class
[Flan08, pp. 80–80] .

try_convert

Array, Hash, IO, Regexp, and String define a class method named
try_convert which uses the appropriate implicit conversion protocol to
convert the argument to the receiver’s class. If the argument does not
respond to the appropriate implicit conversion message, .try_convert returns
nil.

For example, String.try_convert(object) returns object.to_str if object
responds to :to_str; nil otherwise.

Guidelines

From the discussion above we can derive the following guidelines:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 87

1. A method may send implicit conversion messages to its arguments.
2. Objects responding to such messages are declaring that they may be

used in this way.
3. A method must not send explicit conversion messages to its

arguments.

Explicit Conversion

An object which can be represented as an object of another class may
implement the relevant explicit conversion protocol. It is explicit because the
user must explicitly send the conversion message to the object to effect the
conversion; the message should never be sent automatically by another
method.

If an object implements an implicit conversion protocol that corresponds
with an explicit conversion protocol, it should implement the explicit
protocol, too. The implicit protocol is a superset of the explicit protocol, so
there will not exist a scenario where an object would need to implement the
former without the latter. This can be easily achieved by aliasing the implicit
method to the explicit method. For example, if an object responds to :to_ary

but not to :to_a it should alias :to_a to :to_ary.

From the discussion above we can derive the following rules:

1. A method should not send explicit conversion messages to its
arguments.

2. Objects responding to implicit conversion messages that have explicit
counterparts should respond to the latter, too.

Summary

The conversion protocol is summarised in the table below. The Target Class
column indicates the class of the object the conversion method should return.
The Implicit column specifies the message, if any, that is part of the implicit
conversion protocol for the target class. Likewise, the Explicit column
specifies the message, if any, that is part of the explicit conversion protocol

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 88

for the target class. If a protocol is not defined for a class, it has a value of
N/A is given.

Note that the absence of an implicit protocol for a class implies that it
should not be converted implicitly. Methods expecting arguments of a non-
convertible class should raise a TypeError if they receive arguments of an
unsuitable type.

Target
Class Implicit Explicit Note

Array :to_ary :to_a

Complex :to_c N/A
Enumerator N/A :to_enum

Float :to_f N/A
Hash :to_hash N/A
Integer :to_int :to_i

IO :to_io N/A Sent by IO.try_convert

IO :to_open N/A
Sent by Kernel#open to its first
argument

Proc :to_proc N/A
Rational :to_r N/A
Regexp :to_regexp N/A Sent by Regexp.try_convert

String :to_str :to_s

String :to_path N/A
Sent by methods expecting a file path as
an argument, such as the class methods
of File

Symbol :to_sym N/A

Converting to “Boolean”

It is rarely necessary to convert an object to a “Boolean” because Ruby
automatically treats false and nil as false, and any other value as true.
However, if a method wishes to return either true or false it may use the
!!object idiom. This returns false if object is false or nil; true otherwise.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 89

CLASSESCLASSES
A class1 is a classification of objects. It defines a set of methods, and can

mint objects in its image.

Names
A class2 is named with a constant, and this name can be retrieved as a

String by Class#name. This does not apply to anonymous classes, of course,
which have a name of nil. Conventionally class names use camel-case
capitalization: the initial letter of each word is capitalized, and spaces
between the words are removed. For example: RubyProgrammingLanguage or
NutsAndBolts. This distinguishes a class from a constant qua constant, as the
latter is named in uppercase.

Inheritance
A class inherits behaviour and certain state-class variables and constants-

from another class called its superclass. The exception is BasicObject, which
sits at the top of the class hierarchy. The default superclass is Object. Classes
that inherit from a given class are its subclasses. A subclass is, therefore, a
specialisation of its superclass.

1. The term class is roughly analogous to its biological definition where it
denotes a taxonomic rank, however this analogy does not extend to
subclasses. That is, a subclass of a class is termed a subclass; not an order.

2. Class names containing non-ASCII characters cannot be referred to from
source files with a different source encoding. For example, a class name
containing character the Greek small letter lamda (U＋03BB) can only be
referenced from source files using the UTF-8 source encoding.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 90

Superclass

The superclass is a Class object. It is typically specified as a constant
literal, but can be any expression evaluating to the same. Once a class has
been created, its superclass cannot be changed. Class#superclass returns the
receiver’s superclass as a Class object, or nil if the receiver is BasicObject.

Ancestors

The ancestors of a class are the classes and modules it inherits from: its
superclass and mixed-in modules, then their ancestors, and so on up until the
root of the inheritance hierarchy. They are returned, in order, by
Module#ancestors as an Array of Class objects.

Inheritance merely determines the initial behaviour of a class; the subclass
can diverge by defining, redefining, or removing methods, or modifying state.
It occurs because the method— and constant—lookup algorithms consider the
superclass when unable to resolve a given name against the current class. It is
worth stating explicitly that instance variables and class variables are not
inherited. [Flan08, pp. 239–240] note a corollary: “If a subclass uses an
instance variable with the same name as a variable used by one of its
ancestors, it will overwrite the value of its ancestor’s variable.”

Class#inherited Hook

If a class defines a singleton method named :inherited, it is invoked when
the class is inherited with the subclass as its argument.

Creation
class Keyword

The class name < superclass…end expression opens a class named name.
If the constant name is already defined it must refer to an existing class,
otherwise a TypeError is raised. If name was previously undefined, it is
created to refer to a new Class object. The < superclass portion may be

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 91

omitted, in which case the superclass defaults to Object. superclass may be
any expression that evaluates to a Class object. The class body, which may be
empty, is the elliptical region in the expression. It introduces a new context in
which self refers to the class.

class Dog

end

Reopening Classes

If class is used with the name of a pre-existing class that class is re-
opened. If a method is defined in a re-opened class with the same name as a
pre-existing method in the same class the old method is overwritten with the
new. Classes can be made immutable, effectively preventing them from being
reopened by freezing the class object. Frozen classes raise RuntimeErrors
when methods are defined, or variables manipulated, in their context.

'hello'.length #=> 5

class String

def length

'How long is a piece of string?'

end

end

'hello'.length #=> 'How long is a piece of string?'

Class.new

The name = Class.new do…end constructor may be used to similar effect.
The principle difference being that existing classes are overwritten rather
than reopened.

Dog = Class.new

Anonymous Classes

When a class is named with a constant it is accessible wherever that
constant is in scope. If this behaviour is not desirable, a class can be made
anonymous by assigning the value of Class.new to a local variable, thus

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 92

restricting the class to the local scope. Subsequently assigning this variable to
a constant, names the class.

dog = Class.new

dog.class_eval do

def bark

:woof

end

end

dog.new.bark #=> :woof

Structs

Struct is a class generator, particularly useful for classes that only need to
wrap data. It it instantiated with Struct.new(name, members). name is a
String beginning with a capital letter: the name of the returned Struct is
Struct::name. If name is omitted, an anonymous Struct is created. members
are zero or more Symbols naming the Struct’s attribute members. When a
block is supplied, it is evaluated in the context of the new Struct’s class
allowing methods to be defined on it.

The Struct returned, s, is itself initialised with a s.new(arguments)

method, or its alias s[]. arguments is a list of arbitrary objects that initialise
s’s members in the order the members were specified. If there are fewer
arguments than members, the remaining members are initialised to nil; if
there are more, an ArgumentError is raised. A list of all members is returned
by s.members as an Array of Symbols.

Corresponding accessor methods are defined on s for each member: the
value of a member, m, is returned by s#m and set to v with s#m=(v).
Alternatively, s#[m] retrieves member m, while s#m=(v) sets it to v. In both
#[] and #[]=, m can specify a member by its name as a Symbol, or its 0-based
Integer offset in the list of Symbol arguments passed to Struct.new. If the
specified member does not exist, a NameError is raised in the former case, and
an IndexError, in the second.

The values for all members are returned as an Array by s#to_a and its alias
s#values. s#size, and its alias s, return the number of elements in this Array.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 93

The values of specific members are returned by s#values_at(location),
where location is one or more Integer indices or Ranges.

Members are enumerated by s#each_pair as a name-value pair, while
s#each enumerates just their value. Both methods yield their enumerations to
a block, returning an Enumerator when the block is omitted. As the presence
of #each implies, s is also an Enumerable.

Element = Struct.new(:name, :symbol, :atomic_number, :mass)

as = Element.new(:Arsenic, :As, 33, 74.92)

as.mass #=> 74.92

A popular idiom is to create a class that inherits from a Struct: the Struct

defines the simple attributes, and the class body adds behaviour/
customisations.

class Element < Struct.new(:name, :symbol, :atomic_number)

def initialize(*args)

super

@poisonous = false

end

def poisonous?

@poisonous

end

def poisonous=(bool)

@poisonous = !!bool

end

end

thallium = Element.new(:Thallium, :Tl, 81)

thallium.symbol #=> :Tl

thallium.poisonous = true

thallium.poisonous? #=> true

Nesting

A class may be defined within the body of another class. The fully
qualified name of the inner class is then outer::inner: the name of the
enclosing class (outer) separated from that of the enclosed (inner) with the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 94

scope operator. This nesting behaviour is primarily used for namespacing,
with modules being an alternative. However, it does not affect inheritance: if
the inner class is to inherit from the outer class, it must do so explicitly. The
nesting of a class is returned as an Array of Class objects by Module#nesting,
where the first element is the innermost class, and the last the outermost.

Context
Class#class_eval takes a string or block which it evaluates in the

receiver’s context, setting self to the receiver. The evaluated code can access
the class’s state, invoke its singleton methods, and define methods.
Class#instance_exec is similar, but accepts any number of arguments which
it passes to the required block.

Singleton Classes
Every object is associated with two classes: that with which it was

instantiated, and an anonymous class specific to the object: its singleton
class3. That a singleton class is unique to a particular object means that
methods defined within it-singleton methods-are also unique to that object.

Further, an object’s class-i.e. the one which instantiated it-is the superclass
of its singleton class. Upon receiving a message an object asks his singleton
class for a method, the singleton class searches its instance methods and
included modules, then repeats the query to his superclass. This process
continues, recursively, up the inheritance hierarchy until a suitable method is
located. Therefore, singleton methods override all others because the
singleton class is the first place searched.

However, the singleton classes of Class objects behave slightly differently.
Consider two classes, c and p. Now, if the superclass of c is p, then the
superclass of the singleton class of c is the singleton class of p. This seemingly

3. [Flan08, pp. 257–258] use the term eigenclass, instead, but the preferred
nomenclature is now singleton class. See Feature #1082: add
Object#singleton_class method for the background.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 95

http://redmine.ruby-lang.org/issues/show/1082
http://redmine.ruby-lang.org/issues/show/1082

convoluted arrangement creates an inheritance hierarchy of singleton classes
parallel to that of normal classes, allowing class methods to be inherited.

coding: utf-8

class P

def self.convoluted?

true

end

end

C = Class.new(P)

C.superclass == P #=> true

C.singleton_class.superclass == P.singleton_class #=> true

C.convoluted? #=> true

The singleton class is a curious hybrid between class and module because
although it has a superclass, it cannot be instantiated. However, the latter
shortcoming is surely a blessing, as without it class hierarchies would be
plexiform. Regardless, the abstractionists will delight in the fact that a
singleton class has its own singleton class, ad infinitum…

Instances of the Integer, Float, and Symbol classes are the only objects not
to have a singleton class; attempting to open one causes a TypeError to be
raised.

The Kernel#singleton_class4 method returns the receiver’s singleton class
as a Class object. It is typically paired with #class_eval so as to operate
within the context of the class.

State
A class may store its state in class variables, as discussed previously,

however, due to the unpopular semantics of class variables, class instance
variables may be used instead.

4. Prior to Ruby 1.9.2 the peculiar class << object…end construct— the class

keyword followed by two less-than signs, an expression evaluating to an
object, then the class body—was used to open the singleton class of object.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 96

Class Instance Variables

An instance variable used within a class definition, outside of an instance
method, is a class instance variable. It is not to be confused with a class
variable. Both kinds of variables are associated with the class, as opposed to
its instances. The primary advantage of class instance variables over class
variables is that they don't exhibit the latter’s awkward sharing semantics:
class instance variables are not shared with subclasses. However, class
instance variables cannot be referenced in instance methods—as in that
context they are normal instance variables—so are not necessarily
appropriate substitutes.

Accessor methods can be created for class instance variables by using
Module#attr_accessor and Module#attr_writer inside the class’s singleton
class.

encoding: utf-8

class King

@numeral = Hash.new {|h,k| h[k] = 8543.chr('utf-8') }

singleton_class.class_eval{ attr_accessor :numeral }

def initialize(name)

King.numeral[@name = name].succ!

end

def name

"#@name #{King.numeral[@name]}".sub(/ Ⅰ$/, '')

end

end

%w{Henry Stephen Henry Richard John Henry Edward Edward

Edward Richard Henry}.map {|name| King.new(name).name}.join(', ')

#=> Henry, Stephen, Henry Ⅱ, Richard, John, Henry Ⅲ, Edward,

Edward Ⅱ, Edward Ⅲ, Richard Ⅱ, Henry Ⅳ

Instances
ObjectSpace.each_object(class) returns an Enumerator of a class’s

instances.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 97

Methods
Module#instance_methods returns the names of non-private instance

methods defined in its receiver and superclasses as an Array of Symbols.
Module#public_instance_methods, Module#private_instance_methods, and
Module#protected_instance_methods are identical, except they return only
those instance methods with the corresponding visibility. If these methods
are given an argument which is false, methods defined in the receiver’s
superclass are omitted. To query another type of object for the methods it
defines, see Methods.

method_defined? Predicate

The Module#method_defined? predicate accepts a method name as
argument and returns true if the named instance method is defined on the
receiver; false otherwise. Module#public_method_defined?,
Module#private_method_defined?, and Module#protected_method_defined?

behave in a similar fashion, but also require the named method to have the
corresponding visibility These predicates are clearly similar to #respond_to?
but they differ as follows:

• They test the instance methods of a class or module; #respond_to?
tests the methods defined on its receiver.

• They can only be used on classes or modules; #respond_to? with any
object inheriting from Object.

• They don’t consult #respond_to_missing?—whereas #respond_to?
does—which means that they don’t reflect methods defined with
method_missing.

• They return true for methods unimplemented on the user’s platform;
#respond_to? behaves conversely.

String.instance_methods.include?(:try_convert) #=> false

String.method_defined?(:try_convert) #=> false

String.singleton_methods.include?(:try_convert) #=> true

String.respond_to?(:try_convert) #=> true

String.instance_methods.include?(:upcase) #=> true

String.method_defined?(:upcase) #=> true

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 98

String.singleton_methods.include?(:upcase) #=> false

String.respond_to?(:upcase) #=> false

Either approach is normally preferable to
object.methods.include?(selector), which has all of the disadvantages of
#method_defined, in addition to being more verbose and less efficient.

Missing Classes
When a constant is used without being defined the enclosing class is sent a

:const_missing message with the constant name as a Symbol argument. This
is similar to :method_missing, but for classes.

Enumeration
ObjectSpace.each_object(Class) enumerates all Class objects currently

defined. Therefore, to enumerate the subclasses of a given class, this list must
be filtered as shown in the figure below.

require 'tempfile'

class Class

def children

ObjectSpace.each_object(Class).select{|c| c < self}

end

end

Delegator.children #=> [SimpleDelegator, Tempfile, #<Class:0x8a2edbc>]

Type
“In many object-oriented languages, class names are used…for the type of

objects generated from the class.” [Bruce02, pp. 20–20] . [Klas95, pp. 10–10]
concur: “A class…defines…the type of [its] instances”. Applying this notion to
Ruby is problematic because while it is certainly possible for a method to
dynamically type check its arguments with the Kernel#is_a?(class)

predicate, this approach is both insufficient and unnecessary.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 99

It is insufficient because an object’s class is not indicative of its suitability
for a specific role. Class-based type checking rests on the premise that all
objects of a given type will respond to the same messages in the same
fashion. However, Ruby’s classes may be modified at will—allowing their
methods to be redefined or removed—so two objects of the same class will
not necessarily provide the same behaviour. Similarly, methods may be
defined on, or removed from, individual objects, again breaking the
assumption.

It is unnecessary because Ruby offers a superior, meritocratic alternative
called “duck typing” ([Thom09, pp. 372–372]): if an object responds to the
messages it would be sent in the course of a computation it constitutes
suitable input. The yardstick is ability; not class.

An optimistic method simply assumes that its arguments are suitable;
allowing them to raise a NoMethodError if sent a message they don't
understand. This allows for particularly flexible APIs at the cost of potentially
obscure error messages for nonsensical arguments. More typically, the
Kernel#respond_to?(selector) predicate is used to determine the suitability
of an object. For instance, a method may raise an ArgumentError unless its
argument responds to :<<. A refinement may to send an argument the
appropriate :try_convert message, raising an exception if nil is returned.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 100

MODULESMODULES
A module is “a named group of methods, constants, and class variables”

[Flan08] . It is, therefore, similar to a class except it can neither inherit
behaviour nor be instantiated. Indeed, Module is the superclass of Class, the
latter defining only three additional methods: :new, :allocate, and
:superclass.

Creation
module Keyword

The module name…end expression opens a module named name. If the
constant name is already defined it must refer to an existing module,
otherwise a TypeError is raised. If name was previously undefined, it is
created as a Module object. That both modules and classes are named with
constants, means they share the same namespace: a given (qualified) constant
cannot name a class and a module simultaneously. The module body, which
may be empty, is the elliptical region in the expression. It introduces a new
context in which self refers to the current module.

Reopening Modules

If module is used with the name of a pre-existing module that module is re-
opened. If a method is defined in a re-opened module with the same name as
a pre-existing method in the same module the old method is overwritten
with the new.

Modules can be made immutable, effectively preventing them from being
reopened by freezing the module object. Frozen modules raise RuntimeErrors
when methods are defined, or variables manipulated, in their context.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 101

Module.new

The Module.new constructor can be used to create a new anonymous
module. It is usually passed a block argument which is evaluated in the
context of the created module using module_eval.

Kernel.load can1 use an anonymous module to prevent a source file from
affecting the global namespace. The classes and modules the source file
defines are created in the context of this anonymous namespace, making
them inaccessible to the caller. The source file must explicitly specify the
constants it wishes to share with the caller by assigning them to global
variables.

A module is an object like any other, so by assigning an anonymous object
to a local variable, for example, it only exists for as long as the variable does,
and is invisible from disjoint scopes.

However, magic happens if you assign an anonymous module to a
constant: the module takes on its name. Specifically, sending :to_s2 to an
anonymous module causes a search to be done for the first constant the
module was assigned to: if one is found, that becomes the module’s name.

This technique cannot be used to re‐open modules. Assigning an
anonymous module to a constant naming another module creates a new
module with the same name, clobbering the old one.

indeterminate = Module.new do

def size

end

end

indeterminate.name #=> nil

quantities = [3, 7, 11, 47]

quantities.extend(indeterminate)

quantities.size #=> nil

1. And does, when supplied with a second argument that is true, i.e. load
file, true.

2. …or :inspect, :name, and any other method which uses #to_s internally.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 102

Indeterminate = indeterminate

indeterminate.name #=> "Indeterminate"

Mixins
The primary use of modules is mixins: imbuing a given class with the

instance methods, or features, of a given module. A class may have any
number of modules mixed in.

Mixing a Module into a Class

Mixing-in a module to a class effectively enables multiple inheritance:
appending to the class features from any number of sources. By contrast,
classes may only inherit from a maximum of one other class.

Mixing a Module into a Module

It is less common to mixin a module to another module, but legal
nevertheless. The result is simply that the features of the included module are
copied to the other module.

Inclusion

Module#include takes one or more module names as arguments, then
mixes them in to the enclosing class. Contrary to intuition, the named
modules are mixed-in in the reverse order in which they are named. That is,
include A, B appends the features of module B, then module A. Therefore, if
A and B define an instance method with the same name, B’s copy will be
overwritten by A’s.

Specifically, when used in the context of a class named class #include
sends each of its arguments :append_features with class as an argument. The
default behaviour is defined by Module#append_features, which adds the
named modules to class’s method search path then sends the :included
message to each. A corollary is that if a class defines its own

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 103

#append_features method, it must call super so as to invoke
Module#append_features; otherwise, the module is not mixed in.

included Callback

When a module has been included in a class it is sent a message named
:included, with the class name as an argument. This allows the module to
perform initialization such as dynamically adding additional methods or
variables to the named class. Be aware, however, that :included is sent every
time Module#include is used, even if the module is already included in the
class.

:included is sent after the module has been included, so is powerless to
prevent the inclusion or otherwise condition it on some prerequisite. Its
return value is ignored because Module#include always returns the class
object in which it is used.

Class#include?

The Class#include? predicate returns true if the module given as its
argument has been mixed-in to the receiver; false otherwise.

Class#included_modules

Class#included_modules returns an Array of Modules mixed-in to the
receiver in the reverse order of their inclusion. As Object includes the Kernel

module, this method will usually return Kernel as the last element.

Extension

Given a list of modules, Kernel#extend mixes them into to a specific object
by including them in its receiver’s singleton class. Specifically, it sends each
of its arguments an :extend_object message with the receiver as an
argument. The default behaviour of :extend_object is provided by Module,
which includes the module into the receiver’s singleton class, then sends the
module an :extended message. As with Module#append_features, modules

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 104

which define their own #extend_object methods must employ super to
actually effect the extension.

module Instances

def instances

ObjectSpace.each_object(self).to_a

end

end

harmonic_sequence = 1.upto(10).map{|d| Rational(1,d)}

def pell(n)

return n if [0, 1].include?(n)

2 * pell(n-1) + pell(n-2)

end

approx_sqrt_2 = (1..20).map{|n| Rational(pell(n-1) + pell(n), pell(n))}

Rational.extend(Instances)

Rational.instances.size #=> 30

Extending self

An idiomatic application of extend is to use extend self within the
context of a module. The effect is to mix the current module into its singleton
class:

• Public instance methods can be invoked as instance methods in the
context of the module, i.e. without an explicit receiver, and singleton
methods of the module from anywhere.

• Private and protected instance methods can only be invoked from
within the context of the module.

An example of extend self is provided in a figure below.

Namespacing
Modules can be used for namespacing: to combine a set of methods with a

common purpose so their names do not clash with unrelated methods, and
they are able to share data. Classes can be used in the same way.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 105

Modules are preferable to classes in this respect when the namespace
cannot be sensibly instantiated. The use of a module clarifies this aspect of
the API.

Methods are defined in the module’s singleton class, then invoked with the
module name as the receiver: module.selector.

module CPU

def self.processors

File.read('/proc/cpuinfo').split(/\n\n/).map{|processor| Hash[

processor.lines.reject{|line| line.end_with?(':')}.

map{|line| line.chomp.split(/\t+:\s?/)}

]}

end

end

cpu = CPU.processors.first

cpu['model name'] + ' with a ' + cpu['cache size'] + ' cache'

#=> "Intel(R) Atom(TM) CPU N270 @ 1.60GHz with a 512 KB cache"

Brown [Brown09, pp. 133–138] suggests this technique can be useful in the
following circumstances:

• You are solving a single, atomic task that involves lots of steps
that would be better broken out into helper functions.

• You are wrapping some functions that don’t rely on much
common state between them, but are related to a common
topic.

• The code is very general and can be used standalone or the
code is very specific but doesn’t relate directly to the object
that it is meant to be used by.

• The problem you are solving is small enough where object
orientation does more to get in the way than it does to help
you.

This technique can be used in conjunction with extend self to create
private helper methods: accessible to the module methods; inaccessible from
outside the module.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 106

module CPU

extend self

def processors

File.read('/proc/cpuinfo').split(/\n\n/).map{|processor| Hash[

processor.lines.reject{|line| line.end_with?(':')}.

map{|line| normalise *line.chomp.split(/\t+:\s?/)}

]}

end

private

def normalise(key, value)

key = key.gsub(/\s/,'_').to_sym

return [key, value.split.map(&:to_sym)] if key == :flags

[key] << case value

when /^\d+$/ then value.to_i

when /^\d+\.\d+$/ then value.to_f

when 'no' then false

when 'yes' then true

else value

end

end

end

cpu = CPU.processors.first

cpu[:model_name] + ' has the :mmx flag set' if cpu[:flags].include?(:mmx)

#=> "Intel(R) Atom(TM) CPU N270 @ 1.60GHz has the :mmx flag set"

"It doesn't have any known bugs" if cpu.keys.grep(/_bug/).map{|bug| cpu[bug]}.none?

#=> "It doesn't have any known bugs"

"Its faster than 500MHz" if cpu[:cpu_MHz] > 500

#=> "Its faster than 500MHz"

Nesting

A module may be defined within the body of another class or module. The
fully qualified name of the inner module is outer::inner, i.e. the module
names are concatenated with the scope operator.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 107

Module Functions
A single module may be used both as a namespace and a mix-in. The first

case requires the module’s methods to be singleton methods on the Module

object; the second requires them to be instance methods.

Math.cbrt 33 #=> 3.2075343299958265

include Math

cbrt 3 #=> 1.4422495703074085

One solution is Module#module_function, which is used to convert a mix-in
module to a namespace module. In the context of a module, module_function
is provided with one or more instance method names as arguments.
Alternatively, module_function may be invoked without arguments, in which
case it affects all instance methods defined subsequently within the same
module. In both cases, each affected method is copied to the module’s
singleton class then the original method is made private. The duplication
satisfies the requirement that methods are both instance and singleton
methods. The visibility change forces classes which mix-in the module to
invoke its methods in the “functional style”, that is without an explicit
receiver, so as not to confuse them with traditional instance methods [Flan08,
pp. 251–252] .

module ISBN

module_function

Convert ISBN-13 to ISBN-10

def thirteen_to_ten(isbn)

isbn, weight = isbn.to_s[3,9].chars, 11

csum = 11 - isbn.reduce(0){|mem,c| mem + (c.to_i * weight -= 1)} % 11

isbn.join + ({10 => 'X', 11 => '0'}[csum] || csum.to_s)

end

end

isbns = {'9780596529260' => '0596529260',

'9780596102432' => '0596102437',

'9780596007591' => '0596007590'}

isbns.all?{|thirteen, ten| ISBN.thirteen_to_ten(thirteen) == ten} #=> true

include ISBN

isbns.all?{|thirteen, ten| thirteen_to_ten(thirteen) == ten} #=> true

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 108

A weakness of module_function is that it prevents a singleton method of
the module from calling a private method of the same module.

module ISBN

module_function

Convert ISBN-13 to ISBN-10

def thirteen_to_ten(isbn)

csum = checksum10(isbn = isbn.to_s[3,9])

isbn + ({10 => 'X', 11 => '0'}[csum] || csum.to_s)

end

private

def checksum10(isbn, weight=11)

11 - isbn.chars.reduce(0){|mem,c| mem + (c.to_i * weight -= 1)} % 11

end

end

isbns = {'9780596529260' => '0596529260',

'9780596102432' => '0596102437',

'9780596007591' => '0596007590'}

isbns.all?{|thirteen, ten| ISBN.thirteen_to_ten(thirteen) == ten}

#=> `thirteen_to_ten': undefined method `checksum10' for ISBN:Module (NoMethodError)

extend self does not exhibit this problem, but neither does it offer the
granularity of module_function—it copies all instance methods into the
singleton class—nor automatically privatise instance methods.

module ISBN

extend self

Convert ISBN-13 to ISBN-10

def thirteen_to_ten(isbn)

csum = checksum10(isbn = isbn.to_s[3,9])

isbn + ({10 => 'X', 11 => '0'}[csum] || csum.to_s)

end

private

def checksum10(isbn, weight=11)

11 - isbn.chars.reduce(0){|mem,c| mem + (c.to_i * weight -= 1)} % 11

end

end

isbns = {'9780596529260' => '0596529260',

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 109

'9780596102432' => '0596102437',

'9780596007591' => '0596007590'}

isbns.all?{|thirteen, ten| ISBN.thirteen_to_ten(thirteen) == ten} #=> true

include ISBN

isbns.all?{|thirteen, ten| thirteen_to_ten(thirteen) == ten} #=> true

Context
Module Eval

Module#module_eval takes a string or block which it evaluates in the
receiver’s context, setting self to the receiver. The evaluated code can access
the modules’s state, invoke its singleton methods, and define methods.

Module Exec

Module#module_exec behaves as Module#module_eval except it requires a
block, to which it passes any arguments it has received.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 110

METHODSMETHODS
“A method is a named block of parameterized code associated with one or

more objects.” ([Flan08, pp. 176–176] . It is the “code found in a class for
responding to a message ” ([Mitchell04, pp. 523–523] , emphasis mine.

Having received a message, an object invokes a method in response. Invoke
describes the calling of a specific method, in contrast to send, which is used at
a higher level to describe a request for an object to perform a certain
operation.

Instance Methods
An instance method is a method defined, without an explicit receiver, in

the context of a class. Instances of this class invoke the method when sent a
message with its name as the selector. Therefore, an object’s instance
methods determine its behaviour.

Notation
It is conventional to employ the Class#method notation when referring to

instance methods in documentation and prose. For example: Integer#even?.

Global Methods
Methods defined at the top-level of a program, outside of any Class or

Module definitions, are private instance methods of Object. This enables
programming in a functional style, without thinking in terms of objects.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 111

Singleton Methods
A singleton method is a method defined in the context of an object’s

singleton class. It is commonly described as a method defined on a specific
object, rather than on all instances of a certain class.

Notation
It is conventional to employ the Class.method notation when referring to

singleton methods in documentation and prose. For example: File.exists?.

Class Methods

Singleton methods defined on Class objects are known as class methods.
For example, File.absolute_path is a class method defined on the File class.
Class methods are further distinguished from singleton methods in that “a
method defined as a singleton method of a class object can also be called on
subclasses of that class.”: class methods are considered by the method lookup
algorithm so, unlike other singleton methods, they are inherited [Black09, pp.
384–385] .

Class methods are typically factory methods in that they are constructors
(manufacturers) of the class’ instances.

Per-Object Behaviour

“In [the] prototype-based [programming] paradigm…there are no classes.
Rather, new kinds of objects are formed more directly by composing
concrete, full-fledged objects, which are often referred to as prototypes.”
[Taivalsaari96, pp. 1–1] . Taivalsaari continues: “…unlike in class-based
languages in which the structure of an instance is dictated by its class, in
prototype-based languages it is usually possible to add or remove methods
and variables at the level of individual objects.” (ibid., pp. 8–10).

Singleton methods (along with Kernel#instance_variable_set) afford the
same abilities to the ostensibly class-based Ruby. Whereas inheritance allows

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 112

a class to be created that specializes a more general class, singleton methods
allow creation of an object that specializes on a more general object. (Ruby
can also support Taivalsaari’s observation that “…in prototype-based
languages object creation usually takes place by copying…” (ibid.) through
Kernel#clone).

The ability to specify per-object behaviour is an improvement Ruby made
on her predecessors. For example, in the context of Smalltalk Budd remarked
that “It is not possible to provide a method for an individual object; rather
every object must be associated with some class, and the behaviour of the
object in response to messages will be dictated by the methods associated
with that class.” [Budd87, pp. 5–9] .

Return Values
A method is invoked with an expression so always returns a value1: the

last statement executed, or nil if the method body is empty. If this value is an
Array the method effectively returns multiple values.

def elvis

:to_sender

end

def elvis

[:to_sender, :hound_dog]

end

elvis #=> [:to_sender, :hound_dog]

A return statement in the body of a method causes it to terminate
prematurely, immediately passing control back to the caller. The value
returned is that of return’s arguments, or nil if it has none. If multiple
arguments are given they will be returned as an Array.

def elvis

return :to_sender, :hound_dog

Not reached

1. A def expression also returns a value (nil), but this is distinct from that of
invoking the method.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 113

end

elvis #=> [:to_sender, :hound_dog]

This gives rise to two conventions:

• A method uses a return statement iff it may return before its last
statement.

• A method intended to return a value has that value as its last
statement

super
The super keyword is used in method definitions to invoke a method

defined in the superclass, or an ancestor thereof (collectively hereafter: an
ancestor), with the same name. An implication worth stating explicitly is that
an instance method in a class may use super to invoke an instance method in
an included module.

If called without arguments it invokes the ancestor method with the
arguments received by the current method (this is known as the implicit
argument form of super). Otherwise, it passes the arguments it has been
given to the ancestor method. In either case, the arguments are sent as they
currently exist: if they have been modified by the method, their modified
forms are sent. To explicitly invoke the ancestor method without any
arguments use super().

class Chef

def make(dish)

puts "Chef: You don't want #{dish}! Try this:"

:dish_of_the_day

end

end

class Cook < Chef

def make(dish)

[super, :salad].join(' and ').tr('_', ' ')

end

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 114

puts "Meal: " + Cook.new.make(:guinea_fowl_fricassee_with_foie_gras)

#=> Chef: You don't want guinea_fowl_fricassee_with_foie_gras! Try this:

Meal: dish of the day and salad

A NoMethodError is raised if a corresponding method is not defined in an
ancestor2. This can be avoided by conditioning the call to super, on defined?

super, which returns nil in this case.

module Letter

def letter

l = ('A'..'Z').reject{|l| Object.const_defined?(l)}.first

mod = Module.new do

include Letter

define_method(:letter, ->{ super(); l })

end

self.class.module_eval{ include Object.const_set(l, mod) }

'->'

end

end

class Alphabet

include Letter

def letter(n)

n.times.map{super()}.join

end

end

Alphabet.new.letter(6) #=> "->ABCDE"

Alphabet.ancestors

#=> [Alphabet, F, E, D, C, B, A, Letter, Object, Kernel, BasicObject]

Names
A valid method name is one of the following:

• An identifier that is optionally followed by an equals sign (U＋003D),
question mark (U＋003F), or exclamation mark (U＋0021).

• An operator method selector.
• The element reference ([]) selector.

2. super does obey the Method Missing protocol, however, so before raising
the exception it will send :method_missing to each class it encounters.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 115

• The element set ([]=) selector.

Abbreviated Assignment
Pseudo operators such as += and ||= are neither operator methods nor

methods; they are abbreviated assignment operators.

Names that begin with an identifier conventionally begin with a
lowercase3 letter or low line (U＋005F).

coding: utf-8

def Π

Math::PI

end

Π #=> 3.141592653589793

Operator Methods

An operator method is an operator definable as a method. By defining a
method with the corresponding name an object can receive an operator
message like core classes do. For example, the expression 3 + 2 is a
syntactical shortcut for 3.+(2); by defining a method named + you can4

redefine, or overload, the fundamentals of arithmetic.

Defining
A method consists of a name, an optional parameter list, and a body.

Names have already been discussed, the parameter list is explained in

3. It is legal for a method name to begin with an uppercase letter, but then
they may be confused with constants or class names. In fact, several core
classes use this convention for precisely this reason: they provide a
syntactical shortcut for constructing instances. For example, Array() is a
method of Kernel which coerces its argument into an Array object.

4. …in the sense that you can learn Java: insanityAndScornFromYourPeers
will result.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 116

Arguments below. The body is a sequence of statements terminated with the
end keyword.

If expression. is omitted, an instance method named symbol is defined on
the enclosing class; otherwise a singleton method5 named symbol is defined
on expression.

class Dog

def bark

:woof

end

end

Dog.new.bark #=> :woof

Therefore, def self.name defines a class method for the enclosing class.
def class.name defines a method named name on the class named class.

class Dog

def self.breed

[new, new]

end

end

Dog.breed #=> [#<Dog:0x95cb530>, #<Dog:0x95cb508>]

method_added Callback

When an instance method is defined, the receiver (i.e. the containing class)
is sent a :method_added message with the new method’s name as an
argument. Similarly, when a singleton method is defined the receiver is sent
:singleton_method_added instead.

Dynamic Method Definition

An instance method can be defined dynamically with
Module#define_method(name, body), where name is the method’s name
given as a Symbol, and body is its body given as a Proc, Method,
UnboundMethod, or block literal. This allows methods to be defined at

5. Kernel#define_singleton_methodmay be used to the same end.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 117

runtime, in contrast to def which requires the method name and body to
appear literally in the source code.

class Conjure

def self.conjure(name, lamb)

define_method(name, lamb)

end

end

Define a new instance method with a lambda as its body

Conjure.conjure(:glark, ->{ (3..5).to_a * 2 })

Conjure.new.glark #=> [3, 4, 5, 3, 4, 5]

Module#define_method is a private method so must be called from within
the class the method is being defined on. Alternatively, it can be invoked
inside class_eval like so:

Array.class_eval do

define_method(:second, ->{ self.[](1) })

end

[3, 4, 5].second #=> 4

Kernel#define_singleton_method is called with the same arguments as
Module#define_method to define a singleton method on the receiver.

File.define_singleton_method(:match) do |file, pattern|

File.read(file).match(pattern)

end

File.match('/etc/passwd',/root/) #=> #<MatchData "root">

Arguments
We have already discussed how messages may be sent along with

arguments. A method expecting to receive these arguments must define their
type and quantity via a parameter list.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 118

When a method is defined with the def keyword, its parameter list follows
its name, and is usually6 enclosed in a set of parentheses (U＋0028, U＋0029).
It specifies:

• The local variable names (hereafter: parameters) to which the
corresponding argument will be aliased inside the method.

• Whether the arguments are required or optional.
• Whether a fixed or variable number of arguments are allowed.
• The default value, if any, of each parameter.
• Whether an argument is expected to be a block.

Each parameter name must be unique in the parameter list.

Parameters are positional: they describe the argument in the corresponding
position of the argument list. The correspondence isn’t one‐to‐one, as we will
see below, but each parameter consumes as many arguments as it can,
leaving those that remain for the following parameters.

Required Arguments

A required argument must be supplied by the caller: A method which
requires exactly n arguments must receive them all, otherwise it raises an
ArgumentError.

nil and false

nil and false are as valid an argument any other. If a method requires an
argument and nil is supplied in its place, Ruby will not complain. Methods
wishing to prohibit such values must do so themselves.

Required arguments are specified with a comma-separated list of
identifiers. Each parameter represents a mandatory argument.

class Llama

def laugh(how, volume)

6. The parentheses are actually optional, but their omission doesn't enhance
readability so they are recommended.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 119

puts volume == :loudly ? how.upcase : how

end

end

Llama.new.laugh

#=> ArgumentError: wrong number of arguments (0 for 2)

Llama.new.laugh(:snicker)

#=> ArgumentError: wrong number of arguments (1 for 2)

Llama.new.laugh(:chortle,:softly)

#=> chortle

Llama.new.laugh(:guffaw,:loudly)

#=> GUFFAW

Llama.new.laugh(:ho, :ho, :ho)

#=> ArgumentError: wrong number of arguments (3 for 2)

Optional Arguments and Default Values

An optional argument may be supplied by the caller. If it is not, the
corresponding parameter will be assigned the value given as its default.

Optional arguments are specified with a comma-separated list of
name=value pairs, where name is a parameter name and value is its default
value. The value may be any Ruby expression, and is permitted to refer to
previous parameters. The default value expression is evaluated each time the
method is invoked, so may, for example, instantiate an object on every
invocation.

class Llama

def name(name='Larry')

name + ' the llama (beast of burden)'

end

end

Llama.new.name

#=> "Larry the llama (beast of burden)"

Llama.new.name('Lyle Jr.')

#=> "Lyle Jr. the llama (beast of burden)"

Llama.new.name('Lama', 'glama')

#=> ArgumentError: wrong number of arguments (2 for 1)

Optional and required arguments can be specified alongside each other in
a reasonably natural fashion. However, all optional arguments must be

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 120

adjacent. For instance, it is a syntax error to both precede and follow a
required argument with optional arguments.

def required_optional(a,b=1) end

def required_required_optional(a,b,c=1) end

def optional_required(a=1,b) end

def optional_optional_required(a=1,b=2,c) end

Variable-Length Argument Lists

A rest parameter (or splat parameter) consumes every argument that
follows it while still allowing subsequent required parameters to receive their
corresponding arguments. Put simply: it takes an arbitrary
number—including zero—of arguments from its position onward. It is passed
to the method as an Array containing one argument per element.

A rest parameter is specified by preceding a parameter name with an
asterisk (U＋002A). Only one rest parameter may appear in a parameter list,
and any optional parameters must precede it.

def zero_or_more(*rest)

rest.join(', ')

end

zero_or_more #=> ""

zero_or_more(1) #=> "1"

zero_or_more(1,2,3) #=> "1, 2, 3"

A rest parameter may be supplied as a sole asterisk, omitting the
corresponding parameter name. The effect is to consume the corresponding
arguments as an ordinary rest parameter, without assigning them to a local
variable. The arguments are ignored. This allows methods to accept an
arbitrary number of arguments, but discard, say, all but the last.

Thomas et al. suggest that this technique can used in conjunction with the
implicit-argument form of super to define a method which accepts an
arbitrary number of arguments then passes them all to its superclass
[Thom09, pp. 138–139] .

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 121

class Parent

def do_chores(*chores)

end

end

class Child < Parent

def do_chores(*)

our processing

super

end

end

Named Arguments

The parameter forms described above are positional in nature. An
alternative approach, that can aid the readability of otherwise ungainly
parameter lists, is named arguments, which allow the method to be invoked
with a series of key-value pairs, arranged in an arbitrary order.

This style of argument passing is not supported explicitly, but can be ably
approximated by defining methods that expect a Hash argument: the keys of
which become the parameter names; and the values, the arguments. This
technique is used by core methods such as File.open and String#encode.

class Chair

def initialize(args)

@legs = args[:legs] or raise ArgumentError

@style = args[:style] || :victorian

@height = args[:height] || :average

@colour = args[:colour] || args[:color] || :brown

end

end

Chair.new legs: 4, height: :tall

#=> #<Chair:0x8249908 @legs=4, @style=:victorian,

@height=:tall, @colour=:brown>

Chair.new(:color => :fuschia, :legs => 7)

#=> #<Chair:0x86958f4 @legs=7, @style=:victorian,

@height=:average, @colour=:fuschia>

Chair.new(height: :childs, color: :fuschia)

#=> ArgumentError

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 122

If a Hash literal is the final argument, other than a block, that a method
expects, the curly braces which delimit it can be omitted, as long as there is
white space between the selector and the first key. For example, selector({
key: :value }) can be written as selector key: :value.

The advantages of this approach include:

• Arguments can be specified in any order.
• Arguments with default values can be omitted.
• If Symbols are used for the Hash keys the invocation is particularly

readable.
• Variable-length argument lists are supported.

class Chair

DEFAULT_ARGS = {legs: 2, style: :victorian, height: :average, colour: :brown}

def initialize(args)

@attributes = DEFAULT_ARGS.merge args

end

end

Chair.new legs: 4, height: :tall #=>

#<Chair:0x9039af4 @attributes={

#:legs=>4, :style=>:victorian,

#:height=>:tall, :colour=>:brown

#};>

Chair.new(:color => :fuschia, :legs => 7) #=>

##<Chair:0x998a9dc @attributes={

#:legs=>7, :style=>:victorian,

#:height=>:average, :colour=>:fuschia

#}>;

The primary shortcoming is that Ruby can not determine automatically
whether an invalid number of arguments have been supplied; the
programmer must validate the arguments instead. This is unlikely to be
particularly significant, however, because a method expecting a variable
number of arguments would otherwise use a rest parameter, which also
preclude automatic validation.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 123

Block Arguments

Any method may be sent a block argument. The block may be yielded to,
allowing its return value to be captured, or objectified and assigned to a
variable. A method may determine whether it has received a block with the
Kernel.block_given? predicate.

Iterator Methods
Flanagan & Matsumoto insist [Flan08] insist on “[using] the term

iterator…to mean any method that uses the yield statement”, despite
admitting that this doesn't make sense if the method doesn’t actually iterate
over the block it has been given. We will not perpetuate this confusion: an
iterator method iterates over the block it has been given; a method which
expects a block but does not iterate over it is simply a method that expects a
block.

def m

:m

end

m { 1 + 2 }

m do

1 + 2

end

A block passed to a method in this way is not automatically called; the
method must use the yield keyword to do so. An implication is that methods
not expecting blocks will ignore them.

def m

puts "This block returns: #{yield}" if block_given?

end

m { 1 + 2 } #=> This block returns: 3

m #=> nil

A method needing a reference to the block it was given, perhaps to pass to
another method, is defined with a final parameter whose name is prefixed
with an ampersand (U＋0026). The method can access the block as a Proc

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 124

object named after the parameter (sans ampersand). It may invoke the block
via its Proc#call method, or yield to it. In either case, the method is invoked
in precisely the same way as before.

def m(&block)

puts "This block returns: #{block.call}" if block_given?

end

m { 1 + 2 } #=> This block returns: 3

m #=> nil

The discussion above applies only to block literals; a method expecting a
reference to a block, i.e. a proc or lambda, need not pay heed. Such a method
employs precisely the same parameter list as in the previous sections.

def m(b)

b.call

end

m ->{ "I am a \u{3bb}!" } #=> "I am a λ!"

Pass By Reference

Arguments are passed to methods by reference instead of value. If the
method modifies an object it receives the caller’s copy is modified, too.

def llama_sans_l(llama)

llama.gsub!(/l/i,'')

end

llama = 'Larry'

llama_sans_l(llama) #=> 'arry'

llama #=> 'arry'

Alternatively, an argument may be duplicated to create a copy
independent of the caller’s.

def llama_sans_l(llama)

llama.dup.gsub!(/l/i,'')

end

llama = 'Larry'

llama_sans_l(llama) #=> 'arry'

llama #=> 'Larry'

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 125

Arity

The arity of a method is the number of arguments it takes. If the method
expects a fixed number of arguments, this number is its arity. If the method
expects a variable number of arguments, its arity is the additive inverse of its
parameter count. Methods implemented in C, i.e. most core methods, have an
arity of -1 if they accept a variable number of parameters. It follows, then,
that an arity ≥ 0 indicates a fixed number of parameters; a negative value, a
variable number. Method and Proc objects have #arity methods which return
the arity for the method/proc it objectifies.

Classification by Arity

Methods with fixed arities can be classified as follows: A unary method
expects exactly one operand (its receiver), a binary method requires two (its
receiver and one argument), ternary-method requires exactly three (its
receiver and two arguments), an n-ary method requires n operands (its
receiver, and n-1 arguments).

Undefining
Undefining a method prevents the current class from responding to it. If

the method was defined in a superclass, that copy is unaffected. For example,
consider a Rectangle class which defines :height and :width methods. A
Square class inherits from it, but it doesn’t make sense for Square to have
both :height and :width methods. Square can undef :height, preventing
Square#height from being called without affecting Rectangle#height.

The undef statement takes one or more Symbols/identifiers as arguments,
then undefines the corresponding instance methods. Undefining singleton
methods requires undef to be used in the context of the corresponding
singleton class.

Alternatively, Module#undef_method may be used with the same effect.
Unlike undef, undef_method doesn’t accept an identifier as an argument; it
expects to receive the method name as a Symbol or String. However,
#undef_method has the advantage of being a method, as opposed to undef

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 126

which is a keyword, which allows it to be used with Ruby’s reflective
capabilities.

def boo!

"(goose)"

end

boo! #=> "(goose)"

undef :boo!

boo! #=> NoMethodError: undefined method `boo!' for main:Object

method_undefined Callback

When an instance method is undefined, the receiver (i.e. the containing
class) is sent a :method_undefined message with the method’s name as an
argument. Similarly, when a singleton method is undefined the receiver is
sent :singleton_method_undefined instead.

Removing
Module#remove_method name removes the method named name from the

current class only. A removed method differs from an undefined method in
that the former delegates the request to its superclass, whereas the latter
doesn’t.

class Parent

def says

"Tidy your room!"

end

end

class Child < Parent

def says

"In a minute..."

end

end

Child.new.says #=> "In a minute..."

class Child

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 127

remove_method :says

end

Child.new.says #=> "Tidy your room!"

method_removed Callback

When an instance method is removed, the receiver (i.e. the containing
class) is sent a :method_removed message with the method’s name as an
argument. Similarly, when a singleton method is removed the receiver is sent
:singleton_method_removed instead.

Visibility
The visibility of a method specifies the contexts in which it may be

invoked. A method is public by default unless defined outside of a class
definition. Public methods are accessible to everyone. A method created
outside of a class or module definition, or named initialize, is private by
default. Private methods can only be invoked with an implicit receiver,
therefore from their defining class or a subclass thereof. Instance methods
may also be protected, which means that they may only be invoked by
objects of their defining class or a subclass thereof.

class C

This method is public because it hasn't been specified

otherwise

def pub

end

private

This method is private because it appears after the

#'private' visibility specifier

def pri

end

This method is also private because the previous visibility

specifier has not been overridden

def pri2

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 128

protected

This method is protected because it appears after the

#'protected' visibility specifier

def pro

end

public

This method is public because the protected visibility

specifier has been explicitly overridden. Typically this would

have been defined after 'pub', removing the need for a

visibility specifier

def pub2

end

end

The visibility of an instance method may be altered with Module#public,
Module#private, and Module#protected—collectively visibility specifiers. A
visibility specifier invoked without arguments affects every method
subsequently defined in the same class definition until another visibility
specifier is encountered. Alternatively, a visibility specifier may be given an
argument list of method names—as Symbols or Strings—whose visibility it
alters. The visibility of a class method may be altered with
Module#public_class_method or Module#private_class_method, both of
which require an argument list of method names.

class C

The three following methods are public because they haven’t been

specified otherwise

def pub

end

def pri

end

def pri2

end

Both :pri and :pri2 are made private because their names are

given as arguments to the 'private' visibility specifier

private :pri, :pri2

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 129

This method is also public; the preceding private keyword only

acts on its arguments

def pro

end

This method is made protected because its name is given to

the 'protected' visibility specifier

protected 'pro'

This method is public because it hasn't been declared

otherwise; the previous 'protected' specifier only affects the

method it was called for

def pub2

end

end

Method visibility is a property of the binding between a method and a
class. An implication is that even when a class is frozen, the visibility of the
methods it defines may still be changed using Object#send.

Advisory Privacy

Method visibility is merely an advisory construct. Ruby does not prohibit
the invocation of private methods; she ensures that they will not be called
accidentally as follows:

• Standard method invocation syntax (obj.method) raises a
NoMethodError, signaling that the programmer's intent is ill-advised.
The caviller programmer must use a technique such as Object#send to
explicitly ignore the privacy advice.

• The method introspection API (e.g. Object#private_methods,
Object#protected_methods, and Object#public_methods) delineates
methods by their visibility, allowing private and protected methods to
be determined automatically.

• RDoc/ri only displays public methods by default.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 130

Aliases
An alias of a method is an alternate name by which it can be referred. For

a method, m, and its alias, a, invoking m is equivalent to invoking a.

The alias refers to a copy of the existing method’s body. If the existing
method is redefined after being aliased, the alias will continue to refer to the
method’s original definition.

Aliases are often used to provide synonyms for method names. For
instance, :size may be aliased to :length. This allows the programmer to use
method names which “read” more naturally in a given context.

An alias is created with the alias keyword from inside the class of the
existing method. The syntax is alias new_name current_name , where both
new_name and current_name are Symbol literals or identifiers. A method
named current_name must already be defined. If a method named new_name
already exists it is overwritten.

Module#alias_method new_name, current_name can be used to the same
effect, the difference being that it uses standard method semantics to
interpret identifier arguments: treating them as expressions; not literal
method names. This allows methods to be aliased dynamically. For example,
alias new old interprets its arguments as literal identifiers, whereas
alias_method new, old sees them as variables, whose values are the method
names. By implication, if the arguments to Module#alias_method should be
interpreted as literal identifiers they must be supplied as String or Symbol
literals, e.g. alias_method :new, :old.

Aliasing is also used to create a method which wraps the method of the
same name by performing its own computations then calling the original
method. For example, in the example below we wrap String#to_i such that
it raises an exception if the string doesn't contain digits. (Normally,
String#to_i returns 0 for such strings).

class String

alias :old_to_i :to_i

def to_i

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 131

raise "No digits found" unless match(/\d/)

old_to_i

end

end

Lookup Algorithm
Evaluating a message expression requires the corresponding method

definition be located in the receiver. The steps below illustrate the lookup
algorithm for a message with a selector of selector, and arguments of
arguments, where class is set the receiver’s singleton class. When a method is
found whose name is equal to selector the process terminates. It will always
ultimately succeed because BasicObject defines a :method_missing method.

1. Search the instance methods of class.
2. Search the instance methods of each module included by class, in

reverse order of inclusion.
3. If class has a superclass7, assign its name to class then go to step one.
4. Prepend selector to arguments. Set selector to :method_missing, class

back to the receiver’s singleton class, and go to step one.

class Parent

def method

:superclass_instance # 4

end

end

module M

def method

:module_instance # 3

end

end

class C < Parent

include M

def method

:class_instance # 2

end

end

7.BasicObject doesn't have a superclass, so this step is guaranteed to
terminate.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 132

object = C.new

def object.method

:object_singleton # 1

end

Missing Methods

NoMethodError

The NoMethodError exception has an #args method which returns the
arguments sent to the original method as an Array, and #name which returns
the original method name as a Symbol. This information can be used to
perform introspection on the caught exception and enhance error messages.

The exposition above shows that sending an object a message for which a
corresponding method is not defined causes each object on the search path to
be sent :method_missing with the original selector as the first argument, and
the original arguments as the remainder. BasicObject defines
:method_missing to provide the default behaviour of raising NoMethodError

for non-existent methods. However, if another object defines
:method_missing they can intervene, averting the exception and responding
to the message themselves.

class BasicObject

public :method_missing

end

b = BasicObject.new

b.method_missing :glark

#=> NoMethodError: undefined method `glark' for #<BasicObject:0x93ace0c>

Infinite Loops
Logic errors inside method_missing can easily lead to infinite loops, which

can be troublesome to debug. The typical mistake is for a statement in the
body of method_missing to send a non-existent message to the same object.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 133

The object does not respond to that message, so the method_missing method
is invoked a second time, and so the loop continues.

If method_missing is invoked with a message it does not wish to respond
to, it should use the implicit-argument form of super to delegate to its parent.
This gives the parent the option of responding to the message, or otherwise
triggers the default behaviour.

Fowler describes the use of method_missing to “respond differently to an
unknown message.” as “Dynamic Reception” [Fowler08] . One use he
suggests is to “convert what might otherwise be method parameters into the
name of the method.”, contrasting find_by("firstname", "martin",

"lastname", "fowler") with the method_missing-supported
find_by_firstname_and_lastname("martin", "fowler")8. He identifies a
variation on this idea where a “a sequence of Dynamic Receptions” are
chained together, such that each method returns an “Expression Builder”, e.g.
find_by.firstname("martin").and.lastname("fowler).

Kernel#respond_to_missing?

A consequence of defining methods dynamically with
Kernel#method_missing is that an object may respond to a given message, yet
return false for Kernel#respond_to?(selector).

Before Kernel#respond_to? returns false it tries to send itself a message
named :respond_to_missing? with a first argument of the selector in
question, and the second the value of include_private9. If
#respond_to_missing? is defined and returns a true value, #respond_to?
returns true; otherwise #respond_to? returns false.

Therefore, #respond_to? can be made to work with methods defined with
method_missing by defining a #respond_to_missing? method which returns
true when passed the name of such a method.

8. The example was derived from a feature of Ruby on Rails [Buck06] .
9. If #respond_to? is called with a second argument of true, include_private

is true and private methods should be considered; otherwise it’s false and
they shouldn’t.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 134

Method Objects
An instance of the Method class represents a method bound to an object.

This method object enables you to store a reference to a method in a variable,
as you would any other object, query the method’s metadata, and manipulate
it. This is quite distinct from capturing the return value of a method.

Method objects can be created with Kernel#method:
receiver.method(name), where name is the method name as a Symbol or
String. For example, method(:eval) returns a Method object for Kernel#eval.
If the object does not respond_to? the given method a NameError will be
raised10.

Kernel#public_method works in the same way, but raises a NameError if
the given method is private or protected.

Arity

Method#arity returns an Integer corresponding to the method’s arity.

Calling

The method represented by a Method object can be invoked with
Method#call or its alias Method#[]. The semantics are the same as for
standard method invocation, however Flanagan & Matsumoto caution:
“…invoking a method through a Method object is less efficient than invoking
it directly.” [Flan08]

Converting to a Proc.

A method object can be converted to a Proc by prefixing it with an
ampersand (). Therefore it can be passed to a method expecting a block.

10. By implication, if the receiver’s #respond_to_missing? returns true for the
method in question, the method object will be created successfully; only
when the underlying method needs to be called will Ruby establish the
veracity of this claim.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 135

Equality

Method#== returns true if both methods are bound to the same object and
have the same body. The first requirement means that the objects must be
identical in the sense of Object.equal?. The second encompasses methods
defined with Object#define_method using the same Proc/block, aliases
created with alias, and core method aliases.

Source Location

The filename and line number where a method was defined is returned as
an Array by Method#source_location. If the method is core, i.e. implemented
in C, it returns nil. This is primarily useful for extracting a method’s
signature and any preceding documentation.

Parameters

Method#parameters returns an Array, each element of which is a sub-Array
of Symbols that describe the corresponding parameter expected by the
method. The first Symbol is :req for a required parameter, :opt if it is
optional, :rest if its of variable length, or :block if it corresponds to a block.
The last Symbol is the name of the parameter. An empty Array is returned for
method’s expecting no arguments.

UnboundMethod Objects
An UnboundMethod object is a Method object disassociated from the object

on which it was defined.

A Method object may converted to an UnboundMethod object with
Method#unbind. Alternatively, they can be created with
Module#instance_method. For example, String.instance_method(:downcase)
creates an UnboundMethod object for String#downcase.
Module#public_instance_method works in the same way, but raises a
NameError if the given method is private or protected.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 136

Before an UnboundMethod is invoked it must be re-associated with, or
bound to, to an object which is a Object#kind_of? its original class. This is
achieved by passing an object reference to UnboundMethod#bind.

With the exception of #call, for the reason described above,
UnboundMethod objects support the same method’s as Method objects.

Black [Black09, pp. 418–420] provides the following example (with minor
adjustments for formating) of using UnboundMethod objects:

The following question comes up periodically in Ruby forums:

Suppose I’ve got a class hierarchy where a method gets
redefined:

class A

def a_method

puts "Definition in class A"

end

end

class B < A

def a_method

puts "Definition in class B (subclass of A)"

end

end

class C < B

end

And I’ve got an instance of the subclass (c = C.new). Is
there any way to get that instance of the lowest class to
respond to the message (a_method) by executing the version
of the method in the class two classes up the chain?

By default, of course, the instance doesn’t do that; it executes the
first matching method it finds as it traverses the method search path:
c.a_method. The output is Definition in class B
(subclass of A). But you can force the issue through an
unbind and bind operation:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 137

A.instance_method(:a_method).bind(c).call. Here the output is
Definition in class A.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 138

CLOSURESCLOSURES
“A closure is a combination of a function and an environment.”

[Graham96, pp. 107–109] . The function is a parametrised block of executable
code, and the “referencing environment” [Scott06, pp. 138–140] , or binding,
is a reference to the lexical environment of the closure’s creation site. The
binding represents its variables as references, which are de-referenced in the
environment the closure is called, every time it is called.

variable = :first

Use a lambda literal to create a closure

whose function is the block and environment

includes _variable_. Assign the closure

to a variable.

closure = ->{ "variable = #{variable}" }

Invoke the closure, using the value

of _variable_ from its environment

closure.call #=> "variable = first"

Assign a different value to a variable

in the closure’s environment

variable = :second

Re-invoke the closure in the context

of its current environment, where the

value of _variable_ is :second

closure.call #=> "variable = second"

A closure is an instance of the Proc class, which provides methods for
calling the closure and accessing its binding. The following example shows a
closure being called with Proc#[] and an argument.

array=[*('a'..'c')] #=> ["a", "b", "c"]

element =->(i){ print "#{i}=#{array[i]} " }

For each element of _array_, call the _element_

closure with the index as an argument

array.each_index {|i| element[i] } #=> 0=a 1=b 2=c

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 139

Proc Literals
A block literal creates a Proc object which accepts the arguments provided

in the optional parameter list and represents a sequence of zero or more
statements. Unlike most other literals, block literals must not appear in the
top-level context; they must terminate a message expression, an appropriate
keyword expression, or lambda literal.

Semantics
A Proc has either yield semantics or invocation semantics. Its semantics

determine how it handles unexpected arguments and control flow statements,
such as return, appearing within the body of the closure. The differences are
summarised in the following table, and elaborated below.

Difference Invocation yieldyield

Extra
arguments

Raise ArgumentError Ignored

Omitted
arguments

Raise ArgumentError Assigned nil

Array

arguments
Never exploded Exploded if necessary

return
Returns from the lambda
itself

Returns from the creation site
method

break
Returns from the lambda
itself

Returns from the call site
method

A comparison of Proc semantics

#lambda? Predicate

Proc#lambda? is a predicate which returns true if the receiver has
invocation semantics; false if it has yield semantics.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 140

yield Semantics

Argument Passing
Interprets the arguments it receives with yield semantics.

returnreturn

Returns from the lexically enclosing method of the Proc’s creation site.

def inner &closure

puts "\t\tmain -> outer -> inner: Calling closure <call site>"

closure.call

puts "\t\tmain -> outer -> inner: Called closure </call site>"

end

def outer

puts "\tmain -> outer: Invoking inner <creation site>"

inner do

puts "\t\t\tmain -> outer -> inner -> closure: Return from closure"

return

puts "\t\t\tmain -> outer -> inner -> closure: Returned from closure"

end

puts "\tmain -> outer: Invoked outer </creation site>"

end

puts "main: Invoking outer"

outer

puts "main: Invoked outer"

#=> main: Invoking outer

#=> main -> outer: Invoking inner <creation site>

#=> main -> outer -> inner: Calling closure <call site>

#=> main -> outer -> inner -> closure: Return from closure

#=> main: Invoked outer

If the Proc was not created within a method, e.g. at the top level, or the
method has already returned, a LocalJumpError is raised.

Proc.new { p :alpha; return; p :beta }.call #=> :alpha

#=> in `block in <main>': unexpected return (LocalJumpError)

breakbreak

Returns from the lexically enclosing method of the Proc’s call site.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 141

def inner &closure

puts "\t\tmain -> outer -> inner: Calling closure <call site>"

closure.call

puts "\t\tmain -> outer -> inner: Called closure </call site>"

end

def outer

puts "\tmain -> outer: Invoking inner <creation site>"

inner do

puts "\t\t\tmain -> outer -> inner -> closure: Breaking from closure"

break

puts "\t\t\tmain -> outer -> inner -> closure: Broken from closure"

end

puts "\tmain -> outer: Invoked outer </creation site>"

end

puts "main: Invoking outer"

outer

puts "main: Invoked outer"

#=> main: Invoking outer

#=> main -> outer: Invoking inner <creation site>

#=> main -> outer -> inner: Calling closure <call site>

#=> main -> outer -> inner -> closure: Breaking from closure

#=> main -> outer: Invoked outer </creation site>

#=> main: Invoked outer

A LocalJumpError is raised if break is used from a block no longer in
scope, e.g. at the top-level of a block created with Proc.new or proc.

Proc.new do

p :alpha

break

p :beta

end.call

#=> :alpha

#=> in `block in <main>': break from proc-closure (LocalJumpError)

Invocation Semantics

Argument Passing
Interprets the arguments it receives according to the same rules as
method invocation. This has the following implications:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 142

• Superfluous arguments cause an ArgumentError to be raised.
• Omitted arguments cause an ArgumentError to be raised.
• Array arguments are not automatically exploded.

returnreturn

Returns from the Proc as if it were a method.

hug = ->(who) do

return "{#{who}}"

:xxx # Not reached

end

name = :jess

p ["Hugging #{name}", hug.call(name), "Hugged #{name}"]

#=> ["Hugging jess", "{jess}", "Hugged jess"]

breakbreak

Acts exactly like return.

hug = ->(who) do

break "{#{who}}"

:xxx # Not reached

end

name = :maria

p ["Hugging #{name}", hug.call(name), "Hugged #{name}"]

#=> ["Hugging maria", "{maria}", "Hugged maria"]

Control Flow Statements

Control flow statements other than break or return operate in the same
way for both kinds of Procs.

nextnext

Returns its arguments to the yield statement or method that invoked the
Proc.

redoredo

Jump to the beginning of the Proc.

redoredo

Jump to the beginning of the Proc.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 143

retryretry

Always raises a LocalJumpError.

raiseraise

Propagates the exception up the call stack: through any enclosing block,
then to the invoking method.

Creation
Proc.new

Proc.new creates a Proc with yield semantics from the given block.

If the block is omitted, the block with which the lexically enclosing method
was invoked is used in its place. If the method was not invoked with a block,
or there is not an enclosing method, an ArgumentError is raised.

proc Keyword

The proc keyword is a synonym for Proc.new: it creates a Proc with yield

semantics from the given block. Without a block argument an implicit block
is assumed.

& Parameter

A method or lambda whose parameter list includes an identifier prefixed
with an ampersand, assigns to the parameter a Proc with yield semantics
representing the block literal that the method/lambda was sent. For more
details, see Block Arguments, which includes an example.

lambda keyword

The lambda keyword creates a Proc with invocation semantics from the
given block. Without a block argument an implicit block is assumed.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 144

def intermittently wait, closure

loop { sleep(wait.call) and rv = closure[Time.now] and return rv }

end

require 'prime'

prime_time = lambda do |t|

t.strftime("%T:%6N") if [t.hour, t.min, t.sec, t.usec].all?(&:prime?)

end

intermittently lambda { Random.new.rand(3.0) }, prime_time #=> "11:29:47:435997"

Lambda Literal

A literal of the form ->(parameter0…parametern) { statements }

instantiates a Proc object with invocation semantics. The optional parameter
list takes the same form as that used in method definitions. It may be omitted
entirely. statements is zero or more statements. For example, -> { 42 }, or -
>(a, b) { a + b }.

require 'resolv'

->(host) do

Resolv.getaddress host

end.call 'runpaint.org' #=> "208.94.116.80"

resolv = ->(ips) { Hash[ips.map {|ip| [ip, Resolv.getname(ip)]}] }

resolv[%w{128.9.160.27 66.80.146.7 65.181.149.201 217.147.82.116}]

#=> {"128.9.160.27" =>"www.rfc-editor.org", "66.80.146.7" =>"forced.attrition.org",

#=> "65.181.149.201"=>"ycombinator.com", "217.147.82.116"=>"ns.irational.org"}

resolv.('128.30.52.45', '69.13.187.182')

#=> in `call': wrong number of arguments (2 for 1) (ArgumentError)

Calling
A Proc can be invoked in the following ways:

Proc#call(Proc#call(argarg00,…,,…,argargnn))

Also invoked with the syntax below.

procproc.(.(argarg00,…,,…,argargnn))

A syntactical shortcut for Proc#call. The parentheses are mandatory,
even if there are no arguments.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 145

Proc#yield(Proc#yield(argarg00,…,,…,argargnn))

An instance method with the selector :yield; distinct from the yield

keyword.

Proc#[Proc#[argarg00,…,,…,argargnn]]

The square brackets are mandatory, even if there are no arguments.

Proc#===Proc#=== argarg

Allows Procs to be used in case expressions. It requires exactly one
argument, so is unsuitable for a Proc with invocation semantics that has
an arity other than 1.

person = ->(age) do

"#{age}: (" + case age

when (0..12) then 'child'

when (13..19) then 'teenager'

when (20..59) then 'adult'

else 'pensioner'

end + ")"

end

person.call(19) #=> "19: (teenager)"

person.(101) #=> "101: (pensioner)"

person.yield 8 #=> "8: (child)"

person[10] #=> "10: (child)"

person === 26 #=> "26: (adult)"

Parameters
A Proc may be defined with a parameter list, which describes the

arguments it accepts. The syntax of the parameter list content mostly mirrors
that of method parameter lists, with the following differences:

• It is enclosed within a pair vertical lines (|), rather than parentheses,
which are mandatory if a parameter list is specified.

• It is specified as the first element of the block associated with the Proc:
after the opening curly bracket or the do keyword.

• If the lambda literal syntax is used, the vertical lines must be omitted
and the parameter list must be specified within the parentheses
following -> à la method parameter lists; not in the block.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 146

• The parameter list of a closure with yield semantics may include a
trailing comma after the last parameter. This has no syntactical
meaning, but serves to indicate that additional arguments are
explicitly ignored.

->(a, b=2){ [a,b] }

lambda {|a,b=2| [a,b]}

Proc.new do |a, b=2|

[a, b]

end

Block-Local Variables

A closure may define block-local variables: local variables which are
distinct from those with the same name in an outer lexical scope.

Block-local variables are defined in the parameter list after the non-block-
local parameters, and before the closing vertical line. They are specified as a
comma-separated list of identifiers, with a semicolon preceding the first:
|param0,…,paramn;block-local0,…,block-localn|. The semicolon is
mandatory, even if the list of block-local variables is not preceded by any
regular parameters.

In the case of lambda literals, block-local variables are specified in the
same manner before the closing parentheses of the parameter list, i.e. -
>(param0,…,paramn;block-local0,…,block-localn){}.

`a` and `b` are normal parameters; `c` and `d` are block-local

Proc.new { |a, b=3.14;c, d| }

->(a, b=3.14;c, d){ }

If a variable v is defined block-local:

1. If v was defined in an outer scope, its value is saved.
2. Within the block v is assigned nil, then behaves as any other local

variable.
3. Upon leaving the block, v is assigned the value it had originally in the

outer scope.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 147

v = :out

1.times do |;v,w| # Define `v` and `w` block-local

v, w = :in, :in

p [v, w]

end #=> [:in, :in]

`v` preserves its value from before the block

v #=> :out

`w` wasn’t defined outside the block, so it still isn’t

w #=> NameError: undefined local variable or method `w' for main:Object

By contrast, if v is not defined as block-local, it retains the value it was
assigned inside the block, even after leaving the block scope. However,
defining a variable, w, inside the block which did not exist in the outer scope,
does not define it in the outer scope. In both examples, w is undefined upon
leaving the block.

v = :out

1.times do

v, w = :in, :in

p [v, w]

end #=> [:in, :in]

v #=> :in

w #=> NameError

Binding
We have already introduced the concept of a binding as a reference to the

closure’s referencing environment. We have demonstrated that the binding is
dynamic, resolving variables referenced within a closure relative to the
environment in which it was called. An implication is that these variables
must be defined in the closure itself or exist in the closure’s environment
prior to its creation: they can be modified or re-assigned subsequently, but
they must have been assigned.

Create a closure referencing an undefined _array_ variable

size = ->{ array.size }

Define an _array_ variable in the same scope

array = [1,2,3]

A NameError is raised because _array_ was not

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 148

defined in the closure’s binding

size.call #=> NameError: undefined local variable or method `array' for main:Object

A closure is “self-contained: they contain everything the procedure needs
in order to be applied.” [Friedman08, pp. 79–82] . Therefore, the binding must
also “…hold all the information necessary to execute a method, such as the
value of self, and the block, if any, that would be invoked by a yield.”
[Flan08, pp. 202–203] .

A closure’s binding is encapsulated by a Binding object, which is obtained
with Proc#binding. It can then be used to execute other code in the same
environment with a method such as eval.

class Context

@@of = :class

def self.closure

->{ @@of = :method }

end

end

eval "@@of" #=> uninitialized class variable @@of in Object (NameError)

eval "@@of", Context.closure.binding #=> :class

Kernel.binding

Kernel.binding returns a Binding object representing the referencing
environment at the time the method is invoked. That is, it generalises the
concept of bindings to any object.

class Context

@@where = :class

def self.context

binding

end

end

eval "@@where", Context.context #=> :class

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 149

Methods
A closure can be converted to a method with Module#define_method.

Likewise, a Method object can be converted to a Proc with Method#to_proc.

However, Method objects are not closures: they do not have access to local
variables in their parent scope. “The only binding retained by a Method object,
therefore, is the value of self…” [Flan08, pp. 203–204] .

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 150

FLOWFLOW
Conditionals

A conditional is an expression evaluated as a truthbearer. The conditional
is false if the expression’s value is nil or false; otherwise it is true.

[0, "Erd\u0151s", :false, true, { key: :door }].all? #=> true

[nil, false].none? #=> true

Boolean Logic
The Boolean logic operators return either true or false by evaluating their

operands as conditionals. For this reason, Boolean expressions are often
themselves used as conditionals.

There are two forms of each Boolean operator—keyword (e.g. and) and
punctuation (e.g. &&)—which differ only in precedence. The former have low
precedence; the latter high.

AND Operator

The binary and/&& operators return true iff both operands are true. They
perform short-circuit evaluation, so will only evaluate the second operand if
the first is true.

class Integer

def power_of_2?

nonzero? && (self & (self - 1)).zero?

end

end

(0..100).select(&:power_of_2?) #=> [1, 2, 4, 8, 16, 32, 64]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 151

OR Operator

The binary or/|| operators return true iff at least one operand is true.
They perform short-circuit evaluation, so will only evaluate the second
operand if the first is false.

def valid_isbn13?(isbn)

isbn = isbn.to_s.scan(/\d/).map(&:to_i)

isbn.size == 13 or return false

check_digit = 10 - isbn.

first(12).

map.

with_index{|d,i| i.succ.odd? ? d : 3*d}.

reduce(:+).

modulo(10)

(check_digit == isbn.last) or (check_digit == 10 and isbn.last.zero?)

end

valid_isbn13?('978-0-596-80948-5') #=> true

valid_isbn13?('9780596809484') #=> false

NOT Operator

The unary not/! operators return true iff the operand is false.

not true #=> false

not not nil #=> false

!!:false #=> true

3 > 2 and !3.even? and not 3.zero? #=> true

Flip Flops

When the .. or ... operators are used in a conditional they don’t have
their usual semantics as range literals; they create a flip-flop expression: a
stateful, bitstable, Boolean test between two expressions. They take the form
left..right , where left and right are both Boolean expressions. They are
false until left is true, at which point they become true, remaining true until
right is true, at which point they become false until left becomes true again.
In this way they flip-flop between true and false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 152

When a flip-flop becomes true it tests right to determine whether its next
state should be false. If left and right are separated by three consecutive
periods instead of two, right is not tested until the expression is next
evaluated.

Branching
Branching statements predicate the execution of block on a conditional.

For example, an if statement executes its associated code block iff its
conditional is true. Each code block of an branching statement is termed a
branch, to describe the effect of the statement on program execution.

if Statement

The if statement comprises a conditional, zero or more statements (the
branch), then, optionally, additional branches whose forms are explained
subsequently. The branch is executed iff the conditional is true.

if true

:verdadero

end #=> :verdadero

if false then :falso end #=> nil

The return value of an if statement is that of the executed branch, or nil if
no branch was executed.

Postfix Form

A postfix if statement is a concise alternative when the branch consists of
a sole statement. It comprises an expression, the if keyword, then a
conditional. The expression is executed iff the conditional is true.

coding: utf-8

balance = 250

puts "You owe £#{balance}" if balance > 0 #=> "You owe £250"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 153

This syntax, as opposed to if conditional…, foregrounds the expression.
This is of stylistic benefit if the conditional is normally true because it
highlights the default case.

else Clause

Prior to an if statement’s end keyword an else branch may appear. It is
executed iff no preceding branch was executed, serving as the default branch.

if :cat > :dogs

"Meow"

else

"Woof!"

end #=> "Woof!"

elsif Clause

An if statement may contain any number of elsif branches between the
if branch and before the else branch, if present. To execute they require all
prior conditionals to be false and their conditional to be true.

coding: utf-8

class Integer

require 'prime'

def square_free?

prime_division.map(&:last).all?{|p| p == 1}

end

def möbius

return if self < 1 # Postfix if statement

if not square_free? then 0

elsif prime_division.map(&:first).uniq.size.odd? then -1

else 1

end

end

end

(1..10).map(&:möbius) #=> [1, -1, -1, 0, -1, 1, -1, 0, 0, 1]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 154

unless Statement

The unless statement executes its branch iff its conditional is false. It is
equivalent to an if statement with the conditional inverted. It may be
followed by an else branch, which executes iff the unless conditional is true.
elsif clauses are prohibited.

string = '3 free frogs'

unless string =~ /^\d\./

$stderr.puts "<#{string}>: must start with a digit followed by a period"

end

<3 free frogs>: must start with a digit followed by a period

Postfix Form

The postfix form of the unless statement behaves as the postfix if

statement, except the expression is executed iff the conditional is false.

def palindrome?(string)

raise ArgumentError unless string = String.try_convert(string)

string = string.scan(/\w/).join.downcase

string == string.reverse

end

palindrome?("Go hang a salami I'm a lasagna hog.") #=> true

palindrome?("Level, madam, level!") #=> true

palindrome?("canon a 2 cancrizans") #=> false

palindrome?(['mad']) #=> ArgumentError

Ternary Operator

The ternary operator is a concise alternative to if conditional…else…

when the conditional and branches are simple. It consists of three operands,
the first of which is the conditional. If the conditional is true, the second
expression is evaluated; otherwise the third expression is evaluated.

VOWELS = %w{a e i o u}

['d', 'e'].each do |letter|

puts "#{letter} is a %s" % (VOWELS.include?(letter) ? "vowel" : "consonant")

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 155

end

#=> "d is a consonant"

#=> "e is a vowel"

case Statement

The case statement allows a single expression (hereafter: the topic) to be
tested against other expressions without having to evaluate the topic each
time. It begins with a case topic clause, where topic is an arbitrary
expression.

when Clause

A branch is introduced by the when keyword followed by a comma-
separated list of one or more expressions. This list is separated from the
statements comprising the branch body by the then keyword or a statement
terminator.

A when clause matches the topic if any of the expressions listed after when
have case equality (expression === topic) with the topic. Therefore, when
expression is equivalent to if expression === topic . By default, the #===

message is equivalent to #==—they both test for equality—but certain core
classes redefine #=== to behave more usefully in this context, as shown in the
following table.

Class (a) Semantics of aa ====== bb

Class b.instance_of?(a)

Proc a.call(b)

Range a.include?(b)

Regexp a =~ b

Symbol a == b.to_sym

The effect of the case equality
operator on a receiver of class a and a

single operand (b)

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 156

else Clause

A single else clause may appear between the final when clause and the end

keyword which delimits the case statement.

class Integer

def ordinal

if to_s =~ /^1\d$/ then 'th'

elsif to_s =~ /1$/ then 'st'

elsif to_s =~ /2$/ then 'nd'

elsif to_s =~ /3$/ then 'rd'

else 'th'

end

end

end

[1,2,3,4].map{|n| "#{n}#{n.ordinal}"} #=> ["1st", "2nd", "3rd", "4th"]

class Integer

def ordinal

case to_s

when /^1\d$/ then 'th'

when /1$/ then 'st'

when /2$/ then 'nd'

when /3$/ then 'rd'

else 'th'

end

end

end

[1,2,3,4].map{|n| "#{n}#{n.ordinal}"} #=> ["1st", "2nd", "3rd", "4th"]

Evaluation

A case expression is evaluated by evaluating each when branch in the order
that they appear in the source file. If a branch matches the topic, it is
executed, and its return value becomes that of the case statement; otherwise,
the next branch is evaluated in the same manner. If none of the when branches
match, and an else branch is present, the case statement’s return value is
that of the else branch; otherwise it is nil.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 157

MAX_REDIRECTS = 5

redirects = 0

[200, 404, 408, 302, 500].map do |status_code|

case status_code

when 408, 504 then :timeout

when 100...200 then :informational

when 200...300 then :success

when 300...400

(redirects += 1) < MAX_REDIRECTS ? :redirection

: (raise "Redirection limit exceeded")

when 400...500 then :client_error

when 500...600 then :server_error

else raise "Invalid status code: #{status_code}"

end

end #=> [:success, :client_error, :timeout, :redirection, :server_error]

Looping
Looping constructs represent repetition. They comprise a block of code

(hereafter: the body) and a terminating condition which governs the number
of times the body will execute.

The following constructs are materially identical in that they can all be
used to create any kind of loop, albeit when combined with control flow
statements. The purpose of having many different approaches to looping, as
opposed to a single, generic construct, is to allow common scenarios to be
expressed concisely and simply, and in doing so lessen the chance of
erroneous terminating conditions.

Count-Controlled Loops

The constructs that follow instrument an a priori number of repetitions.

Integer#times

Integer#times creates a loop which executes n times, where n is the
integer’s magnitude. For example, 10.times { … } executes the block ten

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 158

times, passing into the block the number of the current iteration. When the
block is omitted an Enumerator is returned.

def times_tables n

max_width = (n * n).to_s.size

n.times do |x|

n.times do |y|

printf "%#{max_width}d ", x.succ * y.succ

end

puts

end

end

times_tables 10

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Integer#upto

Similarly, Integer#upto(limit) counts from the value of the receiver up to
the value of limit, executing the loop body each time. On each iteration the
block is passed the current number in the progression. For, example,
10.upto(13) executes the loop body four times, passing it 10, 11, 12, 13, then
terminating. When the block is omitted an Enumerator is returned.

ten_times = []

10.upto(15) do |i|

ten_times << i * 10

end #=> 10

ten_times #=> [100, 110, 120, 130, 140, 150]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 159

Integer#downto

Conversely, Integer#downto(limit) counts from the value of the receiver
down to the value of limit, executing the loop body each time. As with
Integer#upto, the block is passed the number of the current progression.
When the block is omitted an Enumerator is returned.

10.downto(1) do |count|

print count, ' '

puts "Blast off!" if count == 1

end #=> 10

10 9 8 7 6 5 4 3 2 1 Blast off!

Condition-Controlled Loops

A condition-controlled loop uses a conditional to determine when the loop
should terminate. The conditional is tested prior to each repetition, its value
determining whether to repeat or terminate the loop.

while Loops

The while loop executes its body as long as its conditional is true. If the
conditional is initially false the body is never executed.

def farey(n)

a, b, c, d = 0, 1, 1, n

while c < n

k = (n + b)/d

a, b, c, d = c, d, k*c - a, k*d - b

(sequence ||= []) << Rational(a, b)

end

sequence.unshift Rational(0, 1)

end

farey(4) #=> [(0/1), (1/4), (1/3), (1/2), (2/3), (3/4), (1/1)]

Postfix Form

while can also be used as a statement modifier in which case it executes its
left-hand side while its right-hand side is true.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 160

(n.to_s(2).count('1') works just as well, of course)

def bits_set(n)

bits_set = 0

n &= n - 1 while n > 0 && bits_set += 1

bits_set

end

[33, 736, 128].map{|n| bits_set(n)} #=> [2, 4, 1]

until Loops

The until loop executes its body as long as its conditional is false. If the
conditional is initially true the body is never executed.

def look_and_say(seed=1, max_terms)

[seed].tap do |terms|

until terms.size >= max_terms or terms.last == terms[-2]

last = terms.last.to_s.split(//)

term = [[1,last.first]]

last[1..-1].each do |e|

term.last.last == e ? term.last[0] += 1 : term << [1, e]

end

terms << term.join.to_i

end

end

end

look_and_say(7) #=> [1, 11, 21, 1211, 111221, 312211, 13112221]

Postfix Form

until can also be used as a statement modifier in which case it executes its
left-hand side until its right-hand side is true.

class Integer

require 'prime'

def next_prime

n = succ

n += 1 until n.prime?

n

end

end

1.upto(10).map {|n| {n => n.next_prime}}

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 161

#=> [{1=>2}, {2=>3}, {3=>5}, {4=>5}, {5=>7},

{6=>7}, {7=>11}, {8=>11}, {9=>11}, {10=>11}]

Infinite Loops

The loop keyword executes its body indefinitely. Unlike the constructs
discussed previously, there is no explicit terminating condition. An infinite
loop qua infinite loop is undesirable, so the body will typically include
statements that conditionally terminate it. Such statements include the
control flow statements, return, throw, raise, and exit. In addition, raising a
StopIteration exception inside the loop body has the same effect. The
principle of loop, therefore, is to repeat an operation until explicitly told to
halt.

class Integer

def happy?

return false unless self > 0

sad, sequence = [4, 16, 37, 58, 89, 145, 42, 20], [self]

loop do

sequence << sequence.last.to_s.split(//).map{|d| d.to_i ** 2}.reduce(:+)

return true if sequence.last == 1

return false if sequence.last(sad.size) == sad

end

end

end

(1..15).select(&:happy?) #=> [1, 7, 10, 13]

Control Flow Statements

break Statement

Within a loop the break statement transfers control to the first statement
following the loop. (Within a proc or lambda it has different semantics). The
value of a break statement, and therefore the enclosing loop, is that of its
arguments—coerced into an Array if there is a plurality—, or nil in their
absence.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 162

(1..20).map{|i| i.to_s(2)}.each do |binary|

break binary if binary.size > 4 && binary[-1] == '1'

end #=> "10001"

next Statement

The next statement ends the current iteration of the loop and begins the
next. It raises a LocalJump exception when used outside of a loop or closure.
Any arguments it is given are ignored.

ips = Hash.new {|h,k| h[k] = []}

IO.foreach('/etc/hosts').each do |line|

next if line.start_with?('#')

ip, *hosts = line.split

ips[ip] += hosts

end

ips #=> {"127.0.0.1"=>["localhost"], "127.0.1.1"=>["paint", "read-ruby"],

"::1"=>["localhost"]} #...

redo Statement

The redo statement restarts the current iteration of the loop, returning
control to the first expression in the body. The loop conditional is not re-
evaluated.

loop do

puts "Password: "

password = gets.chomp

unless [/\d/, /[A-Z]/, /[a-z]/].all?{|pat| pat =~ password}

$stderr.puts "Passwords must contain uppercase, lowercase, and digits"

redo

end

unless password.size > 8

$stderr.puts "Passwords must be at least 9 characters long"

redo

end

puts "Thanks. Confirm password: "

unless password == gets.chomp

$stderr.puts "The passwords entered do not match!"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 163

redo

end

break

end

throw/catch Statements

The catch method defines a labelled block of code. The throw method exits
a catch block with a given label. Taken together, they form a general-purpose
control structure.

The label is normally given as a Symbol or String, however any object is
permissible as long as the thrown object is identical to the caught object.

A catch block is defined with catch label block, where label is the label
which this block should catch, and block is a block literal. The block is called
immediately.

The syntax of throw is throw label, value, where label is the label of an
enclosing catch block, and value is an optional expression which, if supplied,
becomes the value of the corresponding catch block.

throw immediately causes the current execution path to terminate and a
search to begin for the nearest catch block defined with the same label. The
search proceeds out through the current lexical scope, then up through the
call stack towards the top-level of the program, crossing method boundaries
if necessary. If such a catch is found, it is exited, and execution resumes from
the statement that follows it. Otherwise, if the search is unsuccessful, an
ArgumentError exception is raised.

require 'net/http'

def follow(url)

chain = []

while url do

url = catch(:redirect) do

chain << url = URI.parse(url)

resp = Net::HTTP.new(url.host).get url.path

case resp.code.to_i

when 200 then return chain.join(' => ')

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 164

when 300...400 then throw :redirect, resp['location']

else raise "#{url} => #{resp.code}: #{resp.message}"

end

end

end

end

follow('http://w3c.org/html')

#=> "http://w3c.org/html => http://www.w3.org/html => http://www.w3.org/html/"

yield Statement

The yield statement causes control to be transferred to the associated
block, then resume from the statement following yield. It effects a temporary
transfer such that the yielding method retains control; whereas return cedes
complete control of execution to its caller. This enables a method to yield to
a block multiple times, as opposed to return which, by definition, may be
executed by a method no more than once.

As explained in Block Literals, a block literal may be sent along with a
message. Then, as explained in Block Arguments, the receiving method may
access this block, which we will refer to as the associated block.

The return value of yield is that of the block yielded to.

Arguments

yield may be supplied with one or more arguments, which are passed to
the associated block. It is this ability that enables internal iterators to be
constructed.

yield’s arguments are married with the block’s parameter list with yield
semantics: semantics similar to those of methods, with the following
differences:

• Superfluous arguments are silently discarded. A block wishing to
collect a variable number of arguments into an Array must use a rest
parameter.

• Parameters representing omitted arguments are assigned nil.
• Array arguments are automatically exploded.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 165

• Block literals are prohibited as arguments. That is, a block cannot be
yielded to another block. The workaround is to yield a Proc object
representing the block to be yielded.

As with message expressions, the final argument to yield may be a Hash

literal with or without its delimiting curly braces.

Iterators
Internal

An internal iterator is a method which accepts a block to which each
element of a collection is yielded in turn. These are internal> iterators
because they “push“ elements of the collection to the block; whereas
external> iterators, discussed below, are objects from which the elements are
“pulled”.

In fact, Integer#times, Integer#upto, and Integer#downto, which were
introduced above, are themselves internal iterators. The collection over which
they iterate is a sequence of integers.

The most common internal iterator is #each because its presence allows a
collection class to mix-in the Enumerable module. It is defined on all core
classes that can sensibly be iterated over, with the provisos noted in #each.

An object supporting internal iteration is sent the appropriate selector (e.g.
:each) along with a block literal expecting at least one argument. Each time
the block is called its argument will be the next element of the collection,
where the semantics of next depend on the iterator’s intent. The block is a
closure, so flow control statements can be used in its body in the manner
described in Closures.

:each, along with most internal iterators, can also be sent without a block
in which case it returns an Enumerator.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 166

Internal iterators are not limited to behaving like :each; Enumerables
describes some of the specialised iterators the Enumerable module defines in
terms of :each.

for

Objects responding to :each in the manner outlined above may also be
iterated over with the for keyword as shown below. The only practical
difference between a for loop and using :each directly is that the latter
defines a new variable scope for the duration of the block.

string = ''

for element in 97..100

string << element if element.odd?

end

string #=> "ac"

Custom Internal Iterators

Fundamentally, an internal iterator is just a method which yields a value to
a block. The mechanics of methods accepting blocks are described in Block
Arguments.

def intermittently(array)

array.each do |element|

sleep rand(10) * (element.size % array.size)

yield element

end

end

intermittently([191, 2726, 278, 12**10, 182729]) do |element|

puts Time.now.strftime("%H:%M:%S") + " => #{element}"

end

00:29:33 => 191

00:29:33 => 2726

00:29:45 => 278

00:30:06 => 61917364224

00:30:34 => 182729

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 167

Begin / Exit Handlers
A begin or exit handler registers code to be executed at the beginning or

end, respectively, of a program.

BEGIN Block

A BEGIN block, as opposed to a begin statement, is executed at the very
beginning of a program. It consists of the BEGIN keyword at the top-level of a
program, followed by statements delimited by curly braces, and defines its
own variable scope. If multiple BEGIN blocks are present, they are executed in
the order encountered by the interpreter.

puts 1

BEGIN { puts 2 }

puts 3

Output:

2

1

3

END Block

An END block, as opposed to the end keyword, is executed at the very end
of a program. They consist of the END keyword followed by statements
delimited by curly braces. Unlike BEGIN blocks, they share local variable
scope with surrounding code. A further difference is that the execution of an
END block is governed by surrounding constructs: if it appears in the body of a
conditional, for instance, its execution is dependent on that conditional being
true. However, even if enclosed in a looping construct, an END block is still
only executed once.

puts 1

END { puts 2 }

puts 3

Output:

1

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 168

3

2

Kernel.at_exit

An alternative to END blocks is Kernel.at_exit. It accepts a block argument
which it registers to execute at the end of program execution. If called
multiple times the blocks are executed in reverse chronological order.

at_exit { puts 1 }

puts 2

at_exit { puts 3 }

at_exit { puts 4 } if false

Output:

2

3

1

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 169

EXCEPTIONSEXCEPTIONS
An exception is an object representing an abnormal condition that changes

the typical flow of execution. A block may initiate, or raise, an exception to
signal an abnormality which it is either unwilling or unable to handle locally.
This suspends program execution and causes a corresponding exception
handler—a block which has elected to resolve the abnormality—to be sought.
If the search is successful, the handler is called, then execution resumes from
the statement following that which raised the exception. Otherwise, the
program terminates.

Exception Objects
Exceptions are instances of Exception or a subclass thereof. These

subclasses primarily exist to increase granularity in rescue clauses, which
match exceptions solely on their class. They rarely augment the behaviour of
their parent.

Most core exceptions subclass StandardError, allowing them to rescued by
a bare rescue clause. The remainder are not expected to be rescued in the
normal course of a program, so must be mentioned explicitly if they are to be
rescued. The principle, therefore, is that custom exception classes should
inherit from StandardError if they are generally recoverable; and Exception

otherwise.

A custom exception is created by subclassing an existing Exception class.
Idiomatically this is: CustomError = Class.new(ExceptionClass), where
CustomError is the name of the new exception class and ExceptionClass is
that of an existing exception class.

Exception objects are generally created implicitly with raise. An
Exception class can be instantiated manually with its .new constructor, which
accepts an optional String argument with which to set the exception’s
message.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 170

Message

An exception’s message is a human-readable String describing the nature
of the encapsulated error. It is intended primarily for debugging purposes.

It is retrieved with the exception’s #message accessor. It can be set with an
argument to raise or the constructor of the exception class. The default
message is the name of the exception’s class.

Backtrace

The backtrace of an exception describes the call stack at the moment the
exception was raised. It is represented as an Array which details the call stack
in reverse chronological order: the first element describing the line where the
exception was raised, the second, the caller of the method where the
exception was raised, the third, the caller of that method, etc. Each element of
the Array is a String detailing the filename and line number of the event.

An exception’s backtrace is set automatically by raise using
Kernel.caller. It can be created manually by supplying an appropriate Array

as the third argument to raise, or Exception#set_backtrace.

The Exception#backtrace accessor returns the backtrace of the receiver.

raise
An exception is raised with the Kernel.raise method, or its alias

Kernel.fail.

When raise is called without arguments it raises a RuntimeError. If called
thusly inside a rescue clause, it re-raises the current exception.

If the sole argument to raise is an Exception object, that exception is
raised. When the sole argument is a String, a RuntimeError is raised with
that string as its message.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 171

The first argument of raise can be an object responding to :exception, in
which case the exception raised is the Exception object returned by that
method. The Exception class itself defines such a method, allowing any of its
subclasses to be used in this manner.

raise TypeError

#=> #<TypeError: TypeError>

raise "Quantum entanglement failed"

#=> <RuntimeError: Quantum entanglement failed>

obj = Object.new

def obj.exception

NameError.new("We're supposed to be anonymous!")

end

raise obj

#=> #<NameError: We're supposed to be anonymous!>

raise accepts a String as an optional second argument, which becomes
the exception’s message.

The exception’s backtrace may be set explicitly by providing an Array of
Strings as raise’s third argument.

begin

raise SystemExit.new(1), "Abnormal exit"

rescue SystemExit => e

"Caught exit with status #{e.status}: #{e.message}"

end #=> "Caught exit with status 1: Abnormal exit"

def move

raise LocalJumpError, "Try hopping or skipping", ["Buy Thriller DVD",

"[redacted]",

"Rise up, legs akimbo"]

rescue => e

return "#{e.class}: <#{e.message}> from <#{e.backtrace.first}>??"

end

move

#=> "LocalJumpError: <Try hopping or skipping> from <Buy Thriller DVD>??"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 172

Arguments Raises
a b c

RuntimeError or current
exception

Exception a
Exception String a with b as the message

Exception String Array
a with b as the message, c as the
backtrace

String
RuntimeError with a as the
message

respond_to?(:exception) a.exception

respond_to?(:exception) String
a.exception with b as the
message

respond_to?(:exception) String Array
a.exception with b as the
message, c as the backtrace

A summary of the arguments accepted by raise

Propagation
Once raised, exceptions propagate “outward and upward” [Flan08, pp.

160–161] toward the first matching exception handler. Each block
encountered by the search is examined for the presence of a rescue clause
that matches the class of the current exception. If one is found, the exception
is handled, and the search halted.

The outward propagation is the passage from the raise statement to the
lexically enclosing block, to that block’s lexically enclosing block, until
arriving at the top-level of the program. If the entire program is contained in
a single file this step can be visualised as the movement from raise toward
the left margin.

If the outward search completes without the current exception being
handled, the search continues up the call stack: to the caller of the current
block, to the caller of the current block’s caller, and so on until the call stack
is exhausted. If at this point the exception has not been handled, it is printed
to STDERR and the program is aborted.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 173

Handling
An exception is handled with a rescue statement modifier or by attaching

a rescue clause to a begin statement, a method definition, a class definition,
or a module definition.

begin Statements

rescue is typically used in conjunction with a begin statement, which
simply associates a block of statements with one or more rescue clauses. The
rescue clauses may be followed by optional else and ensure clauses.

rescue

A rescue clause handles the exceptions described by its arguments, then
returns control to the statement following the initiating raise.

Without arguments, rescue handles only StandardError exceptions and
subclasses thereof. rescue may be followed by => identifier to assign the
rescued exception to a local variable named identifier. Having done so,
Exception instance methods such as #message and #class may be sent to it.

begin

1. Raises a RuntimeError with 'Disaster' as the message

raise "Disaster"

RuntimeError is a subclass of StandardError, so this clause matches

the exception raised above and assigns it to local variable e

rescue => e

e.message

end #=> 'Disaster'

If arguments are provided to rescue they must be supplied as a comma-
separated list of Exception classes to be handled. A rescue clause so written
will handle exceptions of any of the named classes or their subclasses.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 174

A construct that accepts a rescue clause accepts any number of them. They
are tested against the current exception in the order that they appear in the
source file, so should be arranged by decreasing specificity.

Postfix Form

rescue may be also used as a statement modifier. In this form it is not
restricted to the aforementioned constructs; it may appear anywhere a
statement can otherwise. Its syntax is a rescue b, where a and b are both
expressions. It evaluates to a by default; b if a raises an exception of
StandardError or subclass thereof.

Unlike the rescue clause, the rescue modifier does not permit specifying
exception classes to match or a local variable to which the caught exception is
aliased. However, regarding the last point, if the right-hand operand of
rescue is the special variable $!, the statement will evaluate to the rescued
exception.

[2, 0].map{|denominator| 1/denominator rescue nil}

#=> [0, nil]

$!

Within a rescue clause or on the right-hand side of a rescue statement
modifier, the $! variable holds the caught exception. In other contexts it
evaluates to nil.

else Clause

A group of rescue statements may be followed by an else clause, whose
body is executed iff neither the rescue clauses handled an exception nor the
preceding statements raised one. However, even in this case the use of flow
control statements in the statements preceding the rescue clauses may cause
the else clause to be skipped.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 175

ensure Clause

A construct that accepts rescue clauses may include an ensure clause as its
final clause. The statements in an ensure clause will always be executed,
regardless of whether their previous sibling clauses raised an exception or
employed a flow control statement such as return. Specifically, if the
construct to which ensure is attached…

Exits normally
The else clause, if any, is executed, followed by the ensure clause.

Executes returnreturn

The else clause, if any, is skipped, and the ensure clause is executed.

Raises an exception
A matching rescue clause, if any, is executed, followed by the ensure

clause.

The return value of a construct containing ensure is that of the previously
executed clause, unless the ensure clause explicitly returns a value with
return. That is, unlike other constructs the return value of ensure is not
necessarily its last statement executed. This is to allow ensure clauses to be
attached to def statements, for example; otherwise the method being defined
would never be able to return a value.

An ensure clause may cancel the propagation of an exception by raising an
exception of its own or executing a control flow statement. This new transfer
of control—be it to the end of the current block via break or next, the return
of the current method via return, or the nearest matching rescue clause via
raise—replaces that of the current exception, aborting its passage.

require 'yaml'

YAML_FILE = 'tasks.yaml'

begin

tasks = ['Water plants', 'Plant water']

...

tasks << 'Practice pentatonic scales'

raise RuntimeError unless tasks.include?('Run 5 miles')

rescue RuntimeError

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 176

tasks << 'Run 5 miles'

ensure

File.open(YAML_FILE,'w') {|f| YAML.dump(tasks, f)}

end

YAML.load(File.read YAML_FILE) #=> ["Water plants", "Plant water",

"Practice pentatonic scales", "Run 5 miles"]

Class Hierarchy
ExceptionException

NoMemoryErrorNoMemoryError

The Ruby interpreter failed to allocate memory.

ScriptErrorScriptError

LoadErrorLoadError

Raised by Kernel.require, Kernel.load, and
Kernel.require_relative when the named file cannot be
opened; by require_relative when called from inside eval or
irb; and by the ruby binary when a script is expected but no
supplied.

NotImplementedErrorNotImplementedError

Raised by methods which rely on operating system functions that
are not available to the current script. For example, methods
depending on the fsync() or fork() system calls may raise this
exception if the underlying operating system or Ruby runtime
does not support them.

SyntaxErrorSyntaxError

Raised by require, require_relative, load, and eval if the script
they are interpreting is syntactically invalid.

SecurityErrorSecurityError

Raised by methods that are prohibited by the current safe level.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 177

SignalExceptionSignalException

InterruptInterrupt

SystemExitSystemExit

Raised by exit and processes which attempt to terminate the
current script.

SystemStackErrorSystemStackError

Raised by Ruby when a stack overflow is detected.

StandardErrorStandardError

The parent class of most recoverable errors. Caught by a bare
rescue statement modifier or clause.
ArgumentErrorArgumentError

Raised by Ruby when a message is sent with an unexpected
number of arguments. Often raised by methods themselves
for similar reasons.

EncodingErrorEncodingError

Encoding::CompatibilityErrorEncoding::CompatibilityError

Raised by Encoding and String methods when the source
encoding is incompatiable with the target encoding.

Encoding::ConverterNotFoundErrorEncoding::ConverterNotFoundError

Raised by transcoding methods when a named encoding
does not correspond with a known converter.

Encoding::UndefinedConversionErrorEncoding::UndefinedConversionError

Raised by Encoding and String methods when a
transcoding operation fails.

Encoding::InvalidByteSequenceErrorEncoding::InvalidByteSequenceError

Raised by Encoding and String methods when the string
being transcoded contains a byte invalid for the either
the source or target encoding.

FiberErrorFiberError

Raised by fibers when attempting to call/resume a dead fiber,
attempting to yield from the root fiber, or calling a fiber
across threads.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 178

IOErrorIOError

Raised by methods performing input/output operations. For
example, it is raised when attempting to read from an IO

stream not opened for reading, or when attempting to
operate on a closed stream.
EOFErrorEOFError

Raised by IO methods when attempting to read past the
end of a file.

IndexErrorIndexError

Raised by some Array and String methods when attempting
to access a subscript that is out of bounds; by some Regexp

methods when attempting to access a capture group by an
invalid name/subscript.
KeyErrorKeyError

Raised by certain Hash methods when attempting to
access a value with an undefined key.

StopIterationStopIteration

Raised by Enumerators when attempting to access an
element past the end of the sequence. Caught by loop,
causing the loop to terminate.

LocalJumpErrorLocalJumpError

Raised when attempting to return from a method that has
already has already returned, call a Proc that has already
returned, executing retry in a Proc, executing next outside
of a loop or block, and by many methods which were not
supplied with a required block argument.

NameErrorNameError

Raised when Ruby sees an identifier whose name neither
corresponds to a local variable or method anywhere other
than the left-hand side of the assignment operator; when an
uninitialised constant is seen; when a class or instance
variable is declared with an illegal name; and by
Object#method, Object#instance_method, etc., when
attempting to retrieve a Method object for a non-existent
method.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 179

NoMethodErrorNoMethodError

Raised by Ruby when an attempt is made to invoke a
non-existent method. NameError takes preference when
an expression is ambiguous as to whether it represents a
local variable reference or method call. For example, if
there is neither method nor variable named m, the
expression m would result in a NameError; whereas the
expression m() would cause a NoMethodError. Responds
to #args with an Array of the arguments sent to the
method, and to #name with the method’s name.

RangeErrorRangeError

Raised by methods receiving numeric arguments that fall
outside of their operating limits. For example,
Array#combination and Array#product raise this exception
when their arguments are too large to permute.
FloatDomainErrorFloatDomainError

Raised by many mathematical methods which receive
NaN or Infinity (∞) as arguments.

RegexpErrorRegexpError

Raised by Regexp.new when passed a syntactically invalid
regular expression, and when a Regexp literal includes
characters invalid in its encoding.

RuntimeErrorRuntimeError

The default exception instantiated by raise, so quite generic
in usage. Core classes often raise this exception when a
method has receieved valid arguments yet is unable to
complete. Also, this is raised when attempting to modify
frozen objects or modify an object whilst iterating it.

SystemCallErrorSystemCallError

Raised when an attempt to call an operating system function
fails, despite that function being implemented and expected
to work. For example, it is raised by Dir when unable to
create a directory, exec when unable to execute a command,
and File.link when unable to create a symlink.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 180

Errno::Errno::*
There are many exception classes in the Errno namespace
which subclass SystemCallError. They represent low-
level, operating-system-specific exceptions, and as such it
is often sufficient to rescue SystemCallError and ignore
their specifics.

ThreadErrorThreadError

Raised by Thread when a thread cannot be initialised, moved
to another group, manipulated on account of being dead, or
when a shared mutex is unexpectedly locked.

TypeErrorTypeError

Common exception raised by methods who receive an
argument of an unexpected type. For instance, it is raised by
Range on attempts to iterate from Floats, class and module

when the given constant is defined and not a Class, and by
various classes unable to convert their argument to a specific
type.

ZeroDivisionErrorZeroDivisionError

Raised by mathematical operators when they are asked,
explicitly or implicitly, to divided a number by 0. Some
methods raise this exception when a division by the Float

0.0, while Integer#/, notably, returns Float::INFINITY.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 181

CONCURRENCYCONCURRENCY
Most of the programs we have considered so far have been synchronous:

they execute sequentially, from start to finish. Kernel.fork stood out as it
allows an arbitrary block of code to be executed as a separate, concurrent
process. This chapter explores two other techniques for writing concurrent1

programs.

Threads
A program typically runs along a single thread of execution: each

statement is executed sequentially and predictably. Programs that use only
this thread—termed the main thread—are single-threaded; by contrast, a
multithreaded program has multiple threads of execution, each of which is
associated with a block of code. The operating system rapidly switches
between these threads—interleaving their execution—to create the
appearance2 of parallelism.

Threads are represented as instances of the Thread class. Thread.current
and Thread.main return Thread objects corresponding to the current and
main threads, respectively.

Initialisation

Threads are created by passing a block to Thread.new which creates a new
thread to run the block then returns immediately. Any arguments given are
passed to the block as block paramaters. Thread.start, and its alias
Thread.fork, behave identically except if their receiver is a subclass of Thread
its initialize method is not called.

1. Or, at least, seemingly concurrent…
2. Sadly, Ruby does not actually execute threads concurrently even on multi-

core CPUs because some extension libraries are not thread-safe: only one
thread runs at any given time.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 182

Termination

A given thread can be terminated with Thread#kill—which is aliased to
Thread#exit and Thread#terminate. Similarly, Thread.kill(thread), where
thread is a Thread object, terminates the given thread. Thread#kill!—which
is aliased to Thread#exit! and Thread#terminate!—behaves like Thread#kill

except it bypasses any ensure clauses in the receiver. Thread.exit terminates
the current thread, which it returns if already marked to be killed. Ruby exits
when its main thread is terminated.

Other than Thread.exit, however, these methods have a significant flaw:
they may terminate a thread at any point, potentially leaving resources in
inconsistent states. Accordingly, JRuby’s Charles Nutter states “there is no
safe way to use Thread#kill or Thread#raise” [Nutter08] .

Status

A thread is always in one of five possible states—runnable, sleeping,
aborting, terminated normally, or terminated exceptionally—which may be
queried as shown below.

State Thread#statusThread#status Thread#alive?Thread#alive? Thread#stop?Thread#stop?

Runnable "run" true false

Sleeping "sleep" true true

Aborting "aborting" false true

Terminated normally false false true

Terminated exceptionally nil false true

When a thread is created it is runnable. It enters the sleeping state while
Kernel.sleep3 or an IO method is blocking, after which it returns to
runnable. A thread that calls Thread.stop also switches to sleeping, where it
remains until awoken, then schedules execution of another thread. A sleeping
thread may be made runnable with Thread#wakeup or Thread#run, unless it is
sleeping due to blocking I/O. Thread#run then invokes the thread scheduler,
possibly causing the thread to begin running; Thread#wakeup does not.

3. If Kernel.sleep is called without an argument, it blocks until the thread is
awoken or terminated.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 183

A thread that raises an exception, which it does not subsequently rescue,
enters the terminated exceptionally state. Otherwise, after a thread has
executed its final statement its state is terminated normally. When a thread is
terminated explicitly, its state becomes aborting. Unless it was terminated
with Thread#kill!—or an alias thereof—it then executes its ensure clause, the
contents of which may cause the thread to change state again. Finally, when
the thread actually terminates, its state will be terminated normally.

Variables

Threads are created with blocks, so standard scoping rules apply: they may
access any variable in the scope of this block, and local variables that they
define are not shared with other threads. An implication is that if a thread
accesses a variable defined in its parent scope, it will share this variable with
all other threads created in the same scope. We have already seen how this
behaviour can be avoided by providing arguments to Thread.new to create
block-local variables.

Some of the predefined global variables are thread-local—see the
Predefined Global Variables table for a list—meaning that a thread has its
own, private copy. An example is $SAFE, allowing potentially insecure code to
be run in a thread with an elevated safe level. The safe level of a given thread
can also be queried with Thread#safe_level.

Only Ruby can create thread-local global variables, but any thread may
create thread keys [Black09, pp. 432–435] : thread-local variables, accessible
to other threads via a Hash-like interface. Thread#[key]=value creates a
thread key named key—which must be a String or Symbol—to value.
Thread#[key] returns the value associated with key, or nil if there is none.
The Thread#key?(key) predicate returns true if the receiver has defined a
thread key named key; false, otherwise. The names of all keys defined by a
given thread are returned by Thread#keys as an Array of Symbols.

Joining

Ruby runs until the main thread terminates, even if additional threads
were created and are still running. To wait for a specific thread to terminate,

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 184

blocking until it does so, Thread#value may be used. It returns the value of
the last statement executed by the thread. Thread#join(seconds) also blocks
until its receiver terminates, but if more than seconds seconds elapse it gives
up and returns nil; on success it returns the receiver. If seconds is omitted,
there is no time limit.

Exceptions

A thread can raise an exception with the raise keyword, like any other
piece of Ruby. Thread#raise accepts the same arguments as raise, but raises
the exception in the thread represented by the receiver. However, see the
warning in Termination regarding this method.

When an unhandled exception occurs in the main thread, Ruby prints the
backtrace then exits. When another thread raises, but does not handle, an
exception, its behaviour depends on an abort on exception flag.

If abort on exception is false, as it is by default, an unhandled exception
causes a thread to terminate silently; when waited on—with either
Thread#join or Thread#value—the exception is raised in the calling thread. If
abort on exception is true, all threads behave like the main thread when
encountering unhandled exceptions: they print its backtrace then cause the
interpreter to exit.

The flag may be set globally with Thread.abort_on_exception= or per-
thread with Thread#abort_on_exception=. These values may be retrieved
with Thread.abort_on_exception and Thread#abort_on_exception,
respectively. If $DEBUG is true—as it is when the interpreter is given the -d

flag—threads behave as if Thread.abort_on_exception is also true.

Scheduling

Threads initially have a priority of zero, with a higher priority implying
more favourable scheduling. Thread#priority returns the receiver’s priority
as an Integer; Thread#priority=(priority) sets the receiver’s priority to
priority. However, priorities are merely hints to the thread scheduler: they

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 185

may be entirely disregarded, as they are under Linux for non-privileged
users.

There are, broadly, two approaches for allocating CPU cycles to threads:
cooperative multitasking and preemptive multitasking. In the former, a
context switch occurs when a thread explicitly yields control back to the
CPU, or performs a blocking operation such as I/O. In the latter, each thread
is run only for a certain amount of time before being interrupted so that
another thread may run instead. Under a cooperative approach, a thread
which neither yields nor performs blocking operations may starve the
process’s other threads from executing, monopolising the CPU. As a
workaround, compute-bound threads may use Thread.pass to explicitly yield
to the thread scheduler.

Groups

Ruby maintains an Array named Thread.list of all runnable or sleeping
threads. It will always contain at least one entry: the main thread. When a
thread terminates, it is removed from this list.

A thread is also a member of exactly one thread group, which provides
finer-grained control over subsets of threads. The main thread is a member of
the ThreadGroup::Default group, and new threads are members of their
parent’s group.

Thread#group returns the ThreadGroup containing the receiver. The
members of a group are returned as an Array by ThreadGroup#list. A thread
may be added to a different group with ThreadGroup#add, which first removes
the thread from its original group. A group may be enclosed, preventing other
threads from being explicitly added; however, threads created by existing
members of the group will still be made members. ThreadGroup#enclose
encloses its receiver. The ThreadGroup#enclosed? predicate returns true if its
receiver is enclosed; false otherwise. Lastly, a new group may be created
with ThreadGroup.new.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 186

Synchronisation

When multiple threads need to access a shared, modifiable resource, they
must ensure that no thread sees it an inconsistent state. Otherwise, a race
condition—when a result is dependent on the order in which the threads
finish—may occur, making the program non-deterministic.

For a trivial example, consider a thread that invokes puts "foo".
Kernel.puts first prints "foo", then prints a newline. If another thread is
scheduled in between these two operations, additional text could be written
to STDOUT before the newline. Indeed, if the second thread invoked puts

"bar", the typically result is "foobar\n\n".

Another example is the popular "too much milk" problem:

Time You Roommate
5:00 Arrive home

5:05
Discover you’ve ran out of
milk

5:10 Leave for grocery shop
5:15 Arrive home
5:20 Arrive at shop Discover you’ve ran out of milk
5:25 Buy milk Leave for grocery shop

5:30
Arrive home, put milk in
fridge

5:35 Arrive at shop
5:40 Buy milk

5:45
Arrive home, put milk in
fridge…drat!

The solution, clearly, is that exactly one person—you or your
roommate—buys milk. To do so, you must synchronise your actions:

1. If your roommate’s left a note telling you that he’s gone to get milk,
just wait for him to return. Otherwise, leave a note for your
roommate: “I’m buying milk”, then go to step 2.

2. If there is no milk, go to the shop, buy some, then put the milk in the
fridge.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 187

3. Throw away the note you left.

We can generalise this solution to any shared, modifiable resource with a
mutual exclusion—abbreviated as mutex—lock around the code—termed the
critical section—which accesses the shared resource. A mutex works like so:

1. Before entering the critical section, request the mutex. If another
thread already holds the mutex, wait until it releases it.

2. Perform the critical section: access the shared resource.
3. Release the mutex.

Thread.exclusive expects a block constituting a critical section of code,
then uses a global mutex to ensure only one thread calls the block at any one
time. More generally, a Mutex object represents a mutex which can be locked
and unlocked independently of any other Mutex instance. A Mutex is created
with Mutex.new. Mutex#synchronize is given a block representing a critical
section, which it executes only if no other thread already holds this specific
mutex. Both Thread.exclusive and Mutex#synchronize return the value of
their block.

Alternatively, a lower-level interface is available. Mutex#lock obtains a lock
with this mutex if possible; it blocks if this mutex is already locked by
another thread; and raises a ThreadError if this mutex is already locked by
the current thread. Mutex#try_lock behaves like #lock, except it never blocks:
if this mutex is not locked, it’s locked, and true is returned; otherwise, false
is returned. The Mutex#locked? predicate returns true if this mutex is locked;
false, otherwise. If a given mutex was locked by the current thread, it may
be unlocked with Mutex#unlock. Lastly, Mutex#sleep(time) releases the
current thread’s lock on this mutex, sleeps for time seconds—or forever if
time is nil—then locks this mutex. It returns the number of seconds that were
slept.

Deadlock is a condition in which two or more threads are waiting for an
event that can only be generated by these same threads. It has the following
prerequisites, all of which must hold; breaking at least one of them, breaks
the deadlock.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 188

Mutual exclusion
At least one thread must hold a resource that can not be shared. Requests
are delayed until this resource is released.

Hold and wait
A thread holds one resource while it waits for another.

No preemption
Resources are only released voluntarily after completion; neither another
thread nor the OS can force the thread to release the resource.

Circular wait
Two or more threads form a circular chain where each waits for a
resource that the next thread in the chain holds.

Fibers
Execution of blocks and methods always begins from their first statement.

Each time, their local variables are initialised anew. If they need to retain
state across calls, they must do so explicitly, using either global variables or
variables defined in their enclosing scope. A fiber—a lightweight, semi-
coroutine—provides an alternative approach. It is effectively a block whose
execution can be suspended—passing control back to its caller. The caller may
subsequently resume the fiber from the point at which it was suspended. A
fiber, therefore, automatically maintains state across calls: its local variables
are initialised only the first time it is resumed. Only one fiber may execute at
any one time, so, like threads, they merely create the illusion of concurrency.

A Fiber object is created by passing a block to Fiber.new. The block is not
called until the fiber is resumed.

Resuming a fiber that has not been resumed previously, executes the block
from the beginning. If the block opts to pass control back to its caller, the
fiber suspends itself, and execution jumps to the statement following that
which resumed the fiber. If this fiber is resumed again, it will continue
executing its block from where it left off last time. A fiber may repeat this
process as often as it likes.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 189

A fiber is resumed with Fiber#resume. It passes control back to its caller
with Fiber.yield—which has no relation to the yield keyword. Any
arguments supplied to #resume are passed to the fiber: if the fiber had not
been resumed previously, they are passed in as block arguments; otherwise,
they become the return value of the corresponding Fiber.yield invocation.
Likewise, any arguments passed to Fiber.yield become the return value of
the corresponding Fiber#resume invocation.

When the block exits, the fiber dies. Attempting to resume a dead fiber
causes a FiberError to be raised. This exception will also be raised if a fiber is
created in one thread but resumed from another.

APIAPI

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 190

NUMERICSNUMERICS
A numeric1 is an object representing a number. It is an instance of one of

Ruby’s numeric classes:

Integer Integers, or “counting numbers”, e.g. 4.

Float
Floating-point numbers, i.e. numbers with digits after the decimal
place, e.g. 3.14

Rational Rational numbers, or “fractions”, e.g. ⅔.

Complex
Complex numbers, i.e. those having both a real and an imaginary
part.

Integers
A decimal integer literal consists of an optional 0d prefix, then one or more

decimal digits. If the 0d prefix is omitted, the first digit must be non-zero.
Hexadecimal, octal, and binary literals allow integers to be expressed in base
sixteen, eight, or two, respectively. A hexadecimal literal begins with 0x, and
is followed by one or more hex digits (0–9, a–f). An octal literal begins with
0, an optional o, then one or more octal digits (0–7). A binary literal begins
with 0b, and is followed by one or more binary digits (0–1). However, all
Integers are stored as decimals so 0b10000, 0x10, and 020 have the same
value: 16. All forms ignore case and allow an optional sign (+ or -) as their
very first character. Consecutive digits may be separated by low lines to aid
readability of large numbers, but they have no semantic meaning.

The class of an integer depends upon its magnitude: those representable
natively, are Fixnum objects; otherwise they are Bignums. This distinction is
largely irrelevant because Ruby handles the conversion implicitly and both
respond identically to the same set of messages. Therefore, we shall refer to
Fixnum and Bignum objects collectively by the name of their parent class,
Integer. Quantities that exceed the limits of Bignum, have the value
Float::INFINITY.

1. The name is due to the parent class of Integer, Float, Rational, and
Complex: Numeric.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 191

Immediates

Symbol and Fixnum literals are immediate values. They are stored as values
rather than object references so are immutable and cannot have singleton
methods defined on them.

Bases

Integer objects represent integers in base ten. They can be converted into
another base, b, with Integer#to_s(b), where 36 ≥ b ≥ 2. Conversely, a
String comprising an integer in base b, may be converted to the
corresponding Integer with String#to_i(b), where b has the same limits as
before. String#hex and String#oct are equivalent to String#to_i 16 and
String#to_i 8, respectively. When converting an Integer into binary, octal,
or hexadecimal, format strings provide greater control.

67.to_s 2 #=> "1000011"

134.to_s 16 #=> "86"

98765.to_s 30 #=> "3jm5"

'10111011101'.to_i 2 #=> 1501

'beef'.hex #=> 48879

'%#X' % 36617 #=> "0X8F09"

Bit Twiddling

There are a collection of methods that treat Integers like bit fields,
operating on the number’s binary operation. The unary operator Integer#~
inverts the bit pattern, while #>> and #<< shift it right or left, respectively, by
the number of bits specified as an argument. The binary logical operators #|,
#&, and #^, perform bitwise OR, AND or, XOR, respectively.

def next_power_of_2 n

[1,2,4,8,16].inject(n - 1){|memo, x| memo |= memo >> x}.succ

end

[34, 67, 82720, 1024].map{|n| next_power_of_2 n} #=> [64, 128, 131072, 1024]

mask =->(pos) { 1 << pos }

set_bit =->(f, pos) { f | mask[pos]}

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 192

clear_bit =->(f, pos) { f & ~(mask[pos])}

modify_bit =->(f, pos, state){ f & ~mask[pos] | (-state & mask[pos])}

f = 0b1110001

f = set_bit[f, 3]; f.to_s(2) #=> "1111001"

f = clear_bit[f, 5]; f.to_s(2) #=> "1011001"

f = modify_bit[f, 0, 0]; f.to_s(2) #=> "1011000"

Floats
A Float object represents a double-precision floating-point number. It

contains a decimal point, so can represent values such as 1.5. A floating-point
literal consists of a decimal integer literal, a period, then one or more decimal
digits, e.g. 3.14.

A scientific notation literal consists of a coefficient (a: a decimal or Float
literal), e or E, then an exponent (e: one or more decimal digits). Its value is a
× 10e represented as a Float.

Constants

The precision and limits of Float are specified by the following constants:

DIGDIG = 15
Precision in decimal digits

EPSILONEPSILON = 2.220446049250313e-16
Smallest value such that Float::EPSILON + 1.0 != 1.0

INFINITYINFINITY

Positive infinity: a value too large to be represented.

MANT_DIGMANT_DIG = 53
Number of digits in the mantissa.

MAXMAX = 1.7976931348623157e308
Largest possible representable Float

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 193

MAX_10_EXPMAX_10_EXP = 308
Largest integer exponent, x, such that 10x is a finite Float.

MAX_EXPMAX_EXP = 1024
Largest integer exponent, x, such that Float::RADIXx − 1 is a finite Float.

MINMIN = 2.2250738585072014e−308
Smallest possible representable Float.

MIN_10_EXPMIN_10_EXP = −307
Smallest integer exponent, x, such that 10x is a finite Float.

MIN_EXPMIN_EXP = −1021
Smallest integer exponent, x, such that Float::RADIXx - 1 is a finite Float.

NANNAN

NaN: a value that is undefined.

RADIXRADIX = 2
The base in which the number is stored internally.

ROUNDSROUNDS = 1
The rounding mode for floating-point operations:
−1

Indeterminate

0
Toward 0

1
Nearest representable value

2
Toward +Float::INFINITY

3
Toward -Float::INFINITY

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 194

Precision & Accuracy

The inexactitude of Floats is a frequent source of confusion and
illegitimate bug reports. To understand its cause, we must be broadly familiar
with how computers store double-precision floating-point numbers.

On most platforms, Floats are stored in sixty-four bits. The first bit is the
sign, s, which is zero for a positive number; one for a negative number. The
next eleven are the positive exponent, e. To allow for negative exponents,
from e is subtracted a constant, b, which has the value 1023. For example, an
exponent of 18 is stored as 100000100012. The last fifty-two bits are the
mantissa, m, which has one implied bit, so it has a precision of fifty-three
bits. Therefore, a floating-point number has the following form:

(−1)s × 2e − b × 1.m

This system of encoding places an upper and lower limit on the range of
values that can be represented, as evidenced by Float::MAX and Float::MIN,
respectively.

Float::MAX + 1 == Float::MAX

Float::MAX * 2 == Float::INFINITY

Float::MIN - 60_000 == -60_000

Floating point arithmetic adds a new spectrum of errors, all based
on the fact that the machine can represent numbers only to a finite
precision.

—Kernighan78, pp. 115–116

Arithmetic with integers is exact, unless the result is outside of the range
of representable values (underflow or overflow). However, floating-point
arithmetic is inherently inexact. Unlike the real numbers, floating-point
numbers are not continuous; there are “gaps” between any two numbers.
Therefore, a number that cannot be represented exactly-such as an irrational,
e.g. π and ℯ, or non-terminating2 rational, such as ⅓-must be approximated
by one of the nearest representable values. Further, because the same number

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 195

of bits are used to represent all Floats, the smaller the exponent, the greater
the density of representable numbers.

As a wise programmer once said, “Floating point numbers are like
sandpiles: every time you move one, you lose a little sand and you
pick up a little dirt.” And after a few computations, things can get
pretty dirty.

—Kernighan78, pp. 117–118

The poster child is 0.1. Regardless of how many bits are available for
storage, it can never be represented exactly in base 2 of any finite precision
because it would contain the sequence 1100 repeated ad infinitum. Therefore,
the value stored is an approximation of the actual value. This becomes
apparent when performing even trivial calculations:

0.1 * 3 #=> 0.30000000000000004

0.1 * 3 == 0.3 #=> false

This is often forgotten because when Ruby displays such fractions-in IRB,
for example-it rounds them automatically. To reiterate, this behaviour is an
inherent shortcoming of floating-point; it is neither the fault of Ruby nor
your hardware.

One of the first lessons that must be learned about floating point
numbers is that tests for exact equality between two computed
floating-point numbers are almost certain to fail.

—Kernighan78, pp. 117–118

To conclude, some advice:

• When comparing two Floats, either round them beforehand, or
compare the absolute value of their difference with an appropriate
epsilon.

2. …non-terminating, that is, in base 2. Therefore, the only rationals that are
representable exactly in binary are those whose denominators are powers of
2, e.g. ¾.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 196

• When performing calculations, consider using Rationals rather than
Floats, where possible, to avoid the unintuitive manner in which
round-off errors propagate floating-point operations.

• Take special care when subtracting two values that are almost equal,
adding two likewise values that have opposing signs, or performing
either addition or subtraction with operands differing significantly in
magnitude.

Rationals
A rational number is a number of the form n⁄d, where both variables are

integers. The integer n is the numerator, and d the denominator. The
denominator must not be zero.

Rationals are instances of the Rational class. They may be created with the
constructor Rational(n, d). When d is omitted, and n an integer, d has the
implicit value of one. If one or both arguments are themselves Rational or
Float objects, an equivalent rational is found and returned. If Rational is,
instead, given a String representation of a rational, the numerator and
denominator are derived from that. In all cases, if the numerator is an exact
divisor of the denominator, the Rational represents this simplified quotient.

Rational(12) #=> (12/1)

Rational(67, 31) #=> (67/31)

Rational('7/8') #=> (7/8)

Rational(500, 100) #=> (5/1)

Rational(3.5) #=> (7/2)

Rational(Rational(1, 2), Rational(1, 4)) #=> (2/1)

Using Rationals instead of Floats in calculations enables us to represent
rational values exactly, rather than approximating them within the limits of
floating-point arithmetic. This solves, for example, the 0.1 * 3 problem
described above.

0.7 * 0.7 #=> 0.48999999999999994

r = Rational(7, 10) * Rational(7, 10) #=> (49/100)

r.to_f #=> 0.49

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 197

A Rational may also be created from a String or other numeric with
#to_r. This creates a Rational mathematically equal to the receiver.
Numerics also provide a method named #rationalize. For non-Floats, this
behaves as #to_r; when the receiver is a Float it “returns a rational that
approximates the float to the accuracy of the underlying floating-point
representation.” [Lispstd, pp. 12-62–12-62] .3. If #rationalize is given an
argument, it is an epsilon which constrains the result such that:

(receiver − epsilon) <= result <= (receiver + epsilon)

1.7.to_r #=> (7656119366529843/4503599627370496)

1.7.to_r.to_f #=> 1.7

1.7.rationalize #=> (17/10)

1.7.rationalize.to_f #=> 1.7

12345.6789.rationalize 0.1 #=> (37037/3)

'9/10'.to_r #=> (9/10)

The Numeric#numerator and Numeric#denominator methods return the
numerator and denominator, respectively, of the receiver as if it were a
Rational.

[41.numerator, 41.denominator] #=> [41, 1]

r = Rational(136, 153)

[r.numerator, r.denominator] #=> [8, 9]

f = r.to_f

[f.numerator, f.denominator] #=> [2001599834386887, 2251799813685248]

r = f.rationalize

[r.numerator, r.denominator] #=> [8, 9]

Complex
A complex number is a number of the form a + bⅈ, where a and b are real

numbers, and ⅈ is the imaginary unit. a is termed the real part of the
complex number, and b its imaginary part.

3. The provenance of #rationalize appears to be CLISP, which implemented
the function of the same name from the ANSI Common LISP standard.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 198

They are represented as instances of Complex. They can be created with the
constructor Complex(a, b), where, again, a is the real part, and b the
imaginary. If b is omitted, it has the implicit value zero. Alternatively,
Complex() may be given a sole String argument which represents a complex
number.

Complex(42) #=> (42+0i)

Complex(7, 3) #=> (7+3i)

Complex(Rational(3, 4), 4) #=> ((3/4)+4i)

Complex('3+8.2i') #=> (3+8.2i)

The real part of a Complex object may be retrieved with the Complex#real

accessor, while the imaginary part is available with Complex#imaginary or the
synonymous Complex#imag.

Conjugation

conjugate complex numbers Two numbers of type a + bi and a −
bi, where a and b are real numbers.

—James92, pp. 71–71

The conjugate of a complex number is its real part minus its imaginary
part. It is itself a complex number. Complex#conj, or its alias
Complex#conjugate, return the conjugate of the receiver as a Complex. The
#conj and #conjugate methods of the other numerics return self.

Complex(13, Rational(1, 2)).conj #=> (13-(1/2)*i)

Complex(7, 6).conj.conj #=> (7+6i)

Arg Function

amplitude of a complex number The angle that the vector
representing the complex number makes with the positive horizontal
axis.

—James92, pp. 11–11

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 199

The arg-also known as angle, amplitude, or phase-of a Numeric is
computed with #arg, and its aliases #angle and #phase. For a non-Complex
receiver, it is 0 if the receiver is positive; Math::PI otherwise.

The Complex implementations of these methods: return Math::PI if the
receiver has a real part less than zero, and no imaginary part; but raise a
Math::DomainError if both parts are zero. Otherwise, they compute the arg
with the following formula:

2 * Math.atan(Rational(b, Math.sqrt(a**2 + b**2) + a))

(-1.7).arg #=> 3.141592653589793

Rational(23, 32).arg #=> 0

Complex(20, 9).arg #=> 0.4228539261329407

Complex(-17, 3.5).arg #=> 2.938547436336328

Absolute Value

modulus of a complex number The numerical length of the vector
representing the complex number… The modulus of a complex
number a + bi is √(a2 + b2), written |a + bi|. If the number is in the
form r(cos β + i sin β) with r ≥ 0, the modulus is r.

—James92, pp. 276–276

The absolute value-also known as the modulus or magnitude-of a Complex

number is given by #abs, and its alias #magnitude, as a Float. For all other
numerics, these methods return the receiver sans sign.

(-1.7).abs #=> 1.7

Rational(23, 32).abs #=> (23/32)

Complex(20, 9).abs #=> 21.93171219946131

Complex(-17, 3.5).abs #=> 17.356554957709783

Polar Form

polar form of a complex number The form a complex number takes
when it is expressed in polar coordinates. This form is r(cos θ + i sin
θ), where r and θ are polar coordinates of the point represented by

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 200

the complex number. The number r is the modulus and the angle θ
the amplitude, angle, or phase.

—James92, pp. 321–321

Numeric#polar returns the receiver in polar form, that is an Array

comprising its absolute value and its arg. Conversely, a Complex may be
created from a given polar form with Complex.polar(abs, arg=0).

(-1.7).polar #=> [1.7, 3.141592653589793]

Rational(23, 32).polar #=> [(23/32), 0]

Complex(20, 9).polar #=> [21.93171219946131, 0.4228539261329407]

Complex(-17, 3.5).polar #=> [17.356554957709783, 2.938547436336328]

Complex.polar(*Complex(2,3).polar) #=> (2.0+3.0i)

Complex(-1).polar #=> [1, 3.141592653589793]

Rectangular Form

Complex#rect, and its alias Complex#rectangular, return a two-element
Array, the first value of which is its receiver’s real part; the second, its
imaginary part. For all other numerics, these methods return [self, 0].

The Complex.rect constructor, and its alias Complex.rectangular, create
Complex objects from their rectangular forms. Complex.rect(a, b) is
equivalent to Complex(a, b). As before, if b is omitted it has the value 0.

Complex(23.4, 5.6).rect #=> [23.4, 5.6]

35.to_c.rectangular #=> [35, 0]

Math::PI.rect #=> [3.141592653589793, 0]

Complex.rect(9, 7) #=> (9+7i)

Basic Arithmetic
The arithmetic operations of addition, subtraction, multiplication, and

division are performed with the binary operators +, -, *, and /, respectively. If
the two operands are of different classes, Ruby will attempt to coerce them so
they are not. The result of these operations will have the same class as the
operands, or be one of the special values: Float::INFINITY or Float::NAN.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 201

1 + 2 #=> 3

34.5 - 30 #=> 4.5

Rational(5,6) * 0.5 #=> 0.4166666666666667

80 / 5 #=> 16

(1 + ((3.0 - 1) * 2)) * 7 #=> 35.0

Complex(Rational(3, 4), 3) + Complex(4, 5) #=> ((19/4)+8i)

Integer#/ performs integer division, i.e. it returns the integer quotient,
discarding any decimal part. If this is undesirable, either convert the divisor
to a Numeric other than Integer, such as Float, or use a more forgiving
method, such as Numeric#quo or Numeric#fdiv. Both divide their receiver by
their argument, returning the quotient: the former, in the most accurate form
possible; the latter, as a Float.

5 / 2 #=> 2

5.fdiv 2 #=> 2.5

5.quo 2 #=> (5/2)

33.quo 3.3 #=> 10.0

Rational(100, 3) / 0.3 #=> 111.11111111111113

Rational(100, 3) / 3 #=> (100/9)

Integer#/ and Numeric#quo raise a ZeroDivisionError if their divisor is
integer 0; Float#fdiv and Float#/ return Float::INFINITY, instead. Further,
when one or both operands are not Integers, and both dividend and divisor
are zero, Float::NAN is returned.

To find the largest integer dividing two given integers with no remainder,
use Numeric#gcd m, which computes the GCD of the receiver and m.
Conversely, to find the smallest positive rational number that is an integer
multiple of both the receiver and m, compute the LCM with Numeric#lcm m.
Numeric#gcdlcm m returns a two-element Array, with the arguments’ GCD as
the first element, and their LCM as the last.

456.gcd 320 #=> 8

29.gcd 19 #=> 1

4392.lcm 282 #=> 206424

10.gcdlcm 4 #=> [2, 20]

The #divmod method divides its receiver by its operand then returns a two
element Array, containing the integer quotient and the remainder. If solely

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 202

interested in the remainder produced, Numeric#remainder divides its receiver
by its argument, returning what remains as an Integer.

90.divmod 9 #=> [10, 0]

772.divmod 6 #=> [128, 4]

40_500.remainder 1_000 #=> 500

Conversion & Coercion
A numeric may be converted to an equivalent numeric of a different class

via either the implicit or explicit conversion protocol, with the following
caveats:

• A RangeError is raised when attempting to convert either Float::NAN
or Float::INFINITY to an Integer.

• A RangeError is raised when attempting to convert a Complex with a
non-zero imaginary part to any other numeric class.

• In general, converting to Integer is lossy; that is, the process does not
round-trip.

The numeric coercion protocol enables two operands of different numeric
classes to be converted into object’s of the same class without any loss of
accuracy. It is used by methods which expect their operands to have the same
class. It is effected with Numeric#coerce(o), which returns an Array of two
elements, which represent o and the receiver, respectively, and have the same
class.

23.coerce 567 #=> [567, 23]

23.coerce 5.67 #=> [5.67, 23.0]

Math::PI.coerce Rational(1, 2) #=> [0.5, 3.141592653589793]

Complex(2).coerce Float::INFINITY #=> [(Infinity+0i), (2+0i)]

Comparison & Equality
Conceptually, two Numeric objects are equal in terms of #== if, and only if,

their coercion results in two values that are #eql?. In practice, this logic is
hard-coded into each #== method, so #cocerce is not called.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 203

3 == 3.0 #=> true

a, b = 3.coerce(3.0) #=> [3.0, 3.0]

a.eql? b #=> true

Rational(2, 3) == 2.3 #=> false

a, b = Rational(2, 3).coerce(2.3) #=> [2.3, 0.6666666666666666]

a.eql? b #=> false

Therefore:

23 == 23

10 != 10.00000000000001

34 != -34

Rational(56, 64) == Rational(7, 8)

Rational(3, 4) == 0.75

Complex(3) == Rational(3)

Complex(2, 10) != Rational(2, 10)

Rational(Rational(16.0, 1), Complex(8)) == 2

The operators #>, #>=, #<, #<=, provide the inequalities greater than, greater
than or equal to, less than, and less than or equal to, respectively. Numerics
compare precisely as you would expect. Float::INFINITY is greater than any
numeric except itself and Float::NAN. Likewise, -Float::INFINITY is less
than any numeric except itself and Float::NAN. Float::NAN is incomparable
with every numeric, including itself.

34 < 43

109 >= 100.9

Rational(7,5) > Rational(1, 5)

p ((2**781) < Float::INFINITY) #http://redmine.ruby-lang.org/issues/show/3648

Float::NAN != Float::NAN

Rounding
Non-Complex numerics can be rounded to adjust their precision. This

makes little sense for Integers, of course, so for Integer receivers these
methods just return self. Numeric#ceil and Numeric#floor round their
receiver up or down, respectively, to the nearest integer. Numeric#truncate
converts its receiver into an Integer by removing any fractional part. This is

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 204

equivalent to rounding the receiver to zero digits of precision, therefore
identical to Numeric#round with no arguments. When #round is supplied with
a positive Integer argument, the receiver is rounded to that many decimal
places. If the argument is −i, the receiver is rounded to the nearest 10i.

n, r = 12345.67890, Rational(20, 7)

n.truncate #=> 12345

n.floor #=> 12345

n.ceil #=> 12346

n.round(2) #=> 12345.68

n.round(-3) #=> 12000

r.truncate #=> 2

r.ceil #=> 3

r.round 3 #=> (2857/1000)

Predicates
The following predicates are available for testing numerics:

Integer#even?Integer#even?

true if the receiver is zero or divisible by two; false otherwise.

Float#finite?Float#finite?

true if the receiver is neither Float::NAN nor ±Float::INFINITY; false
otherwise.

Float#infinite?Float#infinite?

nil if the receiver is finite or NaN, -1 for negative infinity, and 1 for
positive infinity.

#integer?#integer?

true for instances of Fixnum and Bignum; false for all other numerics.

Float#nan?Float#nan?

true if the receiver is Float::NAN; false, otherwise.

#nonzero?#nonzero?

self if the receiver is non-zero; nil otherwise.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 205

Integer#odd?Integer#odd?

true if the receiver is not even; false otherwise.

#real?#real?

true for all numerics except instances of Complex.

#zero?#zero?

true if the receiver is zero; false otherwise.

78690.even? #=> true

-23.5.finite? #=> true

(-Float::INFINITY).finite? #=> false

(1/0.0).infinite? #=> 1

(23**7658).integer? #=> true

(0/0.0).nan? #=> true

(45789 * 0).nonzero? #=> nil

33.odd? #=> true

Rational(1, 2).real? #=> true

Complex(Rational(1, 2)).real? #=> false

(0.005 * 0.004).zero? #=> false

Moduluar Arithmetic
The % operator, and its alias #modulo, return their receiver modulo their

operand, i.e. the remainder when dividing the former by the latter. If the
divisor is 0, % raises a ZeroDivisionError; if it is 0.0, Integer#% raises
ZeroDivisionError whereas Float#% returns Float::NAN.

5 % 10 #=> 5

15 % 10 #=> 5

(-2..6).map{|n| n % 4} #=> [2, 3, 0, 1, 2, 3, 0, 1, 2]

Exponentiation
The binary * operator raises its receiver to a given power, e.g. 3 ** 2 == 9.

Math.sqrt and Math.cbrt return the square or cube root, respectively, of their
argument. There is not a generic nth root method, but it can be implemented
as x ** Rational(1, n).

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 206

Finiteness
The special, signed value Float::INFINITY is returned by numeric methods

that produce values too large for Ruby to represent. It can be tested for with
the predicate Float#finite?, which returns true if the receiver is neither
positive/negative infinity nor NaN; false otherwise. Similarly,
Float#infinite? returns nil for finite values and NaN, -1 for negative
infinity, and 1 for positive infinity.

The special value Float::NAN represents NaN, i.e. an undefined or
unrepresentable number. For example, it is returned by 0 / 0.0, 0 *
Float::INFINITY, and any method with Float::NAN as an argument.
Float::NAN != Float::NAN, so to test if a value is NaN, use the predicate
Float#nan?, which returns true if it is; false otherwise.

Pseudo-Random Numbers
Instances of the Random class represent pseudo-random number generators

(hereafter: PRNGs). Each encapsulates state, an Integer seed, and an
algorithm for generating pseudo-random numbers based on that seed.

The seed may be supplied as an argument to Random.new. Otherwise it has
the value of Random.new_seed, which is derived from the system PRNG-e.g.
/dev/urandom-if available, or a combination of the current time, process ID,
and a sequence number. For a given seed, the output of a PRNG is
predictable. Therefore, by setting the seed to a known value before the PRNG
is used, its output is made deterministic, thus testable. Random#seed returns
the seed of its receiver.

prng = Random.new 42

prng.seed #=> 42

Random.new.seed #=> 218115049506821704411283774120640050107

A pseudo-random number may be generated with Random#rand. If given no
arguments, a pseudo-random Float between 0.0 and 1.0 is returned. A
different upper limit may be chosen by supplying a non-zero, positive
Integer or Float argument. The generated pseudo-random number has the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 207

same class as the argument. When given a Range whose end-points respond
to #+ and #-, it returns a pseudo-random number from the values
encompassed. Random#bytes len returns a pseudo-random ASCII-8BIT
String of length len.

prng = Random.new 0xDEAF

prng.rand #=> 0.9812733995904889

prng.rand 30 #=> 1

prng.rand Math::PI #=> 0.21283178272607403

prng.rand(2**10..2**100) #=> 1018356302920191178791579529869

prng.bytes 5 #=> "\xA4.~\xAC\xAB"

Ruby maintains its own PRNG named Random::DEFAULT, whose seed was
generated with Random.new_seed. It is used by methods that produce pseudo-
random results such as Array#sample and Kernel.rand. The latter behaves as
Random#rand when given no arguments or an argument of zero. Otherwise, it
generates a pseudo-random Integer between zero and the absolute value of
its Integer argument.

The seed of Random::DEFAULT may be set explicitly by calling Kernel.srand

with an Integer argument. If the argument is omitted, the seed is set to a
new value of Random.new_seed. In both cases, srand returns the previous
seed.

srand 0xDEAF #=> 158965985081249152526188226346818216914

rand #=> 0.9812733995904889

rand 30 #=> 1

rand -45 #=> 25

rand Math::PI #=> 2

Trigonometry
The standard trigonometric functions are available as methods of the Math

module. They measure angles in radians, and return Floats.

Math.sin(Math.sin(xx))

The sine of angle x.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 208

Math.asin(Math.asin(xx)
The principal value of the arc sine of x, i.e. the value whose sine is x.

Math.sinh(Math.sinh(xx))

The hyperbolic sine of hyperbolic angle x.

Math.asinh(Math.asinh(xx)
The inverse hyperbolic sine of x, i.e. the value whose hyperbolic sine is x.

Math.cos(Math.cos(xx)
The cosine of angle x.

Math.acos(Math.acos(xx))

The arc cosine of x, i.e. the value whose cosine is x.

Math.cosh(Math.cosh(xx))

The hyperbolic cosine of hyperbolic angle x.

Math.acosh(Math.acosh(xx))

The inverse hyperbolic cosine of x, i.e. the value whose hyperbolic cosine
is x.

Math.tan(Math.tan(xx))

The tangent of angle x.

Math.atan(Math.atan(xx))

The arc tangent of x, i.e. the value whose tangent is x.

Math.atan2(Math.atan2(yy,, xx))

The principal value of the arc tangent of y/x.

Math.tanh(Math.tanh(xx))

The hyperbolic tangent of hyperbolic angle x.

Math.atanh(Math.atanh(xx))

The inverse hyperbolic tangent of x, i.e. the value whose hyperbolic
tangent is x.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 209

Math.hypot(Math.hypot(xx,, yy))

The hypotenuse of a right-angled triangle with sides x and y, or the
distance of point (x,y) from the origin.

Logarithms
The natural logarithm of a numeric, n, i.e. logℯ, is returned by Math.log n.

A logarithm to base b can be found with Math.log n, b. Two shortcuts exist
for common bases: Math.log10 n and Math.log2 n.

include Math

log E**7 #=> 7.0

log 81, 9 #=> 2.0

log10 10_000_000_000_000 #=> 13.0

log10 Float::RADIX**Float::MANT_DIG #=> 15.954589770191003

log2 Rational(1024, 16) #=> 6.0

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 210

STRINGSSTRINGS
Strings are mutable sequences of characters with an associated encoding.

They are generally created with literals, as explained below.

Literals
A string literal is either a double-quoted string literal or a single-quoted

string literal.

Single-Quoted Strings

A single-quoted String is a string delimited by apostrophe (U＋0027)
characters or %q. Its contents are not subject to interpolation. The only
recognised escape sequences are \\ and \delimiter; any other escape is
interpreted literally, i.e. as a reverse solidus followed by a single character.

Alternative Delimiters

A single-quoted string may also be delimited by arbitrary delimiters with
the %qdelimiter…delimiter construct, where delimiter is a single character. If
delimiter appears in the string it must be escaped.

If the opening delimiter is (, [, <, or {, the closing delimiter must be the
corresponding closing bracket. For example, if the opening delimiter is [, the
closing delimiter must be]. When these paired delimiters are used, the same
pair may appear inside the string as long as they are properly balanced.

%q&'\n& #=> "'\\n"

%q.

s

t

r

i

n

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 211

g

. #=> "\n s\n t\n r\n i\n n\n g\n "

%q<bold> #=> "bold"

Double-Quoted Strings

A double-quoted String is a String delimited with quotation marks
(U＋0022) characters or %Q. Its contents are subject to interpolation and
character escapes.

String Interpolation

Interpolation is the embedding of the value of an expression within a
string. The general form of the syntax is #{expression}. It is common for
expression to be simply the name of a local variable which is to be substituted
for its value.

The braces can be omitted if expression is the name of a global—, class—,
or instance variable. However, in this case the variable name cannot be
immediately followed by a character legal in an identifier, as ambiguity
results.

Alternative Delimiters

A double-quoted string may also be delimited by arbitrary delimiters with
the %Qdelimiter…delimiter and %delimiter…delimiterconstructs, where
delimiter is a single character. If delimiter appears in the string it must be
escaped.

If the opening delimiter is (, [, <, or {, the closing delimiter must be the
corresponding closing bracket. For example, if the opening delimiter is [, the
closing delimiter must be]. When these paired delimiters are used, the same
pair may appear inside the string as long as they are properly balanced.

%&"& #=> '"'

%Q;\

#{2**2}; #=> " 4"

%Q<\u0062old> #=> "bold"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 212

Here Documents

Here documents extend the concept of alternative delimiters to allow an
arbitrary sequence of characters as a delimiter. They begin with << followed
immediately by an arbitrary identifier or string literal. Their content begins
on the following line and continues until that same identifier/string is seen
on a line by itself with no intervening whitespace. If there is a hyphen
between the opening << and the delimiter, i.e. <<-delimiter, the closing
delimiter may be preceded with whitespace. The final newline character
before the closing delimiter is part of the here document’s contents: a
minimal here document is equivalent to "\n".

If the delimiter is an identifier or double quoted string, the contents of the
here document is interpreted with double-quoted string semantics.
Otherwise, the here document’s contents are interpreted literally: all escape
sequences and interpolation constructs are ignored.

poem = <<-POEM

Me up at does

out of the floor

quietly Stare

a poisoned mouse

still who alive

is asking What

have i done that

You wouldn't have

-- Edward Estlin Cummings

POEM

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 213

String Escapes
Escape sequences are character sequences prefixed with a reverse solidus

(U＋005C) that have a meaning other than their constituent characters when
appearing in double-quoted Strings.

Character Escapes

A character escape consists of a reverse solidus followed by a single
character, char. If char is one of [abcefnrstuvxCM01234567], the escape has
the meaning given in the table below. If char is a literal line terminator, both
the reverse solidus and the line terminator are removed from the string. In all
other cases \char evaluates to char.

puts "The worst\b\b\b\b\b\b best " #=> "The best "

puts "s p\sa\tc\ve\ s"

#=> s p a c

#=> e s

puts "no\

space" #=> 'nospace'

Byte Escapes

Both byte escapes force the string in which they are embedded to have
ASCII-8BIT encoding if the bytes are invalid in the source encoding.

Octal Byte Escapes

A reverse solidus followed by an octal number between zero and 3778
represents the given byte.

"\157\143\164\141\154" #=> "octal"

Hexadecimal Byte Escapes

A hexadecimal byte escape consists of \x followed by a hexadecimal
number ≤ FF16. It represents the given byte.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 214

"\x68\x65\x78" #=> "hex"

Control Escapes

The escape sequence for control characterCtrl-char consists of a reverse
solidus, either c or C-, then char, which may be a character or escape. (char
must not be a control, Unicode, hexadecimal, or three-digit octal, escape). Its
value is the character whose character code is char ∧ 0x9F.

"\C-Z".ord #=> 26

"\cx".ord #=> 24

Meta Character Escapes

The meta character escape \M-char represents the character whose
character code is that of char ∨ 0x80, where char is a single character or
escape. (char must not be a meta character, Unicode, hexadecimal, or three-
digit octal, escape).

"\M-y".ord #=> 249

"\M-\C-B".ord #=> 130

Unicode Escapes

An arbitrary Unicode character may be embedded in a string by specifying
its codepoint as four hexadecimal digits following \u.

The \u{} construct extends this ability to embedding multiple codepoints
with the same escape. The curly braces delimit one or more hexadecimal
codepoints separated by whitespace. This form does not restrict a codepoint
to four digits.

U+263A WHITE SMILING FACE (☺)

"\u263A" #=> "☺"

U+1F090 DOMINO TILE VERTICAL-06-03 (?)

U+1F091 DOMINO TILE VERTICAL-06-04 (?)

"\u{1f090 1F091}" #=> "??"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 215

http://en.wikipedia.org/wiki/Control_character
http://en.wikipedia.org/wiki/Unicode

Both forms of the Unicode escape sequence force the string in which they
are embedded to have UTF-8 encoding. Therefore they are illegal in a file that
has both a non-UTF-8 source encoding and a string containing literal
multibyte characters in that encoding.

Summary

Escape Sequence Interpretation
\a U＋0007: The BEL character. Rings the console bell.
\b U＋0008: The Backspace character.
\e U＋001B: The ESC character.
\f U＋000C: The Form Feed character.
\n U＋000A: The Newline character.
\r U＋000D: The Carriage Return character.
\s U＋0020: The Space character.
\t U＋0009: The Tab character

\uhexhexhexhex
The Unicode codepoint specified by the four given
hexadecimal digits.

\u{codepoints} The Unicode codepoint(s) specified by codepoints.
\v U＋000B: The vertical tab character.

The byte specified by the three given octal digits,
whose combined value does not exceed 3778.

\octaloctal The byte specified by the two given octal digits.
\octal The byte specified by the given octal digit.

\xhexhex
The byte specified by the two given hexadecimal
digits.

\xhex The byte specified by the given hexadecimal digit.
\cchar
\C-char

The control character Ctrl-char.

\M-char Meta character char.
\U＋000A

\U＋000D

\〈U＋000D, U＋000A〉

A backslash before a line terminator escapes it,
removing both the line terminator and backslash
from the string.

\char
A backslash before any other character evaluates to
the character itself.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 216

http://en.wikipedia.org/wiki/Bell_character
http://en.wikipedia.org/wiki/Backspace
http://en.wikipedia.org/wiki/Esc
http://en.wikipedia.org/wiki/Form_feed
http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Carriage_return
http://en.wikipedia.org/wiki/Space_key
http://en.wikipedia.org/wiki/Tab_character
http://en.wikipedia.org/wiki/Newline

Characters
Character is defined by the ISO/IEC as “A member of a set of elements

used for the organisation, control, or representation of data.” [Tr15285] . The
set of which they are members is an encoding. Therefore, in Ruby, a character
is a specific byte sequence interpreted according to a given encoding. An
implication is that by changing the encoding of a String, one also changes
what characters it contains.

A character is represented as a String of length 1, i.e. there is no explicit
Character class. It can be created with the standard String literal syntax, e.g.
'l', or via a character literal. The latter comprises a question mark followed
by a single character, i.e. ?char, where char is a literal character, or a
character escape that results in a single character, such as \uhex, \n, \t, or a
byte escape. ?char is entirely equivalent to "char". To create a character for a
given codepoint, see Codepoints.

String#chars, and its alias String#each_char, return an Enumerator of the
receiver’s characters. Both yield each character in turn if a block is given.

A String may be treated as an Array of characters with String#[].
However, Flanagan ㏂p; Matsumoto suggest that the aforementioned
enumerators “may be more efficient” when processing a String character-by-
character [Flan08, pp. 58–58] .

Bytes
Fundamentally a String is an array of bytes. An ordered sequence of

numbers, each of which is in the range 0–255. Bytes have no inherent
meaning, so are typically used in conjunction with a scheme that ascribes
them semantics or values. In the case of a binary data format, this scheme
may be embodied in a program’s algorithms, or be otherwise out-of-band.
For textual data, this scheme is termed an encoding.

Byte-level access generally assumes, but does not enforce, that the String’s
encoding is ASCII-8BIT. Explicitly manipulating byte sequences in a String

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 217

containing text is at best ill-advised. It breaks the abstraction of an encoding,
and may result in Strings with invalid encodings and spurious exceptions
being raised.

String#bytes, and its alias String#each_byte, return an Enumerator of
their receiver’s bytes, represented as Fixnums. A specific byte position may be
assigned to with String#setbyte(index, byte), where index is the zero-
based offset of the byte to be changed, and byte is the new value as an
Integer. A byte may be retrieved from a given offset with
String#getbyte(index). The length of a String in bytes is returned by
String#bytesize as an Integer.

Codepoints
Unicode assigns each character in its repertoire a unique integer codepoint.

This identifies a character, irrespective of its encoding. It is typically
represented with the notation U＋hex, where hex is the codepoint in
uppercase hexadecimal digits. For example, U＋010E is the codepoint for Ď
(Latin Capital Letter D with Carron). In the UTF-8 encoding this character is
represented by the byte sequence "\xc4\x8e", in EUC-JP it is represented as
"\x8f\xaa\xb0", and in ISO-8859-2 it is simply "\xcf". However, all three
cases represent the same character, so all three consist of the codepoint 270.

The Unicode character escape allows a character with a given codepoint to
be embedded into a String. Similarly, Integer#chr(encoding) interprets its
receiver as a codepoint in the named encoding, and returns the
corresponding character. If the codepoint does not exist in the given
encoding, an ArgumentError is raised.

Conversely, String#ord returns the codepoint of the first character in its
receiver as an Integer. More generally, String#codepoints, and its alias
String#each_codepoint, return an Enumerator of their receiver’s codepoints
represented as Integers. If given a block, each codepoint is yielded to it in
turn. All three methods will raise an ArgumentError if their receiver has an
invalid encoding.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 218

Iteration
A String can be iterated over by byte, character, codepoint, or line, using

the methods summarised below. Each method returns an Enumerator, or
yields each element in turn to a given block.

Method Iterates
String#bytes

String#each_byte
Bytes as Fixnums

String#chars

String#each_char
Characters as Strings

String#codepoints

String#each_codepoint
Codepoints as Fixnums

String#lines

String#each_line
Lines as Strings

A sequence of consecutive characters may be enumerated with
String#next, and its alias String#succ, which return a copy of the receiver
with the codepoint of its last character incremented by one. However, ASCII
alphanumeric characters are special-cased: z/Z is followed by aa/AA; and
digits increment as integers. There are bang variants of both methods, which
modify their receiver in-place. This behaviour forms the basis of
String#upto(e), which returns an Enumerator of the sequence beginning
with its receiver and ending with e. If given a block, it yields each element in
turn.

s = 'next'

s.succ! #=> 'nexu'

[*s.upto('neya')]

#=> ["nexu", "nexv", "nexw", "nexx", "nexy", "nexz", "neya"]

?(.upto(11.to_s).to_a

#=> ["(", ")", "*", "+", ",", "-", ".", "/", "0", "1", "2",

"3", "4", "5", "6", "7", "8", "9", "10", "11"]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 219

Size
“How long is a piece of string.” isn’t always a rhetorical question, but in

Ruby the answer depends on your unit of measurement. String#length, and
its alias String#size, return the number of characters in their receiver.
Therefore, they are dependent on the associated encoding: the length of a
String may change simply by associating it with a different encoding.
String#bytesize, however, returns the number of bytes contained in its
receiver. It is unaffected by String#force_encoding.

A String is empty if it has a length of 0. This can be tested with the
predicate String#empty?, and effected with the destructive String#clear.

Equivalence
For two Strings to compare as equal in terms of String#== they must be

byte-wise identical and associated with the same encoding. This last
condition is dropped when both Strings consist entirely of ASCII characters
and have an ASCII-compatible encoding. If the second operand responds to
the implicit conversion protocol of #to_str, it is converted thus, then the
result is tested for equivalence with the receiver. String#eql? behaves in the
same manner, but does not attempt to convert its operand.

Comparison
String#<=> compares its receiver with its String argument in terms of

their character codes. Neither operand is normalised. String mixes in
Comparable, so gains String#<, String#≤, String#>, and String#≥, also.

The aforementioned methods are, by implication, case sensitive.
String#casecmp provides a case-insensitive alternative for ASCII Strings;
non-ASCII characters are compared as above. Alternatively, one must
normalise the case of the two Strings themselves before comparing them.

coding: utf-8

?a < ?A #=> false

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 220

'pre' < 'prefix' #=> true

?Β <=> ?β #=> -1

?α < ?β #=> true

'11' > '100' #=> true

?a.casecmp ?A #=> 0

'epsilON'.casecmp 'Epsilon' #=> 0

?Σ.casecmp ?ς #=> -1

Concatenation
String#+ returns its receiver concatenated with its String argument,

without modifying the former. No coercion is performed on the argument.

String#<<, and its alias String#concat, append their argument to their
receiver, mutating the existing object rather than creating a new one, and
return the receiver. The argument must be either an Integer codepoint,
which is converted into the corresponding character before concatenation, or
a String. In tight loops, therefore, #<< should be preferred to #+=, as the latter
creates a new object each time.

str = 'con' #=> "con"

str + 'cat' #=> "concat"

str #=> "con"

str << 'cat' << 101 << 'nation' #=> "concatenation"

str #=> "concatenation"

Either approach requires at least one of the following conditions to hold:

• Both encodings are ASCII-compatible and one of the Strings is
ASCII-only.

• One of the Strings is empty.
• The two encodings are compatible.

Repetition
String#* returns a new String comprising n copies of itself, where n is

given by an Integer argument. The receiver is not modified.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 221

(?a..?f).map.with_index(1){|l, i| l * i}.join

#=> abbcccddddeeeeeffffff

Substrings
String#[], and its alias String#slice, provide access to specific portions of

a String, allowing it to be treated as an array of characters.

An Integer argument, i, returns the ith character, where the first character
has the index 0. If i is negative, it counts backward from the last character, so
String#[-2] returns the penultimate character.

When two Integer arguments are given, String#[i, l], the l characters
are starting from index i are returned. i may be negative, with the same
semantics as before, but l cannot be.

When the argument is a Range, String#[i..j], a substring beginning at
index i and ending at index j is returned.

A String argument is returned if contained in the receiver. Likewise, when
a Regexp argument is given, whose pattern matches the receiver, the return
value is the first matching substring. The latter may be accompanied by a
second argument indicating the group of captured text to return: an Integer

refers to the numbered group, a Symbol or String refers to the named group.
However, if a group is specified but the pattern fails to match, an IndexError

is raised.

If the receiver does not contain the given substring, nil is returned. If it
does, String#[]= may also be used as an lvalue with any of the above forms.
The result is that the substring returned is replaced in the receiver with the
rvalue. For example, 'ab'[0] = ?b returns "bb".

str = 'In absentia'

str[4, 4] = str[4].succ

str[/t(?<ear>ia)/, :ear] = ?u

str #=> "In actu"

str[?c] = 'bsen'

str[-1] = str[0].downcase + str[3]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 222

str #=> "In absentia"

str[3..-1] = 'casu'

str #=> "In casu"

String#insert(i, s) is equivalent to String#[i] = s. However, in
addition to modifying its receiver, #insert returns the new String, as
opposed to #[]= which returns s.

String#slice! accepts all the same combinations of arguments, but deletes
the substring from the receiver.

String#index returns the first zero-based index of the matched substring,
as opposed to the substring itself. The substring may be given as a String

argument, and optionally followed by an Integer specifying the index to
search from. If a Regexp argument is provided instead, the index of the start
of the match is returned. By contrast, String#rindex accepts the same
arguments but returns the index of the rightmost match. When no matching
substring is found, nil is returned.

alphabet = [*?a..?z].join

alphabet.index ?e #=> 4

alphabet.index /[aeiou]/ #=> 0

alphabet.index '~' #=> nil

alphabet.index(/[[:xdigit:]]/) #=> 0

alphabet.rindex(/[[:xdigit:]]/) #=> 5

alphabet << alphabet

alphabet.index ?e, 10 #=> 30

String#[] can be used to test for the presence of a substring on account of
its returning nil when the substring is not present. A slightly clearer
approach is String#include?, which returns true if its String argument is
contained within the receiver; false otherwise. String#start_with? and
String#end_with? behave similarly, but require the substring to be located at
the beginning or end, respectively, of the receiver.

uname = `uname -a`

#=> "Linux paint 2.6.32-23-generic #37-Ubuntu SMP Fri Jun 11 07:54:58 UTC 2010

i686 GNU/Linux\n"

uname.start_with?('Linux') #=> true

uname.chomp.end_with?('Linux') #=> true

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 223

uname.include?('ubuntu') #=> false

uname.include?(2010.to_s) #=> true

uname.include?(?#) #=> true

Searching & Replacing
String#sub(r, s) replaces the first occurrence of a Regexp, r, with a

String, s, then returns the new String. s may contain back-references to
capture groups in the pattern, which are substituted for the corresponding
match. In a single-quoted String a numbered group is referenced as \d,
where d is the group number, while \k<n> references the capture group
named n. In a double-quoted String the reverse solidus must be doubled, i.e.
\\d and \\k<n>.

The first argument can be given as a String instead of a Regexp, in which
case it is treated like a pattern with the metacharacters escaped. Therefore,
this form is similar to String#[r] = s.

If the second argument is omitted, a block must be supplied. It is passed
the matched text and must return the replacement String. If it is a Hash that
has the match as a key, the replacement String is the corresponding value.

To replace all occurrences of a pattern use String#gsub instead, with the
arguments described above. If String#gsub is called with neither a
replacement String nor a block, it returns an Enumerator.

The String#sub! and String#gsub! variants behave identically to their
unadorned equivalents except they modify the receiver in-place. If the
substitution succeeded, the return value is the receiver; otherwise, it is nil.

alphabet = [*?a..?f].join

alphabet.sub(/U/, 'you?') #=> "abcdef"

alphabet.gsub(/[b-e]/){|match| "<U+#{'%.4X' % match.ord}>"}

#=> "a<U+0062><U+0063><U+0064><U+0065>f"

alphabet.sub!(?V, 'for Vendetta') #=> nil

'3 + -4'.sub(/(?<a>\d+) \+ -(?\d+)/,

"== \\k<a> - \\k")

#=> "== 3 - 4"

subs = {?& => '&', ?> => '>'}

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 224

subs.default = '?'

'You & I > he & they!'.gsub(/[[:punct:]]/, subs)

#=> "You & I > he & they?"

Splitting, Partitioning, & Scanning
String#split returns an Array of its receiver divided into substrings

according to a delimiter. The default delimiter is given by $;, which is
initially nil. This is equivalent to a single space character, i.e. 'Horses for
courses'.split returns ['Horses', 'for', 'courses']. If a String or
Regexp argument is given, that is used as the delimiter. The delimiter is
omitted from the results.

String#partition also requires a String or Regexp argument specifying a
delimiter. It always returns a three-element Array comprising the text
preceding the first occurrence of the delimiter, the delimiter itself, then the
text following the first occurrence of the delimiter. String#rpartition
behaves similarly except it uses the last occurrence of the delimiter.

str = 'Out of memory'

str.split #=> ["Out", "of", "memory"]

str.split('o') #=> ["Out ", "f mem", "ry"]

str.split(/o\s?/i) #=> ["", "ut ", "f mem", "ry"]

str.partition('o') #=> ["Out ", "o", "f memory"]

str.rpartition('o') #=> ["Out of mem", "o", "ry"]

String#scan is almost the inverse of #split. It repeatedly matches its
Regexp argument against the receiver, returning an Array of the results, i.e.
whereas #split returned the text surrounding the matches; #scan returns the
matches themselves. If the pattern contains capturing groups, each element of
the Array is an Array of captures; otherwise it is a String containing the
matched text. If the argument is given as a String, it is interpreted literally:
regular expression metacharacters are ignored. If a block is supplied, it
receives each element of the result Array in turn.

"3^3 = 27".scan(/\d/) #=> ["3", "3", "2", "7"]

cube = 'faces: 6; volume: a^3; area: 6a^2'.scan(/(\w+): ([^;]+)/).map do |k, v|

[k.to_sym, v]

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 225

Hash[cube] #=> {:faces=>"6", :volume=>"a^3", :area=>"6a^2"}

'Cubes: 1^3 = 1, 2^3=8, 3^3 = 27 4^3 = ?, 5^3 = 125, 6^3 = 215'.

scan(/(?<base>\d+)\^3\s*=\s*(?:(?<an>\d+)|(?<un>\?))/) do |base, answer|

cube = base.to_i ** 3

puts "%d^3 == %d" % [base, cube] unless cube == answer.to_i

end

4^3 == 64

6^3 == 216

Letter Case
String#downcase converts all characters in its receiver to lowercase, while

String#upcase does the opposite. String#swapcase toggles the case of each
character: lowercase characters are converted to uppercase, and vice versa.
String#capitalize converts its receiver to lowercase then converts its first
character to uppercase. All four methods have a corresponding bang method
which modifies the receiver in-place. However, these methods only
understand the capitalization of ASCII characters; any other character is left
unchanged. Case-insensitive comparison was covered in the Comparison
section.

str = 'cAsE-sEnSiTiVe'

str.downcase #=> "case-sensitive"

str.upcase #=> "CASE-SENSITIVE"

str.capitalize #=> "Case-sensitive"

str.swapcase #=> "CaSe-SeNsItIvE"

Whitespace
String#chomp(s = $/) returns a copy of its receiver with s deleted from

the end. When s is omitted, it has the value of $/, which defaults to "\n".
String#chop returns its receiver minus the final character, regardless of its
value. However, if a String ends with "\r\n", both methods treat it specially:
#chop deletes both characters at once, while #chomp does likewise when called
with no argument and $/ == ?\n. Both methods have bang variants which
modify their receiver in-place. When they truncate the receiver, they return
it; otherwise, they return nil.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 226

Removal of a trailing line terminator can be generalised to the removal of
any trailing and/or preceding whitespace, i.e. any consecutive combination of
"\s", "\t", "\r", and "\n". String#lstrip deletes whitespace from the left,
String#rstrip deletes it from the right, and String#strip deletes it from
both sides. All have bang variants which modify the receiver in-place.

String#center(w) returns a String of at least w characters in length. If its
receiver is shorter than w, it pads it on either side with as many space
characters as is necessary to achieve this goal. If a String is supplied for the
optional second argument, it is used for padding instead of "\s".
String#ljust and String#rjust accept the same arguments but justify their
receiver to the left or right, respectively.

str = " orient\tate\n"

str = str.lstrip #=> "orient\tate\n"

str.chop! #=> "orient\tate"

str.chomp #=> "orient\tate"

str.chomp!('ate') #=> "orient\t"

str = str.center(15, "\t") #=> "\t\t\t\torient\t\t\t\t\t"

(str.strip << $/).capitalize #=> "Orient\n"

Converting to Numeric
String#to_i(r = 10) interprets the receiver as an integer in base r,

returning the corresponding Integer object. Hexadecimal and octal numbers
may be prefixed with 0x or 0, respectively. String#oct and String#hex are
equivalent #to_i(8) and #to_i(16), respectively.

A Float may be created from a String beginning with either form of
Float literal, i.e. two groups of digits separated with a full stop or
exponential notation, via String#to_f. A Rational may be instantiated from
a String of the form n/d, where n is the numerator, and d the denominator,
with String#to_r. If d is omitted, it has the value 1. Lastly, String#to_c
creates a Complex number. If the receiver is in the format recognised by
#to_f, #to_r, or #to_i(10), the number represented is the real part. If it is
followed by a signed number with an i suffix, that is the imaginary part. If
either part is omitted, it has the value 0.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 227

In all cases, the number may be prefixed with a sign and arbitrary
whitespace, and followed by arbitrary characters. Digits may be separated
with low lines. If a number cannot be extracted, it is assumed to be 0.

' 34_89'.to_i #=> 3489

'b_ee_f or lamb?'.hex #=> 48879

'tofu?!?'.to_i(8) #=> 0

'-23.89'.to_f #=> -23.89

'4.1e6'.to_f #=> 4100000.0

'3/4.2'.to_r #=> (3/4)

"\t2/3+2i\t".to_c #=> ((2/3)+2i)

Checksums
String#sum(b = 16) calculates a rudimentary b-bit checksum of the

receiver, which it returns as an Integer. If b ≤ 0, this is simply the sum of the
receiver’s bytes; otherwise, it is equivalent to String#bytes.reduce(&:+) &

((1 << b) - 1).

String#crypt(s) is a thin wrapper around crypt(3). The salt, s, is at least
two characters from the alphabet [a–zA–Z0–9./]. The receiver is encrypted
with s to produce a thirteen-character String from the aforementioned
alphabet, which begins with the first two characters of s.

str = 'need-to-know'

str.sum #=> 1176

str.sum 4 #=> 8

str.sum -10 #=> 1176

str.crypt('a.') #=> "a.YKZnbNk2rOs"

str.crypt('w8') #=> "w8Y/hB.q9SVxo"

Sets of Characters & Transliteration
String#squeeze returns a copy of its receiver without any runs of

consecutive characters, i.e. it deletes all but the first character in each run.
Optionally, one or more String arguments may be given, in which case only
runs of characters appearing in the intersection of these arguments are
collapsed. If an argument contains two characters separated by a hyphen

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 228

minus sign, it represents all characters in that range. An argument with a
caret as the first character represents the negation of its contents. The bang
variant modifies the receiver in-place, returning nil if no changes were made.

s = 'Aaa bbb cc dd e'

s.squeeze #=> "Aa b c d e"

s.squeeze(?a, ?b) #=> "Aaa bbb cc dd e"

s.squeeze('a-d') #=> "Aa b c d e"

s.squeeze('a-e', '^b') #=> "Aa bbb c d e"

The same approach can be applied to counting and deleting characters.
String#count and String#delete both accept the same forms of argument
with the same semantics. The former returns a Fixnum indicating the specified
character’s frequency in its receiver, while the latter returns a copy of its
receiver with the characters removed. String#delete! behaves as #delete,
except the receiver is modified in-place and nil is returned if no changes
were made.

s = 'Aaa bbb cc dd e'

s.count('Aa-e') #=> 11

s.count(?a, ?b) #=> 0

s.count('a-d') #=> 9

s.delete!('b-e', '^c') #=> "Aaa cc "

s.count('a-e', '^b') #=> 4

s.count('A-Za-z ') #=> 9

String#tr(t, f) transliterates each character specified by its first
argument with the corresponding character specified by its second. Both
arguments may use the range construct introduced above, and t may use the
caret construct. If f has more characters than t, the latter is padded with the
last character of the former. String#tr! behaves in the same fashion, except
it modifies the receiver in-place and returns nil if no changes were made.
String#tr_s behaves as #tr, except it collapses consecutive runs of characters
in the regions it affects.

str = 'stuffed shirt'

str.tr('st', 'S') #=> "SSuffed ShirS"

str.tr('a-z', 'A-Z') #=> "STUFFED SHIRT"

str.tr_s('a-z', 'A-Z') #=> "STUFED SHIRT"

str.tr('shirt', 'toy') #=> "tyuffed toyyy"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 229

Debugging
String#inspect and String#dump return a copy of the receiver enclosed in

quotation marks, with special characters escaped, in order to aid debugging.
ASCII control characters are replaced with their corresponding escape
sequences, if any, and other non-printing characters are substituted for the
corresponding byte escape. Quotation marks are backslash escaped. In
addition, String#dump substitutes non-ASCII characters with the
corresponding \u{codepoint} escape. If the receiver is associated with an
ASCII-incompatible encoding, enc, #dump appends .force_encoding('enc')
to its result.

coding: utf-8

str = "\"a\b\u{63}\t\x12\u{200}\""

str.inspect #=> "\"a\bc\t\u0012Ȁ\""

str.dump #=> "\"a\bc\t\x12\u{200}\""

Encoding
The encoding of a String literal is normally that of the source file in which

it appears, with the caveats noted above for Unicode and byte escapes.

Forcing an Association

The encoding associated with a String may be changed independently of
its contents. This is necessary if the contents are valid in one encoding, but
associated with another. Transcoding would be inappropriate because it
would alter the underlying bytes, which are already perfectly valid. The
solution is the destructive method String#force_encoding, which associates
its receiver with the encoding given as an argument. This operation will
always succeed, even if the String’s contents are invalid in the new
encoding.

Yui Naruse, a member of the Ruby core team, cautions against the use of
this method: “String#force_encoding should be sparsely used since Strings
have already had appropriate encodings assigned when those are created, or

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 230

read from files specifying the encoding.… If you need to use
String#force_encoding in your library, you should reconsider your library
design. You should not use this method thoughtlessly.” [Harada09] .

Valid Encodings

A String’s encoding is valid if its constituent bytes are properly formed
according to the encoding it is associated with. This check makes no claims as
to whether the characters in the String exist in the encoding, for it inspects
syntax rather than semantics.

In general, if you create a String via a literal, or consume a String as
input that is validly encoded, manipulating it as a sequence of characters will
ensure its encoding remains valid. However, associating a String with an
improper encoding, treating it as byte array, or consuming garbage input,
may all result in an invalid encoding. The String#valid_encoding? predicate
returns true if the String’s encoding is valid; false otherwise.

ASCII Only

Many operations on Strings contain optimisations for Strings that are
ASCII-only-containing 7-bit ASCII characters exclusively-regardless of the
associated encoding. For example, two Strings with disparate encodings are
compatible if they’re both ASCII-only. In general, however, these
optimisations are transparent so can be safely ignored. The
String#ascii_only? predicate can be useful if you wish to perform your own
optimisations along these lines.

Format Strings
A format string is a template specifying how a set of arguments should be

interpolated into a new String. It contains arbitrary text-which is copied to
the result unchanged-interspersed with format sequences-which describe how
their corresponding argument should be converted before being substituted
in their place.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 231

String#% interprets its receiver as a format string, and its argument-a
plurality are supplied as an Array-as the values to be interpolated, returning
the expanded String. Kernel#sprintf, and its alias Kernel#format, interpret
their first argument as a format string and subsequent arguments as the
values to be interpolated.

A format sequence begins with a percent sign, then contains zero or more
single-character flags, an optional minimal field width, an optional precision,
and a mandatory conversion specifier, in that order. We will discuss each
conversion specifier in turn, along with the flags they support, then conclude
by explaining the other fields.

Textual Conversions

Firstly, the following text-based conversion specifiers are available:

Character
Conversion specifier c interprets a numerical argument as a character
code point, which it converts into the given character. An argument
consisting of a one-character String is copied into the result unchanged.

Inspect
Conversion specifier p is substituted for the result of sending #inspect to
its argument.

String
Conversion specifier s copies the argument into the result as a String.

If accompanied by a precision, both p and s copy at most precision
characters into the result.

'%s %c %s' % ['Horses', 52, 'Courses']

#=> "Horses 4 Courses"

'%p =~ "%.5s..."' % [/[aeiou]/i, 'A slow, red fox']

#=> "/[aeiou]/i =~ \"A slo...\""

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 232

Numbers

The remaining conversion specifiers format numbers. All support a ␣ (a
space character) flag, which prepends positive results with a space, a + flag
which prepends a plus sign to positive results, and a 0 flag which pads fields
with zeros instead of spaces. If ␣ and + are used together, the latter has
precedence.

Converting Between Numerical Bases

Conversion specifiers can convert an argument into an integer in a given
base. Negative results are usually represented in two’s complement, prefixed
with two full stops. However, if the ␣ flag is supplied they are given in their
absolute form and prefixed with a hyphen-minus sign. When the 0 flag is
given and the result is represented as two’s complement, it is padded with the
digit one fewer than the base. For example, negative octal numbers are
padded with 7s instead of 0s.

Binary
Conversion specifiers b and B convert their argument to base 2. The # flag
causes 0b to be prepended to the result of b, and 0B to be prepended to
the result of B, i.e. these conversion specifiers differ only in the case of
their prefix.

Octal
The o conversion specifier converts its argument to base 8. When this
conversion specifier is used in conjunction with the # flag, and the result
is positive, 0 is prepended to the result.

Decimal
Conversion specifiers i, u, and d, all of which are identical, convert their
argument to base 10. Negative numbers are prefixed with a hyphen-
minus sign.

Hexadecimal
Both the x and X conversion specifiers convert their argument to base 16.
The case of the conversion specifier dictates the case of the characters in
the result. The # flag prepends 0x or 0X to the result, as appropriate.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 233

'2:%b, 8:%o, 16:%x' % [200, 800, 1600]

#=> "2:11001000, 8:1440, 16:640"

'%#B' % ('%d' % 032)

#=> "0B11010"

'% x; %#x; %#010X' % [-54].*(3)

#=> "-36; 0x..fca; 0X..FFFFCA"

Numerical Notation

The notation used for displaying numerical arguments can also be
configured with conversion specifiers. The ␣ flag again causes positive results
to have a single space prepended, but has no effect on negative results. The #

flag forces the result to contain a radix point, even if no digits follow.

Exponential
The e conversion specifier represents the argument in exponential
notation in the form: [-]α.βe±γ, where α is a single digit, β is the
fractional part consisting of precision (default: 6) digits, and γ is the two-
digit exponent.The E conversion specifier behaves identically, expect a
capital E is used to introduce the exponent.

Fixed-point
The f conversion specifier represents its argument with a whole part,
preceded with a hyphen-minus sign if negative, and a fractional part,
separated by a radix point. There are always precision (default: 6) digits
following the radix point.

Exponential or fixed-point
Both the g and G conversion specifiers render their argument in the
notation most appropriate for its magnitude: exponential if the exponent
is < -4 or ≥ precision; fixed-point, otherwise. There are at most precision
(default: 6) digits in the result. Trailing zeros are omitted from the
fractional part of the result unless the # flag is given. The radix point is
omitted unless followed by at least one digit. The exponent is introduced
with e if the g conversion specifier is used; or E if G is used instead.

Hexadecimal exponential
A conversion specifier of a converts the argument to base-16 exponential
notation (using lowercase digits) in the form: [-]0xα.βp±γ, where α is a

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 234

single hex digit, β is one or more hex digits, whose quantity is capped at
precision, and γ is the single-digit decimal exponent. If the A specifier is
used instead, the lowercase characters in the result are converted to
uppercase, i.e. it takes the form [-]0Xα.βP±γ, where α and β use
uppercase digits.

'%f' % Math::PI

#=> "3.141593"

'%e' % Math::E

#=> "2.718282e+00"

'%E' % -0.0000231

#=> "-2.310000E-05"

'%g %.G %g' % [9_000, 12e-8, -12000000000.5]

#=> "9000 1E-07 -1.2e+10"

'%.20a' % 678.19e100

#=> "0x1.8394d0b22721f0000000p+341"

Hash Interpolation

If the arguments are given as a Hash, rather than an Array, they may be
referenced from a format sequence by name instead of position. When a
conversion specifier is immediately preceeded by <key>, where key names a
key of the Hash, the corresponding value in the Hash becomes the format
sequence’s argument. A format sequence with a conversion specifier of of the
form {name} is equivalent to <name>s.

coding: utf-8

%q@

Subject: Are You Our Missing Winner?

To: %{email}

Dear %{name},

Congratulations! You have been selected to receive a cash prize

of £%.2<prize>f!!! Your name was selected at random by our

supercomputer to be a millionaire!?! But hurry, you must claim

your fortune by **%.19<deadline>p** or it will be gifted

to the next name on our shortlist.

Hurry. Please act now.

@ % {name: 'A. Patsy', prize: 2_883_712.28271, email: 'mark@aol.com',

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 235

deadline: Time.now.utc + (60+24*3600)}

#=>

#Subject: Are You Our Missing Winner?

#To: mark@aol.com

#

#Dear A. Patsy,

#Congratulations! You have been selected to receive a cash prize

#of £2883712.28!!! Your name was selected at random by our

#supercomputer to be a millionaire!?! But hurry, you must claim

#your fortune by **2010-06-18 22:23:52** or it will be gifted

#to the next name on our shortlist.

#

#Hurry. Please act now.

Field Width & Justification

The width component of a format sequence is an optional decimal digit
string (with non-zero first digit) specifying the minimum width of the field.
Alternatively, the value can be specified in relative or absolute terms.

If the result has fewer characters than this width, it is padded; if it has
more characters, the field is expanded as needed. By default, ␣ (a space
character) is used for padding, but the 0 flag causes an alternative character,
usually a zero, to be used instead.

Fields are normally right justified, but a flag of - justifies left instead. In
the former case, padding characters are prepended to the result, while in the
latter they are appended. If a negative width is given, this flag is implied, and
the field’s width is this value with the sign ignored.

digits = [*(1..9)]

'%1s' % digits.join

#=> "123456789"

'%20s = %#x' % [digits.join, digits.reduce(:+)]

#=> " 123456789 = 0x2d"

'>%0-20X<' % [*digits.join.bytes].join

#=> ">6DEC6BD4A460909 <"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 236

Precision

The optional precision component comprises a full stop followed by an
optional integer. If said integer is omitted or negative, it has the value 0.
Alternatively, the value can be specified in relative or absolute terms. The
precision gives:

• The minimum number of digits to appear for b, B, d, i, o, u, x, and X

conversions.
• The number of digits to appear after the radix point for a, A, e, E, f,

and F conversions.
• The maximum number of significant digits for g and G conversions.
• The maximum number of characters to be taken from a string for s

and p conversions.

Relative & Absolute Arguments

Usually, an argument is mapped to a conversion specifier implicitly: the
nth argument corresponds to the nth conversion specifier. However, this may
be made explicit so as to support arguments in a different order to their
conversion specifiers, and/or to use the same argument multiple times.

Arguments are indexed with integers, the first argument having an index
of 1. To marry a conversion specifier with an argument at index i, the format
sequence should begin with %i$. However, if one format sequence has this
form, they all must: numbered and un-numbered conversion specifiers
cannot be mixed in the same format string.

The precision and width of a field can be provided in a similar way. A
width given as *i$ or a precision given as .*i$, specifies that the value is
supplied by the argument indexed by i. However, this construct must always
be paired with numbered conversion specifiers, which as noted above, are an
all-or-nothing deal.

Alternatively, a width given as a single asterisk, or a precision given as .*,
denote that the nth argument holds their value, rather than that of their

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 237

conversion specifier. These constructs can be intermixed freely with
unnumbered conversion specifiers.

'%2$s %1$s' % [:first, :second]

#=> "second first"

'%0*d' % [10, 2]

#=> "0000000002"

'%*1$1$d%*2$2$d%*3$3$d%*4$4$d%*5$5$d' % [*1..5]

#=> "1 2 3 4 5"

'%.*2$1$f %.*3$1$f %.*4$1$f' % [Math::PI, 0, 2, 4]

#=> "3 3.14 3.1416"

Unpacking
String#unpack interprets the receiver as a sequence of bytes-ignoring its

encoding-which it expands into an Array of values according to a given
template. The template consists of single-character directives optionally
followed by an integer count, count, or an asterisk. Whitespace preceding
directives is ignored. In general, count specifies the number of times the
corresponding directive should be applied; when count is *, the directive is
applied as many times as possible. The inverse operation, i.e. packing an
Array of values into a String according to a template, is performed with
Array#pack.

The following directives create Integers in the result Array.

In the following table, the C Type column is the corresponding datatype in
the C programming language. The Byte Order column indicates whether the
field’s bytes are big-endian, or network, i.e. most-significant bit first; little-
endian, or VAX, i.e. least-significant bit first; or in the native order, i.e. that of
the current architecture’s. A BER-compressed integer is an unsigned integer
in base 128 with as few digits as possible. The high bit is set on each byte
except the LSB.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 238

Directive Interpretation C Type Byte
order

C 8-bit unsigned integer
unsigned

char
N/A

S 16-bit unsigned integer uint16_t Native
L 32-bit unsigned integer uint32_t Native
Q 64-bit unsigned integer uint64_t Native
c 8-bit signed integer char Native
s 16-bit signed integer int16_t Native
l 32-bit signed integer int32_t Native
l! / l_ Signed integer of sizeof(long) bytes long Native
q 64-bit signed integer int64_t Native

S_ / S!
Unsigned integer of sizeof(unsigned
short) bytes

unisgned

short
Native

I / I_ / I!
Unsigned integer of sizeof(unsigned
int) bytes

unsigned

int
Native

L! / L_
Unsigned integer of sizeof(unsigned
long) bytes

unsigned

long
Native

s! / s_ Signed integer of sizeof(short) bytes short Native
i / i! / i_ Signed integer of sizeof(int) bytes int Native

n 16-bit unsigned integer
unsigned

short

Big
endian

N 32-bit unsigned integer
unsigned

long

Big
endian

v 16-bit unsigned integer
unsigned

short

Little
endian

V 32-bit unsigned integer
unsigned

long

Little
endian

U UTF-8 character (codepoint) N/A N/A

w BER-compressed integer N/A
Big-
endian

Integer directives for String#unpack

'NO'.unpack ?s #=> [20302]

'%.4x' % 1234 #=> "04d2"

"\x04\xd2".unpack ?n #=> [1234]

"\xd2\x04".unpack ?S #=> [1234]

"\xd2\x04".unpack ?v #=> [1234]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 239

str = "\x52\x65\x61\x64\x52\x75\x62\x79"

str.unpack ?q #=> [8746682423038797138]

str.unpack('ll') #=> [1684104530, 2036495698]

str.unpack('lss') #=> [1684104530, 30034, 31074]

str.unpack('lscc') #=> [1684104530, 30034, 98, 121]

"\u1111".unpack ?U #=> [4369]

"\x7F\x85Q".unpack('w*') #=> [127, 721]

"\x7F\x00\x00\x01".unpack('C4').join(?.) "127.0.0.1"

Similarly, the following directives unpack to Floats. The Byte Order
column indicates whether the field’s bytes are big-endian, or network, i.e.
most-significant bit first; little-endian, or VAX, i.e. least-significant bit first; or
in the native order, i.e. that of the current architecture’s.

Directive Interpretation Byte order
D / d Double-precision float Native
F / f Single-precision float Native
E Double-precision float Little-endian
e Single-precision float Little-endian
G Double-precision float Big-endian
g Single-precision float Big-endian

Float directives for String#unpack

"\xDB\x0FI@".unpack ?f #=> [3.1415927410125732]

"\x18-DT\xFB!\t@".unpack ?d #=> [3.141592653589793]

sqrt = Math.sqrt 2 #=> 1.4142135623730951

[sqrt].pack(?f).unpack ?f #=> [1.4142135381698608]

[sqrt].pack(?d).unpack ?d #=> [1.4142135623730951]

And, finally, the String directives:

Directive Interpretation
A Binary string, padded with spaces if shorter than count
a Binary string, padded with nulls if shorter than count
Z As a, but null represented as *
B Big-endian bit string
b Little-endian bit string
H Big-endian hex string
h Little-endian hex string

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 240

Directive Interpretation
u UU-encoded string, as produced by uencode(1)

M Quoted-printable-encoded string (MIME encoding)
m Base64-encoded string of count characters; 0 omits line feeds
P Pointer to a structure (fixed-length string)
p Pointer to a null-terminated string

"\xba".unpack('h*') #=> ['ab']

"\xab".unpack('H*') #=> ['ab']

'feed me?'.unpack('a2a2a*') #=> ["fe", "ed", " me?"]

bin = 105.to_s 2 #=> "1100101"

?K.unpack('b7') #=> ["1101001"]

"\xD2".unpack('B7') #=> ["1101001"]

")4F5A9\"!2=6)Y\n".unpack ?u #=> ["Read Ruby"]

"Read Ruby=\n".unpack ?M #=> ["Read Ruby"]

"UmVhZCBSdWJ5\n".unpack ?m #=> ["Read Ruby"]

mem_ptr = ['Read Ruby'].pack ?P #=> "\xA0\x9C\x12\t"

mem_ptr.unpack('P') #=> ["R"]

mem_ptr.unpack('P*') #=> ["Read"]

mem_ptr.unpack('P8') #=> ["Read Rub"]

null_str = ['Read Ruby'].pack(?p) #=> "\x90N/\t"

null_str.unpack ?p #=> ["Read Ruby"]

There are also directives to specify which byte should be read next: x skips
forward one byte, X skips backward one byte, and @o skips to the byte at
offset o.

Symbols
A Symbol is an immutable immediate representing an identifier. Two

symbols with the same content will always be represented by the same
object, e.g. :glark.object_id == :glark.object_id, so symbol comparisons
are extremely efficient. However, Symbol objects are not garbage collected, so
are unsuitable for storing data from unbounded collections; use Strings
instead. Symbols are used for unique identifiers, such as Hash keys, as message
selectors and method names, and as a substitute for constants.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 241

http://en.wikipedia.org/wiki/Uuencode
http://en.wikipedia.org/wiki/Quoted_printable
http://en.wikipedia.org/wiki/Base64

Symbol is discussed in this section because it shares many of its methods
with String. In fact, these Symbol methods are often implemented by
converting the receiver to a String, invoking the method upon it, then
converting it back to a Symbol.

A Symbol literal consists of a colon (U＋003A) followed by a symbol or
String literal. A symbol is an identifier-optionally followed by =, ?, or !-an
operator method selector, [], or []=. The %sdelimiter…delimiter construct
enables symbols to be specified between arbitrary delimiters along the same
lines as %q.

A Symbol may also be created from a String with String#to_sym, but see
the remark below regarding invalid encoding.

coding: utf-8

:roland_barthes #=> :roland_barthes

:'σύμβολον' #=> :σύμβολον

%s{A proposition shows its sense.} #=> :"A proposition shows its sense."

"\u22F0".to_sym #=> :⋰

Encoding

A Symbol is associated with an encoding, but it cannot be manipulated
directly. Symbol literals adopt the source encoding of the file in which they
are used. If they consist exclusively of ASCII characters, they have the
encoding US-ASCII. If a Symbol is created from a String, either via the
:string syntax or String#to_sym, they have the encoding of that String.
Therefore, to create a Symbol with a given encoding, first create a String with
that encoding, then convert that String to a Symbol.

The encoding of a Symbol must always be valid. Therefore, attempting to
convert a String with invalid encoding to a Symbol, causes an EncodingError

to be raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 242

ENCODINGENCODING
An encoding is a mapping between byte sequences and characters1. Each

program source file, String, Symbol, Regexp, File, and IO object is, relatively
independently, associated with its own encoding.

The process of converting data from one encoding to another is called
Transcoding. It is quite distinct from re-associating an object with another
encoding: transcoding translates the underlying bytes to their equivalent
representation in the target encoding, while association changes the label
attached to an object.

The encoding associated with a source file-the source encoding-is by
default US-ASCII. If a source file contains characters outside of this encoding,
it must specify which one, otherwise Ruby refuses to load it.

The encoding associated with Strings, Symbols, and Regexps, is by default
the source encoding of the file in which they are contained. However, if their
literals contain certain character escapes, their encoding changed implicitly.
As with source files, this association can be overridden on a per-object basis.

Encoding Class
Ruby represents the encodings that she understands as instances of the

Encoding class, defining each as a constant under the Encoding namespace.
The constant is named after the upper-case encoding name, with low lines
replacing hyphen-minus characters. Methods that accept encodings as
arguments recognise both Encoding objects, e.g. Encoding::UTF_8, and their
names, e.g. "utf-8". The Encoding object associated with a String, Symbol, or
Regexp is returned by their #encoding method.

1. In Unicode terminology, this encompasses both CESs and CEFs.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 243

Source Encoding
The source encoding is the character encoding of a given source file. It is

US-ASCII by default. A SyntaxError is raised when a source file contains one
or more characters invalid in the source encoding.

A file’s source encoding may be specified inline by means of a coding
comment: a specially formatted comment that declares the encoding of the
lines that follow. If omitted, the default source encoding is assumed. If a
source file contains a shebang line, the coding comment must appear on the
second line; otherwise it must appear on the first.

The coding comment is a US-ASCII string which begins with a number
sign (U＋0023) and contains2 the string coding followed by an equals sign
(U＋003D) or colon (U＋003A) then the name of the source encoding. The
encoding name is one of those returned by Encoding.name_list written in a
case insensitive fashion.

The source encoding of the currently executing code can be obtained with
the __ENCODING__ keyword.

coding: utf-8

__ENCODING__ #=> #<Encoding:UTF-8>

IO Streams
An IO object is associated with an external encoding and, optionally, an

internal encoding. The former is the actual encoding of data in the stream;
the latter is the desired encoding. Both encodings have default values, but
may be set for a specific stream with IO#set_encoding(external,

internal=nil).

2. That the coding comment need only contain coding allow Ruby to
recognise Vim and Emacs modelines which declare a file’s encoding. For
example, # vim: set fileencoding=utf-8 : informs both Vim and Ruby
that the file is encoded in UTF-8.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 244

The default external encoding is returned by Encoding.default_external,
and may be set by assigning an encoding to Encoding.default_external=, or
invoking the interpreter with a switch of the form -Eencoding. Otherwise,
Ruby attempts to derive it from the user’s environment3. If she fails, or finds
an encoding that she doesn’t recognise, she sets the default external encoding
to US-ASCII or ASCII-8BIT, respectively4.

If an IO stream needs to be processed in an encoding different to its
external encoding, it must be transcoded. The target of the transcoding—the
desired encoding—is called the internal encoding of an IO object. The default
internal encoding is nil so no transcoding occurs by default. It may be
specified by assigning an encoding to Encoding.default_internal= or
invoking the interpreter with a switch of the form -E:encoding. It may be set
to UTF-8 by invoking the interpreter with the -U switch. The salient point is
that, unlike the external encoding, the internal encoding is never derived
automatically: transcoding happens only when it is explicitly requested.

If the internal encoding is nil, or the internal and external encodings are
equal, there is no transcoding needed: the stream is already encoded as
desired. Otherwise, Ruby transcodes data read from a stream from the
external to the internal encoding, and transcodes data written to the stream
from the internal to the external encoding. The transcoding works exactly the
same as String#encode, so the #encode options Hash may be merged with the
IO options Hash, wherever the latter is accepted. For example, it can be
supplied as the final argument of IO.new or IO#set_encoding.

3. Either by consulting relevant environment variables—e.g. LANG, LC_CTYPE,
and LC_ALL—or, on Windows, by invoking the system’s
nl_langinfo_codeset() or GetConsoleCP() functions.

4. In fact, the derived encoding becomes the locale charmap encoding. Then
the locale encoding is set to the locale charmap encoding, if the latter was
derived successfully; US-ASCII, if it couldn’t be derived at all; or ASCII-8BIT,
if it was derived but is not supported by Ruby. Finally, the default external
encoding is initialised to the locale encoding.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 245

http://msdn.microsoft.com/en-us/library/ms683162(VS.85).aspx

ASCII-8BIT
Ruby defines an encoding named ASCII-8BIT, with an alias of BINARY,

which does not correspond to any known encoding. It is intended to be
associated with binary data, such as the bytes that make up a PNG image, so
has no restrictions on content. One byte always corresponds with one
character. This allows a String, for instance, to be treated as bag of bytes
rather than a sequence of characters. ASCII-8BIT, then, effectively
corresponds to the absence of an encoding, so methods that expect an
encoding name recognise nil as a synonym.

Compatibility
Methods of String and Regexp that take another such object as an

argument require the encodings associated with the objects to be compatible.
An encoding is always compatible with itself, so operations involving two
objects associated with the same encoding are allowed. Likewise, two objects
are compatible if they are both ASCII-only.

The compatibility of other combinations of encodings can be determined
with Encoding.compatible?, which compares the encoding of its two
arguments, which are either Encoding objects or objects associated with
encodings. If they are compatible, the encoding which would result from
their combination is returned; otherwise, nil results. Operating on objects
with incompatible encodings causes an Encoding::CompatibilityError

exception to be raised.

Transcoding
Transcoding a String converts its bytes to the equivalent byte sequences in

a given encoding, with which it associates the result. It is typically performed
with String#encode, which returns its receiver transcoded from a source
encoding to a target encoding. String#encode! operates in the same manner,
but transcodes the receiver in-place.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 246

By default, source is the receiver’s current encoding, and target is the
default internal encoding. When called with one encoding argument, this
becomes the target encoding. When called with two encoding arguments, the
first is the target, the second is the source. This last form is mainly useful
when the String is associated with ASCII-8BIT: it associates the String with
source, then transcodes from source to target.

If a character in the String does not exist in the target encoding, or the
String contains bytes invalid in its current encoding, an exception is raised.
This behaviour can be changed by supplying an options Hash as the final
argument, whose form is described in the table that follows.

Key Values Description

:cr_newline
true or
false

Whether to convert \n to \r.

:crlf_newline
true or
false

Whether to convert \n to \r\n.

:invalid
:replace

or nil

A value of :replace causes characters
invalid in the source encoding to be
substituted for the replacement string. A
value of nil, which is the default, causes an
Encoding::InvalidByteSequenceError

exception to be raised in this scenario.

:replace String

The replacement string used by the
:invalid or :undef options. By default, it is
U+FFFD for Unicode encodings and ? for
others.

:undef
:replace

or nil

A value of :replace causes characters
invalid in the destination encoding to be
substituted for the replacement string. A
value of nil, which is the default, causes an
Encoding::UndefinedConversionError

exception to be raised in this scenario.

The keys and values that are recognised in the options Hash accepted by String#encode

and String#encode!. The Key column names a key of the Hash, and the Values column
specifies its possible values.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 247

Key Values Description

:universal_newline
true or
false

When true, \r\n and \r are converted to \n.

:xml
:text or
:attr

Replaces & with &, < with <, > with
>, and undefined characters with a
hexadecimal entity of the form &#xhex;,
where hex is a sequence of hexadecimal
digits. In addition, when a value of :attr is
supplied, " is replaced with ".

Encoding::Converter

The Encoding::Converter class provides additional control over the
transcoding process. Encoding::Converter.new takes a source encoding as its
first argument, and a destination encoding as its second. Both may be given
as encoding names or Encoding objects. An options Hash may be supplied as
a third argument.

Conversion Path

Text is transcoded along a conversion path. Each step involves a source
encoding and a destination encoding. In the simple case, the conversion path
will have only one step: from the given source encoding to the given
destination encoding. However, more complex transcoding requires
intermediate stages, e.g. to transcode Big5 into ISO-8859-9, we must first
transcode to UTF-8: Big5 to UTF-8, then UTF-8 to ISO-8859-9. The source and
destination encodings that are currently in use are returned by
Encoding::Converter#source_encoding and
Encoding::Converter#destination_encoding, respectively, as Encoding
objects.

The various newline conversion options and those which perform escaping
are termed decorators, and also feature in the conversion path. If the
destination encoding is ASCII-compatible, they appear as the final steps, i.e.
after any encoding pairs. Otherwise, they appear before the final step.

Encoding::Converter#convpath returns an Array of steps in the conversion
path. Steps which convert between two encodings are represented as an

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 248

Array of the respective Encoding objects. A steps which applies a decorator
appears as a String naming the decorator.

Encoding::Converter.new may be invoked with an Array in this form as
an argument. The instantiated converter then uses this conversion path rather
than inferring one from its arguments.

Piecemeal Conversion

An Encoding::Converter object can perform piecemeal transcoding, by
repeatedly calling Encoding::Converter#convert with the next fragment of
input. The fragment is transcoded and returned, associated with the
destination encoding. However, because each fragment is always assumed to
be part of a larger source, it may legitimately end mid-character, i.e. prior to a
character boundary. These trailing bytes are buffered internally, and the
successfully transcoded characters are returned. Then, when #convert is
called next, its argument is assumed to supply the remaining bytes. If an
unambiguously invalid byte sequence is encountered, an exception is raised.

Conceptually, we can explain this process as follows. When an
Encoding::Converter instance is created, an empty pending buffer is created.
Each time it is called, #convert initialises two empty buffers of its own:
source and destination. It copies its argument into source, which it then
processes byte-by-byte:

1. The byte is appended to pending and removed from source. The next
action depends on the contents of pending:

1. If it constitutes a valid character in the destination encoding, it
is transcoded and written to destination. pending is emptied.

2. If it constitutes a byte sequence that could be valid in the
source encoding, but currently isn’t, it is left in pending in the
hope that the next call to #convert will supply the remaining
bytes.

3. If it is invalid in the source encoding, regardless of subsequent
input, an Encoding::InvalidByteSequenceError exception is
raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 249

4. If its valid in the source encoding, but a corresponding
character does not exist in the destination encoding, an
Encoding::UndefinedConversionError exception is raised.

2. When the source buffer is empty, the destination buffer is returned,
then emptied.

Thus, after #convert returns destination, pending may not be empty. An
implication is that a call to #convert may raise an exception because, when
combined with the contents of pending, its argument was invalid. i.e. an
exception may be raised even if the argument is in itself valid. Therefore,
when there is no more text to transcode, Encoding::Converter#finish should
be called to signal that the contents of pending should be transcoded and
returned. If pending isn’t empty when #finish is called, this normally results
in one of the aforementioned exceptions being raised, because if its contents
constitute a valid character, it would have already been returned by #convert.
However, if the destination encoding is a stateful encoding such as ISO/IEC
2022, there may legitimately be bytes left in pending, which #finish flushes
out. The lesson is that #finish should always be called when there is no more
text to transcode.

Primitive Conversion

Encoding::Converter#convert is built atop
Encoding::Converter#primitive_convert, which provides even more control
over the process. Unlike #convert, the source and destination buffers must be
specified explicitly: the former as the first argument, the latter as the second.
Both should be Strings holding, respectively, the text to be transcoded, and
the String in which to store the result. If the source buffer is an empty
String it may be given as nil, instead. Neither buffer can be frozen, as they
are, respectively, depleted and replenished in the course of the operation.

Bytes are written from the source buffer to the destination buffer via the
pending buffer, as with #convert. However, this time instead of exceptions
being raised for erroneous input, a Symbol is returned, as explained
subsequently, which describes the problem. Thus, the programmer may elect
to resolve the error before calling #primitive_convert again to resume the
conversion. Due to the use of the pending buffer,
Encoding::Converter#finish should still be used, as described previously.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 250

By default, the destination buffer is appended to. If an Integer offset is
given as the third argument to #primitive_convert, it specifies the byte
index after which the transcoded text should be written. An ArgumentError is
raised if the offset is given and greater than the byte size of the destination
buffer. If this argument is specified as nil, the default behaviour is followed.

An optional fourth argument, given as an Integer, specifies the maximum
size in bytes of the destination buffer; by default this value is nil which
denotes an absence of a limit. If this limit is non-nil and the size of the
destination buffer reaches it, transcoding will stop and
:destination_buffer_full will be returned.

An optional fifth argument specifies one or both of the following options
as a Hash or a bitwise OR of the corresponding constants:

Conversion Options

after_output: trueafter_output: true

Encoding::Converter::AFTER_OUTPUTEncoding::Converter::AFTER_OUTPUT

After writing a character to the destination buffer, stop, and return
:after_output.

partial_input: truepartial_input: true

Encoding::Converter::PARTIAL_INPUTEncoding::Converter::PARTIAL_INPUT

The source buffer is known to be incomplete, i.e. it ends outside of a
character boundary. If this option is given and the last byte(s) of the
source buffer don’t correspond to a character in the destination encoding,
:source_buffer_empty is returned. This indicates that the remainder of
the source text should be assigned to the source buffer, and
#primitive_convert called again.

The return value is one of the following Symbols:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 251

Return Values of #primitive_convert

:invalid_byte_sequence:invalid_byte_sequence

The source buffer contains a byte sequence invalid in the destination
encoding, regardless of any following bytes. Equivalent to the
Encoding::InvalidByteSequenceError exception being raised.

:incomplete_input:incomplete_input

The source buffer ends prematurely, presumably prior to a character
boundary, but is potentially valid if additional input is supplied.
Nevertheless, this state is regarded as exceptional, equivalent to an
Encoding::InvalidByteSequenceError being raised, because the
:partial_input option is false. If, as expected, no more input is
supplied, the result will end with an invalid byte sequence. Conversely, if
:partial_input was true, the unexceptional :source_buffer_empty
Symbol would be returned instead.

:undefined_conversion:undefined_conversion

A character has been encountered in the source buffer which, although
legal in the source encoding, has no equivalent in the destination
encoding. Equivalent to an Encoding::UndefinedConversionError

exception being raised.

:after_output:after_output

If the :after_output option is given, after each character is converted this
Symbol is returned.

:destination_buffer_full:destination_buffer_full

If a non-nil value has been given for the fourth argument, this Symbol
indicates that the destination buffer has reached the given limit.

:source_buffer_empty:source_buffer_empty

The source buffer ends prematurely, presumably prior to a character
boundary, and the :partial_input option has been given. The source
buffer should be replenished and transcoding resumed.

:finished:finished

Conversion is finished, either naturally or because
Encoding::Converter#finish has been called.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 252

Error Context

When an error occurs during transcoding, it is often necessary to
understand its context so as to recover. The exceptions raised by #convert,
are augmented with accessors for gleaning this information. Additionally,
Encoding::Converter#primitive_errinfo provides detailed information
about the last error in the form of an Array with the following elements, in
this order:

1. The Symbol that #primitive_convert would have returned in this
situation, even if #convert was the actual method used. The six
possible values were described above. If this element is
:after_output, :destination_buffer_full, :source_buffer_empty, or
:finished, all remaining elements are nil.

2. The source encoding as a String. This may not be the given source
encoding if the conversion path has multiple steps. Equivalent to the
#source_encoding_name methods of
Encoding::UndefinedConversionError and
Encoding::InvalidByteSequenceError.

3. The destination encoding as a String. This may not be the given
destination encoding if the conversion path has multiple steps.
Equivalent to the #destination_encoding_name methods of
Encoding::UndefinedConversionError and
Encoding::InvalidByteSequenceError.

4. The problematic bytes as a String: the bytes prior to the invalid byte
for :invalid_byte_sequence, the errant character for
:undefined_conversion, and the bytes read since the last character for
:incomplete_input. Equivalent to
Encoding::UndefinedConversionError#error_char and
Encoding::InvalidByteSequenceError#error_bytes.

5. For :invalid_byte_sequence, this element holds the byte that
rendered the sequence invalid. i.e. the preceding element held the
bytes which could legitimately form a valid sequence, and this
element holds the byte which invalidated it. This is equivalent to
Encoding::InvalidByteSequenceError#readagain_bytes. For
:undefined_conversion and :incomplete_input, this element is "".

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 253

So, error context can be ascertained, ex post facto, by using #convert, then
rescuing and examining the exceptions it raises, or by using either
transcoding method and inspecting elements of the
#primitive_errinfoArray. A third approach is to use #last_error, which
returns the exception #convert would have raised, or otherwise nil. This
saves one from having to rescue exceptions or splice an Array, if his interest
is purely the exceptional situations. It also suggests a useful idiom for dealing
with errors: it is true the error indicates malformed input; otherwise, it
relates to the configuration of the transcoder.

Recall, however, that the states :incomplete_input and
:invalid_byte_sequence both indicate that an invalid byte sequence has
been discovered-the former is simply optimistic that the next input will
correct it-so both have Encoding::InvalidByteSequenceError as their
exception. They can be distinguished with the
Encoding::InvalidByteSequenceError#incomplete_input? predicate, which
only returns true in the former case.

Recovery from an Invalid Byte Sequence

When an invalid byte sequence is encountered, the transcoder saves two
sets of bytes: the error bytes and the read-again bytes. The former are always
discarded: they are, independently of context, invalid in the destination
encoding. The latter are the buffered bytes that followed. If this error is
simply ignored, and the call to #primitive_convert repeated, the read-again
bytes are returned to the source buffer, and considered again. If this new byte
sequence is valid in the destination encoding, it will be transcoded as normal.
Otherwise, this process will be repeated. The outcome is almost certainly
undesirable. Invalid byte sequences are split, and some of their constituent
bytes are interpreted as characters in their own right, and appended to the
destination buffer.

source, dest = "a\u6543bc", ""

source.setbyte(2,0)

ec = Encoding::Converter.new('utf-8', 'ascii')

until source.empty?

ec.primitive_convert(source, dest)

p [source, dest, *ec.primitive_errinfo]

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 254

#=> ["\x83bc", "a", :invalid_byte_sequence, "UTF-8", "US-ASCII", "\xE6", "\x00"]

#=> ["bc", "a\x00", :invalid_byte_sequence, "UTF-8", "US-ASCII", "\x83", ""]

#=> ["", "a\x00bc", :finished, nil, nil, nil, nil]

The safer option is to drop the read-again bytes, too, with
Encoding::Converter#putback. Optionally, the maximum number of bytes to
put back can be given as an Integer argument. To contrast the two
approaches, juxtapose the previous example with the following, taking care
to note the final contents of dest.

source, dest = "a\u6543bc", ""

source.setbyte(2,0)

ec = Encoding::Converter.new('utf-8', 'ascii')

until source.empty?

state = ec.primitive_convert(source, dest)

p [source, dest, *ec.primitive_errinfo]

ec.putback if state == :invalid_byte_sequence

end

#=> ["\x83bc", "a", :invalid_byte_sequence, "UTF-8", "US-ASCII", "\xE6", "\x00"]

#=> ["bc", "a", :invalid_byte_sequence, "UTF-8", "US-ASCII", "\x83", ""]

#=> ["", "abc", :finished, nil, nil, nil, nil]

Recovery from an Undefined Conversion Error

Again, this error can be ignored by simply repeating the call to
#primitive_convert. The unknown character will be dropped, and
transcoding will continue. A more refined approach is to substitute the
unknown character for another: either a constant, such as "?", or an
approximation determined out-of-band. To support both scenarios,
Encoding::Converter#insert_output accepts an arbitrary String argument,
which it appends to the source buffer on the next call to #primitive_convert.
Accordingly, the String will be transcoded into the target encoding and
appended to the destination buffer.

source, dest = "a\ubeefbc", ""

ec = Encoding::Converter.new('utf-8', 'ascii')

until source.empty?

if ec.primitive_convert(source, dest) == :undefined_conversion

ec.insert_output("<U+%.4X>" % ec.last_error.error_char.ord)

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 255

p [source, dest, *ec.primitive_errinfo]

end

#=> ["bc", "a", :undefined_conversion, "UTF-8", "US-ASCII", "\xEB\xBB\xAF", ""]

#=> ["", "a<U+BEEF>bc", :finished, nil, nil, nil, nil]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 256

REGEXPSREGEXPS
A Regexp represents a regular expression: a pattern that describes a String.

If a String contains the pattern described by a given regular expression, it is
said to match. Therefore, one use of regular expressions is validation: testing
whether a String matches a pattern.

Does a String contain a digit?

/\d/ =~ 'two: 2' #=> 5

(Yes, starting at this fifth character)

/\d/ =~ 'Nope' #=> nil

(No)

Which Strings in an Array contain 'cat' case-insensitively?

%w{dogma verification wildcat dogfish medicate underdog Catholicism}.grep /cat/i

#=> ["verification", "wildcat", "medicate", "Catholicism"]

Another, introduced in the Strings chapter, is extracting the portions of a
String that match a certain pattern.

Extract sequences of consecutive digits

'one: 1, ten: 10, one-hundred: 100'.scan(/\d+/)

#=> ["1", "10", "100"]

Separate a String into substrings separated by ', '

'Asia, Africa, North America, South America, Antarctica, Europe, Australia'.

split(/, /)

#=> ["Asia", "Africa", "North America", "South America",

"Antarctica", "Europe", "Australia"]

Similarly, areas of the pattern can be designated as capturing, which
effectively labels parts of the String so they can be referred to after the
match.

time = /\A(?<hours>(0\d|1[0-9]|2[0-3])):(?<minutes>([1-5]\d|0\d))\Z/

match = time.match '11:30'

match[:hours] #=> "11"

match[:minutes] #=> "30"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 257

Further examples of the utility of regular expressions can be found in the
Strings chapter. In this chapter, we deal primarily with the syntax of patterns:
how to construct a regular expression that matches precisely what is needed.

Literals
The literal is of the form /pattern/options: a pattern delimited by solidi,

followed by zero or more single-character option specifiers. If the pattern is to
contain either of these delimiters literally, they must be escaped with a
reverse solidus. The construct %r{pattern}options also constructs a Regexp,
but in this form pattern may contain either solidi or reverse solidi literally,
without having to escape them.

/pat/i =~ 'Pattern'

/1\/2/ =~ '1/2'

%r{1/2} =~ '1/2'

Options
The behaviour of a Regexp can be modified by following the literal with

one or more of the following option specifiers:

Option Effect
e Associate the pattern with the EUC-JP encoding
i Ignore case
m Let . match newline characters.
n Associate the pattern with the ASCII-8BIT encoding.
o Only interpolate #{…} constructs the first time this literal is parsed.
s Associate the pattern with the Windows-31J encoding.
u Associate the pattern with the UTF-8 encoding.
x Enable free-spacing mode.

3.times.map{|n| /#{n}/} #=> [/0/, /1/, /2/]

3.times.map{|n| /#{n}/o} #=> [/0/, /0/, /0/]

/case/i =~ 'Case' #=> 0

/Case/i =~ 'cAsE' #=> 0

/.../m =~ "a\nb" #=> 0

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 258

/f r e e # comment

-spac ing/x =~ 'free-spacing' #=> 0

/EUC-JP/e.encoding #=> #<Encoding:EUC-JP>

Options i, m, and x, may also be applied to a specific group rather than the
pattern as a whole, with the syntax described in Grouping.

Matching
A Regexp may be matched against a String by supplying the latter as an

argument to Regexp#match or Regexp#=~. String#match and String#=~ behave
in the same way, mutatis mutandis.

The #match methods return MatchData objects if the match succeeded,
whereas the #=~ methods return the character offset in the String where the
match began. They all return nil if the String didn’t match.

'23' =~ /a/ #=> nil

/\A0x[[:xdigit:]]+\Z/i =~ '0XA55E' #=> 0

/\D/ =~ '2 + 3' #=> 1

'33 + 41'.match /(\d+) [-+] (\d+)/ #=> #<MatchData "33 + 41" 1:"33" 2:"41">

/\./.match "" #=> nil

Metacharacters
In the context of a pattern, a character is either interpreted literally or as a

metacharacter. A literal character matches itself, whereas a metacharacter has
another meaning. To force a metacharacter to be interpreted literally it must
be preceded by a reverse solidus (\).

Metacharacter Meaning
^ Start of line anchor
$ End of line anchor
Introduces a comment if the x option is given
#{…} Interpolates an expression
(…) Encloses a group

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 259

Metacharacter Meaning

*
Greedy quantifier: preceding atom may occur any number
of times

+ Greedy quantifier: preceding atom occurs at least once
- Separates a range inside a character class
. Matches almost any character
? Greedy quantifier: preceding atom occurs 0 or 1 times
[…] Encloses a character class
/ Escapes the character that follows
{…} Interval
| Alternation

Escapes
In addition to to the metacharacter escapes already mentioned, a pattern

may also contain String escapes, as well as those summarised in the
following table:

Escape Meaning
\1–\9 Back-reference to a numbered group
\A Start of String anchor
\b Word boundary outside of character class; backspace, otherwise.
\B Not \b
\d Decimal digit: 0–9
\D Not \d
\g<name> Sub-expression call for name
\G Start of match or end of previous match
\h Hexadecimal digit
\H Not \h
\k<name> Back-reference to group named or numbered name
\p{name} A character with the Unicode propertyname
\P{name} A character without the Unicode propertyname
\s Whitespace
\S Not \s
\w Word character
\W Not \w
\Z End of String or before String-ending newline

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 260

Escape Meaning
\z Absolute end-of String anchor

Grouping
A balanced pair of parentheses are meta-characters which group and/or

capture the characters they enclose. Grouping allows the enclosed to be
treated as an atomic whole such that meta-characters directly following the
closing parenthesis act on the whole.

It also allows the i, m, and xoption specifiers to be applied to a specific
group, rather than the pattern as a whole. The opening parenthesis is
immediately followed by ?options:, where options is one or more of the
aforementioned option specifiers. If options is omitted, i.e. a group begins
with (?:, it is non-capturing, as explained in the following section.

%w{CASE case CAse caSE cASe casE}.grep /(?i:ca)se/

#=> ["case", "CAse"]

%W{fin\n fi\n\n \n\n fin\r\n find}.grep /f.{2}(?m:.)\Z/

#=> ["fin\n", "fin\r\n", "find"]

/space(?x: m

a

n # or 'woman'...

) #\d+/ =~ 'spaceman #47'

#=> 0

/x(?xi:

i)/ =~ 'xI' #=> 0

Capturing
Capturing is the extraction of specific parts of the text being matched so it

can be referred to later, from within the pattern or the surrounding program.
As explained above, a group captures unless its opening parenthesis is
directly followed by ?options:, where options is zero or more of the
specifiers i, m, or x.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 261

A capturing group can be referred to later in the pattern by means of a
back-reference. The back-reference \d, where d is a decimal digit between one
and nine, refers to the dth capturing group. Captures can be referred to by
name if the opening parenthesis is followed by ?<name>. The back-reference
\k<name> refers to the capturing group named name. If name is a decimal
number, it refers to the corresponding numbered capture group, enabling
numbered back-references to be used even when there are more than nine
capture groups. However, named capture groups and numbered capture
groups cannot both be used in the same pattern.

The text captured by a specific capture group can be retrieved after the
match from the corresponding MatchData object. The text captured by a
numbered group in the last match is also available in the global variable $d,
where d is the group number between one and nine.

/(.)\1/ =~ 'UU' #=> 0

$1 #=> 'U'

%w{emaciate usurious enyzyme fists overdo unkind}.

grep(/\A(?<vowel>[aeiou])(?<consonant>[^aeiou])\w+\k<vowel>\Z/)

#=> ["emaciate", "enyzyme", "overdo"]

pattern = %r{\A(?<scheme>[a-z]+)://(?<host>[^/]+)(?::\d+)}

match = pattern.match 'http://example.ORG:80/'

#=> #<MatchData "http://example.ORG:80" scheme:"http" host:"example.ORG">

match[:host] #=> "example.ORG"

$1 #= "http"

$~[:scheme] #=> "http"

If a Regexp literal is successfully matched against a String with Regexp#=~,
a local variable will be initialized for each named group to hold its captured
text.

phrase = 'Aut disce aut discede'

/(?<either>\w+) (?<learn>\w+) (?<_or>\k<either>) (?<leave>\w+)/i =~ phrase

[either, learn, _or, leave] #=> ["Aut", "disce", "aut", "discede"]

/\A(ab|ex) (?<one>uno) (?<learn>#{learn})/ =~ 'Ex uno disce omnes' #=> nil

learn #=> "disce"

defined?(one) #=> nil

'Aut...' =~ /Aut(?<ellipsis>\.{3})/ #=> 0

defined?(ellipsis) #=> nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 262

Quantifiers
A literal character, group, or character class may be followed by a

quantifier meta-character which specifies how many consecutive occurrences
are required at that point in the pattern. + requires at least one; ?, zero or one;
and *, zero or more. Alternatively, an interval may be given, enclosed in a
pair of curly brackets. An interval of the form {n} requires exactly n
occurrences; {n,}, at least n; and {,n}, at most n. {min,max} requires between
min and max occurrences.

%w{0bB0 0b1111010 0b(0|1)+ 0B1}.grep /\A0[bB](0|1)+\Z/

#=> ["0b1111010", "0B1"]

%w{+Infinity -Infinity Infinity NaN -NaN}.grep /\A(([+-]?Infinity)|NaN)\Z/

#=> ["+Infinity", "-Infinity", "Infinity", "NaN"]

%w{0x 0xfeed food 0xae!}.grep /\A0x[[:xdigit:]]*\Z/

#=> ["0x", "0xfeed"]

%w{0 01 08 o 065 0123 051171 082 0o0}.grep /\A0[0-7]{2,4}\Z/

#=> ["065", "0123"]

%w{NaN+ a4 00.0 3. 2\n.7 07 42 -Infinity +34.21 -0.54 1.23232 Infinity.2}.grep \

/\A(NaN| # The string 'NaN', OR

[-+]?(# An optional sign, then

Infinity| # The string 'Infinity', OR

([1-9]\d+|\d) # A non-zero digit followed by one or more digits, OR

a single digit by itself, then

(\.\d{1,4})? # optionally, a literal '.' followed by 1-4 digits

)

)\Z/x #=> ["42", "-Infinity", "+34.21", "-0.54"]

The above quantifiers are termed greedy because they consume as many
characters as possible; in contrast, a lazy quantifier consumes as few
characters as possible. The +, ?, and * quantifiers are made lazy when
immediately followed by a question mark.

str = 'indolent poltroon!'

str.match /ro?/ #=> #<MatchData "ro">

str.match /ro??/ #=> #<MatchData "r">

str.match /n*t/ #=> #<MatchData "nt">

str.match /n*?t/ #=> #<MatchData "nt">

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 263

str.match /i.+t/ #=> #<MatchData "indolent polt">

str.gsub(/i.+?t/, 'gluttonous') #=> "gluttonous poltroon!"

Whether greedy or lazy quantifiers are used, Ruby tries all permutations of
a pattern—a process known as backtracking—before declaring that it does not
match the input. If a greedy quantifier is immediately followed by a plus
sign—e.g., * becomes *+—it becomes possessive. Possessive quantifiers refuse
to give up a partial match when backtracking. When they’ve found a match,
they don’t let it go, even if this causes the match as a whole to fail. This is
primarily useful for performance reasons, as it avoids backtracking that is
known, a priori, to be redundant. However, they may also change the results
of a match that depends upon a greedy quantifier backtracking. Accordingly,
possessive quantifiers are only applicable when the atom they quantify
should not match the atom that follows.

'123' =~ /^\d(2|4|6|8)?\d\d/ #=> 0

'123' =~ /^\d(2|4|6|8)?+\d\d/ #=> nil

'The "programmer" said...' =~ /"[[:graph:]]*"/ #=> 4

'The "programmer" said...' =~ /"[[:graph:]]*+"/ #=> nil

Character Classes
A character class specifies a set of characters, one of which must appear at

that point in the pattern, enclosed within a pair of square brackets. The
characters are specified literally, one after the other. A range of consecutive
characters may be abbreviated with the notation start-end: the first
character in the range separated from the last by a hyphen minus sign
(U＋002D). If the first character after the left square bracket is a circumflex
accent (U＋005E), the class is inverted: it matches any character except those
listed. Inside a character class, therefore, the hyphen-minus sign and
circumflex accent are metacharacters, so to be matched literally, the former
must appear directly before the right square bracket, and the latter at any
position other than the first. Alternatively, either can be escaped with a
reverse solidus.

The following predefined character classes are also available. They are
specified as [:name:], and must appear within another character class. For

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 264

example, [[:alpha:]] represents alphabetical characters, and [[:alpha:]2-4]

represents alphabetical characters and the digits 2, 3, and 4.

[[:alnum:]][[:alnum:]]

Characters with the Unicode properties Alphabetic or Decimal Number

[[:alpha:]][[:alpha:]]

Characters with the Unicode property Alphabetic

[[:blank:]][[:blank:]]

Characters with the Unicode property White Space, excluding:
• Characters with the Unicode properties Line Separator or

Paragraph Separator
• Line Feed (LF) (U＋000A)
• Line Tabulation (U＋000B)
• Form Feed (FF) (U＋000C)
• Carriage Return (CR) (U＋000D)
• Next Line (NEL) (U＋0085)

[[:cntrl:]][[:cntrl:]]

Characters with the Unicode General Category Cc (Control)

[[:digit:]][[:digit:]]

Characters with the Unicode property Decimal Number

[[:graph:]][[:graph:]]

Any character except for characters…:
• with the Unicode property White Space.
• with the Unicode general categories Cc (Control), Cs (Surrogate),

or Cn (Unassigned).

[[:lower:]][[:lower:]]

Characters with the Unicode property Lowercase

[[:print:]][[:print:]]

Characters represented by [[:graph:]] or [[:blank:]], excluding those
represented by [[:cntrl:]].

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 265

[[:punct:]][[:punct:]]

Characters with the Unicode property Punctuation

[[:space:]][[:space:]]

Characters with the Unicode property White Space.

[[:upper:]][[:upper:]]

Characters with the Unicode property Uppercase

[[:xdigit:]][[:xdigit:]]

Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)

[[:word:]][[:word:]]

Characters with…
• the Unicode properties Alphabetic or Decimal Number.
• the Unicode general categories M (Mark) or Pc (Connector

Punctuation).

[[:ascii:]][[:ascii:]]

A character in the ASCII character set, i.e.〈U＋0000, U＋007F〉

coding: utf-8

/\A[^1-9][xX][[:xdigit:]][[:space:]] = [[:digit:]]{2}\Z/ =~ '0xf = 15'

chars = (200..3000).map{|c| c.chr 'utf-8'}

chars.grep(/[[:digit:]]/).first(10)

#=> ["٩" ,"٨" ,"٧" ,"٦" ,"٥" ,"٤" ,"٣" ,"٢" ,"١" ,"٠"]

chars.grep(/[[:upper:]]/).first(10)

#=> ["È", "É", "Ê", "Ë", "Ì", "Í", "Î", "Ï", "Ð", "Ñ"]

chars.grep(/[[:lower:]]/).first(10)

#=> ["ß", "à", "á", "â", "ã", "ä", "å", "æ", "ç", "è"]

Alternation
A vertical line is a meta-character specifying that either the expression to

its right, or that to its left, must match. It is usually used inside a
parenthetical.

%w{cat ls catls cats ca}.grep /\A(cat|ls)\Z/

#=> ["cat", "ls"]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 266

(%w{cat ls(1) echo(1) cats} << '').grep /\A((cat|ls)\(\d+\)|echo|)\Z/

#=> ["ls(1)", ""]

%w{xx xy yX yy yz zz xixi xz}.grep /\A(x(?i:x|y)|y(?i:x|y)|z)\Z/

#=> ["xx", "xy", "yX", "yy"]

MatchData
A MatchData object encapsulates information about a match, providing

access to the captures and matched text. It is returned by Regexp#match and
String#match, and the MatchData object corresponding to the last match is
available as $~.

MatchData#regexp returns the Regexp object used in this match, and
MatchData#string returns a frozen copy of the String it was tested against.
MatchData#to_s returns the portion of MatchData#string that matched
MatchData#regexp.

MatchData#[capture] returns the text captured by the capture group,
capture, given as a Symbol, for a named group, or an Integer for a numbered
group. An argument of 0 returns the entire matched text, as does $&.
MatchData#names returns an Array of Symbols, each of which is a name of a
named capture group.

MatchData#begin(capture) and MatchData#end(capture) return the offset
in the matched String of the begining and end, respectively, of the given
capture. Match#offset returns a two-element Array containing the begining
and ending offsets of the given capture. As above, capture is either a Symbol

corresponding to a named capture, or an Integer corresponding to a
numbered capture.

MatchData#captures and MatchData#to_a return an Array of the contents
of each capture group. The first element of the former is the first captured
group; the first element of the latter is the entire matched text. The last
element, i.e. the contents of the group captured last, is also available as $+.
MatchData#values_at takes one or more Integer arguments and returns an
Array containing the elements of MatchData#to_a with the given indices.
MatchData#size, and its alias MatchData#length, return the number of
elements in MatchData#to_a.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 267

MatchData#pre_match, and its alias $`, and MatchData#post_match, and its
alias $', return the portion of the portion of the String preceeding and
following, respectively, this match.

Anchoring
A regular expression matches a String if the former is contained in the

latter. For example, /\d/ matches "2", as well as "2 by 4" and "DoB: 19/2/

1922". Alternatively, a pattern may be anchored to a specific portion of the
String. Whereas many of the metacharacters introduced so far match
sequences of characters, anchors match positions. They are not recognised
inside of character classes.

Anchor Position in StringString

^ Start or after newline
\A Start
$ End or before newline
\Z End or before last newline
\z End
\b Word boundary
\B Non-word boundary
\G Point where last match finished

The word boundary referred to in the table above is a position before a
word, where word is simply: /[[:word:]]+/. Therefore, \b matches a word
character that is not preceded by a word character. This is quite different from
/[^[:word:]][[:word:]]/ because \b matches a position without consuming
any characters. Indeed, the pathological pattern /\b/ matches "a" at position
0, i.e. the non-word character need not even exist.

coding: utf-8

str = "Hit him on the head\n" +

"Hit him on the head with a 2×4\n"

str.scan(/^Hit/) #=> ["Hit", "Hit"]

str.scan(/\AHit/) #=> ["Hit"]

str =~/head$/ #=> 15

str.scan(/\d\Z/) #=> ["4"]

str =~ /\d\z/ #=> nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 268

str.scan(/\b\d/) #=> ["2", "4"]

str.scan(/\w+\B/)

#=> ["Hi", "hi", "o", "th", "hea", "Hi", "hi", "o", "th", "hea", "wit"]

Zero-Width Assertions
Inasmuch as anchors never consume any characters, they are a variety of a

more general concept: the zero-width assertion. The latter require a given
sub-expression to appear, or not appear, in the position preceding, or
following, the assertion. That is, they vary across two axis as illustrated
below.

Syntax Name Assertion
(?=exp) Positive look-ahead exp must follow
(?!exp) Negative look-ahead exp can’t follow
(?<=exp) Positive look-behind exp must precede
(?<!exp) Negative look-behind exp can’t precede

"foresight".sub(/(?!s)ight/, 'ee') #=> "foresee"

"anterior".sub(/(?<!eleph)an(?=t)/, 'pos') #=> "posterior"

%w{An abbess abjures an oblate

for his absurd abacus}.grep /\A.b(?![four]).{4}(?!i?e)\z/

#=> ["abbess", "oblate", "absurd", "abacus"]

Readability
Longer patterns tend to be harder to comprehend, increasing the likelihood

of errors. This can be avoided by adhering the following principles:

Named groups are self-documenting
By using named groups instead of numbered groups, a capture describes
its purpose.

Free-spacing mode allows complex patterns to be formatted clearly
The x option causes literal whitespace and comments to be ignored,
allowing a pattern to be commented and laid out over multiple lines.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 269

Outside of free-spacing mode, comments are still useful
The contents of a group beginning (?# are ignored, allowing comments to
be interspersed with the pattern.

Long patterns can be built from smaller parts with interpolation
When working with particularly complicated patterns, consider
constructing independent regular expressions for each sub-expression,
then interpolating them into one large pattern.

coding: utf-8

A naïve pattern to match a human name

title = /(?:(?<title>Mrs?|M(?:aster|s)|Dr|Sir)[[:blank:]])?/

name_part = /[[:upper:]][[:alpha:]-]+ # Double-barrelled names are allowed, but

names can't start or end with hyphens

[[:alpha:]] # i.e. names must contain at least three characters

/x

name_mid_part = /(?:

(?:

(?:[[:lower:]]{1,3})| # e.g. 'von', 'y', or 'de'

(?:[[:upper:]]\.) | # middle initial

(?:#{name_part})

)[[:blank:]])/x

name = /(?<name>#{name_part}[[:blank:]] # A forename

#{name_mid_part}* # Any number of middle names

#{name_part} # A surname or family name

)/x

suffix = /(?:[[:blank:]](?<suffix>[JS]r\.|[IVX]+(?# Roman numerals)))?/

full_name = /\A#{title}#{name}#{suffix}\Z/

['Mr Harvey Duchamp II', 'Dr Ludwig von Mises', 'William S. Burroughs',

'Ms Henrietta Cartwright-Stevens', 'Paul Erdős', 'Anonymous', '2 by 4',

'Master Elijah Humphrey Pennington Hargreeves Jr.'].grep full_name

#=> ["Mr Harvey Duchamp II", "Dr Ludwig von Mises", "William S. Burroughs",

"Ms Henrietta Cartwright-Stevens", "Paul Erdős",

"Master Elijah Humphrey Pennington Hargreeves Jr."]

Encoding
A Regexp is associated with an encoding which must be compatible with

that of the String it is matched against. By default a Regexp has the same

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 270

encoding as the source file in which it is contained, with the following
exceptions:

• An ASCII-only Regexp has the encoding US-ASCII when the source
encoding is ASCII-compatible.

• An encoding option has been specified, in which case the
corresponding encoding is used, as follows:
uu

UTF-8

ee

EUC-JP

ss

Windows-31J

nn

ASCII-8BIT

• The use of Unicode character escapes within a pattern force the
Regexp to have UTF-8 encoding.

In addition to the single-letter encoding options described above, a Regexp

can be encoded in any supporting encoding. This requires the Regexp to be
constructed with Regexp.new, passing it the pattern as a String associated
with the desired encoding. The same technique, mutatis mutandis, can be
used with String#force_encoding to associate the Regexp with a different
encoding.

coding: utf-8

utf8 = /caf(e|é)/

utf8.encoding #=> #<Encoding:UTF-8>

iso88591_a = Regexp.new('caf(e|é)'.encode('iso-8859-1'))

iso88591_b = Regexp.new(utf8.source.encode('iso-8859-1'))

iso88591_a == iso88591_b #=> true

iso88591_a.encoding #=> #<Encoding:ISO-8859-1>

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 271

Fixed Encoding

The encoding of a Regexp is said to be fixed if its encoding and/or pattern
is incompatible with ASCII. This is significant because a Regexp with a non-
fixed encoding can match any String whose encoding is ASCII-compatible.
The Regexp#fixed_encoding? predicate returns true if its receiver’s encoding
is fixed; false otherwise.

Character Properties
A generalisation of predefined character classes is the character property

escape. The construct \p{property} represents characters with the property
property; while the construct \P{property} represents its inverse. The
encoding of a pattern dictates the property escapes it may use. In all
encodings property may be the name of a predefined character class: Alnum,
Alpha, ASCII, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,
Word, and XDigit.

Further, in Shift JIS and EUC-JP encodings, the properties Katakana and
Hiragana are available to match characters in the named script. In Unicode
encodings, all properties are available and property is normalised by ignoring
case1, spaces, and low line characters. For example, in a Unicode pattern
\p{Lowercase_Letter}, \p{lowercase letter}, and \p{lowercaseletter},
are all equivalent.

The majority of the remaining property names correspond to Unicode
properties, but Ruby also defines the following:

Newline
Comprises solely of "\n" (U＋000A).

Any
Any Unicode character:〈U＋0000, U＋10FFFF〉.

1. As of Ruby 1.9.3, property is case-insensitive for all encodings if it’s the
name of a predefined character class.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 272

Assigned
Equivalent to /[\p{Any}\P{Cn}]/, i.e. any character that has been
assigned a codepoint.

General Categories

The Unicode general categories, specified either by abbreviation or long
name, are all valid properties. They represent all characters assigned the
given category. If property comprises only a single character, it represents all
general categories whose abbreviations begin with that character. For
example, \p{Lu} and \p{Uppercase Letter} are equivalent, while \p{L}

represents characters from categories Lu, Ll, Lt, Lm, and Lo.

Abbreviation Long Name Description
Lu Uppercase_Letter Uppercase letter
Ll Lowercase_Letter Lowercase letter

Lt Titlecase_Letter
Digraphic character, with first part
uppercase

Lm Modifier_Letter Modifier letter

Lo Other_Letter
Remaining letters, e.g. syllables and
ideographs

Mn Nonspacing_Mark
Non-spacing combining mark (zero
advance width)

Mc Spacing_Mark
Spacing, combining mark (positive
advance width)

Me Enclosing_Mark Enclosing combining mark
Nd Decimal_Number Decimal digit
Nl Letter_Number Letter-like numeric character
No Other_Number Another type of numeric character
Pc Connector_Punctuation Connecting punctuation mark
Pd Dash_Punctuation Dash or hyphen punctuation mark

Ps Open_Punctuation
Opening punctuation mark (of a
pair)

Pe Close_Punctuation
Closing punctuation mark (of a
pair)

Pi Initial_Punctuation Initial quotation mark
Pf Final_Punctuation Final quotation mark
Po Other_Punctuation Another type of punctuation mark

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 273

Abbreviation Long Name Description
Sm Math_Symbol Mathematical symbol
Sc Currency_Symbol Currency sign
Sk Modifier_Symbol Non-letter-like modifier symbol
So Other_Symbol Another type of symbol
Zs Space_Separator Space character (of non-zero width)
Zl Line_Separator Line separator (U＋2028)
Zp Paragraph_Separator Paragraph separator (U＋2029)
Cc Control A C0 or C1 control code
Cf Format Format control character
Cs Surrogate Surrogate code point
Co Private_Use Private-use character

Cn Unassigned
Reserved, unassigned code point or
a non-character codepoint

Simple Properties

A Unicode simple-i.e. non-derived-property is any of the following, and
represents all characters with that property:

ASCII Hex Digit
“ASCII characters commonly used for the representation of hexadecimal
numbers.” [Uax44])

Bidi Control
“Format control characters which have specific functions in the Unicode
Bidirectional Algorithm.” (ibid.)

Dash
“Punctuation characters designated as dashes in the Unicode Standard,
plus their compatibility equivalents.” (ibid.)

Deprecated
“Unicode characters whose use is strongly discouraged.” (ibid.)

Diacritic
“Characters that linguistically modify the meaning of another character
to which they apply.” (ibid.)

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 274

http://www.unicode.org/reports/tr9/
http://www.unicode.org/reports/tr9/

Extender
“Characters whose principal function is to extend the value or shape of a
preceding alphabetic character.” (ibid.)

Hex Digit
“Characters commonly used for the representation of hexadecimal
numbers, plus their compatibility equivalents.” (ibid.)

Hyphen
“Dashes which are used to mark connections between pieces of words,
plus the Katakana middle dot.” (ibid.)

IDS Binary Operator
IDS Trinary Operator

“Used in Ideographic Description Sequences.” (ibid.)

Ideographic
“Characters considered to be CJKV (Chinese, Japanese, Korean, and
Vietnamese) ideographs.” (ibid.)

Join Control
“Format control characters which have specific functions for control of
cursive joining and ligation.” (ibid.)

Logical Order Exception
“There are a small number of characters that do not use logical order.
These characters require special handling in most processing.” (ibid.)

NonCharacter Code Point
“Code points permanently reserved for internal use.” (ibid.)

Other Alphabetic
“Used in deriving the Alphabetic property.” (ibid.)

Other Default Ignorable Code Point
“Used in deriving the Default Ignorable Code Point property.” (ibid.)

Other Grapheme Extend
“Used in deriving the Grapheme Extend property.” (ibid.)

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 275

Other ID Continue
“Used for backward compatibility of ID Continue.” (ibid.)

Other ID Start
“Used for backward compatibility of ID Start.” (ibid.)

Other Lowercase
“Used in deriving the Lowercase property.” (ibid.)

Other Math
“Used in deriving the Math property.” (ibid.)

Other Uppercase
“Used in deriving the Uppercase property.” (ibid.)

Pattern Syntax
Pattern White Space

“Used for pattern syntax as described in UAX #31: Unicode Identifier and
Pattern Syntax” (ibid.)

Quotation Mark
“Punctuation characters that function as quotation marks.” (ibid.)

Radical
“Used in Ideographic Description Sequences.” (ibid.)

STerm
“Sentence Terminal. Used in UAX #29: Unicode Text Segmentation”
(ibid.)

Soft Dotted
“Characters with a “soft dot”, like i or j. An accent placed on these
characters causes the dot to disappear.” (ibid.)

Terminal Punctuation
“Punctuation characters that generally mark the end of textual units.”
(ibid.)

Unified Ideograph
“Used in Ideographic Description Sequences.” (ibid.)

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 276

http://www.unicode.org/reports/tr31/
http://www.unicode.org/reports/tr31/
http://www.unicode.org/reports/tr29/

Variation Selector
“Indicates characters that are Variation Selectors. See UAX #37: Unicode
Ideographic Variation Database for more details.” (ibid.)

White Space
“Separator characters and control characters which should be treated by
programming languages as "white space" for the purpose of parsing
elements.” (ibid.)

Derived Properties

The Unicode derived properties are defined by reference to simple
properties and general categories, and are all valid property names. They are
as follows:

Math
Equivalent to /[\p{Sm}\p{Other Math}]/.

Alphabetic
Equivalent to /[\p{L}\p{Nl}\p{Other Alphabetic}]/.

Lowercase
Equivalent to /[\p{Ll}\p{Other Lowercase}]/.

Uppercase
Equivalent to /[\p{Lu}\p{Other Uppercase}]/.

Cased
Equivalent to /[\p{Lowercase}\p{Uppercase}\p{Lt}]/.

Case Ignorable
Characters with a Word Break category of MidLetter or MidNumLet, or
general category of Mn, Me, Cf, Lm, or Sk.

Changes when Lowercased
Those whose normalized forms are not stable under a toLowercase

mapping.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 277

http://www.unicode.org/reports/tr37/
http://www.unicode.org/reports/tr37/

Changes when Uppercased
Those whose normalized forms are not stable under a toLowercase

mapping.

Changes when Titlecased
Those whose normalized forms are not stable under a toTitlecase

mapping.

Changes when Casefolded
Those whose normalized forms are not stable under case folding.

Changes when Casemapped
Those whose normalized forms are not stable under case mapping.

ID Start
Those which start an identifier. Equivalent to the union of \p{L}, \p{Nl},
\p{Other ID Start}, \P{Pattern Syntax}, \P{Pattern White Space}.

ID Continue
Those that can continue an identifier. Equivalent to the union of \p{ID
Start}, \p{Mn}, \p{Mc}, \p{Nd}, \p{Pc}, \p{Other ID Continue},
\P{Pattern Syntax}, \P{Pattern White Space}

XID Start
ID Start modified for closure under NFKx.

XID Continue
ID Continue modified for closure under NFKx.

Default Ignorable Code Point
Equivalent to the union of \p{Other Default Ignorable Code Point},
\p{Cf}, \p{Variation Selector}, \P{White Space}, [^\uFFF9-\uFFFB],
[^\u0600-\u0603], and [^\u06DD\u070F].

Grapheme Extend
Equivalent to the union of \p{Me}, \p{Mn}, and \p{Other Grapheme

Extend}.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 278

Grapheme Base
Equivalent to the union of \p{Any}, \P{C}, \P{Zl}, \P{Zp}, and
\P{Grapheme Extend}.

Grapheme Link
Those with a canonical combining class of Virama.

Script

If the property name is a Unicode script value, or an alias thereof, it
represents characters in that script. In the list below, names separated by a
solidus are equivalent.

• Arab / Arabic
• Armi / Imperial Aramaic
• Armn / Armenian
• Avst / Avestan
• Bali / Balinese
• Bamu / Bamum
• Beng / Bengali
• Bopo / Bopomofo
• Brai / Braille
• Bugi / Buginese
• Buhd / Buhid
• Cans / Canadian Aboriginal
• Cari / Carian
• Cham
• Cher / Cherokee
• Copt / Coptic / Qaac
• Cprt / Cypriot
• Cyrl / Cyrillic
• Deva / Devanagari
• Dsrt / Deseret
• Egyp / Egyptian Hieroglyphs
• Ethi / Ethiopic
• Geor / Georgian
• Glag / Glagolitic
• Goth / Gothic

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 279

• Grek / Greek
• Gujr / Gujarati
• Guru / Gurmukhi
• Hang / Hangul
• Hani / Han
• Hano / Hanunoo
• Hebr / Hebrew
• Hira / Hiragana
• Hrkt: Katakana or Hiragana
• Ital / Old Italic
• Java / Javanese
• Kali / Kayah Li
• Kana / Katakana
• Khar / Kharoshthi
• Khmr / Khmer
• Knda / Kannada
• Kthi / Kaithi
• Lana / Tai Tham
• Laoo / Lao
• Latn / Latin
• Lepc / Lepcha
• Limb / Limbu
• Linb / Linear B
• Lisu / Lisu
• Lyci / Lycian
• Lydi / Lydian
• Mlym / Malayalam
• Mong / Mongolian
• Mtei / Meetei Mayek
• Mymr / Myanmar
• Nkoo / Nko
• Ogam / Ogham
• Olck / Ol Chiki
• Orkh / Old Turkic
• Orya / Oriya
• Osma / Osmanya
• Phag / Phags Pa
• Phli / Inscriptional Pahlavi

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 280

• Phnx / Phoenician
• Prti / Inscriptional Parthian
• Rjng / Rejang
• Runr / Runic
• Samr / Samaritan
• Sarb / Old South Arabian
• Saur / Saurashtra
• Shaw / Shavian
• Sinh / Sinhala
• Sund / Sundanese
• Sylo / Syloti Nagri
• Syrc / Syriac
• Tagb / Tagbanwa
• Tale / Tai Le
• Talu / New Tai Lue
• Taml / Tamil
• Tavt / Tai Viet
• Telu / Telugu
• Tfng / Tifinagh
• Tglg / Tagalog
• Thaa / Thaana
• Thai
• Tibt / Tibetan
• Ugar / Ugaritic
• Vaii / Vai
• Xpeo / Old Persian
• Xsux / Cuneiform
• Yiii / Yi
• Zinh / Inherited / Qaai
• Zyyy / Common
• Zzzz / Unknown

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 281

ENUMERABLESENUMERABLES
The Enumerable module is a mix-in providing nearly fifty methods for

searching, sorting, filtering, and transforming collections of objects. It is
included by Array, Hash, Range, and IO, so knowledge of its API is widely
applicable. Any class may mix-in Enumerable as long as it defines a method
named #each which yields each element of the collection in turn. This chapter
documents the Enumerable API, and explains how your own classes can take
advantage of its capabilities.

Querying
#include?(object) and its alias #member? return true if the receiver

contains object; false otherwise.

[/a/, :a, ?a].include? /a/ #=> true

[Dir.home, __FILE__].include? 47 #=> false

(?~ * 10).include? ?~ #=> true

1.0.step(2.0, 0.1).member? 1.6 #=> true

[[0,1]].include? 0 #=> false

{a:1}.include? :a #=> true

{a:1}.include? 1 #=> false

#count returns the number of elements contained in the receiver by
iterating over them. If given an argument, it returns the number of times that
appears in the receiver. Similarly, if given a block, it passes each element to it
in turn, returning the number of times the block evaluated to true.

enu = [1, 1, 3, 5, 5, 5, 5, 6, 8, 10, 12, -12, 1, 2]

enu.count #=> 14

enu.count(1.0) #=> 3

enu.count(7) #=> 0

enu.count{|n| n.odd? and n > 0} #=> 8

enu.clear.count #=> 0

[%w{a b}, %w{c d}].count([?a, ?b]) #=> 1

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 282

#all? and #none? test whether their receiver contains no false and no true
elements, respectively. #any? and #one? test whether their receiver has at
least one and exactly one true element, respectively. They evaluate each
element by passing it to the block, which is assumed to be {|e| e} if omitted.
They return true as soon as they succeed—skipping any remaining
elements—or false if they fail.

digits = 0..9

digits.all?{|d| d < 10} #=> true

digits.none?{|d| (d ** 2) > 10} #=> false

digits.one?{|d| d == 3} #=> true

digits.any?{|d| d == 3} #=> true

(1...Float::INFINITY).any?{|d| d % 10 == 2} #=> true

[5, Rational(8, 2), ''[1], :nil].all? #=> false

users = IO.foreach('/etc/passwd').map{|user| user.split(/:/)}

users.all?{|u| u.last.start_with?(?/)} and users.one?{|u| u.first == 'root'} #=> true

Filtering
The bulk of Enumerable methods are filters that compose a subset of the

receiver’s elements by passing them to a block.

#grep(pattern) selects the elements of the receiver which are
#===(pattern). As the name implies, #grep is often invoked with a Regexp

argument, but any object that supports the case equality test is allowed.
Matching elements are returned as an Array.

Enumerable.instance_methods.grep(/while/)

#=> [:take_while, :drop_while]

(1..100).grep(5..7)

#=> [5, 6, 7]

(1..1000).grep(->(e){ e.to_s(2) =~ /^110+11$/})

#=> [27, 51, 99, 195, 387, 771]

#detect returns the first element of the receiver for which its block is true.
If the block is never true, and a Proc argument was given, it is called and its
result returned; otherwise, nil is returned.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 283

(?b..?r).detect{|e| e =~ /[aeiou]/} #=> "e"

(?b..?r).detect{|e| e =~ /[[:upper:]]/} #=> nil

[Rational(1,10), Rational(7,10), Rational(4,10)].find(->{ 10 }){|e| e > 10} #=> 10

#find_index(value) returns the 0-based index of the first element of the
receiver equal to value. If a block is given instead of value, returns the index
of the first element for which the block is not true. When no object matches,
nil is returned.

(:aa..:zz).find_index(:az) #=> 25

stages = {baby: :infant, infant: :toddler, toddler: :preteen, teen: :adult}

stages.find_index{|from, to| from == :toddler} #=> 2

stages.find_index{|from, to| from == :adult} #=> nil

#select returns an Array of all elements for which the block is not false.
Conversely, #reject returns an Array of elements for which the block is false.

(1...1000).select{|n| n.to_s(16).end_with?('ef')} #=> [239, 495, 751]

fruits = {raspberry: :red, grape: [:white, :black], banana: :yellow, orange: :orange}

fruits.select{|fruit, colour| fruits.key?(colour)} #=> {:orange => :orange}

(0..9).reject(&:even?) #=> [1, 3, 5, 7, 9]

#first returns the first element of the receiver, or nil if it is empty. If
#first is given a numeric argument, n, they return an Array of, at most, the
first n elements. Conversely, #drop(n) returns an Array containing all but the
first n elements.

digits = 0..9

digits.first #=> 0

digits.first(3) #=> [0, 1, 2]

digits.drop(3) #=> [3, 4, 5, 6, 7, 8, 9]

digits.take(30)

#=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

digits.select{|e| e.even? and e.odd?}.first(2) #=> []

#take_while takes elements from the receiver while the block is true; when
the block is false, it returns the collected elements as an Array. Conversely,
#drop_while ignores each element of the receiver while the block is true;
returning the remainder as an Array.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 284

digits = 1..9

require 'prime'

square_free = ->(n){ n.prime_division.all?{|a,b| b == 1} }

digits.take_while(&square_free) #=> [1, 2, 3]

digits.drop_while(&square_free) #=> [4, 5, 6, 7, 8, 9]

Transforming
#map collects the results of running their block for each element in an

Array, which they return. #flat_map is similar but flattens the result Array.

(?a..?f).map &:upcase

#=> ["A", "B", "C", "D", "E", "F"]

(10..20).map{|n| n**2 }

#=> [100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

{ 'google.com' => 'Google',

'ruby-lang.org' => 'Ruby',

'wikipedia.org' => 'Wikipedia'}.map do |host, anchor|

"#{anchor}"

end

#=> ["Google", "Ruby",

#=> "Wikipedia"]

[10..20, 20..30, 30..40, 40..50].collect{|r| r.to_a.sample}

#=> [16, 30, 36, 44]

shells = IO.foreach('/etc/passwd').flat_map{|l| l.chomp.split(/:/).values_at(0,-1)}

Hash[*shells]['kernoops'] #=> "/bin/false"

#partition returns an Array of Arrays: the first containing the elements
for which the block was true, the second containing the remainder. #group_by
generalises this approach by returning a Hash whose keys are the return
values of the block, and values are the elements for which the block returned
that value.

square, nonsquare = (1..25).partition{|n| Math.sqrt(n) == Math.sqrt(n).to_i}

#=> [[1, 4, 9, 16, 25],

#=> [2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24]]

(1..10).group_by{|n| 10.lcm n}

#=> {10=>[1, 2, 5, 10], 30=>[3, 6], 20=>[4], 70=>[7], 40=>[8], 90=>[9]}

String.instance_methods.group_by{|m| String.instance_method(m).arity}.map{|a,m| [a, m.size]}

#=> [[1, 42], [0, 71], [-1, 47], [2, 9]]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 285

#chunk also groups elements by the value of its block, but chunks each
consecutive group with the same block value, or key. A chunk is an Array

whose first element is a key, and last element an Array of consecutive
elements from the receiver which evaluated to it. The return value is an
Enumerator of chunks.

Math::PI.to_s.scan(/\d/).map(&:to_i).chunk(&:even?).map(&:last)

#=> [[3, 1], [4], [1, 5, 9], [2, 6], [5, 3, 5], [8], [9, 7, 9, 3]]

ROWS, COLS = 9, 17

grid = ROWS.times.map{ Array.new(COLS, ' ') }

(2..40).map{|n| Math.sin(n) ** 2}.chunk{|n| Math.log10(n).to_i}.each_with_index do |(log, ns), i|

ROWS.pred.downto(ROWS-ns.size){|row| grid[row][i] = " * "}

(grid[ROWS] ||= []) << "%#2d " % log

end

grid.each{|row| puts row.join}

* *

* *

* *

* *

* *

* *

* *

* * * * * * * *

* * * * * * * * * * * * * * * * *

0 -1 0 -1 0 -1 0 -1 0 -4 0 -1 0 -1 0 -1 0

#slice_before(pattern) offers another approach for grouping elements
into Arrays, or slices. It requires either an argument, pattern, or block. The
first slice begins with the first element of the receiver. Starting with the
second element, each element is either compared to pattern with the case
equality operator (#===), or passed to the block. If the result is true, the
element begins a new slice; otherwise, it continues the existing slice. Finally,
an Enumerator of slices is returned.

-*- coding: utf-8 -*-

Math::PI.to_s.scan(/\d/).map(&:to_i).slice_before(&:even?).to_a

#=> [[3, 1], [4, 1, 5, 9], [2], [6, 5, 3, 5], [8, 9, 7, 9, 3]]

IO.foreach('/usr/share/dict/words').slice_before(/^[[:upper:]]$/).map{|w| w.last.chomp}[1..5]

#=> ["Aztlan's", "Byzantium's", "Czerny's", "Düsseldorf", "Ezra's"]

(?a..?z).slice_before{|l| %w{a e i o u}.include? l}.to_a

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 286

#=> [["a", "b", "c", "d"], ["e", "f", "g", "h"], ["i", "j", "k", "l", "m", "n"],

["o", "p", "q", "r", "s", "t"], ["u", "v", "w", "x", "y", "z"]]

#zip creates an Array for each element of the receiver, containing the
element along with the corresponding element from each of its Enumerable
arguments. If a block is given, each result Array is yielded to it; otherwise
they are returned as an Array of Arrays.

[:a, :b, :c].zip #=> [[:a], [:b], [:c]]

[:a].zip([:b, :c], [:d, :e, :f]) #=> [[:a, :b, :d]]

[:a, :b, :c].zip([:d], [:e, :f]) #=> [[:a, :d, :e], [:b, nil, :f], [:c, nil, nil]]

digits = 1..3

sin, cos, tan = %w{sin cos tan}.map{|m| digits.map{|n| Math.send(m, n * Math::PI/180)}}

digits.zip(sin, cos, tan)

#=> [[1, 0.01745240643728351, 0.9998476951563913, 0.017455064928217585],

#=> [2, 0.03489949670250097, 0.9993908270190958, 0.03492076949174773],

#=> [3, 0.05233595624294383, 0.9986295347545738, 0.052407779283041196]]

#inject(initial) combines the elements of its receiver into a single value.
When a block is given, it is called for each element, receiving an accumulator
object and the element as arguments. When the block is omitted, and a
Symbol argument supplied—#inject(symbol)—a block of the form {|acc, el|

acc.send(symbol, el)} is assumed. The accumulator is initialised to the first
element of the receiver, so iteration begins with the second element. The
return value of #inject is the final value of the accumulator.

Iteration Accumulator Value Element
1 1 (first element) 2
2 2 (1.send(:*, 2)) 3
3 6 (2.send(:*, 3))

The evaluation of [1, 2, 3].inject(:*)

%w{a b c d}.reduce(:+) #=> "abcd"

(2..8).reverse_each.inject(:-) #=> -19

[[:a, 4], [:b, 12], [:c, 9]].reduce(1){|acc, el| acc * el.last} #=> 432

[{joe: 27}, {bob: 23}, {jim: 40}, {jolene: 18}].reduce :merge

#=> {:joe=>27, :bob=>23, :jim=>40, :jolene=>18}

Dir["#{Dir.home}/.*"].reduce do |newest, file|

File.file?(file) && File.mtime(newest) < File.mtime(file) ? file : newest

end #=> "/home/run/.xsession-errors

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 287

Iteration
In addition to #each, the following iterators are also available.

#each_with_index yields each element in turn along with its corresponding,
0-based index. #each_with_object takes an arbitrary object as argument,
which it yields along with each element, then returns. #each_entry behaves
like #each, but if the latter would have yielded multiple values at once, they
are combined into an Array. #reverse_each yields each element of the
receiver in reverse order.

$places = %w{Agartha Atlantis Avalon Camelot Eden

El_Dorado Shangri-La Thule Utopia Valhalla}

$places.each_with_index.map{|place, index| "#{index}:#{place.size}"}

#=> ["0:7", "1:8", "2:6", "3:7", "4:4", "5:9", "6:10", "7:5", "8:6", "9:8"]

$places.reverse_each{|place| print place[0]}

VUTSEECAAA

$places.each_with_object({}){|place,vowels| vowels[place] = place.downcase.count('aeiou')}

#=> {"Agartha"=>3, "Atlantis"=>3, "Avalon"=>3, "Camelot"=>3, "Eden"=>2, "El_Dorado"=>4,

#=> "Shangri-La"=>3, "Thule"=>2, "Utopia"=>4, "Valhalla"=>3}

class Places

def each

$places.group_by{|place| place[0]}.each{|letter, names| yield letter, *names}

end

end

Places.new.extend(Enumerable).each_entry{|places| print " #{places.first}:#{places[1..-1].size}"}

A:3 C:1 E:2 S:1 T:1 U:1 V:1

#each_slice(size) yields the elements of the receiver in slices with
maximum size size. The first slice contains the first size elements, the second
contains the next size, and so forth. #each_cons(size) is similar, but yields
consecutive sub-Arrays of size size. The first contains the first size elements,
the second element 1–size, and so forth.

plants = [:Hornworts, :Mosses, :Liverworts, :Conifers, :Cycads, :flowering_plants]

plants.each_slice(1).to_a

#=> [[:Hornworts], [:Mosses], [:Liverworts], [:Conifers], [:Cycads], [:flowering_plants]]

plants.each_cons(1).to_a

#=> [[:Hornworts], [:Mosses], [:Liverworts], [:Conifers], [:Cycads], [:flowering_plants]]

plants.each_slice(2).to_a

#=> [[:Hornworts, :Mosses], [:Liverworts, :Conifers], [:Cycads, :flowering_plants]]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 288

plants.each_cons(2).to_a

#=> [[:Hornworts, :Mosses], [:Mosses, :Liverworts], [:Liverworts, :Conifers],

#=> [:Conifers, :Cycads], [:Cycads, :flowering_plants]]

plants.each_slice(4).to_a.flatten.count(:Liverworts) #=> 1

plants.each_cons(4).to_a.flatten.count(:Liverworts) #=> 3

plants.each_slice(5).count #=> 2

plants.each_cons(5).count #=> 2

#cycle(count) yields each element of the receiver to the block, then
recurses. After repeating this process count times, or forever if times is
omitted, it returns nil.

(?a..?f).map &:upcase

#=> ["A", "B", "C", "D", "E", "F"]

(10..20).map{|n| n**2 }

#=> [100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

{ 'google.com' => 'Google',

'ruby-lang.org' => 'Ruby',

'wikipedia.org' => 'Wikipedia'}.map do |host, anchor|

"#{anchor}"

end

#=> ["Google", "Ruby",

#=> "Wikipedia"]

[10..20, 20..30, 30..40, 40..50].collect{|r| r.to_a.sample}

#=> [16, 30, 36, 44]

shells = IO.foreach('/etc/passwd').flat_map{|l| l.chomp.split(/:/).values_at(0,-1)}

Hash[*shells]['kernoops'] #=> "/bin/false"

Sorting
#sort sorts the elements of the receiver according to their #<=> methods,

then returns them in an Array. Alternatively, if a block is supplied, it is
passed two elements at once and expected to follow the <=> convention of
returning -1, 0, or 1.

#sort_by also sorts the receiver, but does so using an arbitrary attribute of
each element. Each element in turn is passed to the block, whose return value
is the key to sort by. If the block returns an Array, a multi-level sort is
performed: elements are sorted by its first element, then, if there’s a tie, its
second element, and so forth.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 289

gods = %w{Aphrodite Demeter Ares Eros Apollo Hades Dionysus

Artemis Zeus Hera Hermes Poseidon Athena Hestia Hephaestus}

gods.sort #=>["Aphrodite", "Apollo", "Ares", "Artemis", "Athena", "Demeter", "Dionysus",

#=> "Eros", "Hades", "Hephaestus", "Hera", "Hermes", "Hestia", "Poseidon", "Zeus"]

gods.sort{|a, b| a.length <=> b.length}

#=> ["Hera", "Zeus", "Ares", "Eros", "Hades", "Apollo", "Hermes", "Athena", "Hestia",

#=> "Demeter", "Artemis", "Poseidon", "Dionysus", "Aphrodite", "Hephaestus"]

Hash[*gods.zip(%w{f f m m m m m f m f m m f f m}).flatten].sort_by(&:reverse).map(&:first)

#=> ["Aphrodite", "Artemis", "Athena", "Demeter", "Hera", "Hestia", "Apollo", "Ares",

#=> "Dionysus", "Eros", "Hades", "Hephaestus", "Hermes", "Poseidon", "Zeus"]

class String

def <=>(o)

reverse.ord <=> o.reverse.ord

end

end

gods.sort #=> ["Hera", "Hestia", "Athena", "Aphrodite", "Poseidon", "Apollo", "Demeter",

#=> "Artemis", "Zeus", "Dionysus", "Hermes", "Hades", "Eros", "Ares", "Hephaestus"]

Minimums & Maximums
#min and #max compare the elements in the receiver with the elements’

#<=> methods, and return the minimum and maximum element, respectively.
If they are given a block, it is passed two elements at a time, and expected to
follow the <=> convention of returning -1, 0, or 1. #minmax behaves
identically, except it returns both minimum and maximum values as an
Array.

[300, 92, 827_99, -45, 300, 1].minmax #=> [-45, 82799]

languages = %w{Ruby Haskell Scala Clojure Perl Python Lisp Smalltalk}

languages.min #=> "Clojure"

languages.max #=> "Smalltalk"

languages.min{ +1 } #=> "Ruby"

languages.minmax{|a,b| a.ord <=> b.ord } #=> ["Clojure", "Scala"]

languages.sort.minmax do |a,b|

languages.count{|l| l.start_with?(a[0])} <=> languages.count{|l| l.start_with?(b[0])}

end #=> ["Clojure", "Perl"]

#min_by and #max_by pass each element to a block, and return those
corresponding to the smallest and largest return value, respectively.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 290

#minmax_by does likewise, except it returns an Array containing both the
minimum and maximum values.

[300, 92, 827_99, -45, 300, 1].minmax_by(&:magnitude) #=> [1, 82799]

languages = %w{Ruby Haskell Scala Clojure Perl Python Lisp Smalltalk}

languages.min_by(&:size) #=> "Ruby"

languages.max_by{|l| l.codepoints.reduce(:+)} #=> "Smalltalk"

languages.minmax_by{|l| l.ord } #=> ["Clojure", "Scala"]

languages.sort.minmax_by {|l| languages.count{|e| l.start_with?(e[0])}}

#=> ["Clojure", "Perl"]

Enumerator
An Enumerator is an objectification of an enumeration. It mixes-in

Enumerable, so also responds to the methods detailed above.

Instantiation

As described above, most Enumerable methods return Enumerators when
their block is omitted. More generally, Kernel#to_enum(method=:each creates
an Enumerator from its receiver’s method method. If additional arguments are
provided, they are passed to method.

Enumerator.new can take a block to which it passes an instance of
Enumerator::Yielder. The block specifies an element to be enumerated by
supplying it as an argument of Enumerator::Yielder#yield, or its alias
Enumerator::Yielder#<<. #yield behaves lazily: blocking until the
Enumerator requests a new element.

"Once bitten, twice shy".to_enum(:bytes).first(5)

#=> [79, 110, 99, 101, 32]

Enumerator.new do |yielder|

(1..Float::INFINITY).each do |n|

yielder << n if n.odd?

end

end.first(5) #=> [1, 3, 5, 7, 9]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 291

External Iterators

The Enumerable methods are termed internal iterators because they
internalise the details of the enumeration. Each method invokes #each anew,
restarting iteration from the first element of the collection. Conversely,
external iterators are driven by the user, who must explicitly request each
element he requires.

An Enumerator implements an external iterator with a Fiber that
maintains a pointer, p, to the next element in the receiver. Initially, p points
to the first element. #next returns the value of p, then advances it to the next
element; #peek returns p without advancing it. #rewind resets p to point to
the first element. Due to a limitation of Fibers, these methods cannot be
called across threads.

e = (1..3).to_enum

3.times{ print e.next } # 123

e.rewind

[e.peek, e.next, e.peek, e.peek, e.next] #=> [1, 1, 2, 2, 2]

After #next has returned the last element of the receiver, subsequent calls
to #next or #peek cause StopIteration to be raised. This exception is rescued
automatically by Kernel.loop, but if rescued manually,
StopIteration#result holds the return value of the enumerated method.

e = [:rinse, :repeat].to_enum

e.next #=> :rinse

e.next #=> :repeat

begin

e.next

rescue StopIteration => ex

ex.result #=> [:rinse, :repeat]

end

e.rewind

loop{ p e.next }

:rinse

:repeat

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 292

Classes with Multiple Iteration
Strategies

For Enumerable to be a sensible addition to a class, the collection must
support a single, obvious means of iteration. If multiple approaches are
plausible, the semantics of the Enumerable methods will be confusing.

For example, consider the String class. A String of binary data will
probably be iterated by byte, a String containing a document may be
iterated by line or paragraph, a hyphenation algorithm would iterate by
character or Unicode codepoint. There is no single #each method that
encompasses these approaches. There is no objective atomic unit that can
form the basis of iteration. Accordingly, String#each does not exist. In its
place are alternative iterators: String#each_byte, String#each_char,
String#each_codepoint, and String#each_line.

The utility of this approach is seen when combining it with
Object#enum_for(selector). This method converts its receiver into an
Enumerator object, which is an iterator implemented in terms of the
receiver’s selector method. An Enumerator has an #each method and mixes-in
Enumerable. Hence, one can convert an object into Enumerable by specifying
which form of iteration should be used by #each.

latin = "Tu ne cede malis, sed contra audentior ito"

char_string = latin.to_enum(:each_char)

vowels, consonants = char_string.partition{|char| char =~ /[aeiou]/}

vowels #=>

["u", "e", "e", "e", "a", "i", "e", "o", "a", "a", "u", "e", "i", "o", "i", "o"]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 293

ARRAYSARRAYS
An Array is a mutable, heterogeneous, ordered collection of objects,

termed elements, indexed by an Integer subscript. Its mutability means that
elements can be added to, and removed from, the collection at any point in
its lifetime, causing the Array to expand or contract as needed. In keeping
with her philosophy of duck-typing, Ruby does not require the elements to
have a specific type: any permutation of objects may be stored in an Array.
That each element is indexed by a unique Integer, enforces unambiguous
order on the collection.

The first element of an Array has the index 0, so the last element has an
index one less than the total number of elements. Methods that accept Array
indices as arguments, interpret negative indices as counting backward from
the last element, i.e. -2 refers to the penultimate element.

The number of elements an Array contains is returned by Array#size.
When the size is 0, Array#empty? returns true.

Instances of Array are Enumerable, so in addition to the methods described
in this chapter, they also respond to the Enumerable methods.

Literals
An Array literal is a comma-separated list of expressions enclosed in

square brackets ([,]). For example, [1, :two, 'three'] creates a three-
element Array object with 1 as the first element.

Alternative Delimiters

The %wdelimiter…delimiter construct is a syntactical shortcut for
instantiating an array of strings. The delimiters take the same form as those
of %q. The text between them is split on whitespace, each substring becoming
an element on the array. %w interprets its contents with single-quoted string

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 294

semantics; its counterpart, %W, behaves in the same way using double-quoted
string semantics.

colours = %w{red green blue} #=> ["red", "green", "blue"]

%W{Kind of #{colours.last.capitalize}} #=> ["Kind", "of", "Blue"]

Array.new
Arrays are typically instantiated with the literal syntax explained above.

Array.new offers more control over this process. When called with no
arguments it is equivalent to []. Array.new(size, o) creates a size-element
Array with each value set to o. If o is omitted, it defaults to nil. When given
an Array argument, a, it returns a.to_ary. Lastly, if a numeric argument,
size, and block are provided, the block is called size times, with its return
value becoming the corresponding Array value.

Array.new #=> []

Array.new 3 #=> [nil, nil, nil]

Array.new 5, :default

#=> [:default, :default, :default, :default, :default]

Array.new [42] #=> [42]

Array.new(10){|i| i**i}

#=> [1, 1, 4, 27, 256, 3125, 46656,

823543, 16777216, 387420489]

Lookup
The element at index n can be retrieved with #[n]. #at(n) and #slice(n)

behave in the same manner. If the index n lies outside of the array, these
methods return nil. The #fetch method also returns the element at a given
index, however it differs from the aforementioned in how it reacts to non-
existent indices. #fetch(n) raises an IndexError, or, if given a block, returns
the value of the block when passed n. #fetch(n, default) returns default.

colours = %w{red green blue}

"#{colours[0]}, #{colours.at(1)}, and #{colours.slice(-1)}"

#=> "red, green, and blue"

colours[4] #=> nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 295

colours.fetch(-5, 'white') #=> "white"

colours.fetch(4)

#=> index 4 outside of array bounds: -3...3 (IndexError)

Whereas the methods above returned the element corresponding to a given
index, #index(e), or its alias #find_index(e) return the index corresponding
to a given element. Specifically, #index(e) returns the index of the first
element #== to e. If either method is provided a block instead of e, it calls the
block with each element in turn, returning the index of the first element for
which the block returns true. #rindex behaves identically to #index except it
tests the elements in reverse order.

ruler = [*'Ramesses II'.chars]

ruler.index('e') #=> 3

ruler.rindex('e') #=> 6

ruler.index {|e| e =~ /[[:upper:]]/} #=> 0

To lookup multiple elements at once, #[](start, length) or #[](range),
or its alias, #slice, can be used. The first form returns an Array of at most
length consecutive elements, beginning at index start. The second returns an
Array of the elements at the indices covered by the given Range.
Alternatively, #values_at accepts any combination of Integer and Range

arguments, returning the elements at any of the given indices.

perfect = [6, 28, 496, 8128, 33550336]

perfect[0, 3] #=> [6, 28, 496]

perfect[2..4] #=> [496, 8128, 33550336]

perfect.values_at(-4, -2, 0) #=> [28, 8128, 6]

The element at index 0 can be retrieved with #[0] or #first. If #first is
given an Integer argument, n, it is equivalent to #[0...n]: it returns the first
n elements as an Array. Conversely, #last is equivalent to #[-1], and
#last(n) means #[-n..-1].

alpha = [*(?a..?z)]

(alpha.first..alpha.last).to_a[0] #=> "a"

alpha.last 3 #=> ["x", "y", "z"]

Lastly, #sample(n) returns n random elements, where n is capped at the
size of the receiver. If n is omitted, it defaults to 1.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 296

fractions = [Rational(1, 3), Rational(1, 2), Rational(4, 5)]

fractions.sample #=> (1/2)

fractions.sample 5 #=> [(4/5), (1/2), (1/3)]

Insertion
#insert(i, o0,…,on) inserts objects 0…n before the element with index i if

i is positive. If i is negative, it counts from the end of the Array, and the
objects are inserted after it.

a = []

a.insert 0, 0 #=> [0]

a.insert -1, 1, 2, 3 #=> [0, 1, 2, 3]

a.insert 0, -1 #=> [-1, 0, 1, 2, 3]

#push(o) and #<< o are equivalent to #insert(-1, o), while #unshift(o)

is equivalent to #insert(0, o).

kubrick = []

kubrick << 'Lolita' #=> ["Lolita"]

kubrick.push('Dr. Strangelove',

'2001',

'A Clockwork Orange')

#=> ["Lolita", "Dr. Strangelove", "2001", "A Clockwork Orange"]

kubrick.unshift 'Spartacus'

#=> ["Spartacus", "Lolita", "Dr. Strangelove", "2001", "A Clockwork Orange"]

Replacement
To replace the object at index n with o, use #[n] as an lvalue, e.g. #[n] = o.

If #[]= is given a pair of Integers or a Range for its arguments, the affected
slice is replaced by the rvalue.

encoding: utf-8

greek = %w{alpha beta gamma delta}

greek[0] = ?α #=> "α"

greek[1, 2] = [?β, ?γ] #=> ["β", "γ"]

greek[-1] = ?δ #=> "δ"

greek #=> ["α", "β", "γ", "δ"]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 297

#fill replaces one sequence of elements with another. #fill(o)
substitutes every element of the receiver for o. #fill(o, start, length)

replaces index start through to index length with o. If length is omitted, it is
assumed to be the length of the receiver. #fill(o, range) replaces the
elements whose indices are covered by the Range range with o. If the o
argument is omitted, and a block supplied instead, the selected elements are
replaced with the value of the block when passed their index.

notes = Array.new(7)

notes.fill ?F

#=> ["F", "F", "F", "F", "F", "F", "F"]

notes.fill ?B, 6

#=> ["F", "F", "F", "F", "F", "F", "B"]

notes.fill ?A, 5, 1

#=> ["F", "F", "F", "F", "F", "A", "B"]

notes.fill ?G, 4...5

#=> ["F", "F", "F", "F", "G", "A", "B"]

notes.fill(0..2) do |i|

case i

when 0 then ?C

when 1 then ?D

when 2 then ?E

end

end #=> ["C", "D", "E", "F", "G", "A", "B"]

Concatenation
#concat(a) and its alias, #+ a, append the elements of Array to the

receiver.

#join concatenates the elements of the receiver with $,—the output record
separator, which is nil by default—to produce a String. If given a String

argument, that is used in place of $,

#* string is equivalent to #join(string). #* integer is equivalent to
concatenating integer copies of the receiver.

parents = %w{Michael Susan}

grandparents = %w{Thomas Isobel}

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 298

$, = ?\

(parents + grandparents).join #=> "Michael Susan Thomas Isobel"

parents * ', ' #=> "Michael, Susan"

parents * 2

#=> ["Michael", "Susan", "Michael", "Susan"]

Deletion
#delete_at(n) deletes and returns the element at index n. As special cases,

#shift is equivalent to #delete_at(0), and #pop is equivalent to
#delete_at(-1).

at = Array.instance_methods(false).grep(/at$/)

#=> [:at, :concat, :values_at, :delete_at]

at.delete_at 1 #=> :concat

at.shift #=> :at

at.pop #=> :delete_at

at #=> [:values_at]

#delete(e) deletes all elements equal to e. If no deletions occurred, nil is
returned. If a block is supplied, its value is returned in place of nil.

italians = %w{Abbati Albertinelli Allori Allori Altichiero

Amigoni Angelico Anguissola Arcimboldo}

italians.delete('Allori') #=> "Allori"

italians.delete('Abbati') #=> "Abbati"

italians.delete('Allori') #=> nil

italians.delete('Azzolini') do |name|

"#{name}: ???"

end #=> "Azzolini: ???"

italians

#=> ["Albertinelli", "Altichiero", "Amigoni",

"Angelico", "Anguissola", "Arcimboldo"]

#delete_if passes each element in turn to the associated block, deleting
those for which the block evaluates to true. Its inverse is #keep_if, which
deletes elements for which the block evaluates to false. #reject! and
#select! behave like #delete_if! and #keep_if!, respectively, except they
return the receiver if they made changes; nil otherwise.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 299

digits = (0..9).to_a

digits.delete_if{|d| d > 7}

#=> [0, 1, 2, 3, 4, 5, 6, 7]

digits.keep_if(&:odd?)

#=> [1, 3, 5, 7]

digits.select!{|d| d**2 > d}

#=> [3, 5, 7]

digits.reject!(&:even?)

#=> nil

#compact! deletes all nil elements, while #uniq! deletes all duplicates.
Both methods have non-bang variants which return a copy of their receiver
with the elements removed.

a = 'James Joyce'.chars.map(&:upcase!)

#=> [nil, "A", "M", "E", "S", nil, nil, "O", "Y", "C", "E"]

a.compact!

#=> ["A", "M", "E", "S", "O", "Y", "C", "E"]

a.uniq

#=> ["A", "M", "E", "S", "O", "Y", "C"]

a.compact!

#=> nil

To remove every element from an Array, #clear can be used.

banned = ['Animal Farm', 'Areopagitica',

'Brave New World', 'Fanny Hill']

banned.taint

banned.untrust

banned.clear #=> []

banned.size #=> 0

banned.tainted? #=> true

banned.untrusted? #=> true

Arrays of Arrays
An Array of Arrays is an Array whose elements are Arrays. #flatten

replaces every element that is an Array with its contents, recursively. If
#flatten is given an Integer argument, limit, it recurses to a maximum
depth of limit. #flatten! is identical except it modifies the receiver in-place.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 300

pow = [[1, [1, [1]]],

[2, [4, [8]]],

[3, [9, [27]]],

[4, [16, [64]]]]

pow.flatten

#=> [1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64]

pow.flatten(1)

#=> [1, [1, [1]], 2, [4, [8]], 3, [9, [27]], 4, [16, [64]]]

#assoc(o) assumes the receiver is an Array of Arrays, and returns the first
Array whose first element is equal to o. #rassoc(o) does likewise, except it
compares the second element of each Array with o. In both cases, nil is
returned when no matching Array was found.

one = [[Rational(2, 3), Rational(1, 3)],

[Rational(3, 5), Rational(2, 5)],

[Rational(4, 7), Rational(3, 7)]]

one.assoc Rational(3, 5) #=> [(3/5), (2/5)]

one.rassoc Rational(2, 7) #=> [(4/7), (3/7)]

one.assoc 1 #=> nil

Assuming the receiver is an Array of Arrays, where each row has the same
number of columns, #transpose returns the result of transposing the rows
and columns.

prime_fact = [[1, 1], [2, 1], [3, 1], [4, 2],

[5, 1], [6, 2], [7, 1], [8, 3], [9, 2]]

prime_fact.transpose

#=> [[1, 2, 3, 4, 5, 6, 7, 8, 9],

[1, 1, 1, 2, 1, 2, 1, 3, 2]]

prime_fact.transpose.transpose == prime_fact

#=> true

Permutations & Combinations
#permutation(size) yields each permutation of the receiver of length size.

If size is omitted, it is assumed to be that of the receiver. Similarly,
Array#combination yields combinations of elements with the given length.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 301

dna = [?A, ?C, ?G, ?T]

dna.permutation(2).to_a

#=> [["A", "C"], ["A", "G"], ["A", "T"], ["C", "A"], ["C", "G"],

["C", "T"], ["G", "A"], ["G", "C"], ["G", "T"], ["T", "A"],

["T", "C"], ["T", "G"]]

dna.combination(2).to_a

#=> [["A", "C"], ["A", "G"], ["A", "T"],

["C", "G"], ["C", "T"], ["G", "T"]]

#product accepts any number of Array arguments, then returns an Array

of Arrays comprising all combinations of picking an element from the
receiver and each argument. If #product is given n arguments, each element
of the Array it returns has n + 1 elements.

one_two = [1, 2]

ab = [?a, ?b]

one_two.product(ab, [:_])

#=> [[1, "a", :_], [1, "b", :_], [2, "a", :_], [2, "b", :_]]

Iteration
#each yields each element of the receiver in turn to the associated block.

#each_with_index yields each element along with its index.

drops = [165, 168, 173, 180]

weight = 14.0

drops.each do |cm|

puts "Use a #{cm} cm rope for a man of #{weight} stone"

weight -= 0.5

end

Use a 165 cm rope for a man of 14.0 stone

Use a 168 cm rope for a man of 13.5 stone

Use a 173 cm rope for a man of 13.0 stone

Use a 180 cm rope for a man of 12.5 stone

drops.each_with_index.to_a

#=> [[165, 0], [168, 1], [173, 2], [180, 3]]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 302

Set Operations
Set operations find the difference, intersection, and union of the receiver

and another Array, a. Array#-(a) returns the difference between the receiver
and a, i.e., the elements of the receiver less the elements of a. Array#&(a)
returns the intersection of the receiver and a, i.e., elements common to both,
without duplicates. Array#|(a) returns the union of the receiver and a, i.e.
their concatenation, minus any duplicates.

male_names = %w{Alex Brian Chris Dave}

female_names = %w{Alex Bernice Chris Denise}

male_names - female_names

#=> ["Brian", "Dave"]

male_names & female_names

#=> ["Alex", "Chris"]

male_names | female_names

#=> ["Alex", "Brian", "Chris", "Dave", "Bernice", "Denise"]

Ordering
An Array is sorted with either Array#sort or Array#sort_by, both of which

behave like their namesakes in the Enumerable module. The elements in an
Array can be reversed with Array#reverse, or sorted in a pseudo-random
order with Array#shuffle. All four methods order a copy of the receiver,
which they return.

words = %w{zero one two three four five}

words.sort!

#=> ["five", "four", "one", "three", "two", "zero"]

words.reverse

#=> ["zero", "two", "three", "one", "four", "five"]

words.shuffle

#=> ["two", "three", "five", "one", "four", "zero"]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 303

HASHESHASHES
A Hash represents a mutable, heterogeneous collection of associations

between pairs of objects. The collection is indexed by the first element of the
pair-its key-which uniquely identifies the second element of the pair-its
value. It is ordered by insertion1. Uses include a dictionary, allowing values
to be looked up by key; a dispatch table, where the values are Procs identified
by their key; and a cache of unique values, taking advantage of the unique
keys property.

Literals
A Hash literal consists of a comma-separated list of key-value pairs

enclosed in curly braces ({, }). It creates a new Hash object with the specified
contents. The key is separated from its value with =>. If the key is a Symbol

literal, the colon with which it’s prefixed may be made its suffix, and => can
be omitted. (This syntactical shortcut is a reason for preferring Symbol keys).

{lemon: :yellow, orange: :orange, apple: [:red, :green]}

#=> {:lemon=>:yellow, :orange=>:orange, :apple=>[:red, :green]}

{?a => :vowel, ?b => :consonant, ?c => :consonant,

?d => :consonant, ?e => :vowel, ?f => :consonant}

#=> {"a"=>:vowel, "b"=>:consonant, "c"=>:consonant,

"d"=>:consonant, "e"=>:vowel, "f"=>:consonant}

{:london => :england, :londonderry => :ireland, london: :ontario}

#=> {:london=>:ontario, :londonderry=>:ireland}

Look-up
The element reference syntax, Hash#[], returns the value for a given key,

or the default value if they key doesn’t exist. The #fetch(key) behaves

1. Hash tables do not normally preserve order of insertion, of course; a
doubly-circularly linked list is used behind the scenes. Ilya Grigorik
examined the consequences of this decision.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 304

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/12542
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/12556
http://www.igvita.com/2009/02/04/ruby-19-internals-ordered-hash/

likewise, except when the key doesn’t exist: with no other arguments, it
raises an IndexError; with a second argument, it returns that; and with a
block, it returns the block’s value when given the key as argument.

#values_at accepts an arbitrary number of keys as arguments, returning
an Array comprising their corresponding values. The default value is returned
for non-existent keys.

#assoc(key) and #rassoc(value) return a key-value pair as a two element
Array. The former, returns the pair whose key equals key; the latter, returns
the first pair whose value equals value. Both return nil when no
corresponding pair exists.

vitamins = {apricot: :a, ham: :b1, cabbage: :c, spinach: :k}

vitamins[:apricot] #=> :a

vitamins.fetch(:pizza, '???') #=> "???"

vitamins.fetch(:kale){|food| [:a, :c, :d, :e, :k].sample} #=> :c

vitamins.values_at(:spinach, :cheese, :ham) #=> [:k, nil, :b1]

vitamins.assoc(:cabbage) #=> [:cabbage, :c]

vitamins.rassoc(:c) #=> [:cabbage, :c]

Default Value
Retrieving a key from a Hash returns the corresponding value. If they key

does not exist in the Hash, a default value is returned. The default value is
normally nil, but can be overridden.

Hash.new instantiates a Hash with a default value. With no arguments, it is
equivalent to {}, so has a default value of nil. Hash.new(value) sets value as
the default. If Hash.new is provided a block, the block is invoked whenever a
default value is required. It receives the Hash and missing key as arguments,
and is expected to return the corresponding value. For efficiency, the block
can store this value in the Hash, so future look-ups for the key bypass the
block.

The default value of an existing Hash can be modified. Hash#default= sets
the default value to its argument. Hash#default_proc= expects its argument

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 305

to be a Proc, which is equivalent to the block given to Hash.new. #default and
#default_proc return the current default value and Proc, respectively.

h = {a: 1, b: 2}

h[:c] #=> nil

h.default #=> nil

h = Hash.new(0)

h[:c] #=> 0

h[:c] = 3

h[:c] #=> 3

h.default = ??

h[:d] #=> "?"

require 'prime'

next_prime = Hash.new do |h, k|

prime = k.succ

prime += 1 until prime.prime?

h[k] = prime

end

[12, 17, 48, 200].map{|n| next_prime[n]} #=> [13, 19, 53, 211]

next_prime #=> {12=>13, 17=>19, 48=>53, 200=>211}

Insertion
The element set syntax, #[key]= value, stores the given key-value pair in

the receiver. #store(key, value) behaves identically. If a value already exists
for key, it is overwritten; the predicates described in Keys can be used to
detect when this would happen.

h = {}

h[:key] = :value #=> :value

h.store("Key", "Value") #=> "Value"

h["Key"] = "Ring" #=> "Ring"

h #=> {:key=>:value, "Key"=>"Ring"}

#[]= and #store associate a key object with a value object. If the key is a
String, it is duplicated and frozen before insertion. If the key is another
mutable object, it is possible to modify it after storing it in the Hash. However,
this is inadvisable because the corresponding value will still be associated
with the original key object, defeating attempts to perform look-ups with the
modified key. This can be worked around with the #rehash described below,

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 306

but a better solution is to freeze mutable keys before insertion, or at least
treat them as if you had.

#rehash re-indexes the receiver based on the current values of its keys.
This is only necessary if the value of a key object has changed since it was
inserted into the Hash. If #rehash is called while the Hash is being iterated, an
IndexError is raised.

coords = {[0,0] => :origin}

treasure = [32,19]

coords[treasure] = :gold

treasure[-1] += 1

coords #=> {[0, 0]=>:origin, [32, 20]=>:gold}

coords[treasure] #=> nil

coords.rehash

coords[treasure] #=> :gold

Deletion
#delete(key) deletes key and its corresponding value, then returns the

latter. It returns nil if the key didn’t exist; or, if a block is given, the value of
the block when invoked with key as an argument. #shift deletes and returns
the first key-value pair from the receiver. If the Hash is empty, returns the
default value for a key of nil.

#delete_if passes each key-value pair to its associated block in turn,
deleting those for which the block is true. An Enumerator is returned if the
block is omitted. #reject! is identical, expect it returns nil if no changes
occurred. #reject is equivalent to invoking #delete_if on a copy of the
receiver, then returning that copy.

The inverse of #delete_if is #keep_if, which deletes each key-value pair
for which the block is false. An Enumerator is returned if the block is omitted.
#select! is equivalent, except it returns nil if no changes occurred. #select
returns a new Hash containing the key-value pairs for which its associated
block returned true.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 307

#clear deletes all of the receiver’s key-value pairs, returning the empty
Hash. The receiver’s taintedness, trust, and default value are preserved.
Similarly, #replace(hash) replaces all key-value pairs in the receiver with
those in hash.

elements = {H: :hydrogen, Li: :lithium, Na: :sodium, K: :potassium,

Rb: :rubidium, Cs: :caesium, Fr: :francium}

elements.delete(:Fr) #=> :francium

elements.delete(:O){ false } #=> false

elements.shift #=> [:H, :hydrogen]

elements.delete_if{|sym, name| sym.size == 1}

#=> {:Li=>:lithium, :Na=>:sodium, :Rb=>:rubidium, :Cs=>:caesium}

elements.reject{|sym, name| name =~ /um/} #=> {}

elements.select!{|sym, name| name.to_s.end_with?(?m)} #=> nil

elements.replace({li: 'list item', p: 'paragraph', hr: 'horizontal rule'})

#=> {:li=>"list item", :p=>"paragraph", :hr=>"horizontal rule"}

Iteration
Hash#each, and its alias #each_pair, calls its associated block with each

key-value pair in turn. #each_key and #each_value call the associated block
with each key and value, respectively. Each method returns the receiver, or an
Enumerator if the block is omitted.

music = {LP: :long_play, EP: :extended_play, CD: :compact_disc}

music.each.map{|k, v| "#{k} means '#{v}'"}

["LP means 'long_play'", "EP means 'extended_play'", "CD means 'compact_disc'"]

music.each_key{|acronym| print acronym}

LPEPCD

#=> {:LP=>:long_play, :EP=>:extended_play, :CD=>:compact_disc}

Keys
#key(value) returns the first key whose value is value. If a Hash contains a

given key, the #key?(key) predicate returns true; otherwise, it returns false.
The #has_key?, #member?, and #include? methods behave identically.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 308

#keys returns the receiver’s keys as an Array. #each_key returns an
Enumerator of the same. If #each_key is given a block, it yields each key in
turn, then returns the receiver.

snomed = {T: :Topography, M: :Morphology, L: :Living_organisms, C: :Chemical,

F: :Fever, J: :Occupation, D: :Diagnosis, P: :Procedure,

A: :Physical, S: :Social_context, G: :General}

snomed.key :General #=> :G

snomed.key? :D #=> true

snomed.include? :E #=> false

snomed.keys #=> [:T, :M, :L, :C, :F, :J, :D, :P, :A, :S, :G]

snomed.each_key.reject{|k| snomed[k] =~ /^#{k}/} #=> [:J, :A]

Values
The value #value?(value) predicate, and it alias, #has_value?, return true

if one or more keys have a value of value.

#values returns the receiver’s values as an Array, while #each_value

returns an Enumerator of the same. If #each_value is given a block, it yields
each value in turn, then returns the receiver. To retrieve the value(s)
associated with one or more keys, see Look-up.

snomed = {T: :Topography, M: :Morphology, L: :Living_organisms, C: :Chemical,

F: :Fever, J: :Occupation, D: :Diagnosis, P: :Procedure,

A: :Physical, S: :Social_context, G: :General}

snomed.value? :Diagnosis #=> true

snomed.value? :Imaginary #=> false

snomed.values #=> [:Topography, :Morphology, :Living_organisms, :Chemical, :Fever, :Occupation,

#=> :Diagnosis, :Procedure, :Physical, :Social_context, :General]

snomed.each_value.reject{|v| v =~ /^#{snomed.key(v)}/} #=> [:Occupation, :Physical]

Transformations
#flatten(depth = 1) converts the receiver to an Array, on which it

invokes Array#flatten!, and returns. The result is an Array whose first
element is the first key, second element is the first value, third element is the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 309

second key, and so on. The depth arguments controls how deep
Array#flatten! recurses.

#invert returns a Hash whose keys are the receiver’s values, and whose
value’s are the receiver’s keys. As keys are unique, if the original Hash
contained multiple keys with the same value, only the last2 of these pairs is
preserved.

demonyms = {Barbados: :Bajan, Spain: :Spaniard, Ireland: :Irish,

Australia: [:Australian, :Aussie], Peru: :Peruvian}

demonyms.flatten

#=> [:Barbados, :Bajan, :Spain, :Spaniard, :Ireland, :Irish,

#=> :Australia, [:Australian, :Aussie], :Peru, :Peruvian]

demonyms.flatten 2

#=> [:Barbados, :Bajan, :Spain, :Spaniard, :Ireland, :Irish,

#=> :Australia, :Australian, :Aussie, :Peru, :Peruvian]

demonyms.invert

#=> {:Bajan=>:Barbados, :Spaniard=>:Spain, :Irish=>:Ireland,

#=> [:Australian, :Aussie]=>:Australia, :Peruvian=>:Peru}

Merging
#merge(hash) returns a new Hash containing the key-value pairs of the

receiver plus those of hash. If duplicate keys are encountered, the
corresponding value from hash is used. Alternatively, if a block is supplied it
is called for each duplicate key with three arguments—the key, the receiver’s
value, and hash’s value—and its return value becomes the value of the key.
#merge! and its alias #update behave identically, except they modify the
receiver in-place.

currencies = {ruble: :Russia, dollar: :Fiji, euro: :Malta, zloty: :Poland}

currencies.update(dollar: :Taiwan, euro: :Spain, franc: :Switzerland)

#=> {:ruble=>:Russia, :dollar=>:Taiwan, :euro=>:Spain,

#=> :zloty=>:Poland, :franc=>:Switzerland}

2. Thomas claims that “If hsh has duplicate values, the result will contain
only one of them as a key—which one is not predictable.” This was true in
Ruby 1.8, but now that a Hash iterates in order of insertion, this behaviour
can be predicted.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 310

currencies.merge(krona: :Sweden, won: :South_Korea, euro: :Italy){|currency, old, new| old}

#=> {:ruble=>:Russia, :dollar=>:Taiwan, :euro=>:Spain, :zloty=>:Poland,

#=> :franc=>:Switzerland, :krona=>:Sweden, :won=>:South_Korea}

Size
The size of a Hash is the number of key-value pairs it contains. It is

returned by #size and its alias #length. A Hash of size 0, is empty, and can be
tested with the #empty? predicate.

h = {}

h.size #=> 0

h.empty? #=> true

h[3] = 4

h[4] = 5

h[5] = nil

h.size #=> 3

h.empty? #=> false

Sorting
#sort converts the receiver to an Array, whose elements are themselves

Arrays of the form [key, value], sorts it with Array#sort, then returns the
result.

old_capitals = {Scotland: [:Scone, :Edinburgh], Denmark: [:Roskilde, :Copenhagen],

Finalnd: [:Turku, :Helsinki], Sweden: [:Sigtuna, :Stockholm]}

old_capitals.sort

#=> [[:Denmark, [:Roskilde, :Copenhagen]], [:Finalnd, [:Turku, :Helsinki]],

#=> [:Scotland, [:Scone, :Edinburgh]], [:Sweden, [:Sigtuna, :Stockholm]]]

{}.sort #=> []

Equality
Two Hash objects are equal only if all the following conditions hold true:

• They contain the same number of keys.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 311

• They contain the same keys.
• Each value in the receiver is equal, using #==, to the corresponding

value in the argument Hash.

#== returns true if its argument is a Hash and equal to the receiver. If the
argument is not a Hash but responds to #to_hash, it is sent #== with the
receiver as the argument. Otherwise, Hash#== returns false.

{} == {} #=> true

{foo: :bar, "foo" => :bar} == {foo: :bar, "foo" => :bar} #=> true

{a: 1, b: 2} == {b: 2, a: 1} #=> true

{a: 1, b: 2} == {a: 1} #=> false

Hash.new(8) == {} #=> true

{key: :value} == [:key, :value] #=> false

a = {a: 1}

a[:b] = a

a == a.merge(b: a) #=> true

Coercion
An object that responds to :to_hash may be implicitly converted to a Hash.

Hash[] is another approach. If given an object convertible to a Hash, it
performs the conversion and returns the new Hash; otherwise, when given an
even number of arguments, it interprets them as key-value pairs-the first
argument being the first key, the second argument being its corresponding
value, and so forth-with which it creates a new Hash. Hash.try_convert
coerces its argument with :to_hash, if possible, or returns nil.

A Hash may be converted to an Array with Hash#to_a. Each element of the
Array is itself an Array, whose first element is a key, and second element the
corresponding value.

#to_s, and its alias #inspect, return a String of the following form for a
Hash of size n, with key and value generated by #inspect:

{key0 => value0, …, keyn => valuen}

Recursive Hash objects are represented as {...}, while {} stands for the
empty Hash.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 312

{}.to_hash #=> {}

Hash[*(1..6)] #=> {1=>2, 3=>4, 5=>6}

{a: :value, b: [:key]}.to_a #=> [[:a, :value], [:b, [:key]]]

Hash.try_convert(try: :again) #=> {:try=>:again}

Hash.try_convert([:element]) #=> nil

h = { Object.new => Rational(2, 3) }

h[:h] = h

h.to_s #=> "{#<Object:0x00000001388e38>=>(2/3), :h=>{...}}"

Identity
Hash keys are compared with #eql? by default, so two keys are equal if

they have the same value. An identity Hash regards keys as equal only if they
are the same object. This is another argument in favour of Symbol keys,
because two Symbols with the same value are the same object. When Strings
are used as keys, Ruby duplicates them before use. Therefore, in an identity
Hash, String key look-ups won’t work. A regular Hash is converted to an
identity Hash with #compare_by_identity, which returns the receiver. The
#compare_by_identity? predicate returns true if the receiver is an identity
Hash; false, otherwise.

rat = {Rational(1,2) => 0.5, Rational(3,4) => 0.75}

rat[Rational(3,4)] = '3/4'

rat #=> {(1/2)=>0.5, (3/4)=>"3/4"}

rat.compare_by_identity[Rational(1,2)] = '1/2'

rat #=> {(1/2)=>0.5, (3/4)=>"3/4", (1/2)=>"1/2"}

rat.compare_by_identity? #=> true

feet = {cat: :paws, pigs: :hooves, bird: :claws}.compare_by_identity

feet[:pigs] = :cloven_hooves

feet #=> {:cat=>:paws, :pigs=>:cloven_hooves, :bird=>:claws}

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 313

RANGESRANGES
A Range represents an immutable sequence between two given values. The

first of which is its start-point, and the second its end-point. For example, 0–9
is a range consisting of all single-digit integers, expressed by specifying the
start-point and endpoint. Range is Enumerable, so in addition to the methods
described below, it also supports the Enumerable API.

A Range is either inclusive or exclusive: the former includes the endpoint;
the latter does not. The Range#exclude_end? predicate returns true if its
receiver is exclusive; false otherwise.

Instantiation
A Range literal consists of two values separated by two or three full stops:

the former range is inclusive; the latter exclusive. It returns a new Range

object representing the given interval. To use the literal as a receiver, enclose
it within parentheses; otherwise, the message is sent to the Range endpoint
rather than the Range itself. However, in the conditional of a branching or
looping statement, two or three consecutive full stops don’t create a range;
they constitute a Boolean flip-flop instead.

(0..9).to_a

#=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

(0...9).to_a

#=> [0, 1, 2, 3, 4, 5, 6, 7, 8]

?a..?z

Alternatively, a Range can be created with Range.new. The start-point is
supplied as the first argument, and the endpoint as the second. If a third
argument is given, and it is true, the Range is inclusive; otherwise, it is
exclusive.

Range.new(0, 9).to_a

#=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Range.new(0, 9, true).to_a

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 314

#=> [0, 1, 2, 3, 4, 5, 6, 7, 8]

Range.new(?a, ?z)

Start-points & End-points
The start-point and end-point must be comparable with #<=>. That is, for a

Range start..end, start <=> end must return -1, 0, or 1.

A range is discrete if it begins with a value that responds to #succ by
returning the next element of the sequence. It is so called because it
represents a finite set of values that can be iterated over. A non-discrete range
is continuous. It represents an infinite set of values, therefore a TypeError is
raised when attempting to iterate over it. For instance, Integer objects
respond to #<=> and #succ, so a Range between Integer values is discrete.
Conversely, Float responds to <=> but not to #succ, so represents a
continuous range.

The start-point is returned by Range#begin, while the end-point is returned
by Range#end. #first and #last behave identically to #begin and #end,
respectively, when called without arguments. If a numeric argument is given,
#first returns that many elements from the beginning of the Range as an
Array, while #last returns an Array comprising that many from the end.
However, in this form both #first and #last require the Range to be discrete;
raising an ArgumentError if not.

Range.new(1.0, 3.0).begin #=> 1.0

(?a...?z).end #=> "z"

(:abc..:cba).first(10)

#=> [:abc, :abd, :abe, :abf, :abg, :abh, :abi, :abj, :abk, :abl]

(Rational(1,5)..1).first #=> (1/5)

Membership Testing
There are two principle ways to test whether a given value is a member of

a Range. Range#cover?(value) uses a simple inequality. For a Range between
a and b, #cover? tests a ≤ value ≤ b if the receiver is inclusive; a ≤ value < b,

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 315

otherwise. If the test succeeds, true is returned; if it fails, false is returned
instead.

Range#include?(value), and its alias #member?, work in the same way
when the end-points are numeric. Otherwise, they test for membership
through iteration: each successive element of the Range is enumerated until
either the element is equal—using #==—to value, or the end of the Range is
reached. Accordingly, unless the start-point and end-point are numeric,
#include? requires the receiver to be discrete. Again, true is returned if the
test succeeds; false otherwise. Range#=== is implemented in terms of
#include?, so these restrictions also apply when using a Range in a when

statement.

ages = 18..30

ages.include? 505 #=> false

ages.include? 25.0 #=> true

ages.include? 14 #=> false

(18...30).include? 30 #=> false

(Rational(1,10)..Rational(10, 1)).cover? 3 #=> true

(:above..:below).include? :angels #=> false

(:above..:below).cover? :angels #=> true

Iteration
Range#each yields successive elements of the receiver to a block if one is

given; otherwise, returns them as an Enumerator. #succ is used to generate
elements. Range#step(n=1) yields to a block each nth element. If the start-
point and end-point are numeric, elements are generated through addition;
otherwise, #succ is used. As with #each, an Enumerator is returned when the
block is omitted.

(-1..1).each {|n| print "%2d" % n}

-1 0 1

(1.0..2.0).step(0.1).reduce(:+) #=> 16.5

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 316

Equality
Two Ranges are equal if they have the same start-point and end-point, and

either both exclusive or both inclusive. Range#== compares the start-points
and end-points with #==, while Range#eql? compares them using #eql?.

(5..6) == (5..6) #=> true

(:an..:other) == (:an...:other) #=> false

(-Float::INFINITY..Float::INFINITY).eql?(Range.new(0, Float::INFINITY)) #=> false

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 317

FILES &FILES &
DIRECTORIESDIRECTORIES

Files
A file is an entity on a filesystem addressable by a path. It can be

represented as an instance of the File class, which provides a high-level API
for reading, writing to, and querying and manipulating the metadata of, files.
File is a subclass of IO, so the latter’s methods are available in addition to
those defined by File.

Paths

A file’s path is a String describing its location in the filesystem. It consists
of one or more components, which in the latter case are separated with the
path separator. On non-Windows platforms the path separator is the solidus
character. Ruby expects paths to be given in the Unix-style, but automatically
uses the correct path separator for the platform it is running on.

We use the term path to refer either to a String, whose contents is a path,
or an object that responds to :to_path with such a String. A method that
expects a path as an argument will accept either of these representations.

File.path returns the non-normalised path of its argument. If its argument
is a String, it will be returned as-is, otherwise the result of sending the
argument :to_path will be returned. The path associated with a File object is
returned by File#path.

File.dirname returns the directory name of its argument: all components
other than the last. Conversely, the last component of a filename is returned
by File.basename. The filename extension, e.g. .txt, is returned by
File.extname. If these methods are given a path without the requested

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 318

component, they return the empty String. File.split returns a two-element
Array with the file’s dirname as the first element, and its basename as the
last. File.join performs the inverse operation: given a list of path
components it joins them with the path separator into a String.

In the table that follows, each column indicates the output of the
corresponding File class method for the path given in the first column.

pathpath dirnamedirname basenamebasename extnameextname splitsplit

/home/user/

base64.rb

/home/

user
base64.rb .rb

["/home/user",

"base64.rb"]

/etc/hosts /etc hosts ["/etc", "hosts"]

sort . sort [".", "sort"]

~/.vimrc ~ .vimrc ["~", ".vimrc"]

Examples of how path components are interpreted by the named class methods of File

A relative path is a path given in terms of another path, as opposed to an
absolute path which stands alone. On Unix-like systems, the former are paths
that do not begin with a solidus, and the latter are the opposite.

A relative path may be expanded to an absolute path with
File.expand_path. Absolute paths are returned as-is. Otherwise, they are
assumed to be relative to the current directory. If an optional second
argument is given, it names the directory the first argument is relative to. If
the relative path begins with a tilde, it is interpreted as relative to the current
user’s home directory (as returned by ENV['HOME']). If the relative path
begins with a tilde followed by a username, it is relative to the named user’s
home directory. File.absolute_path behaves in the same fashion except it
doesn’t treat tildes specially, i.e. it interprets a path of ~/glark as ./~/glark.

Dir.chdir('/etc') do

File.expand_path '/etc/resolv.conf' #=> "/etc/resolv.conf"

File.expand_path 'resolv.conf' #=> "/etc/resolv.conf"

File.expand_path '../var/log/messages' #=> "/var/log/messages"

File.expand_path './filesystems', '/proc' #=> "/proc/filesystems"

File.expand_path '~/.bashrc' #=> "/home/run/.bashrc"

ENV['HOME'] = '/tmp'

File.expand_path '~/.bashrc' #=> "/tmp/.bashrc"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 319

File.expand_path '~root' #=> "/root"

end

Neither File.absolute_path nor File.expand_path resolve relative paths
by traversing the filesystem: at most, they request the current working
directory or a user’s home directory from the environment. An implication is
that they will quite happily return paths that do not exist on the filesystem.
File.realpath is an alternative. It creates an absolute path from a relative
path by interrogating the filesystem, and following symbolic links if
necessary. It resolves relative to the current working directory, or the
directory given by the optional second argument. An exception is raised if
the absolute path it resolves does not exist. File.realdirpath accepts the
same arguments, and performs the same operation, but allows the last
component of the path to be non-existent.

Dir.chdir('/etc') do

File.realpath '/etc/resolv.conf' #=> "/etc/resolv.conf"

File.realpath 'resolv.conf' #=> "/etc/resolv.conf"

File.readlink '/etc/alternatives/www-browser' #=> "/usr/bin/w3m"

File.realpath '../etc/alternatives/../alternatives/ruby'

No such file or directory - /etc/alternatives/ruby (Errno::ENOENT)

File.realdirpath '../etc/alternatives/../alternatives/ruby' #=> "/etc/alternatives/ruby"

end

Reading

Reading a file is the process of retrieving its contents. It can be achieved by
passing a path argument to File.read which returns the contents as a String.
An optional second argument specifies the number of bytes to read, and an
optional third argument specifies the offset from which to begin reading. An
options Hash may be supplied as the final argument. File.binread takes the
same arguments but reads the file in binary mode.

File.read('/etc/timezone') #=> "Europe/London\n"

File.read('/etc/timezone', 6) #=> "Europe"

File.read('/etc/timezone', 6, 7) #=> "London"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 320

Opening

Opening a file enables one to read from, write to, or otherwise manipulate
and query, the resource. Kernel.open opens the file with the given path,
returning a corresponding File object. It is typically used with a block, which
receives the opened File object as an argument. Having executed the block,
the file is automatically closed, even if the block raises an exception. The
block-form has a return value equal to that of the block; otherwise a new
File object is returned. Both forms accept an options Hash as their final
argument.

coding: utf-8

open('/tmp/file', mode: ?w) {|f| f.print "text\r\n"}

text = File.read('/tmp/file') #=> "text\r\n"

text.encoding == Encoding::UTF_8

open('/tmp/file', mode: ?a){|f| f << "more text"}

open('/tmp/file', textmode: true, external_encoding: 'ascii') do |f|

text = f.read #=> "text\nmore text"

text.encoding #=> Encoding::US_ASCII

end

Existence

It is often necessary to determine whether a given file exists, as methods
that accept path arguments may raise exceptions otherwise. To this end Ruby
provides the predicate File.exists?, and its alias File.exist?.

Deletion

Files may be deleted by supplying a list of their paths as arguments to
File.delete, or its alias File.unlink. An Integer is returned indicating how
many files were deleted. File.truncate, which is not available on all
platforms, truncates a given file to a given number of bytes. It expects a path
as its first argument, and the number of bytes as an Integer for its second.
File#truncate behaves in the same fashion, but truncates its receiver to the
size given as its sole argument.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 321

Renaming

Files may be renamed by invoking File.rename with their current path as
the first argument, and their desired path as the second.

Size

A file that exists has a size. The File.size method returns the size of its
argument, and File#size returns that of its receiver. In both cases, the size is
an Integer and in bytes. The File.size? predicate returns the size of the file
named by its argument if it exists and has a non-zero size, or otherwise: nil.
Similarly, File.zero? returns true if the file named by its argument exists
and has a size of zero; false otherwise.

Comparison

The File.identical? predicate is used to determine whether the two files
it is given as arguments are the same: returning true if they are, false
otherwise. Two files are considered identical if their paths normalise to the
same path, or if one or both are symbolic links with identical targets. It is not
sufficient that two files merely contain the same content for this method to
succeed.

File::Stat

File::Stat objects represents file metadata. They are normally created
with IO#stat, File#stat or File.stat(file). File#lstat and File.lstat are
used to the same end, but they do not follow the last symbolic link, if any, in
the file path; they return metadata for the link itself.

Attribute Method Returns Kernel.test

Last access time
File::Stat#atime / File.atime
/ File#atime

Time ?A

Attributes of files

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 322

Attribute Method Returns Kernel.test
Preferred block size
for I/O

File::Stat#blksize
Fixnum

or nil
Number of blocks
allocated

File::Stat#blocks
Fixnum

or nil

Inode change time
File::Stat#ctime / File.ctime
/ File#ctime

Time ?C

Device number of
filesystem

File::Stat#dev
Fixnum

or nil

〃(major part) File::Stat#dev_major
Fixnum

or nil

〃(minor part) File::Stat#dev_minor
Fixnum

or nil
Type File::Stat#ftype String

Owner’s group ID File::Stat#gid Fixnum

Inode number File::Stat#ino Fixnum

Permission bits File::Stat#mode Fixnum

Last modify time
File::Stat#mtime / File.mtime
/ File#mtime

Time ?M

Pathname File#path String

Device ID File::Stat#rdev
Fixnum

or nil

〃(major part) File::Stat#rdev_major
Fixnum

or nil

〃(minor part) File::Stat#rdev_minor
Fixnum

or nil

Size (bytes)
File::Stat#size / File#size /
File.size

Fixnum

Owner’s user ID File::Stat#uid Fixnum

Types

To determine whether a given file is of a given type, one may use the
appropriate predicate method of the File class. For example,
File.directory? determines whether its argument is a directory.
Alternatively, File::Stat#ftype returns a String identifying the type of the
represented file. In the case of a directory, #ftype returns directory. These
two approaches are summarised in the table that follows.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 323

In the table below, the File::Stat#ftype column contains the String that
method returns for a file of the corresponding type. Predicate is a method
that expects a path as argument, returning true iff the named file is of the
corresponding type. The Creation column specifies, where possible, how a file
of the corresponding type may be created in Ruby. Examples assume a Linux/
Debian platform.

Description File::Stat#ftypeFile::Stat#ftype Predicate Example Creation Kernel.test
Block
device

blockSpecial File.blockdev? /dev/sda ?b

Character
device

characterSpecial File.chardev? /dev/tty ?c

Directory directory File.directory? /etc Dir.mkdir ?d

FIFO
(named
pipe)

fifo File.pipe?
system("mkfifo

name")
?p

Regular file file File.file?
/etc/

passwd
Kernel.open ?f

Symbolic
link

link File.symlink?
/dev/

root
File.symlink ?l

Socket socket File.socket? /dev/log
Use the socket

library
?S

Another
type of file

unknown

Types of file Ruby knows about

Permissions

The permission bits associated with a file may be retrieved from the
corresponding File::Stat object. The fields of interest are described below.
Be aware that on non-POSIX systems the semantics of file permissions are
quite different, and are likely to be less granular. To compensate, on these
disadvantaged platforms Ruby attempts to synthesize a numeric mode such
that it is broadly similar to what POSIX requires. However, given the lack of
granularity and other incompatibilities, these factitious modes are
cumbersome and error-prone. It is therefore recommended that the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 324

permission bits are treated as opaque, as far as possible, and the predicates
described later are used instead.

Attribute Method Returns
Owner’s group ID File::Stat#gid Fixnum

Permission bits File::Stat#mode Fixnum

Owner’s user ID File::Stat#uid Fixnum

Permission and ownership attributes of File::Stat
objects

The permissions of a file may be changed with File.chmod by providing
the new permission bits as the first argument, and a list of files as the
subsequent arguments. Each file listed has its permissions changed
accordingly. The meaning of the permission bits is platform-specific, but on
Unix-like systems they correspond to the numeric mode understood by
chmod(1). Some systems, such as the BSDs, support a variant of chmod that
does not follow symbolic links, therefore acts upon the link rather than its
target. If available, Ruby exposes this functionality via File.lchmod, which
takes the same arguments as File.chmod. File also provides the instance
methods File#chmod and File#lchmod, which require the permission bits to
assign to their receiver as their sole argument.

The owner and group of a file may be changed-although the former
requires root permissions-with File.chown. It takes a numeric user ID, and
numeric group ID, as the first and second arguments, respectively, and a list
of files as the subsequent arguments. The ownership of each file listed that
the user has permission to change is adjusted accordingly. File.lchown
functions similarly, but does not follow symlinks. Its availability mirrors that
of File.lchmod. The instance method, File#chown, requires a numeric user
ID, and numeric group ID, as its arguments, which it applies to its receiver.

The umask value of the current process is set by supplying File.umask

with the new value as an Integer argument. It returns the previous umask
value. When called without arguments, File.umask returns the current
umask.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 325

In the table below, methods take a filename as argument and return either
true or false unless stated otherwise. The Kernel.test column indicates the
corresponding command for use with test.

Predicate Test Kernel.test
File.executable? Executable by our effective user ID? ?x

File.executable_real? Executable by our real user ID? ?X

File.grpowned? Owned by our effective group ID? ?G

File.owned? Owned by our effective user ID? ?o

File.readable? Readable by our effective user ID? ?r

File.readable_real? Readable by our real user ID? ?R

File.setgid? Setgid bit set? ?g

File.setuid? Setuid bit set? ?u

File.sticky? Sticky bit set? ?k

File.world_readable?
Readable by others? (Returns
permission bits or nil)

File.world_writable?
Writable by others? (Returns
permission bits or nil)

File.writable? Writable by our effective user ID? ?w

File.writable_real? Writable by our real user ID? ?W

Permissions predicate methods of the File class

Links

On platforms that support symlinks, File.symlink will create a link to the
file named as its first argument, with the name given as its second. File.link
takes the same arguments, but creates hard links instead. The File.symlink?

predicate can be used to test whether its argument is a symlink, and
File.readlink returns the target of a given link.

link, target = '/tmp/link', '/tmp/target'

File.unlink(link) if File.exist?(link)

open(target, mode: ?w) {}

File.symlink(target, link)

File.symlink?(target) #=> false

File.symlink?(link) #=> true

File.readlink(link) #=> "/tmp/target"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 326

Locks

File#flock(operation) places or removes an advisory lock on the
receiver’s file, where operation is a logical OR of the constants below. A lock
is either exclusive or shared: the former may only be held by a single process
for a given file; the latter may be held by multiple processes. A single file can
only have one type of lock.

Constant Meaning
File::LOCK_EX Place an exclusive lock on the file.
File::LOCK_NB Don’t block when locking.
File::LOCK_SH Place a shared lock on the file.
File::LOCK_UN Remove the lock on the file.

#flock blocks if attempting to lock a file that has an incompatible lock, e.g.
if a file has an exlcusive lock, another process that attempted to place an
exclusive lock on the same file would block until the first process released its
lock. Alternatively, if operation includes File::LOCK_NB and #flock would
have blocked, false is returned immediately. Otherwise, #flock returns 0.
When all file descriptors associated with a locked file have been closed, the
lock is automatically released.

Filename Matching

File.fnmatch?, and its alias File.fnmatch, determine whether a given
globbing pattern matches a given filename. The pattern is given as the first
argument, and the pathname as the second. The optional third argument is a
bitmask of flags, which are explained below in Globbing. If the pathname
matches the pattern, true is returned; otherwise false.

Kernel.test

Kernel.test performs a given test on a given file. It accepts 2–3
arguments, the first of which is a single character command, and the
remainder are the files on which to perform the test.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 327

Command Description Returns Arity
?A Last access time Time 1

?b Block device?
true or
false

1

?c Character device?
true or
false

1

?C Last status change time Time 1

?d Directory?
true or
false

1

?e Exists?
true or
false

1

?f Exists and a regular file?
true or
false

1

?g Has the setgid bit set?
true or
false

1

?G Exists and owned by our group?
true or
false

1

?k Sticky bit set?
true or
false

1

?l Exists and a symlink?
true or
false

1

?M Last modification time Time 1

?o Owned by our effective user ID?
true or
false

1

?O Owned by our real user ID?
true or
false

1

?O Owned by our real user ID?
true or
false

1

?p A FIFO?
true or
false

1

?r Readable by our effective user/group ID?
true or
false

1

?R Readable by our real user/group ID?
true or
false

1

?s Returns the size if non-zero
Integer

or nil
1

Commands supported by Kernel.test

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 328

Command Description Returns Arity

?S Socket?
true or
false

1

?u setuid bit set?
true or
false

1

?w
Exists and writable by our effective user/
group ID?

true or
false

1

?W Exists and writable by our real user/group ID?
true or
false

1

?x
Exists and executable by our effective user/
group ID?

true or
false

1

?X
Exists and executable by our real user/group
ID?

true or
false

1

?z Exists with a size of zero?
true or
false

1

?- Are both operands identical?
true or
false

2

?=
Do both operands have the same modification
time?

true or
false

2

?<
Is the modification time of the first operand
prior to that of the second?

true or
false

2

?>
Is the modification time of the first operand
after that of the second?

true or
false

2

Directories
Directory streams are represented by the Dir class. Dir is neither a subclass

of File nor IO. As with files, directories are identified by pathnames which
may be absolute or relative. The pathname . refers to the current working
directory, and .. its parent. The pathname associated with a Dir object is
returned by Dir#path, or its alias Dir#to_path.

Working Directory

A Ruby process has the notion of a current working directory, an absolute
directory path from which relative paths are resolved. This is returned by
Dir.pwd, or its alias Dir.getwd, as a String. It can be changed by invoking

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 329

Dir.chdir with the new working directory as an argument. If the argument
is omitted, it defaults to ENV['HOME'] or ENV['LOGDIR'], whichever is set.

If Dir.chdir is called with a block, it changes the working directory as
before, but resets it to its original value at the end of the block. The block is
passed the new directory as an argument, and its return value becomes that
of Dir.chdir. These blocks may be nested, but the official documentation
cautions that in multi-threaded programs a thread must not open a
Dir.chdir block while another thread is inside one.

Home Directory

The home directory of the current user is returned by Dir.home. This is the
value of ENV['HOME'], or the result of expanding ~. The home directory of an
arbitrary user can be obtained by passing their username as an argument. An
ArgumentError is raised if that user does not exist.

Instantiation

A Dir object can be instantiated by supplying Dir.new with a directory
name argument. Dir.open behaves the same way, but if its supplied with a
block, it yields the new Dir object to the block, then ensures it is closed when
the block finishes. The return value of this form is that of the block.

Both forms assume the default filesystem encoding, but this can be
overridden by supplying a second argument of encoding: encoding, where
encoding is the name of an encoding as a String or an Encoding object.

If the block form is not used, the directory handle should be closed
explicitly with Dir#close.

Entries

A directory’s entries are the names of the files and other directories which
it contains. On a Unix-like system the first two entries for every directory are
. and .., which refer to the current directory and its parent directory,
respectively.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 330

Dir.entries returns the entries of the directory named by its argument as
an Array of Strings, or raises a SystemCallError if it doesn’t exist.
Dir.foreach also accepts a directory name as an argument, but returns an
Enumerator of its entries. If called with a block, Dir.foreach yields each entry
in turn.

The entries of a directory represented by a Dir object, are returned by
Dir#each. An Enumerator is returned if no block is given, otherwise each
entry is yielded in turn. Indeed, Dir mixes-in the Enumerable module, so all of
its methods are available for manipulating these entries.

Alternatively, a Dir instance can be treated like an Enumerator by calling
Dir#read to return the next entry. nil is returned when no entries remain.
Dir#rewind resets the stream such that the next call to Dir#read will return
the first entry again.

Creation

A directory can be created by supplying its name as an argument to
Dir.mkdir. An optional second argument specifies the permissions of the new
directory. These are platform-specific permission bits, in the same form as IO
and File accept them. They respect the current umask value, and are
completely ignored on Windows.

Existence

The Dir.exist? predicate, and its alias Dir.exists?, return true if their
argument is both an existing path and a directory; false otherwise.

Deletion

Dir.rmdir, and its aliases Dir.delete and Dir.unlink, delete the directory
named by their argument. However, the directory must already be empty,
otherwise an exception is raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 331

Globbing

Dir.glob accepts a pattern, similar in form to a shell glob, and returns an
Array of matching filenames. Characters in a pattern match themselves unless
they take one of the following forms.

** (Asterisk)
An asterisk matches zero or more characters. It does not match a leading
full stop unless the FNM_DOTMATCH flag is given.

?? (Question Mark)
A question mark matches exactly one character. It does not match a
leading full stop unless the FNM_DOTMATCH flag is given.

**** (Double Asterisk)
Two consecutive asterisks match zero or more directory components.

[[characterscharacters]] (Character Class)
A sequence of characters enclosed in square brackets match any one of
the specified characters. Two characters separated by a hyphen-minus
sign (-) represent the inclusive range of characters between them. If the
first character is a caret (^), the meaning of the class is inverted: it
matches any character not specified.

{{patpat00,…,,…,patpatnn}} (Alternation)
Curly brackets enclose one or more glob patterns separated by commas.
Filenames matching any of the given patterns are matched.

\\ (Reverse Solidus)
A reverse solidus escapes the metacharacter that follows it, removing its
special significance. Matches itself if the FNM_NOESCAPE flag is given.

Dir.chdir('/tmp/animals') do

Dir.entries(?.) #=> ["..", "."]

Dir.mkdir('extinct')

%w{ants hippopotamus elephants arachnids koalas accounts.csv

accounts.csv.bak visitors.log rota-2010 extinct/velociraptor

extinct/quagga extinct/aurochs extinct/dodo}.each{|file| open(file, ?w){} }

Dir.glob('*ants') #=> ["elephants", "ants"]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 332

Dir.glob('rota-????') #=> ["rota-2010"]

Dir.glob('a*s') #=> ["ants", "arachnids"]

Dir.glob('**/a*s') #=> ["ants", "arachnids", "extinct/aurochs"]

Dir.glob('extinct/*o[dc]*') #=> ["extinct/aurochs", "extinct/dodo", "extinct/velociraptor"]

Dir.glob('{*.*,rota-201[0-9]}')

#=> ["accounts.csv", "accounts.csv.bak", "visitors.log", "rota-2010"]

end

The semantics of the match may be altered by supplying a bitmask of flags
as the second argument. The flags are represented by the constants listed
below. If multiple flags are given they should be combined with bitwise OR.
For example, to specify that a pattern should treat \ literally and ignore case,
the second argument to Dir.glob should be File::FNM_NOESCAPE |

File::FNM_CASEFOLD.

File::FNM_NOESCAPEFile::FNM_NOESCAPE

Backslash matches itself. By default, a backlash is a metacharacter,
escaping the metacharacter which follows it; this flag reduces it to a
lowly literal character.

File::FNM_PATHNAMEFile::FNM_PATHNAME

Prevent asterisk or question mark from matching a solidus. To match a
literal solidus, the pattern must contain one when using this flag.

File::FNM_DOTMATCHFile::FNM_DOTMATCH

Allow asterisk or question mark to match a leading full stop in a path
component; by default leading full stops are only matched if specified
literally.

File::FNM_CASEFOLDFile::FNM_CASEFOLD

Ignore case when matching.

Dir[] takes a glob as its sole argument, returning matching filenames as an
Array. It is equivalent to Dir.glob with a second argument of 0.

Position & Seeking

Directory streams support seeking similarly to IO objects. The current
position is returned by Dir#tell, or its alias Dir#pos, as an Integer. Initially,

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 333

this value is 0, but is increased after every call to Dir#read. A specific
position can be sought by supplying it as argument to Dir#pos= or Dir#seek.
However, Dir#read increments the position in a seemingly arbitrary fashion,
so the only sensible position to seek to is one previously returned by Dir#pos.
Dir#rewind resets the position to 0.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 334

INPUT &INPUT &
OUTPUTOUTPUT

Unless you're using artificial intelligence to model a solipsistic
philosopher, your program needs some way to communicate with the
outside world.

—Wall00, pp. 20–22

The IO class provides an interface to input and output on the level of file
descriptors, while its File subclass deals with files on a higher level of
abstraction. Accordingly, File, which is discussed in Files & Directories, is
often more appropriate, and easier to use.

All input and output is done by reading or writing files, because all
peripheral devices, even your terminal, are files in the file system.
This means that a single interface handles all communication
between a program and peripheral devices.

—Kernighan84, pp. 201–202

In keeping with Unix’s everything-is-a-file philosophy [Raymond03] ,
Ruby allows regular files, directories, block and character devices, symbolic
links, hard links, sockets, unnamed pipes, and FIFOs (named pipes), to be
treated conceptually the same. They can be read from and written to. Before
operating on a file, we need to open it by providing the operating system
with the pathname and asking permission to read it, write to it, or both. If
our request is granted, we are provided with a integer file descriptor which
we must use to refer to the file in future operations. We are allowed only to
use the file in the manner, or access mode, we requested: it is illegal to write
to a file opened for reading, or vice versa. With this file descriptor we can
initialize an IO object, or stream1, which provides an interface for accessing
the corresponding file.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 335

A stream containing binary data can have its binmode attribute set, which
prevents it from being transcoded and associates it with the ASCII-8BIT
encoding. Conversely, a stream containing textual data can have its textmode
attribute set, which allows transcoding and newline normalisation.

Also, associated with a stream is a byte offset, or file position, which
specifies where the next read or write should occur. “When a file is first
opened, the file position is zero. Usually, as bytes in the file are read from or
written to, byte-by-byte, the file position increases in kind. The file position
may also be set manually to a given value, even a value beyond the end of
the file.” [Love07, pp. 9–10] . Attempting to read past the end of a file (EoF)
will result in either a nil value or an exception being raised, depending on
the method used. A file is appended to by writing to a position past its end.
The size of a file may be reduced by truncating2 it to a smaller size.

Finally, having used a file descriptor, we should close it to release it back to
the operating system.

Standard Input, Output, & Error
When it is started by the shell, a program inherits three open files,

with file descriptors 0, 1, and 2, called the standard input, the
standard output, and the standard error. All of these are by default
connected to the terminal, so if a program only reads file descriptor 0
and writes file descriptors 1 and 2, it can do I/O without having to

1. Our using stream in this sense fits the spirit if not the letter of its existing
meaning in I/O. Loosemore et al. [Loosemore07, pp. 220–221] , for example,
differentiate strongly between operations performed on file descriptors and
those performed on streams. However, their description of streams as
providing a “higher-level interface, layered on top of the primitive file
descriptor facilities.” and their remark that “You can also initially open a
connection as a file descriptor and then make a stream associated with that
file descriptor.”, so closely follows the model of IO, that our minor
redefinition seems justified.

2. We use truncate in its POSIX sense, i.e. to refer to the behaviour of
truncate(2). On most file systems, this operation can be used to increase as
well as decrease the size of a file, hence our clarification.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 336

open files. If the program opens any other files, they will have file
descriptors 3, 4, etc.

—Kernighan84, pp. 201–202

Ruby behaves in the same manner. The constants STDIN, STDOUT, and
STDERR, are defined automatically to refer to the program’s standard input,
standard output, and standard error streams, respectively. The value of each
constant is an IO object associated with the corresponding file descriptor.
IO#fileno returns the associated file descriptor as an Integer.

STDIN.fileno #=> 0

STDOUT.fileno #=> 1

STDERR.fileno #=> 2

Three global variables are also defined automatically-$stdin, $stdout, and
$stderr-which initially hold the value of the corresponding constant. We
have in fact been interacting with $stdout implicitly all along: Kernel.puts is
equivalent to $stdout.puts. Similarly, Kernel.warn writes to $stderr. The
reason for the existence of these global variables in addition to the
aforementioned constants is that by assigning another IO object to one of the
global variables, we can temporarily redirect it elsewhere. Then, if we want
to restore the original behaviour, we can assign the corresponding constant to
the variable.

puts "STDOUT" # Written to STDOUT

$stdout = STDERR

puts "STDERR" # Written to STDERR

$stdout = STDOUT

puts "STDOUT" # Written to STDOUT

From the command-line:

$ ruby stdout-redirection.rb

STDOUT

STDERR

STDOUT

$ ruby stdout-redirection.rb 2>/dev/null

STDOUT

STDOUT

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 337

Writing
To write to a stream, IO#print may be used. It takes any number of

arguments, which it converts to Strings before writing them to the receiver.
IO#puts is similar, but ensures that what it writes ends with a newline. An
idiomatic method for writing a single object to a stream is IO#<< because its
selector is polymorphic. All three methods are implemented in terms of
IO#write, as are most other methods that perform writing. #write takes a
single argument, writes it to the stream, then returns the number of bytes
written.

array = [3, 2, 1]

print array

Writes "[3, 2, 1]" to $stdout

puts array

Writes "3\n2\n1\n" to $stdout

$stderr.puts 2, 4, 6

Writes "2\n4\n6\n" to $stderr

proverb = "Ab igne ignem capere"

sez = "--Cicero"

print proverb, sez

Writes "Ab igne ignem capere--Cicero" to $stdout

puts proverb, sez

Writes "Ab igne ignem capere\n--Cicero\n" to $stdout

Kernel#p provides output suitable for debugging. It accepts any number of
arguments, which it converts with #inspect, then writes each of them to
$stdout separated by "\n".

killed_by = {

'Augustus' => nil,

'Tiberius' => nil ,

'Caligula' => {who: 'Praetorian Guard'},

'Claudius' => {who: 'wife'},

'Nero' => {who: 'himself'}

}

killed_by['Nero'][:who] = killed_by['Nero']

p killed_by.select{|*, killer| killer}

Writes to $stdout:

{"Caligula"=>{:who=>"Praetorian Guard"}, "Claudius"=>{:who=>"wife"}, "Nero"=>{:who=>{...}}}

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 338

Reading
The simplest way to read from a file is by supplying its name to IO.read. If

the file contains binary data, IO.binread should be used instead. Likewise,
IO#read and IO#binread read from their receiver, instead.

If parsing a binary file format, for example, you might treat a file as a
stream of bytes. To write a spell checker, you may think in terms of
characters. And to analyse a log file you'd think in terms of lines. Its still the
same stream, however we think of it, but working in the most appropriate
unit leads to clearer code. The key methods for reading from a stream are
summarised below. The methods in the Fetch Next column return the unit at
the current file position, which they then advance. If called at the end of a
stream, they return nil. By contrast, the methods listed in Fetch All
Remaining return all the units from the current position through to the end
of a stream. The Enumerate methods return an Enumerator, or if given a
block, yield each unit of the stream in turn.

Unit Fetch Next Fetch All Remaining Enumerate
Bytes IO#getbyte N/A IO#bytes

Characters IO#getc IO#read IO#chars

Codepoints N/A N/A IO#codepoints

Lines IO#gets IO#readlines IO#lines

The methods described above are all instance methods, so before use they
require that an IO object is created. When the only reason for instantiating
this object is to enumerate it, a more elegant approach is IO.foreach(fn),
which yields each line of the file named fn to a block, or returns an
Enumerator if the block is omitted.

Access Mode
A file is opened with a particular access mode which specifies the type of

action that may be performed on it. It is given as either a String or, less
commonly, a bitmask, as shown in the table below. The default access mode
is r.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 339

In Access mode specifiers, the access mode is presented as both a String
and the equivalent Bitmask. The Read? and Write? columns indicate whether
the opened file can be read from or written to, respectively. Truncate?
specifies that existing files will be truncated before use. Creates? specifies that
non-existent files will be created before use. Finally, Start Position is the
position in the file reading/writing starts from: Beginning is before the first
byte; End is after the last.

String Bitmask Read? Write? Truncates? Creates? Start
Position

r File::RDONLY ✔ ✖ ✖ ✖ Beginning
r+ File::RDWR ✔ ✔ ✖ ✖ 〃

w

File::WRONLY |

File::TRUNC |

File::CREAT

✖ ✔ ✔ ✔ 〃

w+

File::RDWR |

File::TRUNC |

File::CREAT

✔ ✔ ✔ ✔ 〃

a

File::APPEND |

File::WRONLY |

File::CREAT

✖ ✔ ✖ ✔ End.

a+

File::APPEND |

File::RDWR |

File::CREAT

✔ ✔ ✖ ✔ 〃

Access mode specifiers

Binary & Text Mode
An IO stream may be configured to use binary mode or text mode. These

mutually exclusive options determine what automatic modifications, if any,
Ruby will make to data read from, and written to, the stream. They have no
relationship to the access mode.

Binary mode is disabled by default. It must be enabled when reading a file
with an ASCII-incompatible external encoding. When enabled it has the
following effects:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 340

• Unless an external encoding has been specified explicitly, it is set to
ASCII-8BIT.

• Newline conversion is disabled.
• Transcoding is disabled unless both an internal and external encoding

have been specified.

Binary mode may be enabled when opening a stream by either including
the b modifier in the mode string, or supplying binmode: true for the options
Hash. It may be enabled for an existing stream with IO#binmode, and queried
with the IO#binmode? predicate.

Text mode defaults to on under Microsoft Windows, and off everywhere
else. Reading a file in text mode causes "\r\n" to be replaced by "\n", and
other occurrences of "\r" to be replaced by "\n". Writing a file in text mode
causes "\n" to be replaced with "\r\n" under Windows; having no effect on
other platforms.

Opening
IO.sysopen opens a given pathname and returns a corresponding file

descriptor. (Use the File class for a higher-level interface to this operation).
Optionally, it accepts an access mode as the second argument, and permission
bits as the third.

If a file is being created, its initial permissions may be specified as an
Integer; otherwise, this argument is ignored. On Unix-like systems, these
permissions bits are interpreted in the same fashion that chmod(1) interprets
octal mode arguments. For example, permissions of 0400 gives the user read
permission, and no permissions to anybody else. See Permissions for further
details.

Encoding String
IO methods that expect encoding names as arguments, often accept

encoding strings, which allow one or both of the external encoding and
internal encoding to be specified at once in one of the forms below.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 341

Both external and internal are names of encodings. The Inferred from BOM
column indicates that the external encoding is set to that specified by a BOM,
if present, otherwise to the named encoding.

Form External
Encoding

Internal
Encoding

Value
Inferred

from
BOM?

Value

external

external:-
external ✖ Encoding.default_internal

BOM|external

BOM|external:-
external ✔ Encoding.default_internal

external:internal external ✖ internal
BOM|external:internal external ✔ internal

:internal
Default
external

✖ internal

The forms the value of the encoding string may take

The BOM| prefix deserves a fuller explanation. The UTF-8, UTF-16BE,
UTF-16LE, UTF-32BE, and UTF-32LE encodings support the presence of a
byte-order mark: a special character occuring at the start of the stream which
indicates the byte order of the encoding. This can be used to distinguish
between the big-endian and little-endian forms of UTF-16, for example.
Prefixing one of the aforementioned encoding names with the case-
insensitive string BOM| causes the named encoding to be used if the stream
doesn’t contain a BoM; otherwise, the BoM is stripped from the stream and
the encoding that it specifies is used instead.

Initializing
An IO instance objectifies a given file descriptor. It may be initialized by

supplying this file descriptor as the first argument to IO.new. Optionally, a
mode string, or numeric access mode, can be provided as the second
argument, however this must agree with the access mode already associated

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 342

with the file descriptor. An options Hash may be provided as the final
argument.

IO.open accepts the same arguments, but also expects a block. It initializes
an IO object as before, yields it to the block, then ensures the stream is closed
when the block exits.

Mode String

The mode string is a concise way to specify options for opening a file. At
its simplest, it consists of only the access mode as a String, e.g. a mode string
of "r" opens a file in read-only mode. If the next character is b, it specifies
binary mode; if it is t , it specifies text mode. Finally, the external and/or
internal encodings may be specified as an encoding string.

In the table below, mode denotes one of the access modes given in the
Access Mode table. The Binary? and Text? columns indicates whether the
stream is in binary text mode, respectively. Both internal and external are
names of encodings.

Form Binary? Text? External Encoding Internal Encoding
mode ✖ ✖ Encoding.default_external Encoding.default_internal

modet ✖ ✔ 〃 〃
modeb ✔ ✖ ASCII-8BIT 〃
mode:external ✖ ✖ external 〃
modet:external ✖ ✔ 〃 〃
modeb:external ✔ ✖ 〃 〃
mode:external:internal ✖ ✖ 〃 internal
modet:external:internal ✖ ✔ 〃 〃
modeb:external:internal ✔ ✖ 〃 〃

The forms a mode string may take

For example, r:ascii reads from the beginning of a file, tagging the data it
reads as US-ASCII; a+:ascii:utf-8 opens the file for reading and appending,
transcoding from US-ASCII to UTF-8 when reading, and in the opposite
direction when writing.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 343

Options Hash

Alternatively, many methods that open files accept an options Hash as their
final argument. Class methods of IO that accept this Hash recognise an
:open_args key whose value is an Array of arguments for the underlying
open method; if this key is supplied, all others are ignored. In addition to the
keys listed below, those of the String#encode options Hash are also
recognised.

Key Value Default value Description

:mode

The
mode
string or
the
access
mode as
an
Integer.

r

Whether to
open the file
in read-only,
read-write,
or write-only
mode, and
whether to
truncate
existing files
or append to
them.

:textmode
true or
false

false

Whether to
perform
newline
conversion.

:binmode
true or
false

false

Whether to
treat the file
as a stream
of bytes.

:open_args Array []

Arguments
for
Kernel.open.

:perm Integer Platform-specific
The
permissions
the file

Options that may be specified as a Hash for certain methods that open files

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 344

Key Value Default value Description
should be
created with.

:external_encoding

Encoding

object or
encoding
name

Encoding.default_external

The external
encoding to
apply to the
stream.

:internal_encoding 〃 Encoding.default_internal

The internal
encoding to
apply to the
stream.

:encoding

Encoding
name or
two
names
separated
by a
colon.

default_external:default_internal

The external,
or external
and internal,
encodings to
apply to the
stream.

:autoclose
true or
false

true

Whether to
automatically
close the file
descriptor
when the IO

object is
finalised.

Open Flags
The access mode may also be given as an Integer formed by taking the

bitwise OR of one or more open flags, each of which is represented by a
constant in the File namespace. The available flags are explained below.

File::APPENDFile::APPEND

Opens the file in append mode. “If set, then all write operations write the
data at the end of the file, extending it, regardless of the current file
position. This is the only reliable way to append to a file. In append
mode, you are guaranteed that the data you write will always go to the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 345

current end of the file, regardless of other processes writing to the file.
Conversely, if you simply set the file position to the end of file and write,
then another process can extend the file after you set the file position but
before you write, resulting in your data appearing someplace before the
real end of file.” [Loosemore07, pp. 335–335] .

File::BINARYFile::BINARY

Puts the stream in binary mode.

File::CREATFile::CREAT

Creates the file if it doesn’t already exist. If the file already exists, this has
no effect unless File::EXCL is also given.

File::DSYNCFile::DSYNC

“… specifies that only normal data be synchronized after each write
operation, not metadata.” [Love07, pp. 40–40] . On Linux, this is
synonymous with File::SYNC.

File::EXCLFile::EXCL

When given with File::CREAT, an Errno::EXIST exception will be raised
if the file already exists. “This is used to prevent race conditions on file
creation.” [Love07, pp. 24–26] .

File:NOATIMEFile:NOATIME

Do not update the access time (atime) of the file. “This is used by
programs that do backups, so that backing a file up does not count as
reading it. Only the owner of the file or the superuser may use this bit.”
[Loosemore07, pp. 335–335] .

File:NOCTTYFile:NOCTTY

“If the named file is a terminal device, don’t make it the controlling
terminal for the process.” [Loosemore07, pp. 333–334] . (IO#tty?, or its
alias IO#isatty, can be used to determine whether the stream is a TTY).

File::NOFOLLOWFile::NOFOLLOW

If the pathname is a symbolic link, an Errno::ELOOP exception will be
raised. “Normally, the link is resolved, and the target file is opened. If
other components in the given path are links, the call will still succeed.
For example, if name is /etc/ship/plank.txt, the call will fail if

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 346

plank.txt is a symbolic link. It will succeed, however, if etc or ship is a
symbolic link, so long as plank.txt is not.” [Love07, pp. 24–26] .

File:NONBLOCKFile:NONBLOCK

“If possible, the file will be opened in nonblocking mode. Neither the
open() call, nor any other operation will cause the process to block
(sleep) on the I/O. This behavior may be defined only for FIFOs.”
[Love07, pp. 24–26] .

File:RDONLYFile:RDONLY

Opens the file for reading.

File:RDWRFile:RDWR

Opens the file for reading and writing.

File::RSYNCFile::RSYNC

“…specifies the synchronization of read requests as well as write requests.
It must be used with one of [File::SYNC] or [File::DSYNC]. As
mentioned earlier, reads are already synchronized—they do not return
until they have something to give the user, after all. The [File::RSYNC]
flag stipulates that any side effects of a read operation be synchronized,
too. This means that metadata updates resulting from a read must be
written to disk before the call returns.” [Love07, pp. 40–40] . On Linux,
this is synonymous with File::SYNC.

File:WRONLYFile:WRONLY

Opens the file for writing.

File::SYNCFile::SYNC

“The file will be opened for synchronous I/O. No write operation will
complete until the data has been physically written to disk; normal read
operations are already synchronous, so this flag has no effect on reads.”
[Love07, pp. 24–26] .

File::TRUNCFile::TRUNC

“If the file exists, it is a regular file, and the given flags allow for writing,
the file will be truncated to zero length. Use of [File::TRUNC] on a FIFO
or terminal device is ignored. Use on other file types is undefined.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 347

Specifying [File::TRUNC] with [File::RDONLY] is also undefined, as you
need write access to the file in order to truncate it.” [Love07, pp. 24–26] .

Buffering
“Buffering writes provides a huge performance improvement, and

consequently, any operating system even halfway deserving the mark
“modern” implements delayed writes via buffers.” [Love07, pp. 37–37] . Love
explains the Linux kernel’s approach-which is similar to that of other
operating systems-to write buffering as follows:

…when a user-space application issues a write() system call, the
Linux kernel performs a few checks, and then simply copies the data
into a buffer. Later, in the background, the kernel gathers up all of the
“dirty” buffers, sorts them optimally, and writes them out to disk (a
process known as writeback). This allows write calls to occur
lightning fast, returning almost immediately. It also allows the kernel
to defer writes to more idle periods, and batch many writes together.

—Love07, pp. 37–37

Further, and for the same reasons, Ruby maintains her own I/O buffer.
Therefore, before data is written to disk by Ruby, it passes first through her
buffers, and then those of the underlying operating system. The latter are
beyond the scope of this text, so we shall focus on the former from now on.

The IO methods for writing that we discussed above, are buffered-that is,
they pass through Ruby’s buffers. An exception is IO#syswrite, so shouldn’t
be used in conjunction with other methods that perform writing. To
understand why, consider a scenario where a given stream has ?a written to
it with IO#print, then ?b written to it with IO#syswrite, then ?c written to it
with IO#print. The first character written is buffered, the second is written
directly, and the third is buffered. When the stream is closed, Ruby flushes
her buffer, causing "ac" to be written. Therefore, the data is written out of
order: "bac".

Ruby’s buffer can be flushed manually with IO#flush. This causes the
contents of the buffer to be passed to the operating system, and the buffer to

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 348

be emptied. Alternatively, buffering can be disabled for a given stream by
setting IO#sync= to true; by default, it is false. This value can be queried
with IO#sync.

The operating system’s buffer can be flushed with IO#fsync, which ensures
both the data and metadata—e.g. file creation timestamps—associated with
the stream are written to disk. A faster alternative is IO#fdatasync because it
only flushes the data. Both methods wrap the eponymous system call, so if
that is not available an NotImplementedError is raised.

Reads are buffered by Ruby, too, by reading more data than the user
requests, and buffering the surplus. Accordingly, when a stream is read from
then duplicated or reopened, its replica may return data out of order or report
negative values for IO#pos. See [Ruby-core-28281] for more details.

Buffered reads make possible what Loosemore et al. term unreading:
[Loosemore07, pp. 241–241]

Using stream I/O, you can peek ahead at input by first reading it
and then unreading it (also called pushing it back on the stream).
Unreading a character makes it available to be input again from the
stream, by the next call to [an] input function on that stream.

—Loosemore07, pp. 241–241

Two methods are provided for this purpose: IO#ungetc and IO#ungetbyte.
Both expect an argument-characters for the former; bytes for the latter-which
they unread. Subsequent buffered reads from the stream will return the
unread characters/bytes in reverse chronological order before reading new
data from the stream.

Closing
Once an IO stream is finished with, it should be closed. This ensures that

Ruby’s write buffer is flushed, and the associated file-descriptor is released
back to the operating system. A stream is closed for reading and writing with
IO#close. Subsequent attempts to read from or write to a closed stream
causes an IOError to be raised, so the IO#closed? predicate is available for

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 349

testing a stream. A duplex stream may also be closed just for writing or just
for reading, using IO#close_write and IO#close_read, respectively.

$stdin.closed? #=> false

$stdin.close #=> nil

$stdin.gets #=> IOError

pipe = IO.popen(ENV['SHELL'],'r+')

pipe.close_write #=> nil

pipe.closed? #=> false

pipe.close_read #=> nil

pipe.closed? #=> true

When an IO object is finalised its auto-close flag determines whether the
underlying file descriptor is closed automatically. By default, this flag has the
value true, but it can be set explicitly with IO#autoclose=, and queried with
IO#autoclose?.

On a Unix-based system a process created by Kernel.exec, Kernel.fork, or
IO.popen inherits the file descriptors of its parent. Depending on the
application, this may constitute an information leak in that the child is able
to access data that he shouldn’t have access to. If given a true argument,
IO#close_on_exec= ensures that its receiver is closed before the new process
is created; otherwise, it does not. IO#close_on_exec? returns the status of this
flag as either true or false. On systems that don’t support this feature, these
methods raise NotImplementedError.

open('/tmp/f','w'){|f| f << 'sekrit'}

f = open('/tmp/f')

f.close_on_exec? #=> false

exec("ruby -e 'p IO.open(#{f.fileno}).read'")

Prints "sekrit"

open('/tmp/f','w'){|f| f << 'sekrit'}

f = open('/tmp/f')

f.close_on_exec = true

f.close_on_exec? #=> true

exec("ruby -e 'p IO.open(#{f.fileno}).read'")

Prints:

#-e:1:in `initialize': Bad file descriptor (Errno::EBADF)

from -e:1:in `open'

from -e:1:in `<main>'

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 350

Positions & Seeking
Beck et al. explain that an attribute of a file’s structure is “the position of

the read/ write pointer at which the next I/O operation will be carried out.
This value is updated by every I/O operation and by the system calls lseek
and llseek.” ([Beck98, pp. 41–43] . Ruby exposes the current position in an
I/O stream with IO#pos as the offset in bytes. To seek to a given position in a
stream, one can assign the new, Integer, offset to IO#pos=. For more control
over seeking, use IO#seek(pos, origin), where pos is a byte offset specified
as an Integer, and origin is one of the values given below.

IO::SEEK_CURIO::SEEK_CUR

The current position is set to its current value plus pos, which can be
negative, zero, or positive. If pos is zero the current position is
unchanged.

IO::SEEK_ENDIO::SEEK_END

The current position is set to the length of the file plus pos, which can be
negative, zero, or positive. If pos is zero the current position is set to the
end of the file.

IO::SEEK_SETIO::SEEK_SET

The current position is set to pos. If pos is zero the current position is set
to the beginning of the file.

Ruby also keeps track of the current line number in a stream. The line-
orientated reading methods increment the line number when they encounter
the separator character. It initially has a value of zero, and its current value
may be retrieved with IO#lineno, or set explicitly with IO#lineno=. The
current position and line number for a given stream may be reset to zero
with IO#rewind.

As described in the introduction to this chapter, a position past the end of a
stream is termed End of File, or EoF. Depending on the method, reading from
a stream at EoF causes either an EoFError exception to be raised or nil to be
returned. If a stream is open for reading, this condition can be tested for with
the IO#eof? predicate.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 351

Pipes
A pipe is a unidirectional3, or half-duplex, inter-process communication

channel. It comprises two file descriptors: one of which is open for reading,
and the other, writing. Data written to the write end of a pipe can be read
from the read end on a first-in-first-out basis.

A pipe is created in Ruby using IO.pipe. It returns a two-element Array of
IO objects, the first of which is the read end, and the second the write end. If
IO.pipe is given a block, it is passed both IO objects as arguments, and
ensures they are closed when the block exits. The write end of the pipe has its
sync mode set automatically such that Ruby does not buffer writes; the read
end will block until the write end has been closed for writing. However, as W.
Richard Stevens notes “A pipe in a single process is next to useless.”
[Stevens05, pp. 428–429] ; the Processes & Signals chapter discusses how pipes
are used to communicate between processes.

r, w = IO.pipe

w << 'secret'

w << ' message'

w.close_write

r.read #=> "secret message"

Asynchronous & Multiplexed
By default, I/O operations are blocking (synchronous): they do not return

control to their caller until finished. This can be problematic given the
performance disparity between CPUs and devices such as hard disks and
routers. An I/O-bound program may spend the majority of its time idly
waiting. Conversely, non-blocking (asynchronous) operations return
immediately. They try to perform the operation as normal, but if doing so
would require blocking, they signal an error and return.

3. Bi-directional pipes also exit in some systems. POSIX only requires
unidirectional semantics, however, so it is there that we shall focus.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 352

We have already seen a partial solution to this problem in the
File::NONBLOCK flag taken by Kernel.open. IO#read_nonblock(max) builds
upon this approach by setting the NONBLOCK flag for the file descriptor, then
attempting to read at most max bytes without blocking. If an optional second
argument is supplied, it is a String to which the received data is appended.
This method works as follows:

1. If there is data in Ruby’s read buffer, up to max bytes are returned.
2. If the stream can be read from without blocking, at most max bytes

are read and returned.
3. If IO#read would have raised an exception when attempting to read

from this stream, the same exception is raised.
4. Otherwise, either Errno::EWOULDBLOCK or Errno::EAGAIN is raised to

indicate that the stream can not be read without blocking. These two
exceptions are virtually synonymous4, so Ruby mixes in
IO::WaitReadable to both, allowing rescue IO::WaitReadable to
handle either.

5. If EoF is reached, EOFError is raised.

The principle, then, is that if #read_nonblock raises Errno::EWOULDBLOCK or
Errno::EAGAIN, the program can attend to other tasks before it retries the call.
IO#readpartial is identical, except it does not set the NONBLOCK flag on the
file descriptor: if blocking is unavoidable, it blocks.

IO#write_nonblock(string) is similar to #read_nonblock. It flushes the
write buffer, then tries to write string to the receiver, raising Errno::EAGAIN

or Errno::EWOULDBLOCK if the write would have blocked. It returns the
number of bytes written, which should be compared to string.bytesize to
detect partial writes. On Windows, some IO objects cannot be used in this
way, so #write_nonblock raises Errno::EBADF.

Given a collection of IO objects, how does a program know which are
available for writing or reading? Kernel.select is one answer. It accepts up
to three Arrays of IO objects: those in the first Array are monitored for
reading, the second, for writing, and the third, for errors. It returns a three-
element Array of the same configuration containing only the IO objects that
are ready for their respective operation. If a fourth argument is given, it is a

4.POSIX allows both to have the same value.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 353

timeout: if none of the streams are ready in the given amount of seconds
Kernel.select returns nil.

pipes = 5.times.map{ IO.pipe }

readers, writers = pipes.map(&:first), pipes.map(&:last)

Thread.new do

writers.shuffle!

while w = writers.pop

sleep(w.to_i / writers.size) and w << "#{w.to_i}"

w.close

end

end.run

until readers.empty? do

ready = select(readers, writers, [], 1) or abort "Got bored"

ready.first.each do |box|

begin

print "#{box.readline} (wait: #{ready[1].size}) "

rescue EOFError

readers.delete(box)

end

end

end

12 (wait: 4) 10 (wait: 3) 4 (wait: 2) 8 (wait: 1) Got bored

Manipulating File Descriptors
IO#fcntl(cmd, arg) performs cmd on the receiver, where cmd is an

platform-specific Integer. The Fcntl module in the standard library provides
constants corresponding to some of the more common commands. If cmd
requires an argument, it should be supplied as arg.

Command Argument Returns Description

F_DUPFD Integer

Positive
Integer;
-1 on
error

Find the lowest numbered available file
descriptor greater than or equal to arg
and make it a copy of the receiver’s file
descriptor. If arg is omitted, it is

IO#fcntl commands with corresponding constants defined in the Fcntl module

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 354

Command Argument Returns Description
assumed to be equal to the receiver’s
file descriptor.

F_GETFD N/A
File
descriptor
flags

Retrieves the associated file descriptor
flags. Currently, these are either 0 or
FD_CLOEXEC. These flags may be set with
F_SETFD.

F_GETFL N/A Integer

Returns the file status flags, i.e. a
bitwise OR of O_APPEND, O_ASYNC,
O_DIRECT, etc. O_ACCMODE is a bitmask
for extracting the access mode from
these flags.

F_GETLK
struct

flock *
N/A

The argument describes a lock the caller
wishes to place on the file. If this is
possible, the l_type field of the struct is
set to Fcntl::F_UNLCK; otherwise the
struct is updated with details of the
current lock holder.

F_SETFD
FD_CLOEXEC

or 0
0; -1 on
error

Sets the file descriptor flags to
arg.When arg is FD_CLOEXEC, this is
equivalent to #close_on_exec=true.

F_SETFL Integer
0; -1 on
error

Set the file status flags to arg

F_SETLK
struct

flock *

0; -1 on
error.

When the struct’s l_type field has the
value F_RDLCK or F_WRLCK, acquires the
lock; when it has the value F_UNLCK,
releases the lock.

F_SETLKW
struct

flock *

0; -1 on
error.

Behaves like F_SETLK, except when a
conflicting lock is held this call blocks
until the lock is released or a signal is
caught.

require 'fcntl'

$stdout.fcntl(Fcntl::F_DUPFD) #=> 3

f = open('/tmp/file', ?w)

f.fcntl(Fcntl::F_SETFD, Fcntl::FD_CLOEXEC)

f.close_on_exec? #=> true

access_mode = f.fcntl(Fcntl::F_GETFL) & Fcntl::O_ACCMODE

access_mode == Fcntl::O_WRONLY #=> true

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 355

f.fcntl(Fcntl::F_SETFL, access_mode | Fcntl::O_APPEND)

f.fcntl(Fcntl::F_GETFL) & Fcntl::O_APPEND == Fcntl::O_APPEND #=> true

Unfortunately, the locking commands are awkward to use from Ruby
because they require arg to be a binary String representing a specific C
struct… If you insist, consult man 2 fcntl and String#unpack.

In a similar vein, IO#ioctl(cmd, arg) is an esoteric way to send
commands to hardware devices. cmd is the Integer associated with the
command, and arg is its optional argument. This is utterly unportable
because commands and their values are typically specific to particular
operating systems, drivers, and hardware. For example, on Linux man 2

ioctl_list provides a partial list of values for cmd. One of them is
CDROMEJECT, which on my system has the value 0x00005309 and doesn’t
accept arguments. When sent to a CD-ROM drive, it causes the disc to eject.
When arg is an integer it can be supplied as an Integer, otherwise
String#unpack will be required to craft a String resembling the expected
data structure. The example that follows animates the LEDs corresponding to
my Num Lock, Caps Lock, and Scroll Lock keys. To have any
chance of running it on another system, you will at least need to adjust the
value of KDSETLED.

Value of KDSETLED; see `man 2 ioctl_list` or `grep` /usr/include for

the corresponding value on your system

KDSETLED = 0x4B32

def flash n

@tty ||= open("/dev/console") # You'll probably need to be root

@tty.ioctl(KDSETLED, n)

sleep 0.1

end

at_exit { flash 0 }

loop do

(0..6).each do |n|

[n, ~n, n].each{|m| flash m }

end

end

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 356

ARGV
The command-line arguments given to a program are available as elements

of the ARGV Array. If ARGV is empty, no arguments were provided. Therefore,
unlike C, ARGV[0] does not hold the program name, which is available as $0
instead. This Array can be modified, so programs may remove an element
after they have processed it.

#!/usr/bin/env ruby

argv.rb

puts ARGV.size

puts ARGV.first

puts "#$0: #{ARGV}"

run@paint → ruby -w argv.rb -n 3 "bags full"

3

-n

argv.rb: ["-n", "3", "bags full"]

run@paint → ln -s argv.rb argv

run@paint → chmod +x argv

run@paint → ./argv

0

nil

"./argv: []"

run@paint → ./argv -n 3 "bags full"

3

-n

./argv: ["-n", "3", "bags full"]

ARGF
ARGF is an IO-like stream abstracting the contents of a program’s file

arguments, representing the concatenation of their contents. An assumption,
therefore, is that all arguments in ARGV are filenames; the remainder should
have been removed.

Each file is read from in the order they were specified. The filename of the
file currently being read is available as ARGF.filename, while $. holds the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 357

number of the last line read. ARGF.skip advances to the next file, and is a no-
op if no more files remain.

In-place mode allows the files in ARGF to be modified in-place, possibly
after backing them up. It sets $stdout to the file being read from ARGF, so
Kernel methods such as puts write their output to this file. It is enabled by
either giving the interpreter an -i extension switch, or setting
ARGF.inplace_mode= to extension. When the argument to -i is omitted, or
extension is the empty String, no backups are made. Otherwise, before each
file is modified it is copied to a filename formed by appending extension to it.

If ARGV is empty, ARGF refers to $stdin instead. The current filename is set
to -.

#!/usr/bin/env ruby

argf.rb

p ARGV.to_a

p ARGF.read

run@paint → for l in "a" "b" "c"; do echo $l > $l; done

run@paint → ruby argf.rb # Hangs; blocking on STDIN

run@paint → ruby argf.rb < a

[]

"a\n"

run@paint → ruby argf.rb a b < c

["a", "b"]

"a\nb\n"

run@paint → ruby argf.rb --help

["--help"]

/tmp/argf.rb:4:in `read': No such file or directory - --help (Errno::ENOENT)

from /tmp/argf.rb:4:in `<main>'

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 358

PROCESSESPROCESSES
A process is an instance of a computer program. We use the term current

process to refer to an instance of Ruby running your program. The semantics
of processes are partly platform-specific. Ruby abstracts these differences
where possible, but for the best experience use a UNIX-based system such as
GNU/Linux or Mac OS.

Executing & Forking
A process is often created by executing a program: loading a specific

binary program into memory. The program is identified by a filename which
is either absolute or relative to a directory in the user’s path1 . Broadly, Ruby
provides four approaches for executing programs, which are summarised in
the table below. Alternatively, Kernel.fork creates a new process by
duplicating the current process. The remainder of this section explains these
methods in detail.

Method Returns Blocks Until
Process Exits?

Kernel.` The process’s output Yes

Kernel.exec
Nothing on success (replaces the current
process with the new process)

N/A

Kernel.system
Whether the process executed
successfully

Yes

Kernel.spawn The process’s PID No

Backticks

A double-quoted string delimited with grave accents (U＋0060) characters,
or “backticks”, executes its contents as an operating system command and
returns the output. It runs the command via a shell, so wildcard expansion

1. That is, his search path: a list of directories which contain program files.
On UNIX-based systems, this is the value of the environment variable $PATH.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 359

and similar features are available. This is implemented with the Kernel.`

method, which can be redefined to alter these semantics. Alternative
delimiters can be used with the corresponding %xdelimiter…delimiter

construct, which follows the same rules as %Q.

`date` #=> "Tue Feb 16 04:01:10 GMT 2010\n"

file = '/etc/fstab'

%x<ls -all #{file}>.chomp

#=> "-rw-r--r-- 1 root root 753 2009-11-19 13:36 /etc/fstab"

Kernel.exec

Kernel.exec replaces the current process image with a new process image.
Accordingly, it will not return if successful; if it fails, SystemCallError is
raised. If a single argument is provided, it is a String containing a command
line that should be executed by the shell—/bin/sh on Unix-like systems; the
value of the RUBYSHELL or COMPSEC environment variables otherwise—so is
subject to shell expansion.

exec("no-such-command")

#=> Errno::ENOENT

exec("ls /usr/share/dict/* | wc")

5 5 172

If multiple String arguments are given, the first is the name of a command
in the user’s path, and the remainder are the command’s arguments. The
command may be either a binary, or an executable script with a shebang. It is
executed by a system call from the exec(3) family2, so neither the command
or arguments are subject to shell expansion. If the command name is given as
an Array of the form [name, argv0], name is the command’s name, and
argv0 is the filename associated with name3.

2. A consequence is that open file descriptors are passed to the new process.
To avoid this, use IO#close_on_exec= or the :close_others key in the options
Hash

3. Changing argv0 is useful because some programs, such as ps(1) and
top(1), will use it in place of the command name, while others, such as
csh(1), treat it specially.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 360

exec("uname", "-s")

Linux

In either of these forms, the new process’s environment may be modified
by providing a Hash of environment variables before the first argument. An
environment variable is created for each String key, or unset if the
corresponding value is nil. An options Hash may be supplied for the final
argument.

script = "/tmp/script.rb"

open(script, ?w){|f| f << "#!/usr/local/bin/ruby\np ENV['GLARK']"}

File.chmod 0755, script

exec({'GLARK' => 'always'}, script)

Prints "always"

Kernel.system

Kernel.system interprets its arguments in the same way as exec, but
executes the command in a subshell then returns. Its return value is true if
the command executed successfully, false if the command’s exit status was
non-zero, or nil if the command failed to execute.

system('git init') #=> true

system(*%w{gpg -r runrun@runpaint.org --encrypt file}) #=> true

system("cat glark") #=> false

cat: glark: No such file or directory

system("xzxzxzxz") #=> nil

Kernel.spawn

Kernel.spawn, and its alias Process.spawn, also interpret their arguments
in the same way as exec, but execute the command in a subshell then return
without waiting for the command to complete. Their return value is an
Integer holding the PID of the new process.

pid = spawn('cat /dev/urandom > /dev/null') #=> 24206

`ps --no-headers #{pid}`

#=> "24206 pts/1 S+ 0:00 sh -c cat /dev/urandom > /dev/null\n"

system("kill #{pid}") #=> true

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 361

Kernel.fork

On UNIX-based systems4, a new process may also be created by
duplicating5—or forking—the current process. If this is successful, both
processes continue to run as normal.

Ruby implements forking with Kernel.fork, and its alias Process.fork.
These methods raise a NotImplementedError on platforms such as Microsoft
Windows that don’t implement the fork(2) system call. If given a block, that
block is run in the subprocess, then the subprocess terminates with an exit
status of 0.

puts "Parent: #{Process.ppid} -> #{Process.pid}"

fork do

puts "Child: #{Process.ppid} -> #{Process.pid}"

end

Prints:

Parent: 6653 -> 16743

Child: 16743 -> 16745

If the block is omitted, fork returns the PID of the child to the current
process, and nil in the child process.

print "\nIn #{(pid = fork) ? "parent (#{pid})" : "child (#{Process.pid})"}: "

2.times{|i| print "#{i} "}

Prints:

#

In parent (24225): 0 1

In child (24225): 0 1

4. Typically, forking is how UNIX executes all programs: first it forks, then in
the new process it uses the execve(2) system call—provided by Ruby as
Kernel.exec—to replace this process with the result of executing the
program.

5. The new process is not identical to the current process—an obvious
difference is that the new process has a different PID—but the differences are
minor; for details, consult your system manuals for fork(2).

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 362

In both examples above, the child process may become a zombie; see Status
for how to avoid this.

IO.popen

IO.popen(cmd, mode='r') executes a command, cmd, as a subprocess,
opening a pipe to this subprocess’s standard input and output streams, which
it returns as an IO object. The default access mode of the pipe is "r", but this
may be overridden with the mode argument.

If cmd is a String it names a command in the user’s path, and is subject to
shell expansion. If it is a "-", and the platform supports forking, the current
process forks: an IO pipe connected to the child’s standard input and output
streams is returned to the parent; nil is returned to the child.

Otherwise, cmd is an Array of Strings, the first of which specifies the
command name; the remainder, its arguments. The shell is bypassed, so none
of these Strings are subject to shell expansion. If the first element of this
Array is a Hash, it specifies the names and corresponding values of
environment variables that should be set in the subprocess. An options Hash
may be supplied as the last element of this Array.

If a block is supplied, Ruby’s end of the pipe is passed to it as a parameter,
then closed when the block exits. $? is set to the exit status of the subprocess,
and the value of the block is returned.

When a block is supplied along with a cmd of "-", Ruby forks, running the
block in both processes. In the parent process the block is passed an IO pipe
connected to the child’s standard input and output streams; in the child
process the block is passed nil.

Kernel.open("|cmd", mode='r') behaves like IO.popen(cmd, mode='r'),
when cmd is a String. Likewise, Kernel.open("|-", mode='r') behaves like
IO.popen("-", mode='r')

In all of these cases, the process ID of the subprocess may be retrieved
with IO#pid.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 363

Options Hash

exec, system, spawn, and IO.popen all accept an options Hash as their last
argument. It may contain any of the following keys.

Key Default Value Description

:unsetenv_others false
If true clears the environment variables
not named in the env Hash

:pgroup nil

If true or 0, make a new process group;
if an Integer join the process group
with that ID; if nil, don’t change the
process group.

:rlimit_resource Process.getrlimit(resource)

Where resource is a resource name
recognised by
Process.setrlimit/Process.getrlimit,
sets that resource to the given value. If
the value is an Array, its first element is
the new soft limit, and its second is the
new hard limit.

:chdir Dir.pwd

The value is a String naming the
directory to change to before invoking
the command.

:umask File.umask

The value is an Integer specifying the
new value of the process’s file creation
mask, or umask.

:in STDIN
Redirects the standard input stream to
the given stream.

:out STDOUT
Redirects the standard output stream to
the given stream.

:err STDERR
Redirects the standard error stream to
the given stream.

Integer N/A
When the key is an Integer, it is
interpreted as a file descriptor to
redirect to the given stream.

IO N/A
When the key is an IO object, its file
descriptor is redirected to the given
stream.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 364

Key Default Value Description

Array N/A

Each element is a file descriptor
specified in any of the formats listed
above. They are all redirected to the
given stream.

:close_others
true for system and exec;
false otherwise.

If true, the process does not inherit its
parent’s file descriptors; otherwise it
does.

The options that redirect an I/O stream may be given a value in any of the
following formats.

:in:in

Standard input

:out:out

Standard output

:err:err

Standard error

StringString

File descriptor of open(string, ?w)

[String][String]

As above, but with a mode of File::RDONLY

[String, Integer][String, Integer]

As above, but with the open mode given by the second argument

[String, Integer, Integer][String, Integer, Integer]

As above, but with the open permissions given by the third argument

:close:close

Close this file descriptor

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 365

Terminating
The current process may be terminated with Kernel.exit(status=1). If

exit is used within a begin block, it raises a SystemExit exception which may
be caught by a corresponding rescue clause. Otherwise, it terminates the
process with exit(2), using status as the exit status. If status is true, it has
the value 0; if false or omitted, it has the value 1. Prior to termination, exit
runs any at_exit functions or object finalisers. Kernel.exit! is identical to
exit except it bypasses both at_exit functions and finalisers.

Kernel.abort(msg=nil) displays the optional message on the standard
error stream then terminates the current process. It is equivalent to
$stderr.puts msg—if msg is given—then exit(false).

Environment
ENV provides Hash-like access to the current process’s environment

variables. ENV[var] retrieves the value of the environment variable named
var; ENV[var]=value sets its value to value. In both cases var is a String. If
value is nil, the environment variable is deleted.

Status
POSIX systems record the status of stopped and terminated processes as a

16-bit integer. The lower 8 bits are the process’s exit status, i.e. the value
returned to its parent; the higher bits are platform-dependent. The status is
encapsulated by a Process::Status object.

Kernel.` and Kernel.system set the global variable $? to the
Process::Status object corresponding to the command they executed.
Methods such as exec, fork, and spawn, cannot set $? because they return
before the command has terminated. To retrieve the Process::Status object
associated with such processes, we must first wait for them to exit.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 366

Waiting

Process.wait waits for any child process to exit, then returns its PID. $? is
set to the corresponding Process::Status object. Process.wait2 also waits
for any child process to exit, but returns an Array comprising its PID and
Process::Status object. Both methods raise a SystemError if there aren’t any
child processes.

Process.waitall waits for all child processes to exit, then returns an Array

of [pid, status] pairs, where pid is the process’s PID, and status its
Process:Status object. If there are no child processes, an empty Array is
returned.

Process.waitpid(pid, flags=0) waits on the child process described by
pid to exit, then returns its PID. Process.waitpid2(pid, flags=0) does
likewise, but returns an Array comprising the PID and corresponding
Process::Status object. Both methods interpret pid as follows:

pid Semantics
< −1 Any child whose process group ID equals the absolute value of pid
−1 Any child
0 Any child whose process group ID equals that of the current process.
> 0 The child with the PID of pid.

flags is either 0, or a logical OR of the following constants. Some platforms
may not support these flags.

Process::WNOHANGProcess::WNOHANG

The method will not block if status is not immediately available for one
of the specified child processes.

Process::WUNTRACEDProcess::WUNTRACED

The status of any specified child processes that are stopped, but whose
status has not been reported since they stopped, will also be reported.

A child process that is not waited on may become a zombie—remaining in
the process table in case somebody wants to retrieve its status.
Process.detach(pid) offers a solution by running a background thread to

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 367

monitor the status of pid, then reap it—i.e. remove the process from the
process table—when terminated. It returns the Thread object.

Process::Status

If a process has exited, Process::Status#exitstatus returns its exit status
as an Integer byte. If it exited because of a signal, Process::Status#termsig
returns the signal number; otherwise it returns nil. If the process was
stopped by a signal, Process::Status#stopsig returns the signal number;
otherwise it returns nil. Process::Status#pid returns the PID of the
corresponding process. In addition, the following predicates are defined:

Process::Status#coredump?Process::Status#coredump?

Returns true if the process generated a coredump when it terminated;
false otherwise.

Process::Status#exited?Process::Status#exited?

Returns true if the process terminated normally; false otherwise.

Process::Status#signaled?Process::Status#signaled?

Returns true if the process terminated due to the receipt of a signal
which was not caught; false otherwise.

Process::Status#stopped?Process::Status#stopped?

Returns true if the process is currently stopped; false otherwise. Only
meaningful if the Process::WUNTRACED flag was given to waitpid or
waitpid2.

Process::Status#success?Process::Status#success?

Returns true if the process exited normally, false if it exited abnormally,
and nil if it hasn’t exited.

A Process::Status object may also be treated as a collection of bits:
Process::Status#to_i returns the status as an Integer;
Process::Status#&(n) performs a logical AND of the bits with n; and
Process::Status#>>(n) shifts the bits right by n places.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 368

Daemons
A daemon is a process that runs in the background—rather than under the

direct control of a user—to provide a service for other programs.
Process.daemon(keep_dir=false, redirect=false) detaches the current
process from its controlling terminal, then runs it in the background. The
process’s working directory is set to / unless keep_dir is true. If redirect is
true, the process’s standard input, output, and error streams are all redirected
to /dev/null. If the process is successfully daemonised, this method returns 0;
otherwise an Errno exception is raised.

This method uses the daemon(3) syscall if its available, or forks then calls
Process.setssid. On platforms with neither option available, a
NotImplementedError is raised.

Scheduling Priorities
On platforms that support the getpriority(2) and setpriority(2) system

calls, the scheduling priority associated with a process, process group, or user,
may be obtained and set. A priority is an Integer between −20 and 19, which
defaults to 0. Lower priorities cause more favourable scheduling, but only the
superuser may decrease a priority.

Process.getpriority(which, who) returns the most favourable priority
associated with the specified processes. Process.setpriority(which, who,

prio) sets the priorities of all the specified processes to prio, returning 0.
which is a constant describing the type of priority, who is an Integer

identifying an instance of that type, and prio is an Integer. If who is 0 it
refers to the current instance of that type, as shown below.

which who who = 0
Process::PRIO_PROCESS

(process)
Process ID Calling process

Process::PRIO_PGRP (process
group)

Process group
ID

Process group of calling
process

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 369

which who who = 0

Process::PRIO_USER (user) User ID
Real user ID of calling
process

Resource Limits
On platforms that support the getrlimit(2) and setrlimit(2) system

calls, Process.getrlimit(resource) and Process.setrlimit(resource,

soft, hard) may be used to obtain and set, respectively, resource limits.

The resources supported by Ruby are listed below. Those supported by
your platform have a corresponding constant defined named
Process::RLIMIT_name, where name is the resource’s name. Both
Process.setrlimit and Process.getrlimit accept resource as a resource
name—given as a String or Symbol—or the value of the corresponding
constant.

Name Platform Description

AS

SUSv3,
NetBSD,
FreeBSD,
OpenBSD

Limits the maximum size of the process’s address
space, in bytes. If the stack expands beyond this
limit, the process is sent the SIGSEGV signal.

CORE SUSv3
Limits the maximum size of core files, in bytes. If
0, they are never created; otherwise, they’re
truncated to this size.

CPU SUSv3
Limits the maximum CPU time the process can
consume, in seconds. If a process overruns it is
sent the SIGXCPU signal.

DATA SUSv3
Limits the maximum size of process’s data
segment and heap, in bytes.

FSIZE SUSv3
Limits the maximum file size a process may
create, in bytes. If the process expands a file
beyond this limit, it is sent the SIGXFSZ signal.

MEMLOCK
BSD, GNU/
Linux

Limits the maximum number of bytes a process6

can lock into memory.

6.Processes with the CAP_SYS_IPC capability, effectively root processes, are
exempt.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 370

Name Platform Description

MSGQUEUE GNU/Linux
Limits the maximum number of bytes allocated
for POSIX message queues.

NICE GNU/Linux
Limits the maximum number7 to which a process
can lower its nice value.

NOFILE SUSv3
Limits the maximum number, less 1, of file
descriptors the process may have open.

NPROC
BSD, GNU/
Linux

Limits the maximum number of processes the
user may have running at any given time.

RSS

BSD, GNU/
Linux ~<=
2.4

Limits the resident set size (maximum number of
pages the process may have resident in memory).

RTPRIO GNU/Linux
Limits the maximum real-time priority level a
process8 may request.

RTTIME GNU/Linux
Limits the CPU time a process scheduled under a
real-time policy may consume without making a
blocking system call, in microseconds.

SBSIZE
NetBSD,
FreeBSD

Limits the maximum size of socket buffer usage
for this user, in bytes.

SIGPENDING GNU/Linux
Limits the maximum number of signals that may
be queued for this user.

STACK SUSv3
Limits the maximum size of a process’s stack, in
bytes. If a process’s stack grows beyond this
point, it is sent a SIGSEGV signal.

A resource has both a soft limit and a hard limit. The hard limit is a ceiling
on the soft limit, so may only be set by privileged processes. Either limit may
be set to 0 or :INFINITY/Process::RLIM_INFINITY, which disable the resource
and remove all limits on the resource, respectively. A process inherits the
limits of its parent.

Process.getrlimit returns an Array whose first element is the soft limit of
resource, and its last, the hard limit of resource. Process.setrlimit sets the
soft limit of resource to soft, and, if permitted, the hard limit of resource to
hard; if hard is omitted, it has the value soft.

7.Since a nice value, n, may be negative, this value is interpreted as 20 − n.
8.Processes with the CAP_SYS_NICE capability, effectively root processes, are

exempt.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 371

IDs
On UNIX-like systems, users, processes, and groups are associated with

various IDs. In order to explain how these can be manipulated via methods of
the Process module, some background theory is necessary…

When a process is invoked it is allocated a process ID (hereafter: PID) by
which it can be uniquely identified. The PID of the current process is
returned by Process.pid. Every process, other than init, has a parent: a
process which spawned it. The parent’s PID is returned by Process.ppid. On
Windows, this always returns 0.

A user, identified by a user ID (hereafter: UID), is a member of at least one
group, each of which is identified by a group ID (hereafter: GID). When a
user is a member of multiple groups, one is designated his primary group9,
and the remainder his supplementary groups. A user’s GID is the GID of his
primary group. Every process is also associated with a UID and GID. When a
user logs in, the UID and GID of his login shell are set to his UID and GID,
respectively. Normally a process inherits the UID and GID of its parent, so
the processes invoked by a user will also be associated with his UID and GID.
The UID of the current process is returned by Process.uid, and may be set
with Process.uid=. Likewise, the GID of the current process may be retrieved
and set with Process.gid and Process.gid=, respectively.

Processes are associated with a list of supplemental groups in much the
same way. A user’s login shell is associated with his supplementary groups,
which are then inherited by the processes he creates. Process.groups returns
an Array of GIDs for the current process’s supplementary groups.
Process.groups= is given an Array of GIDs or group names, with which it
sets the process’s supplementary group IDs. The Arrays of GIDs must not
contain more than 32 elements. This limit can be increased, up to a maximum
of 4096, with Process.maxgroups=. The current limit is returned by
Process.maxgroups. Process.initgroups(user, group) initialises the list of
supplementary groups from user’s, and adds to this set group. user is a
username given as a String, and group is a GID given as an Integer.

9. This is the group listed alongside a user’s username in /etc/passwd.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 372

A process is also associated with an effective user ID (hereafter: EUID) and
an effective group ID (hereafter: EGID). Initially, the EUID has the same value
as the UID, and the EGID has the same value as the GID. However, if the
mode of an executable file has its setuid (a contraction of set user ID) and/or
setgid bit set, the EUID or EGID, respectively, of the process is that of the
file’s owner/group. Before the EUID/EGID are set, the current value is saved
in order to determine what EUIDs/EGIDs the user may switch to. For
example, if a file was owned by user zach and had its setuid bit set, when
user zoe executed it the process would have a UID and GID corresponding to
her UID and GID, an EGID corresponding to her GID, but an EUID with the
value of zach’s UID. The EUID and EGID of the current process are returned
by Process.euid and Process.egid, respectively, and set with Process.euid=

and Process.egid=, respectively.

For the purposes of job control, a process is assigned a process group. This
allows signals to be sent to a group of processes at once. A process group also
has an ID (hereafter: PGID), which is initially that of its leader. The PGID is
returned by Process.getpgrp, and the PGID of an arbitrary process may be
retrieved with Process.getpgid(PID). Process.getpgid(0) is equivalent to
Process.getpgrp. The PGID of the current process may be set to its PID with
Process.setpgrp, while Process.setpgid(PID, PGID) sets the PGID of the
process with a PID of PID to PGID. If either value is 0, it implies the value of
this attribute for the current process, i.e. Process.setpgid(0,0) is equivalent
to Process.setpgrp.

A session is a collection of process groups. The session ID (hereafter: SID)
is the PID of the session leader. “Sessions arrange a logged-in user’s activities,
and associate that user with a controlling terminal, which is a specific tty
device that handles the user’s terminal I/O.” [Love07, pp. 154–155] .
Process.setsid “creates a new process group inside of a new session, and
makes the invoking process the leader of both”, returning the new SID of the
calling process. [Love07, pp. 156–157] However, this method will raise
Errno::EPERM if the calling process is already a process group leader.

Process::GID

The Process::GID module provides a higher-level interface to GIDs.
Process::GID.change_privilege(gid) changes the GID, EGID, and saved

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 373

GID to gid, which it then returns. On error, an Errno exception is raised. This
is incompatible with Process.gid=.

The setresgid(2) and setregid(2) system calls allow the GID and EGID
to be exchanged with each other. On such systems,
Process::GID.re_exchangeable? returns true, and
Process::GID.re_exchange may be used to set the GID to the current EGID,
the EGID to the current GID, and the saved GID to the new EGID.
Process::GID.grant_privilege(egid), and its alias
Process::GID.eid=(egid), set the EGID to egid, or raise an Errno exception.
If the GID and EGID may be exchanged, these methods also set the saved
GID to egid.

Process::GID.switch sets the EGID to the GID, returning the former. If
given a block whose body does not modify these values, it ensures that the
EGID is reset to its original value.

The Process::GID.sid_available? predicate returns true if the operating
system supports saved GIDs; false, otherwise. In the latter case, Ruby saves
the GID itself and tries to emulate this functionality.

Process::UID

The Process::UID module is the equivalent of Process::GID for UIDs. The
methods it provides are identical except they manipulate UIDs/EUIDs rather
than GIDs/EGIDs. The setresuid(2) or setreuid(2) system call is required
for exchanging the UID with the EUID.

Process::Sys

The Process::Sys module, however, provides lower-level access to the
system calls used for manipulating user and group IDs. The
Process::Sys.getegid, Process::Sys.geteuid, Process::Sys.geteuid,
Process::Sys.getgid, and Process::Sys.getuid methods are aliases of
Process.egid, Process.euid, Process.gid, and Process.uid, respectively.
The following methods are defined in terms of the system call with the same

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 374

name as the method. Each raises an Errno exception if the system call fails, or
NotImplementedError if the system call does not exist.

Process::Sys.issetugidProcess::Sys.issetugid

Returns true if the process is either setuid or setgid; false, otherwise.

Process::Sys.setegid(Process::Sys.setegid(gidgid))

Sets the EGID to gid.

Process::Sys.seteuid(Process::Sys.seteuid(uiduid))

Sets the EUID to uid.

Process::Sys.setgid(Process::Sys.setgid(gidgid))

Sets the GID to gid.

Process::Sys.setregid(Process::Sys.setregid(gidgid,, egidegid))

Sets the real GID to gid, and the EGID to egid.

Process::Sys.setresgid(Process::Sys.setresgid(gidgid,, egidegid,, sgidsgid))

Sets the real GID to gid, the EGID to egid, and the saved GID to sgid.

Process::Sys.setresuid(Process::Sys.setresuid(uiduid,, euideuid,, suidsuid))

Sets the real UID to uid, the EUID to euid, and the saved UID to suid.

Process::Sys.setreuid(Process::Sys.setreuid(uiduid,, euideuid))

Sets the real UID to uid, and the EUID to euid.

Process::Sys.setrgid(Process::Sys.setrgid(gidgid))

Sets the real GID to gid.

Process::Sys.setruid(Process::Sys.setruid(uiduid))

Sets the real UID to uid.

Process::Sys.setuid(Process::Sys.setuid(uiduid))

Sets the UID to uid.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 375

Signalling
A signal is a software interrupt that provides a “a mechanism for handling

asynchronous events”. [Love07, pp. 279–279] These events may be generated
by the operating system or elsewhere in the program, and signals can be sent
from one process to another. “The key point is not just that the events occur
asynchronously…but also that the program handles the signals
asynchronously.” [ibid.]

A process may register signal handlers to trap specific signals. When the
process receives a corresponding signal the handler is invoked; otherwise, the
signal is ignored. The SIGKILL and SIGSTOP signals can neither be trapped nor
ignored: they always kill and stop, respectively, the process to which they are
sent.

A signal is identified by both a name and a number. The name is a portable
way to refer to a signal and always begins with SIG; the number is, in theory,
platform-specific. Signal.list returns a Hash of signals supported by your
platform. The keys are signal names without the SIG prefix, as Strings; the
values, signal numbers as Integers. Methods that expect a signal as an
argument accept this name as a String or Symbol—with or without the
prefix—or the number.

Name Number Description Default
Action

SIGABRT /
SIGIOT

6 Sent by abort(3).
Dump
core

SIGALRM 14 Sent by alarm(2). Terminate

SIGBUS 7 Hardware or alignment error.
Dump
core

SIGCHLD /
SIGCLD

17 Child has terminated. Ignore

SIGCONT 18 Process has continued after being stopped. Ignore

SIGEXIT 0
Ruby is about to terminate; prior to
at_exit functions.

Terminate

Signals Supported on Linux

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 376

Name Number Description Default
Action

SIGFPE 8 Arithmetic exception.
Dump
core

SIGHUP 1 Process’s controlling terminal was closed. Terminate

SIGILL 4
Process tried to execute an illegal
instruction.

Terminate

SIGINT 2
User generated the interrupt character
(Ctrl + C).

Terminate

SIGIO 29 Asynchronous I/O event. Terminate
SIGIO /
SIGPOLL

29 Asynchronous I/O event. Terminate

SIGKILL 9 Process termination (untrappable). Terminate
SIGPIPE 13 Process wrote to a pipe without readers. Terminate
SIGPROF 27 Profiling timer expired. Terminate
SIGPWR 30 Power failure. Terminate

SIGQUIT 3
User generated the quit character
(Ctrl + \).

Dump
core

SIGSEGV 11 Memory access violation.
Dump
core

SIGSTOP 19 Suspends execution of the process. Stop

SIGSYS 31
Process tried to execute an invalid system
call.

Dump
core

SIGTERM 15 Process termination (trappable).
Dump
core

SIGTRAP 5 Break point encountered.
Dump
core

SIGTSTP 20
User generated the suspend character
(Ctrl + Z).

Stop

SIGTTIN 21
Background process read from controlling
terminal.

Stop

SIGTTOU 22
Background process wrote to controlling
terminal.

Stop

SIGURG 23 Urgent I/O pending. Ignore
SIGUSR1 10 Process-defined signal. Terminate
SIGUSR2 12 Process-defined signal. Terminate

SIGVTALRM 26
Generated by setitimer(2) when called
with ITIMER_VIRTUAL flag.

Terminate

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 377

Name Number Description Default
Action

SIGWINCH 28
Size of controlling terminal window
changed.

Ignore

SIGXCPU 24 Processor resource limits were exceeded.
Dump
core

SIGXFSZ 25 File resource limits were exceeded.
Dump
core

Sending

Process.kill(sig, pid0…pidn) sends the signal, sig, to the processes with
the given PIDs. If sig is a negative Integer or its first character is -, it signals
process groups instead of processes. If sig is an invalid signal number,
Errno::EINVAL or RangeError is raised; if it is an invalid String or Symbol, an
ArgumentError is raised instead.

A PID of zero refers to the current process. If one or more PIDs are invalid,
an Errno::ESRCH is raised; if you lack permission to signal them, an
Errno::EPERM is raised. However, if the PID which caused an exception was
preceded by legitimate PIDs, the latter may have already been sent sig.

Trapping

Kernel.trap(sig, command), and its alias Process.trap, register a handler
for signal sig. If command is a Proc, or a block is supplied and command
omitted, the Proc/block is invoked on receipt of sig with the signal number as
its sole argument. Otherwise, command must be one of the following:

"IGNORE""IGNORE"

"SIG_IGN""SIG_IGN"

""""

nilnil

Ignores the signal.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 378

"DEFAULT""DEFAULT"

"SIG_DFL""SIG_DFL"

Invokes Ruby’s default handler.

"EXIT""EXIT"

Terminates the program.

"SYSTEM_DEFAULT""SYSTEM_DEFAULT"

Invokes the operating system’s default handler.

A program may have at most one signal handler per signal. If sig already
has a handler registered, the old handler is replaced with the new, and the old
handler is returned; otherwise, trap returns nil.

Times
The current process times are returned by Process.times as a Struct::Tms

object with the following methods:

#utime#utime

User time: CPU time, in seconds, spent executing instructions of the
calling process.

#stime#stime

System time: CPU time, in seconds, spent in the system while executing
tasks for the calling process.

#cutime#cutime

User time of children: sum of #utime and #cutime values for all waited-
for terminated child processes.

#utime#utime

System time of children: sum of #stime and #cstime values for all
waited-for terminated children.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 379

TIMESTIMES
A Time object represents a specific moment as a time and a date, stored

with microsecond granularity. It is stored as the number of seconds since the
Unix epoch, which is 1970-01-01 01:00:00, so on some platforms Time cannot
represent dates before 1970 or after 2038.

Instantiation
Time.now creates a Time instance for the current time, with the resolution

of the system clock. Time.new is identical when called without arguments;
otherwise it must be given between one and seven arguments specifying the
year, month, day, hour, minute, second, and offset from UTC, with which it
initialises a Time object. All but the year argument are optional.

Time.at(seconds, microseconds=0) creates a Time object representing
seconds seconds and microseconds microseconds from the Epoch. Both
arguments may be any non-Complex numeric: if microseconds is a Float or
Rational, the time has nanosecond granularity. A negative seconds represents
a time before the Unix epoch, but this construction is operating-system
specific. If Time.at is given a Time object as its sole argument, the argument
is returned.

Time.utc, and its alias Time.gm, create a Time object for a given time in
UTC. If ten arguments are given they are: second, minute, hour, day of
month, year, day of week, isDST?, and the time zone abbreviation.
Otherwise, between one and seven arguments are required: year, month, day
of month, hour, minute, second, microseconds. In the second form, all but the
first argument are optional; the latter may be omitted or nil. Time.local, and
its alias Time.mktime, are identical to Time.utc, except they interpret their
arguments in the local time zone.

The arguments listed above all correspond to attributes of Time objects, so
are described in Attributes.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 380

Attributes
A Time object has the following primary attributes. If a Time method

expects an argument corresponding to a given attribute, the argument must
satisfy the attribute’s range; if the argument is omitted, the attribute’s default
value is assumed.

Attribute Description Range Default Accessor

Year

Year
(possibly
including
century)

Positive Integer. N/A Time#year

Month
Month of
year

Integer (1–12) or
three-letter English
abbreviation, e.g. 3 or
Feb for February.

1
Time#mon,
Time#month

Day
Day of
month

Integer: 1–31. 1
Time#day,
Time#mday

Week day Day of week
Integer: 0–6, where
Sunday is 0.

0 Time#wday

Year day Day of year Integer: 1–366. 1 Time#yday

Hour
Hour on
24-hour clock

Integer: 0–23. 0 Time#hour

Minute
Minute of
hour

Integer: 0–59. 0 Time#min

Second
Second of
minute

Integer: 0–601. 0 Time#sec

Microseconds
Microsecond2

of second
Positive numeric less
than 1000000000.

0
Time#usec,
Time#tv_usec

Nanoseconds
Nanosecond3

of second
Integer 0

Time#nsec,
Time#tv_nsec

Zone
Time zone
abbreviation

String, e.g. UTC or
CST.

UTC Time#zone

1.This range allows for leap seconds.
2.1 microsecond is 10−6 seconds
3.1 nanosecond is 10−9 seconds

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 381

Attribute Description Range Default Accessor

isDST?

Does the
time occur in
daylight
saving time?

true (yes) or false
(no).

false
Time#isdst,
Time#dst?

Predicates
Time objects respond to the following predicates. They return true if the

condition is true; false, otherwise.

Time#dst?Time#dst?

Time#isdstTime#isdst

Occurs in DST

Time#friday?Time#friday?

Occurs on a Friday

Time#gmt?Time#gmt?

Time#utc?Time#utc?

Occurs in UTC

Time#monday?Time#monday?

Occurs on a Monday

Time#saturday?Time#saturday?

Occurs on a Saturday

Time#sunday?Time#sunday?

Occurs on a Sunday

Time#thursday?Time#thursday?

Occurs on a Thursday

Time#tuesday?Time#tuesday?

Occurs on a Tuesday

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 382

Time#wednesday?Time#wednesday?

Occurs on a Wednesday

Arithmetic
Time#+(numeric) adds numeric seconds to the receiver, and returns the

result. Conversely, Time#-(numeric) subtracts numeric seconds from the
receiver and returns the result. If Time#- is given a Time argument instead, it
returns a new Time object representing the difference between them.

Time objects implement Time#<=> with the standard semantics, and mix-in
the Comparable module. This allows inequalities to be tested between a Time

object and a Numeric object—where the latter represents a number a seconds
since the Unix epoch—or two Time objects.

Formatting
Time#strftime converts the receiver to a String by means of a user-

supplied format string, analogous to Format Strings. A format string contains
any number of format directives surrounded by arbitrary characters. It is
returned with each format directive substituted for its payload.

A format directive has the form %fwc, where f is zero or more flags, w is an
optional field width, and c a mandatory conversion specifier. Therefore, the
simplest format directive has the form %c. The minimum field width is the
minimum number of characters the directive will be substituted for; if fewer
would have used, they are padded with either zeros or blanks, as described in
the Conversion Specifiers table. The flags are described in the Flags table.

Specifier Description Range
a Abbreviated name of day Sun—Sat
A Name of day Sunday—Saturday
b / h Abbreviated name of month Jan—Dec
B Name of month January—December

Conversion Specifiers

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 383

Specifier Description Range

c
Date and time representation for current
locale: "%a %b %e %T %Y"

%C Century, i.e. year ÷ 100, zero-padded 00–99
d Day of the month, zero-padded 01–31

D / x
Date representation, without time, for
current locale: "%m/%d/%y"

e Day of the month, blank-padded 1–31
F ISO 8601 date: "%Y-%m-%d" 1–31

g
ISO 8601 week-numbering year, last two
digits

00–99

G ISO 8601 week-numbering year 0–
H Hour of day on 24-hour clock, zero-padded 00–23
I Hour of day on 12-hour clock, zero-padded 01—12
j Day of year, zero-padded 001–366

k
Hour of day on 24-hour clock, blank-
padded

0–23

l
Hour of day on 12-hour clock, blank-
padded

1–12

L Millisecond of second, zero-padded 000–999
m Month of year, zero-padded 01—12
M Minute of the hour, zero-padded 00–59
n Newline character "\n"
N Fractional seconds, 9 digits by default 000000000–999999999
p Meridian indicator, upper-case AM, PM
P Meridian indicator, lower-case am–pm

r 12-hour-clock time: "%I:%M:%S %p" 12:00:00
AM—11:59:59 PM

R 24-hour-clock time: "%H:%M" 00:00—23:59
s Number of seconds since the Unix epoch 0–
S Second of minute, zero-padded 00–60
t Tab character "\t"
T / X 24-hour-clock time: "%H:%M:%S" 00:00:00—23:59:59
u Day of week, 1 being Monday 1–7

U

Week number of year, starting with the
first Sunday as the first day of week 01,
zero-padded

00–53

v VMS date: %e-%b-%Y"

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 384

Specifier Description Range

V
ISO 8601 week number of week-
numbering year, zero-padded

01–53

w Day of week, 0 being Sunday 0–6

W

Week number of year, starting with the
first Monday as the first day of week 01,
zero-padded

00–53

y Year without century, zero-padded 00–99
Y Year including century 0–
z Hour and minute offset from UTC +00:01–+23:59
Z Abbreviated name of time zone

Flag Description
- Don’t pad numerical output
_ Pad with blanks
0 Pad with zeros
^ Uppercase the output
Invert the case of the output
: Use colons for %z

Flags

Coercion
Time#to_a coerces its receiver into a ten-element Array of its attributes in

this order: second, minute, hour, day of month, month, year, day of week, day
of year, isDST?, and zone. All elements are Integers except isDST?, which is
true or false, and zone, which is a String.

A Time object may be coerced into a Float or Rational with Time#to_f

and Time#to_r, respectively. Time#to_i, and its alias Time#tv_sec, converts
the receiver into an Integer by truncating any fractional seconds, i.e. it is
equivalent to time.to_f.to_i.

For a local time, Time#to_s is equivalent to calling Time#strftime('%Y-%m-

%d %H:%M:%S %z'); for a UTC times, it is equivalent to Time#strftime('%Y-

%m-%d %H:%M:%S UTC'). Alternatively, Time#asctime, and its alias Time#ctime,
return a canonical String representation of their receiver, equivalent to
Time#strftime('%a %b %e %T %Y').

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 385

Zone Conversions
The time zone associated with a Time object is set during initialisation, and

queried with Time#zone. It can be changed to UTC with Time#getutc, and its
alias Time#getgm, which return a new Time object representing the receiver in
UTC. Time#utc, and its alias Time#gmtime, do likewise but convert the
receiver in-place.

Similarly, Time#getlocal returns a new Time object representing the
receiver in the local time zone. Time#localtime is identical except it modifies
the receiver in-place.

REFERENCEREFERENCE

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 386

ARRAYARRAY
Array[]Array[](objectobject, …) #=> Array

Creates then returns a new Array comprising object(s).

Array.newArray.new(size=0, object=nil) #=> Array

Array.newArray.new(arrayarray) #=> Array

Array.newArray.new(sizesize) {|i| }{|i| } #=> Array

Creates and returns a new Array. The first form creates an Array with size
elements each with the value object; without any arguments, an empty Array

is created. If array is given, array.to_ary is returned. If a block is given, an
Array of size elements is created by calling the block with each index and
using its return value as the corresponding element.

Array.try_convertArray.try_convert(objectobject) #=> Array or nil

Returns obj.to_ary or nil if this fails.

Array#&Array#&(arrayarray) #=> Array

Returns the set intersection of the receiver and argument: a new Array

comprising the elements common to both without duplicates.

Array#*Array#*(objectobject) #=> Array or String

When object is numeric, concatenates object.to_i copies of the receiver to
create a new Array. Otherwise, equivalent to self.join(object).

Array#+Array#+(arrayarray) #=> Array

Concatenates the receiver with the argument to create a new Array.

Array#-Array#-(arrayarray) #=> Array

Returns a copy of the receiver less elements appearing in array.

Array#<<Array#<<(objectobject) #=> Array

Appends object to the receiver, which it returns.

Array#==Array#==(objectobject) #=> true or false

Converts object to an Array with #to_ary, then returns true if both Arrays

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 387

are the same length and all of their elements are equal according to #==;
false, otherwise.

Array#[]Array#[](indexindex) #=> Object

Array#[]Array#[](startstart, lengthlength) #=> Array or nil

Array#[]Array#[](rangerange) #=> Array or nil

Returns the element at index index, the elements with index start through to
start + length, or the elements with indices in the Range range. When no
elements match the constraint, the first form returns nil; the others return [].
Aliased by Array#slice.

Array#[]=Array#[]=(indexindex, objectobject) #=> Object

Array#[]Array#[](startstart, lengthlength, objectobject) #=> Array or nil

Array#[]Array#[](rangerange, objectobject) #=> Array or nil

With an Integer index, sets the element at index index to object, expanding
the Array if necessary. Otherwise, replaces the elements with index start
through to start + length, or indices within the given Range, with object. In
these last two forms, if object is an Array, its elements are substituted for the
matched elements in the receiver; if not, they are replaced by object.

Array#|Array#|(arrayarray) #=> Array

Returns the union of the receiver and the argument: a new Array comprising
elements from both Arrays without duplicates.

Array#assocArray#assoc(objectobject) #=> Array

Where the receiver is an Array of Arrays, returns the first sub-Array whose
first element is #== to object, or nil if no such element is found.

Array#atArray#at(indexindex) #=> Object or nil

Returns the element with index index, or nil if the index is out of range.

Array#clearArray#clear() #=> Array

Returns the receiver with all elements removed.

Array#clearArray#clear() #=> Array

Removes all elements from the receiver, which it then returns.

Array#combinationArray#combination(sizesize) {|array| } #=> Array or Enumerator

Generates all combinations of size size from the receiver’s elements. Returns

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 388

an Enumerator if the block is omitted, otherwise yields each combination to
the block, then returns the receiver.

Array#collect!Array#collect!() {|object| }{|object| } #=> Array

Passes each element of the receiver to the block, replacing it with the value
the block returns. Aliased to Array#map!.

Array#compactArray#compact() #=> Array

Returns a copy of the receiver less any nil elements.

Array#compact!Array#compact!() #=> Array or nil

Returns nil if the receiver doesn’t contain nil elements, otherwise removes
all such elements then returns the receiver.

Array#concatArray#concat(arrayarray) #=> Array

Appends the elements in the given Array to the receiver, which it then
returns.

Array#countArray#count(object) #=> Integer

Array#countArray#count() {|object| }{|object| } #=> Integer

With no argument, equivalent to #size. If object is given, returns the number
of elements in the receiver that equal object. Otherwise, pass each element of
the receiver to the block, returning the number of times it returns true.

Array#cycleArray#cycle(times) {|object| } #=> Enumerator or nil

Invokes the block with each element of the receiver in turn, then repeats
times times or forever if times is omitted. If the receiver is empty, returns nil.
If the block is omitted, returns an Enumerator.

Array#deleteArray#delete(objectobject) { } #=> Object or nil

Deletes every element of the receiver that is equal to object. If the receiver
didn’t contain object returns the value of the block, if given, or nil otherwise.

Array#delete_atArray#delete_at(indexindex) #=> Object or nil

Deletes and returns the element of the receiver with the given index. Returns
nil if the index is out of range.

Array#delete_ifArray#delete_if() {|object| } #=> Array

Passes each element of the receiver to the block, deleting those for which the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 389

block is true, then returns the receiver. Returns an Enumerator if the block is
omitted.

Array#eachArray#each() {|object| } #=> Array

Passes each element to the block, deleting those for which the block is true,
then returns the receiver. Returns an Enumerator if the block is omitted.

Array#each_indexArray#each_index() {|index| } #=> Array

Passes the index of each element to the block, then returns the receiver.
Returns an Enumerator if the block is omitted.

Array#empty?Array#empty?() #=> true or false

Returns true if the receiver contains no elements; false, otherwise.

Array#eql?Array#eql?(objectobject) #=> true or false

Returns true if object is an Array whose elements are equal to the receiver in
both number and content—according to #eql?; false, otherwise.

Array#fetchArray#fetch(indexindex) {|index| } #=> Object

Array#fetchArray#fetch(indexindex, defaultdefault) #=> Object

Returns the element at index index. If the index is out of range, the first form
returns the value of the block when given the index, or raises an IndexError

if the block is omitted; the second form returns default.

Array#fillArray#fill(objectobject) #=> Array

Array#fillArray#fill() {|index| }{|index| } #=> Array

Array#fillArray#fill(objectobject, startstart, length=nil) #=> Array

Array#fillArray#fill(startstart, length=nil) {|index| }{|index| } #=> Array

Array#fillArray#fill(objectobject, rangerange) #=> Array

Array#fillArray#fill(rangerange) {|index| }{|index| } #=> Array

Sets elements of the receiver to the value of the block, if given, or object. The
first two forms set all elements, the second two set elements starting at
indices start through to start + length, and the remainder set elements with
indices in the given Range. If start is nil it is equivalent to a value of 0; if
length is nil it is equivalent to the length of the receiver.

Array#find_indexArray#find_index(objectobject) #=> Integer or nil

Array#find_indexArray#find_index() {|object| } #=> Integer or nil

Returns the index of the first element #== to object or, if a block is supplied,

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 390

the first element for which the block is true. Returns nil if no elements
matched, or an Enumerator if both argument and block are omitted. Aliased
by Array#index.

Array#flattenArray#flatten(level=-1) #=> Array

Returns an Array comprising each element, or, if the element is itself an
Array, the result of calling #flatten on that element. The depth of recursion
depends on the value of level: if negative, the method always recurses; if zero,
there is no recursion; if positive, the method only recurses a maximum of
level levels.

Array#flatten!Array#flatten!(level=-1) #=> Array or nil

Returns nil if no element is itself an Array, otherwise invokes
Array#flatten(level) to modify the receiver in-place.

Array#frozen?Array#frozen?() #=> true or false

Returns true if the receiver is frozen; false, otherwise.

Array#indexArray#index(objectobject) #=> Integer or nil

Array#indexArray#index() {|object| } #=> Integer or nil

Aliases Array#find_index.

Array#insertArray#insert(indexindex, objectobject, …) #=> Array

Locates the element whose index is index then inserts object(s) before this
element if index is positive, or after if index is negative. Returns the receiver.

Array#joinArray#join(separator=$,) #=> String

Concatenates each element with separator, then returns a concatenation of
the result.

Array#lastArray#last(count=1) #=> Object

Returns the last count elements of the receiver as an Array. If count is 1,
returns the corresponding element, or nil if the receiver is empty.

Array#lengthArray#length() #=> Integer

Returns the number of elements in the receiver.

Array#map!Array#map!() {|object| }{|object| } #=> Array

Aliases Array#collect!.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 391

Array#packArray#pack(directivesdirectives) #=> String

Combines the elements of the receiver into a binary String by applying
directives.

Array#permutationArray#permutation(sizesize) {|array| } #=> Enumerator or Array

Generates all permutations with length size of the receiver’s elements, then
yields them to the block; if the block is omitted, returns them as an
Enumerator.

Array#popArray#pop(n=1) #=> Object or nil

Removes then returns the last n elements from the receiver. Returns nil if the
receiver is empty.

Array#productArray#product(arrayarray, …) #=> Array

Returns the Cartesian product of the receiver and its argument(s) as an Array

of Arrays. Each inner Array contains one element from the receiver, and one
from each argument array.

Array#pushArray#push(objectobject, …) #=> Array

Appends each argument to the receiver, which it then returns.

Array#rassocArray#rassoc(objectobject) #=> Array or nil

Where the receiver is an Array of Arrays, returns the first sub-Array whose
second element is #== to object, or nil if no such element is found.

Array#reject!Array#reject!() {|object| } #=> Array or nil

Behaves as Array#delete_if but returns nil if the receiver wasn’t modified.

Array#repeated_combinationArray#repeated_combination(lengthlength) {|array| } #=> Array

Yields each combination of length elements—some of which may be
repeated—or returns an Enumerator if the block is omitted.

Array#repeated_permutationArray#repeated_permutation(lengthlength) {|array| } #=> Array

Yields each permutation of length elements—some of which may be
repeated—or returns an Enumerator if the block is omitted.

Array#replaceArray#replace(arrayarray) #=> Array

Substitutes the elements of array for the elements of the receiver, which is
resized if necessary, then returns the receiver.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 392

Array#reverseArray#reverse() #=> Array

Returns a copy of the receiver with the elements in reverse order.

Array#reverse!Array#reverse!() #=> Array

Behaves as Array#reverse but modifies the receiver in-place.

Array#reverse_eachArray#reverse_each() {|object| }{|object| } #=> Array

Yields each element of the receiver to the block in reverse order, then returns
self.

Array#rindexArray#rindex(objectobject) #=> Integer or nil

Array#rindexArray#rindex() {|object| }{|object| } #=> Integer or nil

Returns the index of the last element #== to object or, if a block is supplied,
the last element for which the block is true. Returns nil if no elements
matched, or an Enumerator if both argument and block are omitted.

Array#rotateArray#rotate(n=1) #=> Array

Returns a new Array comprising the element at index n, each consecutive
element, then the element at index 0 through to the element at index n - 1.

Array#rotate!Array#rotate!(n=1) #=> Array

Behaves as Array#rotate! but modifies the receiver in-place.

Array#sampleArray#sample(n=1) #=> Array or nil

Returns n elements of the receiver selected pseudo-randomly. If the receiver
has fewer than n elements, returns them all; if the receiver is empty and n is
omitted, returns nil.

Array#shiftArray#shift(n=1) #=> Object or nil

Deletes and returns the first n elements of the receiver, shifting the remaining
elements down to fill the gap. Returns nil if the receiver is empty.

Array#shuffleArray#shuffle() #=> Array

Returns a copy of the receiver ordered pseudo-randomly.

Array#shuffle!Array#shuffle!() #=> Array

Behaves as Array#shuffle but modifies the receiver in-place.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 393

Array#sizeArray#size() #=> Integer

Aliases Array#length.

Array#sliceArray#slice(indexindex) #=> Object

Array#sliceArray#slice(startstart, lengthlength) #=> Array or nil

Array#sliceArray#slice(rangerange) #=> Array or nil

Aliases Array#[].

Array#slice!Array#slice!(indexindex) #=> Object or nil

Array#slice!Array#slice!(startstart, lengthlength) #=> Array or nil

Array#slice!Array#slice!(rangerange) #=> Array or nil

Behaves as Array#slice but modifies the receiver in-place, returning the
deleted element(s) or nil if no changes were made.

Array#sort!Array#sort!() {|a, b| } #=> Array

Sorts the receiver in-place, then returns self. If the block is omitted, elements
are sorted according to #<=>; otherwise, passes two elements at a time to the
block, which is expected to return -1 if the first element is less than the
second, 0 if they are equal, and 1 if the first element is greater than the
second.

Array#to_aArray#to_a() #=> Array

Returns the receiver converted to an Array, using #to_ary if called on a
subclass of Array.

Array#to_aryArray#to_ary() #=> Array

Returns the receiver.

Array#to_sArray#to_s() #=> String

Returns the receiver represented in Array literal notation.

Array#transposeArray#transpose() #=> Array

When the receiver is an Array of Arrays, returns a new Array whose rows are
the receiver’s columns, and whose columns are the receiver’s rows.

Array#uniqArray#uniq() #=> Array

Returns a copy of the receiver with duplicate—according to #eql? and
#hash—elements removed.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 394

Array#uniq!Array#uniq!() #=> Array

Behaves as Array#uniq but modifies the receiver in-place and returns nil if
there were no duplicate elements.

Array#unshiftArray#unshift(objectobject, …) #=> Array

Prepends object(s) to the receiver, moving the existing elements upward, then
returns self.

Array#values_atArray#values_at(indicesindices, …) #=> Array

Returns an Array comprising elements in the receiver with the given indices,
where indices is an Integer index or a Range of the same.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 395

BASICOBJECTBASICOBJECT
BasicObject#!BasicObject#!(objectobject) #=> true or false

Returns true if object is false or nil; false, otherwise.

BasicObject#==BasicObject#==(objectobject) #=> true or false

Returns true if object is the same object as the receiver; false, otherwise.
Aliased by BasicObject#equal?.

BasicObject#!=BasicObject#!=(objectobject) #=> true or false

Returns the inverse of BasicObject#==.

BasicObject#equal?BasicObject#equal?(objectobject) #=> true or false

Aliases BasicObject#==.

BasicObject#instance_evalBasicObject#instance_eval(codecode, file, line) #=> Object

BasicObject#instance_evalBasicObject#instance_eval() {|object| }{|object| } #=> Object

Executes a given piece of code in the context of the receiver. In the first form,
code is a String of Ruby, and file and line are the filename and line number,
respectively, to be used in error messages. In the second, the block is passed
the receiver as an argument, then invoked with self set to the receiver.

BasicObject#instance_execBasicObject#instance_exec(argument, …) {|argument, …| }{|argument, …| } #=> Object

Yields its arguments to the block, within which self is set to the receiver.

BasicObject#__id__BasicObject#__id__() #=> Fixnum

Returns an identifier for the receiver which distinguishes it from all other
active objects.

BasicObject#__send__BasicObject#__send__(namename, argument, …, &block) #=> Object

Sends a message named name to the receiver with the given argument(s) and
block, returning the result.

BasicObject#initializeBasicObject#initialize(argument, …) #=> Object

Hook called by Class#new on a newly allocated object, receiving any
arguments passed to Class#new.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 396

BasicObject#method_missingBasicObject#method_missing(namename, argument, …) #=> Object

Called when the receiver is sent a message for which it has no method
defined: name is the message selector as a Symbol, and argument(s) the
argument(s) it was sent with.

Kernel#singleton_method_addedKernel#singleton_method_added(namename) #=> Object

Hook invoked when a singleton method is added to the receiver, where name
is the method’s name as a Symbol.

Kernel#singleton_method_removedKernel#singleton_method_removed(namename) #=> Object

Hook invoked when a singleton method is removed from the receiver, where
name is the method’s name as a Symbol.

Kernel#singleton_method_undefinedKernel#singleton_method_undefined(namename) #=> Object

Hook invoked when a singleton method is undefined in the receiver, where
name is the method’s name as a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 397

BIGNUMBIGNUM
Bignum#%Bignum#%(numbernumber) #=> Numeric

Returns the result of the receiver modulo number. Aliased by Bignum#modulo.

Bignum#&Bignum#&(numbernumber) #=> Numeric

Returns the result of a bitwise AND between the receiver and number.

Bignum#*Bignum#*(numbernumber) #=> Numeric

Returns the result of multiplying number with the receiver.

Bignum#**Bignum#**(numbernumber) #=> Numeric

Returns the result of raising the receiver to the numberth power.

Bignum#+Bignum#+(numbernumber) #=> Numeric

Returns the result of adding the receiver to number.

Bignum#-Bignum#-(numbernumber) #=> Numeric

Returns the result of subtracting number from the receiver.

Bignum#-@Bignum#-@() #=> Numeric

Returns the receiver with a negative sign.

Bignum#/Bignum#/(numbernumber) #=> Numeric

Returns the result of dividing—using integer division—the receiver by
number. Aliased by Bignum#div.

Bignum#<Bignum#<(numbernumber) #=> true or false

Returns true if the receiver is less than number; otherwise, false.

Bignum#<<Bignum#<<(numbernumber) #=> Numeric

Returns the result of left-shifting number bits of the receiver.

Bignum#<=Bignum#<=(numbernumber) #=> true or false

Returns true if the receiver is less than or equal to number; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 398

Bignum#<=>Bignum#<=>(numbernumber) #=> -1, 0, 1

Returns -1 if the receiver is less than number, 0 if they are equal, and 1 if it is
greater.

Bignum#==Bignum#==(numbernumber) #=> true or false

Returns true if the number is a Numeric with the same value as the receiver;
false, otherwise. Aliased by Bignum#===.

Bignum#===Bignum#===(numbernumber) #=> true or false

Aliases Bignum#==.

Bignum#>Bignum#>(numbernumber) #=> true or false

Returns true if the receiver is greater than number; otherwise, false.

Bignum#>=Bignum#>=(numbernumber) #=> true or false

Returns true if the receiver is greater than or equal to number; otherwise,
false.

Bignum#>>Bignum#>>(numbernumber) #=> Numeric

Returns the result of right-shifting number bits of the receiver and its sign.

Bignum#[]Bignum#[](bitbit) #=> 0 or 1

Returns the bitth bit of the receiver, where the 0th bit is the least significant.

Bignum#^Bignum#^(numbernumber) #=> Numeric

Returns the result of a bitwise EXCLUSIVE OR between the receiver and
number.

Bignum#absBignum#abs() #=> Bignum

Returns the absolute value of the receiver. Aliased by Bignum#magnitude.

Bignum#coerceBignum#coerce(numbernumber) #=> Array

Returns an Array whose first element is number as a Bignum, and last element
is the receiver. If number is neither a Fixnum nor a Bignum, a TypeError is
raised.

Bignum#divBignum#div(numbernumber) #=> Numeric

Aliases Bignum#/.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 399

Bignum#divmodBignum#divmod(numbernumber) #=> Array

Divides the receiver by number, returning an Array whose first element is the
quotient, and last element, the modulus. The quotient is rounded toward −∞.

Bignum#even?Bignum#even?() #=> true or false

Returns true if this number is even; otherwise, false.

Bignum#eql?Bignum#eql?(numbernumber) #=> true or false

Returns true if number is a Bignum with the same value as the receiver;
false, otherwise.

Bignum#fdivBignum#fdiv(numbernumber) #=> Float

Returns the result of dividing—using floating-point division—the receiver by
number. Aliased by Bignum#quo.

Bignum#magnitudeBignum#magnitude() #=> Bignum

Aliases Bignum#abs.

Bignum#moduloBignum#modulo(numbernumber) #=> Numeric

Aliases Bignum#%.

Bignum#odd?Bignum#odd?() #=> true or false

Returns true if this number is odd; otherwise, false.

Bignum#remainderBignum#remainder(numbernumber) #=> Numeric

Divides the receiver by number, returning the remainder.

Bignum#sizeBignum#size() #=> Integer

Returns the number of bytes used to represent the receiver.

Bignum#to_fBignum#to_f() #=> Bignum

Converts the receiver to a Float, or Float::INFINITY if its too big.

Bignum#to_sBignum#to_s(base=10) #=> Bignum

Returns a String representation of the receiver in the given base, where base
is between 2 and 36 inclusive.

Bignum#|Bignum#|(numbernumber) #=> Numeric

Returns the result of a bitwise OR between the receiver and number.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 400

Bignum#~Bignum#~() #=> Numeric

Returns the result of inverting the receiver’s bits.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 401

BINDINGBINDING
Binding#evalBinding#eval(codecode, filename, line) #=> Object

Evaluates in the context of the receiver the String of Ruby given as code,
returning the result. If filename and/or line are given, they are the filename
and line number, respectively, that will be used in error messages generated
by code.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 402

CLASSCLASS
Class.inheritedClass.inherited(classclass) #=> Object

Hook that is fired when a subclass of the receiver class is created; class is the
subclass as a Class object.

Class.newClass.new(superclass=Object) { } #=> Class

Creates and returns an anonymous class that inherits from superclass. If a
block is supplied it is evaluated in the context of this class: within it, self is
the new Class instance.

Class#allocateClass#allocate() #=> Object

Allocates memory for an instance of the receiver’s class, then returns the new
object. Invoked automatically by the interpreter when #initialize is called;
cannot be overridden.

Class#newClass#new(argument, …) #=> Object

Creates a new instance of the receiver’s class with #allocate, which it
initialises with #initialize(argument, …), then returns.

Class#superclassClass#superclass() #=> Class or nil

Returns the superclass of the receiver, or nil if the receiver is BasicObject.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 403

COMPARABLECOMPARABLE
Comparable#<Comparable#<(objectobject) #=> true or false

Returns true if #<=>(object) is negative; false, otherwise.

Comparable#<=Comparable#<=(objectobject) #=> true or false

Returns true if #<=>(object) is negative or zero; false, otherwise.

Comparable#==Comparable#==(objectobject) #=> true or false

Returns true if #<=>(object) is zero; false, otherwise.

Comparable#>=Comparable#>=(objectobject) #=> true or false

Returns true if #<=>(object) is zero or positive; false, otherwise.

Comparable#>Comparable#>(objectobject) #=> true or false

Returns true if #<=>(object) is positive; false, otherwise.

Comparable#between?Comparable#between?(minimumminimum, maximummaximum) #=> true or false

Returns true if the receiver is between minimum and maximum—i.e.
#<=>(minimum) is zero or positive and #<=>(maximum) is zero or negative—or
false, otherwise.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 404

COMPLEXCOMPLEX
Complex.polarComplex.polar(magnitudemagnitude, angle=0) #=> Complex

Returns the Complex number represented by the polar coordinates magnitude
and angle.

Complex.rectComplex.rect(realreal, imaginary=0) #=> Complex

Returns the Complex number with the real part, real, and the imaginary part,
imaginary. Aliased by Complex#rectangular.

Complex.rectangularComplex.rectangular(realreal, imaginary=0) #=> Complex

Aliases Complex#rect.

Complex#+Complex#+(numbernumber) #=> Complex

Returns the result of adding the receiver to number.

Complex#-Complex#-(numbernumber) #=> Complex

Returns the result of subtracting number from the receiver.

Complex#*Complex#*(numbernumber) #=> Complex

Returns the result of multiplying number with the receiver.

Complex#/Complex#/(numbernumber) #=> Complex

Returns the result of dividing the receiver by number. Aliased by
Complex#quo.

Complex#**Complex#**(numbernumber) #=> Complex

Returns the result of raising the receiver to the numberth power.

Complex#-@Complex#-@() #=> Complex

Returns the receiver with a negative sign.

Complex#==Complex#==(numbernumber) #=> true or false

Returns true if the number is a Numeric with the same value as the receiver;
false, otherwise.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 405

Complex#absComplex#abs() #=> Complex

Returns the absolute value of the receiver. Aliased by Complex#magnitude.

Complex#abs2Complex#abs2() #=> Complex

Returns the square of the absolute value of the receiver.

Complex#angleComplex#angle() #=> Float

Returns the amplitude of the receiver, i.e. atan2(imaginary, real), where
imaginary is the receiver’s imaginary part, and real its real part. Aliased by
Complex#arg and Complex#phase.

Complex#argComplex#arg() #=> Float

Aliases Complex#angle.

Complex#conjComplex#conj() #=> Complex

Returns the conjugate of the receiver: its real part minus its imaginary part.
Aliased by Complex#conjugate.

Complex#conjugateComplex#conjugate() #=> Complex

Aliases Complex#conj.

Complex#denominatorComplex#denominator() #=> Integer

Returns the denominator of the receiver: the least common multiple of the
denominators of both real and imaginary parts.

Complex#eql?Complex#eql?(numbernumber) #=> true or false

Returns true if number is a Complex whose real and imaginary parts are
#eql? to the receiver’s real and imaginary parts, respectively; false,
otherwise.

Complex#fdivComplex#fdiv(numbernumber) #=> Float

Returns the result of dividing—using floating-point division—the receiver by
number.

Complex#imagComplex#imag() #=> Numeric

Returns the imaginary part of the receiver. Aliased by Complex#imaginary.

Complex#imaginaryComplex#imaginary() #=> Numeric

Aliases Complex#imag.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 406

Complex#magnitudeComplex#magnitude() #=> Complex

Aliases Complex#abs.

Complex#numeratorComplex#numerator() #=> Complex

Returns the numerator of the receiver.

Complex#phaseComplex#phase() #=> Float

Aliases Complex#angle.

Complex#polarComplex#polar() #=> Array

Returns the receiver’s polar coordinates as a two-element Array: the first
element is Complex#abs, and the last element is Complex#arg.

Complex#quoComplex#quo(numbernumber) #=> Complex

Returns the result of dividing—after converting the real and imaginary parts
of the receiver to Rationals—the receiver by number.

Complex#rectComplex#rect() #=> Array

Returns an Array whose first element is the receiver’s real part, and last
element is the receiver’s imaginary part. Aliased by Complex#rectangular.

Complex#rectangularComplex#rectangular() #=> Array

Aliases Complex#rect.

Complex#realComplex#real() #=> Numeric

Returns the real part of the receiver.

Complex#real?Complex#real?() #=> false

Returns false.

Complex#to_fComplex#to_f() #=> Float

Returns the real part of the receiver as a Float; raises a RangeError if the
imaginary part is non-zero.

Complex#to_iComplex#to_i() #=> Integer

Returns the real part of the receiver as a Integer; raises a RangeError if the
imaginary part is non-zero.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 407

Complex#to_rComplex#to_r() #=> Rational

Returns the real part of the receiver as a Rational; raises a RangeError if the
imaginary part is non-zero.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 408

DIRDIR
Dir[]Dir[](arrayarray) #=> Array

Dir[]Dir[](stringstring, …) #=> Array

Passes its arguments to Dir.glob, returning the result.

Dir.chdirDir.chdir(directory=ENV['HOME'] || ENV['LOGDIR']) {|directory| }

#=> Object or 0

Changes the current working directory of the process to directory and returns
0. If a block is supplied, it receives the new working directory as an argument
and ensures the original working directory is restored when the block exits;
the return value is that of the block. However, it is an error for multiple
threads to have these blocks open simultaneously. If directory does not exist
the appropriate Errno:: exception is raised.

Dir.chrootDir.chroot(directorydirectory) #=> 0

Changes the root directory of the process—assuming it has the appropriate
privileges—to directory. A NotImplementedError is raised on platforms
without the chroot(2) system call.

Dir.deleteDir.delete(directorydirectory) #=> 0

Deletes the empty directory directory, raising an Errno:: exception on error.
Aliased to Dir.rmdir and Dir.unlink.

Dir.entriesDir.entries(directorydirectory) #=> Array

Returns the entries—filenames, ., and ..—of directory as an Array of Strings.
Raises an Errno:: exception if the directory doesn’t exist.

Dir.exist?Dir.exist?(directorydirectory) #=> true or false

Returns true if directory exists and is a directory; false, otherwise. Aliased
by Dir.exists? and File.directory?.

Dir.exists?Dir.exists?(directorydirectory) #=> true or false

Aliases Dir.exist?.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 409

Dir.foreachDir.foreach() {|entry| } #=> Enumerator or nil

Yields each entry—filenames, ., and ..—of directory to the given block;
returns an Enumerator if the block is omitted.

Dir.getwdDir.getwd() #=> String

Returns the canonical path of the current working directory for this process.
Aliased by Dir.pwd.

Dir.globDir.glob(patternpattern, flags=0) {|filename| } #=> Array or false

Yields the filenames matching the glob pattern pattern to the block; returning
an Array if the block is omitted. The syntax of pattern and valid flags are
explained in Globbing.

Dir.homeDir.home(user) #=> String

Returns the home directory of user or, if that argument’s omitted, the current
user.

Dir.mkdirDir.mkdir(directorydirectory, permissions=0777) #=> 0

Creates a directory named directory with the permissions given in
permissions. The permissions are ignored on Windows, and modified by the
current process’s umask.

Dir.newDir.new(directorydirectory, encoding: encoding) #=> Dir

Instantiates and returns a Dir object representing the directory named
directory. The directory is assumed to have the same encoding as the local file
system—i.e. Encoding.find('filesystem')—but an alternative encoding can
be specified as encoding.

Dir.openDir.open(directorydirectory, encoding: encoding) {|dir| } #=> Dir or Object

Behaves as Dir.new, but if a block is supplied the new Dir object is yielded to
it, then closed when the block exits. Returns the value of the block, if one was
given, or the new Dir object.

Dir.pwdDir.pwd() #=> String

Aliases Dir.getwd.

Dir.rmdirDir.rmdir(directorydirectory) #=> 0

Aliases Dir.delete.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 410

Dir.unlinkDir.unlink(directorydirectory) #=> 0

Aliases Dir.delete.

Dir#closeDir#close() #=> nil

Closes the directory stream represented by the receiver.

Dir#eachDir#each() {|entry| } #=> Enumerator or Dir

Yields each entry—filenames, ., and ..—of the receiver’s directory stream to
the block, then returns self. Returns an Enumerator if the block is omitted.

Dir#pathDir#path() #=> String

Returns the path of the directory stream represented by the receiver. Aliased
by Dir#to_path.

Dir#posDir#pos() #=> Integer

Returns the current position in the directory stream represented by the
receiver. Aliased by Dir#tell.

Dir#pos=Dir#pos=(positionposition) #=> Integer

Seeks the receiver’s directory stream to the given position—which should
have previously been returned by Dir#pos—then returns position.

Dir#readDir#read() #=> String or nil

Returns the next entry in the receiver’s stream, then advances the stream’s
position. Returns nil after the last entry.

Dir#rewindDir#rewind() #=> Dir

Resets the position of the receiver’s directory stream to its beginning,
returning self.

Dir#seekDir#seek(positionposition) #=> Integer

Seeks the receiver’s directory stream to the given position—which should
have previously been returned by Dir#pos—then returns self.

Dir#tellDir#tell() #=> Integer

Aliases Dir#pos.

Dir#to_pathDir#to_path() #=> String

Aliases Dir#path.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 411

ENCODINGENCODING
Encoding.aliasesEncoding.aliases() #=> Hash

Maps encoding aliases to their canonical names.

Encoding.compatible?Encoding.compatible?(aa, bb) #=> Encoding or nil

Compares the encoding of its two arguments, which are either Encoding
objects or objects associated with encodings. If they are compatible, returns
the encoding which would result from their combination; otherwise, nil.

Encoding.default_externalEncoding.default_external() #=> Encoding

Returns the default external encoding.

Encoding.default_external=Encoding.default_external=(encodingencoding) #=> Encoding

Sets the default external encoding to encoding, which may be an Encoding

object or an encoding name.

Encoding.default_internalEncoding.default_internal() #=> Encoding or nil

Returns the default internal encoding, or nil if there isn’t one.

Encoding.default_internal=Encoding.default_internal=(encodingencoding) #=> Encoding

Sets the default internal encoding to encoding, which may be an Encoding

object, an encoding name, or nil.

Encoding.findEncoding.find(encodingencoding) #=> Encoding

Returns the Encoding object representing the named encoding, raising an
ArgumentError for invalid names. encoding may be a String or Symbol and
may name an encoding alias. An encoding of external returns the default
external encoding; filesystem, the filesystem encoding; internal, the default
internal encoding; and locale, the locale encoding.

Encoding.listEncoding.list() #=> Array

Returns an Array of Encoding objects currently loaded. Aliases are excluded.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 412

Encoding.locale_charmapEncoding.locale_charmap() #=> String

Returns the name of the locale charmap encoding, if it could be derived from
the environment, or nil.

Encoding.name_listEncoding.name_list() #=> Array

Returns the names of the currently loaded encodings as an Array of Strings.
Aliases are included.

Encoding#ascii_compatible?Encoding#ascii_compatible?() #=> true or false

Returns true if the receiver is ASCII-compatible; false, otherwise.

Encoding#dummy?Encoding#dummy?() #=> true or false

Returns true if the receiver is a dummy encoding; false, otherwise.

Encoding#nameEncoding#name() #=> String

Returns the name of this encoding.

Encoding#namesEncoding#names() #=> Array

Returns the name of this encoding and those of its aliases as an Array of
Strings.

Encoding#replicateEncoding#replicate(namename) #=> Encoding

Returns a replica of the receiver named name; raises an ArgumentError if the
given name is already in use.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 413

ENCODING::CONVERTERENCODING::CONVERTER
Encoding::Converter.asciicompat_encodingEncoding::Converter.asciicompat_encoding(encodingencoding) #=> Encoding or

nil

Returns the ASCII-compatible encoding corresponding to the given encoding,
where encoding is either an Encoding object or an encoding name as a
String. Returns nil if there isn’t such an encoding.

Encoding::Converter.newEncoding::Converter.new(sourcesource, destinationdestination, options) #=>

Encoding::Converter

Encoding::Converter.newEncoding::Converter.new(conversion_pathconversion_path) #=> Encoding::Converter

Instantiates an Encoding::Converter object for transcoding between a source
and destination encoding, both of which may be either Encoding objects or
the names of encodings as Strings. options is a transcoding options Hash. If
conversion_path is given it should be an Array in the form returned by either
Encoding::Converter.search_convpath or Encoding::Converter#convpath.

Encoding::Converter.search_convpathEncoding::Converter.search_convpath(sourcesource, destinationdestination, options)

#=> Array

Returns the steps in the conversion path between a source and destination
encoding, both of which may be either Encoding objects or the names of
encodings as Strings. options is a transcoding options Hash. A step involving
transcoding from one encoding to another is represented as Array containing
two Encoding objects. A step involving a decorator is the decorator’s name as
a String.

Encoding::Converter#convertEncoding::Converter#convert(sourcesource) #=> String

Transcodes the given String along the receiver’s conversion path. source is
assumed to be part of a larger String, so this method can be called repeatedly
with the next chunk of input. Accordingly, after all input has been
transcoded, Encoding::Converter#finish should be invoked.

Encoding::Converter#convpathEncoding::Converter#convpath() #=> Array

Returns the steps in the conversion path used by the receiver. A step
involving transcoding from one encoding to another is represented as Array

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 414

containing two Encoding objects. A step involving a decorator is the
decorator’s name as a String.

Encoding::Converter#destination_encodingEncoding::Converter#destination_encoding() #=> Encoding

Returns the Encoding to which the receiver transcodes.

Encoding::Converter#finishEncoding::Converter#finish() #=> String

Signals that there is no more input to be transcoded, returning the final piece
of the destination String.

Encoding::Converter#insert_outputEncoding::Converter#insert_output(stringstring) #=> nil

Converts the given String into the destination encoding, then appends it to
the output buffer.

Encoding::Converter#last_errorEncoding::Converter#last_error() #=> Exception or nil

Returns an Exception corresponding to the last error the receiver
encountered—i.e. Encoding::InvalidByteSequenceError or
Encoding::UndefinedConversionError—or nil if no Exception occurred.

Encoding::Converter#primitive_convertEncoding::Converter#primitive_convert(sourcesource, destinationdestination, destination_offset=nil, destination_size=nil, options)

#=> Symbol

Converts the source String along the receiver’s conversion path, appending
the result to the destination String, and returning a Symbol indicating the
state of the converter. If destination_offset is non-nil, it is an Integer

specifying the byte position in destination where the result should be
inserted. If destination_size is non-nil, it is an Integer specifying the
maximum number of bytes to insert into destination. options is an options
Hash. See Primitive Conversion for details.

Encoding::Converter#primitive_errinfoEncoding::Converter#primitive_errinfo() #=> Array

Returns details of the last transcoding error the receiver encountered as an
Array: the first element is the last Symbol returned by
Encoding::Converter#primitive_convert, the next two are the names of the
encodings in the current step in the conversion path as Strings, the next is
the byte sequence which caused this error, and the last is the byte sequence
which will be read again when Encoding::Converter#primitive_convert is
next called. The last four of these elements are only meaningful when the

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 415

first is :invalid_byte_sequence, :incomplete_input, or
:undefined_conversion.

Encoding::Converter#putbackEncoding::Converter#putback(max) #=> String

Puts the read again bytes from the last
Encoding::InvalidByteSequenceError back into the input buffer so they will
be transcoded again. If max is given, it is an Integer specifying the
maximum number of bytes to put back.

Encoding::Converter#replacementEncoding::Converter#replacement() #=> String

Returns the receiver’s replacement String.

Encoding::Converter#replacement=Encoding::Converter#replacement=(stringstring) #=> String

Sets the receiver’s replacement String to string, which it then returns.

Encoding::Converter#source_encodingEncoding::Converter#source_encoding() #=> Encoding

Returns the Encoding from which the receiver transcodes.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 416

ENUMERABLEENUMERABLE
Enumerable#all?Enumerable#all?() {|object| } #=> true or false

Passes each element of the receiver to the block, returning true if the block is
always true; false, otherwise. If the block is omitted, returns true if every
element is neither false nor nil; false, otherwise.

Enumerable#any?Enumerable#any?() {|object| } #=> true or false

Passes each element of the receiver to the block, returning true as soon as the
block is true; false, otherwise. If the block is omitted, returns true if at least
one element is neither false nor nil; false, otherwise.

Enumerable#chunkEnumerable#chunk() {|object| }{|object| } #=> Enumerator

Enumerable#chunkEnumerable#chunk(initial_stateinitial_state) {|object, state| }{|object, state| } #=> Enumerator

Enumerates consecutive chunks of elements for which the block returns the
same value. A chunk comprises the return value of the block, and an Array of
corresponding elements. If the block returns nil or :_separator the
corresponding element is dropped; if it returns :_alone, the element is the
sole member of its chunk. If initial_state is given, it is duplicated for each
iteration and passed to the block as a second argument: it can be used to
maintain state.

Enumerable#collectEnumerable#collect() {|object| } #=> Enumerator

Passes each element of the receiver to the block, returning an Array of its
results. Returns an Enumerator if the block is omitted. Aliased by
Enumerable#map.

Enumerable#collect_concatEnumerable#collect_concat() {|object| } #=> Array or Enumerator

Behaves like Enumerable#collect, but flattens the result Array before
returning. Aliased by Enumerable#flat_map.

Enumerable#countEnumerable#count(object) #=> Integer

Enumerable#countEnumerable#count() {|object| } #=> Integer

Returns how many elements of the receiver equal object or for which the
block is true. If both object and block are omitted, returns the total number of
elements in the receiver.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 417

Enumerable#cycleEnumerable#cycle(times) {|object| } #=> Enumerator or nil

Invokes the block with each element of the receiver in turn, then repeats
times times or forever if times is omitted. If the receiver is empty, returns nil.
If the block is omitted, returns an Enumerator.

Enumerable#detectEnumerable#detect(default=->{ nil }) {|object| } #=> Object,

Enumerator, or nil

Passes each element to the block, returning the first for which the block is
true. If the block is never true, the result of calling the default Proc is
returned. Aliased by Enumerable#find.

Enumerable#dropEnumerable#drop(nn) #=> Array

Returns all but the first n elements.

Enumerable#drop_whileEnumerable#drop_while() {|object| } #=> Array or Enumerator

Returns the first element for which the block is false along with all that
follow, or an Enumerator if the block is omitted.

Enumerable#each_entryEnumerable#each_entry() {|object| } #=> Enumerable or Enumerator

Behaves like #each except if #each yielded multiple values at once, this
method yields them as an Array rather than separate parameters. Returns an
Enumerator if the block is omitted.

Enumerable#each_consEnumerable#each_cons(sizesize) {|object| } #=> Enumerator or nil

Yields consecutive sub-Arrays of size size: the first contains elements
0–(size−1), the second, elements 1–size, and so forth. An Enumerator is
returned if the block is omitted.

Enumerable#each_sliceEnumerable#each_slice(sizesize) {|object| } #=> Enumerator or nil

Yields each group of size elements as Arrays: the first contains the first size
elements, the second, the next size elements, and so forth. An Enumerator is
returned if the block is omitted.

Enumerable#each_with_indexEnumerable#each_with_index(argument, …) {|object, index| } #=>

Enumerable or Enumerator

Yields each element along with its index, or returns an Enumerator if the
block is omitted. Any arguments are passed to #each.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 418

Enumerable#each_with_objectEnumerable#each_with_object(objectobject) {|element, object| } #=>

Object or Enumerator

Yields each element along with object, then returns object. Returns an
Enumerator if the block is omitted.

Enumerable#entriesEnumerable#entries(argument, …) #=> Array

Returns the elements as an Array. Any arguments given are passed to #each.
Aliased by Enumerable#to_a.

Enumerable#findEnumerable#find(default=->{ nil }) {|object| } #=> Object,

Enumerator, or nil

Aliases Enumerable#detect.

Enumerable#find_allEnumerable#find_all() {|object| } #=> Array or Enumerator

Returns the elements for which the block is true, or returns an Enumerator if
the block is omitted. Aliased by Enumerable#select.

Enumerable#find_indexEnumerable#find_index() {|object| } #=> Integer, Enumerator, or

nil

Returns the index of the first element for which the block is true, or nil if it
never is. Returns an Enumerator if the block is omitted.

Enumerable#firstEnumerable#first() #=> Object or nil

Enumerable#firstEnumerable#first(nn) #=> Array

Returns the first element, or if an argument is given, the first n elements.

Enumerable#flat_mapEnumerable#flat_map() {|object| } #=> Array or Enumerator

Aliases Enumerable#collect_concat.

Enumerable#grepEnumerable#grep(patternpattern) {|object| } #=> Array

Returns the elements which are equal with #=== to pattern. If the block is
given, each element is mapped through it before being appended to the result
Array.

Enumerable#group_byEnumerable#group_by() {|object| } #=> Hash or Enumerator

Returns a Hash mapping values returned by the block to Arrays of elements
for which the block returned that value, or an Enumerator if the block is
omitted.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 419

Enumerable#include?Enumerable#include?(objectobject) #=> true or false

Returns true as soon as an element is equal—in terms of #==—to object; false
if there is no such element. Aliased by Enumerable#member?.

Enumerable#injectEnumerable#inject(initial) {|accumulator, element| } #=> Object

Enumerable#injectEnumerable#inject(initialinitial, selectorselector) #=> Object

Enumerable#injectEnumerable#inject(selectorselector) #=> Object

Iterates over the receiver, accumulating a return value. The first form yields
both an accumulator object and an element. On the first iteration the
accumulator is initialised to initial, if given; or the first element, if not—in
this case, the first element isn’t yielded. Subsequently, the accumulator is
assigned the value last returned by the block. The other forms are like the
first but with an implicit block of {|accumulator, element|
accumulator.send(selector, element)}. The return value is that of the block
on the final iteration. Aliased by Enumerable#reduce.

Enumerable#mapEnumerable#map() {|object| } #=> Array or Enumerator

Aliases Enumerable#collect.

Enumerable#maxEnumerable#max() {|a, b| } #=> Object

Returns the element with the maximum value by passing each pair to the
block, and expecting a return value congruous with that of <=>. If the block is
omitted, compares elements with #<=>, instead.

Enumerable#max_byEnumerable#max_by() {|object| } #=> Object or Enumerator

Returns the element for which the block returned the largest value, or an
Enumerator if the block is omitted.

Enumerable#member?Enumerable#member?(objectobject) #=> true or false

Aliases Enumerable#include?.

Enumerable#minEnumerable#min() {|a, b| } #=> Object

Returns the element with the minimum value by passing each pair to the
block, and expecting a return value accordant with that of #<=>. If the block is
omitted, compares elements with #<=>, instead.

Enumerable#min_byEnumerable#min_by() {|object| } #=> Object or Enumerator

Returns the element for which the block returned the smallest value, or an
Enumerator if the block is omitted.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 420

Enumerable#minmaxEnumerable#minmax() {|a, b| } #=> Array

Passes its arguments to both Enumerable#min and Enumerable#max, and
returns their values.

Enumerable#minmax_byEnumerable#minmax_by() {|a, b| } #=> Array or Enumerator

Passes its arguments to both Enumerable#min_by and Enumerable#max_by, and
returns their values. Returns an Enumerator if the block is omitted.

Enumerable#none?Enumerable#none?() {|object| } #=> true or false

Passes each element of the receiver to the block, returning true if the block is
never true; false, otherwise. If the block is omitted, returns true if every
element is either false or nil; false, otherwise.

Enumerable#one?Enumerable#one?() {|object| } #=> true or false

Passes each element of the receiver to the block, returning true if the block is
true exactly once; false, otherwise. If the block is omitted, returns true if
exactly one element is neither false nor nil; false, otherwise.

Enumerable#paritionEnumerable#parition() {|object| } #=> Array or Enumerator

Returns an Array whose first element is an Array of elements for which the
block was true; and last element is an Array of the remainder.

Enumerable#reduceEnumerable#reduce(initial) {|accumulator, element| } #=> Object

Enumerable#reduceEnumerable#reduce(initialinitial, selectorselector) #=> Object

Enumerable#reduceEnumerable#reduce(selectorselector) #=> Object

Aliases Enumerable#inject.

Enumerable#rejectEnumerable#reject() {|object| } #=> Array or Enumerator

Returns the elements for which the block is false, or an Enumerator if the
block is omitted.

Enumerable#reverse_eachEnumerable#reverse_each() {|object| } #=> Array or Enumerator

Yields each element in reverse order, or returns an Enumerator if the block is
omitted.

Enumerable#selectEnumerable#select() {|object| } #=> Array or Enumerator

Aliases Enumerable#find_all.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 421

Enumerable#slice_beforeEnumerable#slice_before(patternpattern) #=> Enumerator

Enumerable#slice_beforeEnumerable#slice_before() {|object| }{|object| }) {|object, state| }{|object, state| } #=>

Enumerator

Enumerable#slice_beforeEnumerable#slice_before(initial_stateinitial_state) {|object, state| }{|object, state| } #=>

Enumerator

Groups elements such that an element is a member of its predecessor’s group
unless the given condition is true, in which case it’s a member of a new
group. The first element is a member of the default group. In the first form,
the condition is pattern having case-equality—i.e. #===—with the element; in
the other forms, it is specified by the value of the block when passed the
element. If initial_state is given, it can be used for maintaining state: it’s
duplicated for each iteration and passed to the block as the second argument.

Enumerable#sortEnumerable#sort() {|a, b| } #=> Array

Returns the elements sorted either by passing each pair to the block and
expecting a return value accordant with that of #<=>, or comparing elements
with their #<=> methods.

Enumerable#sort_byEnumerable#sort_by() {|object| } #=> Array or Enumerator

Maps each element through the block then sorts them on the value returned,
or returns an Enumerator if the block is omitted.

Enumerable#takeEnumerable#take(nn) #=> Array

Returns the first n elements.

Enumerable#take_whileEnumerable#take_while() {|object| } #=> Array or Enumerator

Collects elements until the block is false, then returns them. Returns an
Enumerator if the block is omitted.

Enumerable#to_aEnumerable#to_a(argument, …) #=> Array

Aliases Enumerable#entries.

Enumerable#zipEnumerable#zip(objectobject, …) {|array| } #=> Array or nil

Creates an Array for each element, containing the element along with the
corresponding element from each of its Enumerable arguments. If fewer
arguments are given than there are elements in the receiver, the result Arrays
are padded with nils. If a block is given, each result Array is yielded to it;
otherwise they are returned as an Array of Arrays.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 422

ENUMERATORENUMERATOR
Enumerator.newEnumerator.new(objectobject, selector=:each, argument, …) #=> Enumerator

Enumerator.newEnumerator.new() {|yielder| }{|yielder| } #=> Enumerator

The first form returns an Enumerator for object in terms of its method named
selector; any arguments given are passed to this method. If a block is given
instead, it is passed a new Enumerator::Yielder object which may be used to
lazily append values to this Enumerator.

Enumerator#eachEnumerator#each() {|*item| }{|*item| } #=> Object or Enumerator

Yields each element of this enumeration—passing to the block as many
parameters as the Enumerator supplied. Returns self, or an Enumerator if the
block is omitted.

Enumerator#each_with_indexEnumerator#each_with_index() {|(*item), index| }{|(*item), index| } #=> Object or

Enumerator

Yields each element of this enumeration—passing to the block as many
parameters as the Enumerator supplied—along with the corresponding index.
Returns self, or an Enumerator if the block is omitted.

Enumerator#each_with_objectEnumerator#each_with_object(objectobject) {|(*item), object| }{|(*item), object| } #=>

Object or Enumerator

Yields each element of this enumeration—passing to the block as many
parameters as the Enumerator supplied—along with object. Returns object, or
an Enumerator if the block is omitted. Aliased by Enumerator#with_object.

Enumerator#feedEnumerator#feed(objectobject) #=> nil

Returns object to the receiver the next time it yields a value.

Enumerator#nextEnumerator#next() #=> Object

Returns the next element of this Enumerator, or raises StopIteration if the
last has already been returned.

Enumerator#next_valuesEnumerator#next_values() #=> Array

Returns the next element of this Enumerator as an Array, or raises

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 423

StopIteration if the last has already been returned. Returns [] if the receiver
used a bare yield; or [nil] if it used yield nil.

Enumerator#peekEnumerator#peek() #=> Object

Returns the next element of this Enumerator without advancing the next-
element pointer, or raises StopIteration if the last has already been returned.

Enumerator#peek_valuesEnumerator#peek_values() #=> Array

Returns the next element of this Enumerator as an Array without advancing
the next-element pointer, or raises StopIteration if the last has already been
returned. Returns [] if the receiver used a bare yield; or [nil] if it used
yield nil.

Enumerator#rewindEnumerator#rewind() #=> Object

Resets the Enumerator such that a subsequent call to Enumerator#next returns
the first element again. If the enumerated object has a #rewind method, it is
called. Returns self.

Enumerator#with_indexEnumerator#with_index(offset=0) {|(*item), index| }{|(*item), index| } #=> Object or

Enumerator

Behaves as Enumerator#each_with_index, except offset is added to each
index.

Enumerator#with_objectEnumerator#with_object(objectobject) {|(*item), object| }{|(*item), object| } #=> Object or

Enumerator

Aliases Enumerator#each_with_object.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 424

EXCEPTIONEXCEPTION
Exception.exceptionException.exception(message='Exception') #=> Exception

Returns a new Exception with the given message.

Exception.newException.new(message='Exception') #=> Exception

Returns a new Exception with the given message.

Exception#backtraceException#backtrace() #=> Array

Returns the backtrace as an Array of Strings.

Exception#exceptionException#exception(message) #=> Exception

Returns the receiver if no argument is given; otherwise, creates a new
instance of the receiver’s class with the given message.

Exception#messageException#message() #=> Object

Returns this Exception’s message.

Exception#set_backtraceException#set_backtrace(arrayarray) #=> Array

Sets this Exception’s backtrace to the given Array of Strings.

Exception#to_sException#to_s() #=> Object

Returns the message or, if that’s not set, the class name of this Exception.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 425

FALSECLASSFALSECLASS
FalseClass#&FalseClass#&(objectobject) #=> false

Performs a logical AND with the given argument.

FalseClass#^FalseClass#^(objectobject) #=> true or false

Performs exclusive OR: returns false if object is nil or false; true,
otherwise.

FalseClass#|FalseClass#|(objectobject) #=> true or false

Performs logical OR: returns false if object is nil or false; true, otherwise.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 426

FIBERFIBER
Fiber.newFiber.new() { }{ } #=> Fiber

Returns a new Fiber whose body is the given block.

Fiber.yieldFiber.yield(argument, …) #=> Object

Suspends the current Fiber, returning control, and any argument(s), to where
this Fiber was resumed from. Returns the arguments of the corresponding
Fiber#resume call. The root Fiber cannot be yielded from.

Fiber#resumeFiber#resume(argument, …) #=> Object

Resumes this Fiber. If there was a corresponding Fiber.yield, its arguments
become this method’s return value, and this method’s arguments become
Fiber.yield’s return value.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 427

FILEFILE
File.absolute_pathFile.absolute_path(filenamefilename, directory=Dir.pwd) #=> String

Returns filename as an absolute path name relative to directory.

File.atimeFile.atime(filenamefilename) #=> Time

Returns the last access time for filename, or the epoch if has never been
accessed.

File.basenameFile.basename(filenamefilename, extension='') #=> String

Returns the last component of filename with extension removed from the
end. An extension of .* removes any extension present.

File.blockdev?File.blockdev?(filenamefilename) #=> true or false

Returns true if filename is a block device; false if it isn’t or this operating
system does not support such devices.

File.chardev?File.chardev?(filenamefilename) #=> true or false

Returns true if filename is a character device; false if it isn’t or this
operating system does not support such devices.

File.chmodFile.chmod(permissionpermission, filenamefilename, …) #=> Integer

Sets the permission bits of each named file to the Integer permission,
returning the number of files processed. On Unix-like systems, permissions is
the bit-mask documented in chmod(2).

File.chownFile.chown(ownerowner, groupgroup, filenamefilename, …) #=> Integer

Sets the owner and group of each named file to the Integers owner and
group, respectively, returning the number of files processed. If either owner or
group is nil or -1, it is ignored.

File.ctimeFile.ctime(filenamefilename) #=> Time

Returns the time of last status change—i.e. the inode change time on Unix-like
systems—for filename.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 428

File.deleteFile.delete(filenamefilename, …) #=> Integer

Deletes each named file, returning the number deleted. Aliased by
File.unlink.

File.directory?File.directory?(filenamefilename) #=> true or false

Returns true if filename is a directory; otherwise, false.

File.dirnameFile.dirname(filenamefilename) #=> String

Returns filename with the last component removed.

File.executable?File.executable?(filenamefilename) #=> true or false

Returns true if filename is executable by the effective owner of the current
process; otherwise, false.

File.executable_real?File.executable_real?(filenamefilename) #=> true or false

Returns true if filename is executable by the real owner of the current
process; otherwise, false.

File.exist?File.exist?(filenamefilename) #=> true or false

Returns true if filename exists; otherwise, false. Aliased by File.exists?.

File.exists?File.exists?(filenamefilename) #=> true or false

Aliases File.exist?.

File.expand_pathFile.expand_path(filenamefilename, directory=Dir.pwd) #=> String

Returns filename as an absolute path relative to directory. However, directory
is ignored if filename begins with a tilde: if the tilde is followed by a user
name, filename is expanded relative to that user’s home directory; otherwise,
filename is expanded relative to the current user’s home directory.

File.extnameFile.extname(filenamefilename) #=> String

Returns the portion of the filename following the right-most full stop,
including the full stop itself, or "" if there is no full stop.

File.file?File.file?(filenamefilename) #=> true or false

Returns true if file is a regular—as opposed to a device, directory, pipe, or
socket—file; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 429

File.fnmatchFile.fnmatch(patternpattern, filenamefilename, flags) #=> true or false

Returns true if filename matches the globbing pattern pattern; otherwise,
false. The globbing syntax and permissible flag values are explained in
Globbing. Aliased by File.fnmatch?.

File.fnmatch?File.fnmatch?(patternpattern, filenamefilename, flags) #=> true or false

Aliases File.fnmatch.

File.ftypeFile.ftype(filenamefilename) #=> String

Returns the file type as one of the following Strings: "blockSpecial",
"characterSpecial", "directory", "fifo", "link", "socket", or "unknown".

File.grpowned?File.grpowned?(filenamefilename) #=> true or false

Returns true if the effective group ID of the current process is equal to the
group ID of filename; otherwise, or on Windows, false.

File.identical?File.identical?(filename1filename1, filename2filename2) #=> true or false

Returns true if filename1 and filename2 resolve to the same file; otherwise,
false.

File.joinFile.join(componentcomponent, …) #=> String

Concatenates the given path components with File::SEPARATOR, returning
the result.

File.lchmodFile.lchmod(permissionpermission, filenamefilename, …) #=> Integer

Behaves as File.chmod except that if a filename is a symbolic link, it changes
the permission of the link; not its target. Raises a NotImplementedError on
platforms lacking the lchmod(2) system call.

File.lchownFile.lchown(ownerowner, groupgroup, filenamefilename, …) #=> Integer

Behaves as File.chown except that if a filename is a symbolic link, it changes
the owner and group of the link; not its target. Raises a NotImplementedError

on platforms lacking the lchown(2) system call.

File.linkFile.link(filenamefilename, linklink) #=> 0

Creates a hard link named link to an existing file named filename. If link
exists prior to this method being invoked, an Errno:: Exception will be
raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 430

File.lstatFile.lstat(filenamefilename) #=> File::Stat

Behaves as IO#stat except that if filename is a symbolic link, it returns status
information for the link; not its target.

File.mtimeFile.mtime(filenamefilename) #=> Time

Returns the time of last modification—on Unix-like systems this equates to
the file’s contents being modified, or, if filename is a directory, the creation or
deletion of files in that directory—for filename.

File.newFile.new(filenamefilename, mode='r', permissions, options) #=> File

File.newFile.new(file_descriptorfile_descriptor, mode='r', options) #=> File

The first form opens a file named filename, which it returns as a File object.
The mode may be either a given as a mode string or a logical OR of the file
open flags. The permissions of the file are given by the Integer permissions,
the meaning of which is platform dependent. An IO options Hash may
supplied as options. Alternatively, a file descriptor may be given as the first
argument in which case the arguments are passed to IO.new to instantiate a
File object for the existing stream.

File.owned?File.owned?(filenamefilename) #=> true or false

Returns true if the file named filename is owned by the effective user ID of
the current process; otherwise, false.

File.pathFile.path(filenamefilename) #=> String or nil

Returns this file’s pat by invoking #to_path; if that method isn’t defined, nil
is returned instead.

File.pipe?File.pipe?(filenamefilename) #=> true or false

Returns true if the file named filename is a pipe; otherwise, or if the
operating system doesn’t support named pipes, false.

File.readable?File.readable?(filenamefilename) #=> true or false

Returns true if the file named filename is readable by the effective user ID of
the current process; otherwise, false.

File.readable_real?File.readable_real?(filenamefilename) #=> true or false

Returns true if the file named filename is readable by the real user ID of the
current process; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 431

File.readlinkFile.readlink(filenamefilename) #=> String

Returns the target of the symbolic link named filename. Raises
NotImplementedError if the operating system lacks the readlink(2) system
call.

File.realdirpathFile.realdirpath(filenamefilename, directory=Dir.pwd) #=> String

Behaves as File.realpath but allows the last component to be nonexistent.

File.realpathFile.realpath(filenamefilename, directory=Dir.pwd) #=> String

Returns the canonical absolute pathname for the given path: all symbolic
links are expanded, references to /./ and /../ are resolved relative to
directory, and superfluous slashes are removed. All path components must
exist.

File.renameFile.rename(filenamefilename, newnew) #=> 0

Renames the file or directory named filename to new.

File.setgid?File.setgid?(filenamefilename) #=> true or false

Returns true if the file named filename has its set-group-ID bit set;
otherwise, or if the operating system doesn’t support setgid bits, false.

File.setuid?File.setuid?(filenamefilename) #=> true or false

Returns true if the file named filename has its set-user-ID bit set; otherwise,
or if the operating system doesn’t support suid bits, false.

File.sizeFile.size(filenamefilename) #=> Integer

Returns the size of the file named filename in bytes.

File.size?File.size?(filenamefilename) #=> Integer or nil

Returns nil if the file named filename has a size of 0; otherwise, the size in
bytes.

File.socket?File.socket?(filenamefilename) #=> true or false

Returns true if the file named filename is a socket; otherwise, or if the
operating system doesn’t support sockets, false.

File.splitFile.split(filenamefilename) #=> Array

Returns the directory name—i.e. File.dirname—and basename—i.e.
File.basename—of the file named file as a two-element Array.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 432

File.statFile.stat(filenamefilename) #=> File::Stat

Returns status information for the file named filename.

File.sticky?File.sticky?(filenamefilename) #=> true or false

Returns true if the file named filename has its sticky bit set; otherwise, or if
the operating system doesn’t support sticky bits, false.

File.symlinkFile.symlink(filenamefilename, newnew) #=> 0

Creates a symbolic link from an existing file named filename to new. Raises
NotImplementedError on operating systems that lack the symlink(2) system
call.

File.symlink?File.symlink?(filenamefilename) #=> true or false

Returns true if there is a symbolic link named filename; otherwise, or if the
operating system doesn’t support symbolic links, false.

File.truncateFile.truncate(filenamefilename, lengthlength) #=> 0

Truncates the file named filename to length bytes in length. length may be
greater or less than the file’s current size; if greater, the file is extended with
null ("\0") bytes. Raises NotImplementedError on operating systems lacking
the truncate(2) system call.

File.umaskFile.umask(mask) #=> Integer

Returns the file mode creation mask—umask—of the calling process. If an
Integer mask is given, the umask is set to mask & 0777. The umask modifies
the permissions of newly created files and directories by turning off the bits
in the access mode that are on in the umask.

File.unlinkFile.unlink(filenamefilename, …) #=> Integer

Aliases File.delete.

File.utimeFile.utime(atimeatime, mtimemtime, filenamefilename, …) #=> Integer

Sets the access times and last modification times for each named file to atime
and mtime, respectively. The times may be given as Time objects or Integer
seconds since the epoch. Returns the number of files changed. Raises
NotImplementedError on non-Windows systems which lack both the
utimes(2) and utimensat(2) system calls.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 433

File.world_readable?File.world_readable?(filenamefilename) #=> Integer or nil

Returns the permission bits of the file named filename if it is world readable;
otherwise, nil.

File.world_writable?File.world_writable?(filenamefilename) #=> Integer or nil

Returns the permission bits of the file named filename if it is world writable;
otherwise, nil.

File.writable?File.writable?(filenamefilename) #=> true or false

Returns true if the file named filename is writable by the effective user ID of
the current process; otherwise, false.

File.writable_real?File.writable_real?(filenamefilename) #=> true or false

Returns true if the file named filename is writable by the real user ID of the
current process; otherwise, false.

File.zero?File.zero?(filenamefilename) #=> true or false

Returns true if the file named filename has a size of 0; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 434

FILE::STATFILE::STAT
File::Stat#<=>File::Stat#<=>(statstat) #=> -1, 0, 1

Compares the modification time of this file with that of the given File::Stat

object, returning -1 if the receiver is older, 0 if they are equal, and 1 if the
receiver is younger.

File::Stat#atimeFile::Stat#atime() #=> Time

Returns the last access time for this file, or the epoch if has never been
accessed.

File::Stat#blksizeFile::Stat#blksize() #=> Integer

Returns the block size of this file’s filesystem, or nil if the filesystem doesn’t
support this attribute.

File::Stat#blockdev?File::Stat#blockdev?() #=> true or false

Returns true if this file is a block device; false if it isn’t or this operating
system does not support such devices.

File::Stat#blocksFile::Stat#blocks() #=> Integer or nil

Returns the number of file system blocks allocated for this file, or nil if the
filesystem doesn’t support this attribute.

File::Stat#chardev?File::Stat#chardev?() #=> true or false

Returns true if this file is a character device; false if it isn’t or this operating
system does not support such devices.

File::Stat#ctimeFile::Stat#ctime() #=> Time

Returns the time of last status change—i.e. the inode change time on Unix-like
systems—for this file.

File::Stat#devFile::Stat#dev() #=> Integer

Returns the device ID for this file.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 435

File::Stat#dev_majorFile::Stat#dev_major() #=> Integer or nil

Returns the major part of File::Stat#dev; otherwise, or if the operating
system doesn’t support this attribute, nil.

File::Stat#dev_minorFile::Stat#dev_minor() #=> Integer or nil

Returns the minor part of File::Stat#dev on supported operating systems;
otherwise, or if the operating system doesn’t support this attribute, nil.

File::Stat#directory?File::Stat#directory?() #=> true or false

Returns true if this file a directory; otherwise, false.

File::Stat#executable?File::Stat#executable?() #=> true or false

Returns true if this file is executable by the effective owner of the current
process; otherwise, or if the operating system does not have the concept of an
executable file, false.

File::Stat#executable_real?File::Stat#executable_real?() #=> true or false

Returns true if this file is executable by the real owner of the current process;
otherwise, or if the operating system does not have the concept of an
executable file, false.

File::Stat#file?File::Stat#file?() #=> true or false

Returns true if this file is a regular—as opposed to a device, directory, pipe, or
socket—file; otherwise, false.

File::Stat#ftypeFile::Stat#ftype() #=> String

Returns this file’s type as one of the following Strings: "blockSpecial",
"characterSpecial", "directory", "fifo", "link", "socket", or "unknown".

File::Stat#gidFile::Stat#gid() #=> Integer

Returns this group ID of this file’s owner.

File::Stat#grpowned?File::Stat#grpowned?() #=> true or false

Returns true if the effective group ID of the current process is equal to the
group ID of this file; otherwise, or on Windows, false.

File::Stat#inoFile::Stat#ino() #=> Integer

Returns the inode number for this file.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 436

File::Stat#modeFile::Stat#mode() #=> Integer

Returns the permission bits for this file.

File::Stat#mtimeFile::Stat#mtime() #=> Time

Returns the time of last modification—on Unix-like systems this equates to
the file’s contents being modified, or, if this file is a directory, the creation or
deletion of files in that directory—for this file.

File::Stat#nlinkFile::Stat#nlink() #=> Integer

Returns the number of hard links to this file.

File::Stat#owned?File::Stat#owned?() #=> true or false

Returns true if this file is owned by the effective user ID of the current
process; otherwise, false.

File::Stat#pipe?File::Stat#pipe?() #=> true or false

Returns true if this file is a pipe; otherwise, or if the operating system doesn’t
support pipes, false.

File::Stat#rdevFile::Stat#rdev() #=> Integer or nil

Returns the device number that this special file represents, or nil if the
operating system doesn’t support this attribute.

File::Stat#rdev_majorFile::Stat#rdev_major() #=> Integer or nil

Returns the major part of the device number that this special file represents,
or nil if the operating system doesn’t return this attribute.

File::Stat#rdev_minorFile::Stat#rdev_minor() #=> Integer or nil

Returns the minor part of the device number that this special file represents,
or nil if the operating system doesn’t return this attribute.

File::Stat#readable?File::Stat#readable?() #=> true or false

Returns true if this file is readable by the effective user ID of the current
process; otherwise, false.

File::Stat#readable_real?File::Stat#readable_real?() #=> true or false

Returns true if this file is readable by the real user ID of the current process;
otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 437

File::Stat#setgid?File::Stat#setgid?() #=> true or false

Returns true if this file has its set-group-ID bit set; otherwise, or if the
operating system doesn’t support setgid bits, false.

File::Stat#setuid?File::Stat#setuid?() #=> true or false

Returns true if this file has its set-user-ID bit set; otherwise, or if the
operating system doesn’t support setuid bits, false.

File::Stat#sizeFile::Stat#size() #=> Integer

Returns the size of this file in bytes.

File::Stat#size?File::Stat#size?() #=> Integer or nil

Returns nil if this file has a size of 0; otherwise, the size in bytes.

File::Stat#socket?File::Stat#socket?() #=> true or false

Returns true if this file is a socket; otherwise, or if the operating system
doesn’t support sockets, false.

File::Stat#sticky?File::Stat#sticky?() #=> true or false

Returns true if this file has its sticky bit set; otherwise, or if the operating
system doesn’t support sticky bits, false.

File::Stat#symlink?File::Stat#symlink?() #=> true or false

Returns true if this file is a symbolic link; otherwise, or if the operating
system doesn’t support symbolic links, false.

File::Stat#uidFile::Stat#uid() #=> Integer

Returns the user ID of the file’s owner.

File::Stat#world_readable?File::Stat#world_readable?() #=> Integer or nil

Returns the permission bits of this file if it is world readable; otherwise, nil.

File::Stat#world_writable?File::Stat#world_writable?() #=> Integer or nil

Returns the permission bits of this file if it is world writable; otherwise, nil.

File::Stat#writable?File::Stat#writable?() #=> true or false

Returns true if this file is writable by the effective user ID of the current
process; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 438

File::Stat#writable_real?File::Stat#writable_real?() #=> true or false

Returns true if this file is writable by the real user ID of the current process;
otherwise, false.

File::Stat#zero?File::Stat#zero?() #=> true or false

Returns true if this file has a size of 0; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 439

FILETESTFILETEST
FileTest.blockdev?FileTest.blockdev?(filenamefilename) #=> true or false

Returns true if filename is a block device; false if it isn’t or this operating
system does not support such devices.

FileTest.chardev?FileTest.chardev?(filenamefilename) #=> true or false

Returns true if filename is a character device; false if it isn’t or this
operating system does not support such devices.

FileTest.directory?FileTest.directory?(filenamefilename) #=> true or false

Returns true if filename is a directory; otherwise, false.

FileTest.executable?FileTest.executable?(filenamefilename) #=> true or false

Returns true if filename is executable by the effective owner of the current
process; otherwise, false.

FileTest.executable_real?FileTest.executable_real?(filenamefilename) #=> true or false

Returns true if filename is executable by the real owner of the current
process; otherwise, false.

FileTest.exist?FileTest.exist?(filenamefilename) #=> true or false

Returns true if filename exists; otherwise, false. Aliased by
FileTest.exists?.

FileTest.exists?FileTest.exists?(filenamefilename) #=> true or false

Aliases FileTest.exist?.

FileTest.file?FileTest.file?(filenamefilename) #=> true or false

Returns true if file is a regular—as opposed to a device, directory, pipe, or
socket—file; otherwise, false.

FileTest.grpowned?FileTest.grpowned?(filenamefilename) #=> true or false

Returns true if the effective group ID of the current process is equal to the
group ID of filename; otherwise, or on Windows, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 440

FileTest.identical?FileTest.identical?(filename1filename1, filename2filename2) #=> true or false

Returns true if filename1 and filename2 resolve to the same file; otherwise,
false.

FileTest.owned?FileTest.owned?(filenamefilename) #=> true or false

Returns true if the file named filename is owned by the effective user ID of
the current process; otherwise, false.

FileTest.pipe?FileTest.pipe?(filenamefilename) #=> true or false

Returns true if the file named filename is a pipe; otherwise, or if the
operating system doesn’t support named pipes, false.

FileTest.readable?FileTest.readable?(filenamefilename) #=> true or false

Returns true if the file named filename is readable by the effective user ID of
the current process; otherwise, false.

FileTest.readable_real?FileTest.readable_real?(filenamefilename) #=> true or false

Returns true if the file named filename is readable by the real user ID of the
current process; otherwise, false.

FileTest.setgid?FileTest.setgid?(filenamefilename) #=> true or false

Returns true if the file named filename has its set-group-ID bit set;
otherwise, or if the operating system doesn’t support setgid bits, false.

FileTest.setuid?FileTest.setuid?(filenamefilename) #=> true or false

Returns true if the file named filename has its set-user-ID bit set; otherwise,
or if the operating system doesn’t support suid bits, false.

FileTest.sizeFileTest.size(filenamefilename) #=> Integer

Returns the size of the file named filename in bytes.

FileTest.size?FileTest.size?(filenamefilename) #=> Integer or nil

Returns nil if the file named filename has a size of 0; otherwise, the size in
bytes.

FileTest.socket?FileTest.socket?(filenamefilename) #=> true or false

Returns true if the file named filename is a socket; otherwise, or if the
operating system doesn’t support sockets, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 441

FileTest.sticky?FileTest.sticky?(filenamefilename) #=> true or false

Returns true if the file named filename has its sticky bit set; otherwise, or if
the operating system doesn’t support sticky bits, false.

FileTest.symlink?FileTest.symlink?(filenamefilename) #=> true or false

Returns true if there is a symbolic link named filename; otherwise, or if the
operating system doesn’t support symbolic links, false.

FileTest.world_readable?FileTest.world_readable?(filenamefilename) #=> Integer or nil

Returns the permission bits of the file named filename if it is world readable;
otherwise, nil.

FileTest.writable?FileTest.writable?(filenamefilename) #=> true or false

Returns true if the file named filename is writable by the effective user ID of
the current process; otherwise, false.

FileTest.writable_real?FileTest.writable_real?(filenamefilename) #=> true or false

Returns true if the file named filename is writable by the real user ID of the
current process; otherwise, false.

FileTest.zero?FileTest.zero?(filenamefilename) #=> true or false

Returns true if the file named filename has a size of 0; otherwise, false.

FileTest.zero?FileTest.zero?(filenamefilename) #=> true or false

Returns true if the file named filename has a size of 0; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 442

FIXNUMFIXNUM
Fixnum#%Fixnum#%(numbernumber) #=> Fixnum

Returns the result of the receiver modulo number. Aliased by Fixnum#modulo.

Fixnum#&Fixnum#&(numbernumber) #=> Integer

Returns the result of a bitwise AND between the receiver and number.

Fixnum#*Fixnum#*(numbernumber) #=> Numeric

Returns the result of multiplying number with the receiver.

Fixnum#**Fixnum#**(numbernumber) #=> Numeric

Returns the result of raising the receiver to the numberth power.

Fixnum#+Fixnum#+(numbernumber) #=> Numeric

Returns the result of adding the receiver to number.

Fixnum#-Fixnum#-(numbernumber) #=> Numeric

Returns the result of subtracting number from the receiver.

Fixnum#-@Fixnum#-@() #=> Fixnum

Returns the receiver with a negative sign.

Fixnum#/Fixnum#/(numbernumber) #=> Integer

Returns the result of dividing—using integer division—the receiver by
number. Aliased by Fixnum#div.

Fixnum#<Fixnum#<(numbernumber) #=> true or false

Returns true if the receiver is less than number; otherwise, false.

Fixnum#<<Fixnum#<<(numbernumber) #=> Integer

Returns the result of left-shifting number bits of the receiver.

Fixnum#<=Fixnum#<=(numbernumber) #=> true or false

Returns true if the receiver is less than or equal to number; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 443

Fixnum#<=>Fixnum#<=>(numbernumber) #=> -1, 0, 1

Returns -1 if the receiver is less than number, 0 if they are equal, and 1 if it is
greater.

Fixnum#==Fixnum#==(numbernumber) #=> true or false

Returns true if the number is a Numeric with the same value as the receiver;
false, otherwise. Aliased by Fixnum#===.

Fixnum#===Fixnum#===(numbernumber) #=> true or false

Aliases Fixnum#==.

Fixnum#>Fixnum#>(numbernumber) #=> true or false

Returns true if the receiver is greater than number; otherwise, false.

Fixnum#>=Fixnum#>=(numbernumber) #=> true or false

Returns true if the receiver is greater than or equal to number; otherwise,
false.

Fixnum#>>Fixnum#>>(numbernumber) #=> Integer

Returns the result of right-shifting number bits of the receiver and its sign.

Fixnum#[]Fixnum#[](bitbit) #=> 0 or 1

Returns the bitth bit of the receiver, where the 0th bit is the least significant.

Fixnum#^Fixnum#^(numbernumber) #=> Integer

Returns the result of a bitwise EXCLUSIVE OR between the receiver and
number.

Fixnum#absFixnum#abs() #=> Fixnum

Returns the absolute value of the receiver. Aliased by Fixnum#magnitude.

Fixnum#divFixnum#div(numbernumber) #=> Fixnum

Aliases Fixnum#/.

Fixnum#divmodFixnum#divmod(numbernumber) #=> Array

Divides the receiver by number, returning an Array whose first element is the
quotient, and last element, the modulus. The quotient is rounded toward −∞.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 444

Fixnum#even?Fixnum#even?() #=> true or false

Returns true if this number is even; otherwise, false.

Fixnum#fdivFixnum#fdiv(numbernumber) #=> Float

Returns the result of dividing—using floating-point division—the receiver by
number. Aliased by Fixnum#quo.

Fixnum#magnitudeFixnum#magnitude() #=> Fixnum

Aliases Fixnum#abs.

Fixnum#moduloFixnum#modulo(numbernumber) #=> Numeric

Aliases Fixnum#%.

Fixnum#odd?Fixnum#odd?() #=> true or false

Returns true if this number is odd; otherwise, false.

Fixnum#sizeFixnum#size() #=> Fixnum

Returns the number of bytes used to represent the receiver.

Fixnum#succFixnum#succ() #=> Integer

Returns the receiver incremented by 1.

Fixnum#to_fFixnum#to_f() #=> Float

Converts the receiver to a Float.

Fixnum#to_sFixnum#to_s(base=10) #=> String

Returns a String representation of the receiver in the given base, where base
is between 2 and 36 inclusive.

Fixnum#zero?Fixnum#zero?() #=> true or false

Returns true if the receiver is equal to zero; otherwise, false.

Fixnum#|Fixnum#|(numbernumber) #=> Integer

Returns the result of a bitwise OR between the receiver and number.

Fixnum#~Fixnum#~() #=> Integer

Returns the result of inverting the receiver’s bits.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 445

FLOATFLOAT
Float#%Float#%(numbernumber) #=> Float

Returns the result of the receiver modulo number. Aliased by Float#modulo.

Float#*Float#*(numbernumber) #=> Float

Returns the result of multiplying number with the receiver.

Float#**Float#**(numbernumber) #=> Float

Returns the result of raising the receiver to the numberth power.

Float#+Float#+(numbernumber) #=> Float

Returns the result of adding the receiver to number.

Float#-Float#-(numbernumber) #=> Float

Returns the result of subtracting number from the receiver.

Float#-@Float#-@() #=> Float

Returns the receiver with a negative sign.

Float#/Float#/(numbernumber) #=> Integer

Returns the result of dividing—using integer division—the receiver by
number. Aliased by Float#div.

Float#<Float#<(numbernumber) #=> true or false

Returns true if the receiver is less than number; otherwise, false.

Float#<=Float#<=(numbernumber) #=> true or false

Returns true if the receiver is less than or equal to number; otherwise, false.

Float#<=>Float#<=>(numbernumber) #=> -1, 0, 1

Returns -1 if the receiver is less than number, 0 if they are equal, and 1 if it is
greater.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 446

Float#==Float#==(numbernumber) #=> true or false

Returns true if the number is a Numeric with the same value as the receiver;
false, otherwise. Aliased by Float#===.

Float#===Float#===(numbernumber) #=> true or false

Aliases Float#==.

Float#>Float#>(numbernumber) #=> true or false

Returns true if the receiver is greater than number; otherwise, false.

Float#>=Float#>=(numbernumber) #=> true or false

Returns true if the receiver is greater than or equal to number; otherwise,
false.

Float#absFloat#abs() #=> Float

Returns the absolute value of the receiver. Aliased by Float#magnitude.

Float#angleFloat#angle() #=> Float

Returns 0 if the receiver is positive; otherwise, Math::PI. Aliased by
Float#arg and Float#phase.

Float#argFloat#arg() #=> Float

Aliases Float#angle.

Float#ceilFloat#ceil() #=> Integer

Returns the smallest Integer greater than or equal to the receiver.

Float#coerceFloat#coerce(numbernumber) #=> Array

Returns an Array whose first element is number converted to a Float with
Kernel.Float, and last element is the receiver.

Float#denominatorFloat#denominator() #=> Integer

Converts the receiver to a Rational, returning Rational#denominator.
Float::INFINITY and Float::NAN both have a denominator of 1.

Float#divmodFloat#divmod(numbernumber) #=> Array

Divides the receiver by number, returning an Array whose first element is the
quotient, and last element, the modulus. The quotient is rounded toward −∞.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 447

Float#eql?Float#eql?(objectobject) #=> true or false

Returns true if the receiver is a Float with the same value as object;
otherwise, false.

Float#fdivFloat#fdiv(numbernumber) #=> Float

Returns the result of dividing—using floating-point division—the receiver by
number. Aliased by Float#quo.

Float#finite?Float#finite?() #=> true or false

Returns true if the receiver is neither Float::INFINITY nor Float::NAN;
otherwise, false.

Float#floorFloat#floor() #=> Integer

Returns the largest Integer less than or equal to the receiver.

Float#infinite?Float#infinite?() #=> nil, -1, or 1

Returns nil if the receiver is neither Float::INFINITY or Float::NAN; -1 if it
is -Float::INFINITY; and 1 if it is Float::INFINITY.

Float#magnitudeFloat#magnitude() #=> Float

Aliases Float#abs.

Float#moduloFloat#modulo(numbernumber) #=> Numeric

Aliases Float#%.

Float#nan?Float#nan?() #=> true or false

Returns true if the receiver is Float::NAN; otherwise, false.

Float#numeratorFloat#numerator() #=> Integer

Converts the receiver to a Rational, returning Rational#numerator.
Float::INFINITY and Float::NAN both have a numerator of their self.

Float#phaseFloat#phase() #=> Float

Aliases Float#angle.

Float#quoFloat#quo(numbernumber) #=> Float

Aliases Float#fdiv.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 448

Float#rationalizeFloat#rationalize(epsilon) #=> Rational

Returns the simplest rational number differing from the receiver by no more
than epsilon—if epsilon is omitted, it is calculated automatically. To do so, it
assumes that the receiver is accurate only to the precision of Ruby’s floating-
point representation; as opposed to Float#to_r, say, which assumes the
receiver is perfectly accurate.

Float#roundFloat#round(digits=0) #=> Numeric

Returns the receiver rounded to digits digits. If digits is 0, the number is
rounded to the nearest Integer.

Float#to_fFloat#to_f() #=> Float

Returns the receiver.

Float#to_iFloat#to_i() #=> Integer

Converts the receiver to an Integer by truncation, i.e. removing the
fractional part. Aliased to Float#to_int and Float#truncate.

Float#to_intFloat#to_int() #=> Integer

Aliases Float#to_i.

Float#to_rFloat#to_r() #=> Rational

Converts the receiver to a Rational precisely.

Float#to_sFloat#to_s() #=> String

Returns the receiver in fixed or exponential form, according to its magnitude.
Returns "Infinity" for Float::INFINITY, "-Infinity" for -Float::INFINITY,
and "NaN" for Float::NAN.

Float#truncateFloat#truncate() #=> Integer

Aliases Float#to_i.

Float#zero?Float#zero?() #=> true or false

Returns true if the receiver is equal to 0.0; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 449

GCGC
GC.countGC.count() #=> Integer

Returns the number of times the garbage collector has run in the current
process.

GC.disableGC.disable() #=> true or false

Disables garbage collection, returning true if garbage collection was already
disabled; otherwise, false.

GC.enableGC.enable() #=> true or false

Enables garbage collection, returning true if garbage collection was disabled;
otherwise, false.

GC.startGC.start() #=> nil

Starts the garbage collector unless it has been explicitly disabled. Aliased to
GC#garbage_collect.

GC.stressGC.stress() #=> true or false

Returns true if the stress flag—see GC.stress= for details—is set; otherwise,
false.

GC.stress=GC.stress=(booleanboolean) #=> true or false

Sets the stress flag to boolean—which may be either true or false. In the first
case, the garbage collector will run after every object allocation; in the
second, and default, case the garbage collector will run as often as necessary.

GC#garbage_collectGC#garbage_collect() #=> nil

Aliases GC.start.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 450

HASHHASH
Hash[]Hash[](objectobject, …) #=> Hash

Creates and returns a Hash such that the first two arguments comprise the
first key-value pair, the second two arguments comprise the second key-value
pair, and so forth—accordingly, there must be an even number of arguments
given.

Hash.newHash.new(object) #=> Hash

Hash.newHash.new() {|hash, key| }{|hash, key| } #=> Hash

Creates and returns a Hash whose default value is nil if neither block nor
argument are given, object, or the block. In the last case, the block is called
every time a nonexistent key is requested, passing in the receiver and the
given key.

Hash.try_convertHash.try_convert(objectobject) #=> Hash or nil

Converts object to a Hash with #to_hash, returning the result; if this is
impossible, returns nil.

Hash#==Hash#==(objectobject) #=> true or false

Returns true if both the receiver and object have the same default value, the
same number of keys, and the value of every key in the receiver is
equal—according to #==—the value of the corresponding key in object. If
object is not a Hash, it is converted using #to_hash, then the test repeated. In
either the test or the conversion fails, false is returned.

Hash#[]Hash#[](keykey) #=> Object

Returns the value corresponding to the given key, or the default value if the
key doesn’t exist.

Hash#[]=Hash#[]=(keykey, valuevalue) #=> Object

Sets the given key to the given value, returning the latter. Aliased by
Hash#store.

Hash#assocHash#assoc(keykey) #=> Array or nil

Returns an Array whose first element is key, and last element is the value

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 451

corresponding to that key. If key does not exist, the default value is ignored,
and nil returned.

Hash#clearHash#clear() #=> Hash

Returns the receiver with all of its key-value pairs removed.

Hash#compare_by_identityHash#compare_by_identity() #=> Hash

Converts the receiver to an identity Hash, which it returns.

Hash#compare_by_identity?Hash#compare_by_identity?() #=> true or false

Returns true if the receiver is an identity Hash; otherwise, false.

Hash#defaultHash#default() #=> Object

Returns the receiver’s default value.

Hash#default=Hash#default=(objectobject) #=> Object

Sets the default value to object, which it then returns.

Hash#default_procHash#default_proc() #=> Proc or nil

Returns the default Proc, or nil if there’s not one.

Hash#default_proc=Hash#default_proc=(procproc) #=> Proc

Sets the default Proc to proc, which it then returns.

Hash#deleteHash#delete(keykey) {|key| } #=> Object

Deletes from the receiver the key, key, and its associated value, returning the
value. If the block is given and key did not exist, the block is called with the
key as an argument and its result returned; otherwise, nil is returned.

Hash#delete_ifHash#delete_if() {|key, value| } #=> Hash or Enumerator

Deletes each key-value pair for which the block is true, then returns the
receiver. Returns an Enumerator if the block is omitted.

Hash#eachHash#each() {|key, value| } #=> Hash or Enumerator

Yields each key-value pair to the block. Returns an Enumerator if the block is
omitted. Aliased by Hash#each_pair.

Hash#each_keyHash#each_key() {|key| } #=> Hash or Enumerator

Yields each key to the block. Returns an Enumerator if the block is omitted.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 452

Hash#each_pairHash#each_pair() {|key, value| } #=> Hash or Enumerator

Aliases Hash#each.

Hash#each_valueHash#each_value() {|value| } #=> Hash or Enumerator

Yields each value to the block. Returns an Enumerator if the block is omitted.

Hash#empty?Hash#empty?() #=> true or false

Returns true if the receiver contains no key-value pairs; otherwise, false.

Hash#fetchHash#fetch(keykey, default) #=> Object

Hash#fetchHash#fetch(keykey) {|key| }{|key| } #=> Object

Returns the value associated with the key key. If the given key does not exist,
and no other arguments are given, an KeyError is raised; if default is given, it
will be returned; otherwise, the block is called with the key as a parameter,
and its value returned. All forms ignore any default values.

Hash#flattenHash#flatten(depth=1) #=> Array

Returns the receiver converted to an Array then flattened with
Array#flatten(depth).

Hash#has_key?Hash#has_key?(keykey) #=> true or false

Returns true if the given key exists in the receiver; otherwise, false. Aliased
by Hash#include? and Hash#member?.

Hash#has_value?Hash#has_value?(valuevalue) #=> true or false

Returns true if a key exists in the receiver with the given value; otherwise,
false. Aliased by Hash#value?.

Hash#include?Hash#include?(keykey) #=> true or false

Aliases Hash#has_key?.

Hash#indexHash#index(keykey) #=> Object

Deprecated; use the identical Hash#key instead.

Hash#invertHash#invert() #=> Hash

Returns a new Hash whose keys are the receiver’s values, and values, the
receiver’s keys—if the receiver has keys with duplicate values, the results are
unspecified.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 453

Hash#keyHash#key(valuevalue) #=> Object or nil

Returns the first key associated with the given value, or nil if no such key
exists.

Hash#keysHash#keys() #=> Array

Returns the keys of the receiver.

Hash#lengthHash#length() #=> Integer

Returns the number of key-value pairs in the receiver. Aliased by Hash#size.

Hash#member?Hash#member?(keykey) #=> true or false

Aliases Hash#has_key?.

Hash#mergeHash#merge(hashhash) {|key, old_value, new_value| } #=> Hash

Returns a new Hash containing the key-value pairs of the receiver plus those
of the given Hash. If the same key exists in both Hashes, it’s associated with
the value from hash. Alternatively, if a block is given it is called with each
duplicate key, along with its value in the receiver and its value in hash: its
return value becomes the value of the duplicate key.

Hash#merge!Hash#merge!(hashhash) {|key, old_value, new_value| } #=> Hash

Behaves as Hash#merge, but modifies the receiver in-place. Aliased by
Hash#update.

Hash#rassocHash#rassoc(valuevalue) #=> Array or nil

Returns a two-element Array comprising the first key whose value is value,
and value. If there is no key associated with the given value, nil returned.

Hash#rehashHash#rehash() #=> Hash

Re-creates the receiver using the current hash values for each key. If called
while the receiver is being iterated over, an IndexError is raised.

Hash#rejectHash#reject() {|key, value| }{|key, value| } #=> Hash or Enumerator

Deletes each key-value pair for which the block is true from a copy of the
receiver, then returns this copy. Returns an Enumerator if the block is omitted.

Hash#rejectHash#reject() {|key, value| }{|key, value| } #=> Hash or Enumerator

Deletes each key-value pair for which the block is true from a copy of the
receiver, then returns this copy. Returns an Enumerator if the block is omitted.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 454

Hash#reject!Hash#reject!() {|key, value| } #=> Hash, Enumerator, or nil

Deletes each key-value pair for which the block is true, then returns the
receiver. Returns nil if the block was never true, or an Enumerator if the
block is omitted.

Hash#replaceHash#replace(hashhash) #=> Hash

Replaces all key-value pairs in the receiver with those from hash, then
returns the receiver.

Hash#selectHash#select() {|key, value| } #=> Hash

Returns a new Hash containing the key-value pairs of the receiver for which
the block is true.

Hash#shiftHash#shift() #=> Array or Object

Deletes and returns the oldest key-value pair—i.e. the first pair to be returned
in an iteration—in the receiver. Returns the default value if the receiver is
empty.

Hash#sizeHash#size() #=> Integer

Aliases Hash#length.

Hash#sortHash#sort() {|a, b| } #=> Array

Converts the receiver to an Array of [key, value] Arrayss, on which it
invokes Array#sort with the block—if given.

Hash#storeHash#store(keykey, valuevalue) #=> Object

Aliases Hash#[]=.

Hash#to_aHash#to_a() #=> Array

Returns the receiver as an Array of [key, value] Arrayss.

Hash#to_hashHash#to_hash() #=> Hash

Returns the receiver.

Hash#to_sHash#to_s() #=> String

Returns the receiver in the form {key0 => value0, …, keyn => valuen}, with
both both key and value substituted for their #inspect output. An empty
Hash is returned as "{}", and a recursive Hash as "{....}".

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 455

Hash#updateHash#update(hashhash) {|key, old_value, new_value| } #=> Hash

Aliases Hash#merge!.

Hash#value?Hash#value?(valuevalue) #=> true or false

Aliases Hash#has_value?.

Hash#valuesHash#values() #=> Array

Returns the values of every key.

Hash#values_atHash#values_at(keykey, …) #=> Array

Returns the values associated with each given key, or the default value if the
key does not exist.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 456

INTEGERINTEGER
Integer#ceilInteger#ceil() #=> Integer

Returns the receiver. Aliased by Integer#floor, Integer#round,
Integer#to_i, and Integer#to_int, and Integer#truncate.

Integer#chrInteger#chr(encoding) #=> String

Interprets the receiver as a codepoint in the encoding, returning the
corresponding character. If encoding is not given, it is the default internal
encoding—if set—or US-ASCII.

Integer#denominatorInteger#denominator() #=> 1

Returns 1.

Integer#downtoInteger#downto(untiluntil) {|n| } #=> Integer or Enumerator

Yields each Integer from the receiver down to, and including, the given
Integer. Returns the receiver, or an Enumerator if the block is omitted.

Integer#even?Integer#even?() #=> true or false

Returns true if this number is even; otherwise, false.

Integer#floorInteger#floor() #=> Integer

Aliases Integer#ceil.

Integer#gcdInteger#gcd(numbernumber) #=> Integer

Returns the greatest divisor of the receiver and number.

Integer#gcdlcmInteger#gcdlcm(numbernumber) #=> Array

Returns an Array whose first element is Integer#gcd, and second element is
Integer#lcm.

Integer#integer?Integer#integer?() #=> true

Returns true.

Integer#lcmInteger#lcm(numbernumber) #=> Integer

Returns the lowest common multiple of the receiver and number.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 457

Integer#nextInteger#next() #=> Integer

Returns the receiver incremented by 1. Aliased by Integer#succ.

Integer#numeratorInteger#numerator() #=> Integer

Returns the receiver.

Integer#odd?Integer#odd?() #=> true or false

Returns true if this number is odd; otherwise, false.

Integer#ordInteger#ord() #=> Integer

Returns the receiver.

Integer#predInteger#pred() #=> Integer

Returns the receiver decremented by 1.

Integer#roundInteger#round() #=> Integer

Aliases Integer#ceil.

Integer#succInteger#succ() #=> Integer

Aliases Integer#next.

Integer#timesInteger#times() {|n| } #=> Integer or Enumerator

Yields each Integer from 0 up to, but not including, the receiver. Returns the
receiver, or an Enumerator if the block is omitted.

Integer#to_iInteger#to_i() #=> Integer

Aliases Integer#ceil.

Integer#to_intInteger#to_int() #=> Integer

Aliases Integer#ceil.

Integer#to_rInteger#to_r() #=> Rational

Returns a Rational whose numerator is the receiver, and whose denominator
is one.

Integer#truncateInteger#truncate() #=> Integer

Aliases Integer#ceil.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 458

Integer#uptoInteger#upto(untiluntil) {|n| } #=> Integer or Enumerator

Yields each Integer from the receiver up to, and including, the given
Integer. Returns the receiver, or an Enumerator if the block is omitted.

Integer#rationalizeInteger#rationalize(epsilon) #=> Rational

Converts the receiver to a Rational, ignoring its argument.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 459

IOIO
IO.binreadIO.binread(filenamefilename, length, offset) #=> String

Opens the file named filename, reads from it in binary mode, then returns its
contents as an ASCII-8BIT-encoded String. If length is given, a maximum of
this many bytes are read; if offset is also given, reading starts from this byte.

IO.copy_streamIO.copy_stream(sourcesource, destinationdestination, length, offset) #=> Integer

Copies data from source to destination—both of which may be filenames or
IO streams—returning the number of bytes copied. If length is given, a
maximum of this many bytes are copied; if offset is also given, copying starts
from this byte instead of the current file position of from.

IO.for_fdIO.for_fd(file_descriptorfile_descriptor, modemode) #=> IO

Aliases IO.new.

IO.foreachIO.foreach(filenamefilename, separator=$/, limit, options) {|line| }{|line| } #=>

nil

Invokes the block with each line found in the file named filename. Lines are
separated by separator, but if this value is nil the entire file is treated as a
single String. If limit is given, it is the maximum number of characters to
return for each line. If options is given it is an options Hash that may contain
:encoding, :mode, and :open_args keys.

IO.newIO.new(file_descriptorfile_descriptor, modemode) #=> IO

Returns a new IO stream for the given file descriptor and access mode.
Aliased to IO.for_fd.

IO.openIO.open(argumentargument, …) {|io| } #=> Object

Instantiates an IO object by passing argument(s) to the class’s constructor,
then returning the IO object. If a block is given, the new IO object is passed to
it as a parameter, then closed automatically when the block exits; the return
value is that of the block.

IO.pipeIO.pipe() #=> Array

Creates a pipe, the ends of which it returns as an Array of IO objects. The first

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 460

element is the read end; the last element is the write end, which is in sync
mode.

IO.popenIO.popen(commandcommand, mode="r") #=> Object

Executes a command as a subprocess, opening a pipe to this subprocess’s
standard input and output streams, which it returns as an IO object. If
command is a String it names a command in the user’s path, and is subject
to shell expansion. If it is a "-", and the platform supports forking, the
current process forks: an IO pipe connected to the child’s standard input and
output streams is returned to the parent; nil is returned to the child.

Otherwise, command is an Array of Strings, the first of which specifies the
command name; the remainder, its arguments. The shell is bypassed, so none
of these Strings are subject to shell expansion. If the first element of this
Array is a Hash, it specifies the names and corresponding values of
environment variables that should be set in the subprocess. An options Hash
may be supplied as the last element of this Array.

If a block is supplied, Ruby’s end of the pipe is passed to it as a parameter,
then closed when the block exits. $? is set to the exit status of the subprocess,
and the value of the block is returned.

When a block is supplied along with a command of "-", Ruby forks,
running the block in both processes. In the parent process the block is passed
an IO pipe connected to the child’s standard input and output streams; in the
child process the block is passed nil.

Kernel.open("|command", mode='r') behaves like IO.popen(command,

mode='r'), when command is a String. Likewise, Kernel.open("|-",
mode='r') behaves like IO.popen("-", mode='r')

IO.readIO.read(filenamefilename, length, offset=0, options) #=> String

Opens the file named filename, then returns its contents from byte offset to
the end of the file. If length is given, it is the maximum number of bytes to
return. If options is given it is an options Hash.

IO.readlinesIO.readlines(filenamefilename, separator=$/, limit, options) #=> String

Returns the lines contained in the file named filename as an Array of Strings.
Lines are delimited by separator; if this value is nil the entire file is treated

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 461

as a single line. If limit is given, at most that many characters will be
returned for each line. If options is given it is an options Hash.

IO.selectIO.select(readread, write, error, timeout) #=> Array or nil

Aliases Kernel#select.

IO.sysopenIO.sysopen(filenamefilename, mode, permissions) #=> Fixnum

Opens the file named filename and returns its file descriptor.

IO.try_convertIO.try_convert(objectobject) #=> IO or nil

Returns object converted to an IO object by calling its #to_io method; or nil
if this is impossible.

IO#<<IO#<<(objectobject) #=> IO

Converts object to a String with #to_s, writes it to the receiver, then returns
self.

IO#binmodeIO#binmode() #=> IO

Puts the receiver into binary mode.

IO#bytesIO#bytes() {|byte| } #=> Enumerator or IO

Returns an Enumerator of the receiver’s bytes, each represented as a Fixnum. If
a block is given, yields each byte to the block in turn, then returns the
receiver.

IO#charsIO#chars() {|char| } #=> Enumerator or IO

Returns an Enumerator of the receiver’s characters, each represented as a
String. If a block is given, yields each character to the block in turn, then
returns the receiver.

IO#closeIO#close() #=> nil

Closes the receiver’s stream, flushing any pending writes to the operating
system.

IO#close_on_exec?IO#close_on_exec?() #=> true or false

Returns true if the receiver’s close on exec flag is set; false otherwise. Raises
NotImplementedError if unavailable on this platform.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 462

IO#close_readIO#close_read() #=> nil

Closes the read end of a duplex stream such as a pipe. Raises IOError if the
receiver is not a duplex stream.

IO#close_writeIO#close_write() #=> nil

Closes the write end of a duplex stream such as a pipe. Raises IOError if the
receiver is not a duplex stream.

IO#closed?IO#closed?() #=> true or false

Returns true if the receiver is closed—for duplex streams, both ends must be
closed; false, otherwise.

IO#eachIO#each(separator=$/, limit) {|line| } #=> IO or Enumerator

Enumerates the lines in the receiver. If a block is given, each line is yielded to
it in turn; otherwise, an Enumerator is returned. Lines are separated by
separator; if this value is nil, the entire file is treated as a single line. If length
is given it is the maximum number of characters to return for each line.

IO#each_byteIO#each_byte() {|byte| } #=> Enumerator or IO

Aliases IO#bytes.

IO#each_charIO#each_char() {|char| } #=> Enumerator or IO

Aliases IO#chars.

IO#eofIO#eof() #=> true or false

Returns true if the receiver is at end of file; false otherwise. If the receiver is
not open for reading, and IOError is raised.

IO#eof?IO#eof?() #=> true or false

Aliases IO#eof.

IO#external_encodingIO#external_encoding() #=> Encoding

Returns the external encoding associated with the receiver.

IO#fcntlIO#fcntl(commandcommand, argumentargument) #=> Integer

Issues, via the fcntl(2) system call, the command command to the receiver’s
stream with an argument of argument. See Manipulating File Descriptors for
more details.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 463

IO#filenoIO#fileno() #=> Integer

Returns the file descriptor associated with the receiver. Aliased by IO#to_i.

IO#flushIO#flush() #=> IO

Flushes Ruby’s I/O buffers, returning self.

IO#fsyncIO#fsync() #=> 0 or nil

Flushes the operating system’s I/O buffers via the fsync(2) system call,
returning 0; returns nil if this system call is unimplemented.

IO#getbyteIO#getbyte() #=> Fixnum or nil

Returns the next byte from the receiver, or nil at end of file.

IO#getcIO#getc() #=> String or nil

Returns the next character from the receiver, or nil at end of file.

IO#getsIO#gets(separator=$/, limit) #=> String or nil

Returns the next line from the receiver’s stream, and assigns it to $_. Lines
are delimited by separator: a value of "" is equivalent to "\n\n", while a nil

value treats the entire file as a single line. If limit is given, at most that many
characters are returned per line. Returns nil at end of file.

IO#internal_encodingIO#internal_encoding() #=> Encoding

Returns the internal encoding associated with the receiver.

IO#ioctlIO#ioctl(commandcommand, argumentargument) #=> Integer

Issues, via the ioctl(2) system call, the command command to the receiver’s
stream with an argument of argument. See Manipulating File Descriptors for
more details.

IO#isattyIO#isatty() #=> true or false

Returns true if the receiver is associated with a terminal device; false
otherwise. Aliased to IO#tty?.

IO#linenoIO#lineno() #=> Integer

Returns the current line number read from the receiver. If the stream is not
open for reading, an IOError is raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 464

IO#lineno=IO#lineno=(lineline) #=> Integer

Sets the current line number to the Integer line.

IO#linesIO#lines(separator=$/, limit) {|line| } #=> IO or Enumerator

Aliases IO#each.

IO#pidIO#pid() #=> Integer or nil

Returns the process ID associated with the receiver—as set by IO.popen—or
nil if there isn’t one.

IO#posIO#pos() #=> Integer

Returns the current byte offset of the receiver.

IO#pos=IO#pos=(offsetoffset) #=> 0

Seeks to the given Integer byte offset.

IO#printIO#print(object=$_, …) #=> nil

Converts the given objects with #to_s, then writes them to the receiver’s
stream. Unless $\ is nil, writes it, too.

IO#printfIO#printf(formatformat, object=$_, …) #=> nil

Expands the format string, format and its given arguments with
Kernel.sprintf, then writes the result to the receiver’s stream.

IO#putcIO#putc(objectobject) #=> Object

Writes a single byte to its receiver’s stream, then returns its argument. It
interprets a Numeric argument as a character code, writing the least-
significant byte of the character corresponding to its integer part. A non-
numeric argument is converted to a String, then its least-significant byte
written to the stream. Please note the term byte: before Ruby 1.9.3, this
method would only ever write a single byte, even when given a multi-byte
character; as of 1.9.3, it behaves correctly with multi-byte characters.

IO#putsIO#puts(object=nil, …) #=> nil

Converts the given objects with #to_s, appends "\n" to each of which that do
not already end with a newline, then writes them to the receiver’s stream. If
object responds to #to_ary, it is substituted for this method’s return
value—i.e., the elements of Array arguments are printed one per line.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 465

IO#readIO#read(length, buffer) #=> String or nil

Reads from the current position in the receiver’s stream through to the end,
returning the result. If length is given, it is the maximum number of bytes to
read. If a String buffer is given, the data is read into it. At the end of file, nil
is returned.

IO#readbyteIO#readbyte() #=> Fixnum

Returns the next byte from the receiver’s stream, raising EOFError at end of
file.

IO#readcharIO#readchar() #=> String

Returns the next character from the receiver’s stream, raising EOFError at end
of file.

IO#readlineIO#readline(separator=$/, limit) #=> String or nil

Reads the next line from the receiver’s stream in the manner of IO#gets,
raising EOFError at end of file.

IO#readlinesIO#readlines(separator=$/, limit) #=> Array

Returns the lines from the receiver’s stream as an Array of Strings. Lines are
delimited by separator: a value of "" is equivalent to "\n\n", while a nil

value treats the entire file as a single line. If limit is given, at most that many
characters are returned per line.

IO#readpartialIO#readpartial(limitlimit, result="") #=> String

Attempts to read at most limit bytes from the receiver’s stream without
blocking by returning buffered data before reading from the stream. If result
is given it is a String to which the read data is appended. Raises EOFError at
end of file.

IO#read_nonblockIO#read_nonblock(limitlimit, result="") #=> String

Sets the NONBLOCK flag on the receiver’s file descriptor, then attempts to read
at most limit bytes from the receiver’s stream without blocking. If there is
buffered data, that is returned before trying to read from the stream. If the
stream can be read from without blocking, it is read from. Otherwise, either
Errno::EWOULDBLOCK or Errno::EAGAIN is raised to indicate that the stream
can not be read without blocking. If result is given it is a String to which the
read data is appended. Raises EOFError at end of file.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 466

IO#reopenIO#reopen(ioio) #=> IO

IO#reopenIO#reopen(filenamefilename, modemode) #=> IO

Re-associates the receiver with the given I/O stream, io, or a new stream for a
file named filename that is opened with access mode mode. Due to the way
I/O operations perform buffering, reopening a stream—especially one that has
already been read from—can lead to unexpected behaviour. See Buffering and
[Ruby-core-28281] for more details.

IO#rewindIO#rewind() #=> 0

Resets both the position of the receiver’s stream and its line number to 0.

IO#seekIO#seek(offsetoffset, whence=File::SEEK_SET) #=> 0

Seeks to offset in the receiver’s stream. See Positions & Seeking for an
explanation of whence.

IO#set_encodingIO#set_encoding(externalexternal, internal=external) #=> IO

IO#set_encodingIO#set_encoding(stringstring) #=> IO

Sets the external and internal encodings of the receiver’s stream. Both
external and internal may be Encoding objects or encoding names as Strings.
The string contains the name of the external encoding, a colon, then the
name of the internal encoding; or, just one encoding name for both.

IO#statIO#stat() #=> File::Stat

Returns a File::Stat object for the receiver’s stream.

IO#syncIO#sync() #=> true or false

Returns true if the receiver is in sync mode; false, otherwise.

IO#sync=IO#sync=(booleanboolean) #=> true or false

Sets the sync mode of the receiver to boolean—true or false—which it then
returns.

IO#sysreadIO#sysread(limitlimit, buffer) #=> String

Reads at most limit bytes from the receiver’s stream, bypassing Ruby’s I/O
buffer, returning them as a String. If the String buffer is given, it has the
read data appended. Raises SystemCallError on error and EOFError at end of
file.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 467

IO#sysseekIO#sysseek(offsetoffset, whence=File::SEEK_SET) #=> Integer

Behaves as IO#seek but bypasses Ruby’s I/O buffer.

IO#tellIO#tell() #=> Integer

Aliases IO#pos.

IO#to_iIO#to_i() #=> Integer

Aliases IO#fileno.

IO#to_ioIO#to_io() #=> IO

Returns the receiver.

IO#ungetbyteIO#ungetbyte(bytebyte) #=> nil

Pushes back the given byte(s) onto the receiver’s read buffer. byte may be a
String or a single byte given as a Fixnum.

IO#ungetcIO#ungetc(charactercharacter) #=> nil

Pushes back the characters contained in the character String onto the
receiver’s read buffer.

IO#writeIO#write(objectobject) #=> Integer

Converts object to a String with #to_s, writes it to the receiver’s stream,
then returns the number of bytes written.

IO#write_nonblockIO#write_nonblock(objectobject) #=> Integer

Sets the File::NONBLOCK flag on the receiver’s stream then behaves as
IO#write. If a write would block, either Errno::EWOULDBLOCK or
Errno::EAGAIN. If the platform doesn’t support non-blocking writes for this
type of IO object, Errno::EBADF is raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 468

KERNELKERNEL
Kernel.ArrayKernel.Array(objectobject) #=> Array

Converts object to an Array with either #to_ary or #to_a. If neither succeed,
returns a new Array with object as its sole element. If object is nil, returns [].

Kernel.ComplexKernel.Complex(realreal, imaginary=0) #=> Complex

Kernel.ComplexKernel.Complex(stringstring) #=> Complex

Creates and returns a Complex number. The first form sets the real part to
real, and the imaginary part to imaginary, both of which may be Numerics or
Strings. The second form expects a String representation of a complex
number, i.e. the #to_s form of a Numeric, + or -, the #to_s form of another
Numeric, then i.

Kernel.FloatKernel.Float(objectobject) #=> Float

Returns the argument converted to a Float, either implicitly—if Numeric—or
via #to_f. A TypeError is raised if object is nil.

Kernel.IntegerKernel.Integer(objectobject) #=> Integer

Returns the argument converted to a Fixnum or Bignum, either implicitly—if
Numeric—or via #to_int or #to_i. If object is a String, leading radix
indications are understood: a 0 prefix implies octal, 0b, binary, and 0x,
hexadecimal. A TypeError is raised if object is nil.

Kernel.RationalKernel.Rational(numeratornumerator, denominator=1) #=> Rational

Kernel.RationalKernel.Rational(stringstring) #=> Rational

Creates and returns a Rational number. The first form sets the numerator to
numerator, and the denominator to denominator, both of which may be
Numerics or Strings. The second form expects a String representation of a
rational number, i.e. the #to_s form of a Numeric, /, then the #to_s form of
another Numeric.

Kernel.StringKernel.String(objectobject) #=> String

Converts object to a String with #to_s, which it then returns.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 469

Kernel.__callee__Kernel.__callee__() #=> Symbol or nil

Returns the name of the current method, or nil if called outside of a method.
Aliased to Kernel.__method__.

Kernel.__method__Kernel.__method__() #=> Symbol or nil

Aliases Kernel.__callee__.

Kernel.`Kernel.`(commandcommand) #=> String

Runs the String command in a subshell, then returns its standard output.

Kernel.abortKernel.abort(message) #=> N/A

Terminates the current process with an exit code of 1. If the message String

is given, it is written to standard error.

Kernel.at_exitKernel.at_exit() { }{ } #=> Proc

Registers the given block to be executed just prior to program termination—if
multiple blocks are registered in this way, they are executed in reverse
chronological order.

Kernel.autoloadKernel.autoload(constantconstant, filenamefilename) #=> nil

Causes the given filename to be required with Kernel.require the first time
the constant named constant is accessed. The constant name is given as a
String or Symbol, and resolved relative to the current scope.

Kernel.autoload?Kernel.autoload?(constantconstant) #=> String or nil

Returns the filename that will be autoloaded when the constant named
constant is first accessed at the top-level, or nil if there is no file registered.

Kernel.bindingKernel.binding() #=> Binding

Returns a Binding encapsulating the variable and method bindings at its call
site.

Kernel.block_given?Kernel.block_given?() #=> true or false

Returns true if the current method has been given a block argument;
otherwise, false. Aliased by Kernel.iterator?.

Kernel.callerKernel.caller(omit=0) #=> Array

Returns the current execution stack as an Array of Strings, skipping the first
omit frames. A frame has the form file:line:in `location'. file is an

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 470

absolute filename, or, if there is no associated file, a parenthesised description
of the location, e.g. (irb). line is the line number. Lastly, location is normally
the method name, possibly preceded by block in or block(n levels) in .

Kernel.catchKernel.catch(object=Object.new) { }{ } #=> Object

Executes its block, expecting it to throw an object equal to object. If such a
throw-clause is found, catch terminates its block, returning throw’s second
argument. Otherwise, it returns the last expression of the block.

Kernel.chompKernel.chomp(string) #=> String

If $_ ends with string, string is deleted; otherwise, this method is a no-op.
Returns the new value of $_. This method is only defined when the -n or -p
options are given to the interpreter.

Kernel.chopKernel.chop() #=> String

If $_ ends with \r\n, both characters are removed; otherwise, just the last
character is removed. Returns the new value of $_. This method is only
defined when the -n or -p options are given to the interpreter.

Kernel.evalKernel.eval(stringstring, binding, file, lineline) #=> Object

Evaluates string as Ruby code, then returns the result. If a Binding object is
given as binding, the evaluation occurs in the binding’s context. If a filename
and line number are given as file and line, respectively, they are used in
reporting errors emanating from the evaluation.

Kernel.execKernel.exec(environment={}, commandcommand, argument, …, options={}) #=>

N/A

Replaces the current process image with a new process image by executing
command with the given arguments. command is subject to shell expansion
only if no arguments are given. If command is given as an Array, its first
element is the command to be executed, and its last element is that
command’s argv[0]. On Unix-like systems, this method uses a system call
from the exec(2) family, so the new process inherits most of the current
process’s environment—including its file descriptors. If the environment Hash
is present, it specifies environment variables for the new process: a String

value sets the corresponding environment variable; a nil value clears it.
options is an options Hash. If the command executes successfully, this method
doesn’t return; otherwise, a SystemCallError is raised.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 471

Kernel.exitKernel.exit(status=1) #=> N/A

Exits the current process with a status of status, or raises SystemExit if called
within an exception handler. A status of true is equivalent to 0; false, 1.

Kernel.exit!Kernel.exit!(status=1) #=> N/A

Behaves as Kernel.exit, but bypasses exception handlers, Kernel.at_exit
blocks, and finalisers.

Kernel.failKernel.fail() #=> N/A

Kernel.failKernel.fail(messagemessage) #=> N/A

Kernel.failKernel.fail(exceptionexception, message="", backtrace) #=> N/A

The first form re-raises the exception in $!, or raises a new RuntimeError if $!
is nil. If a String message is given, raises a RuntimeError with the given
message. If exception—either an Exception class, or an object whose
#exception method returns an Exception—it is raised with the given
message. If backtrace is also given, it is an Array of Strings used for the
exception’s backtrace; otherwise, the backtrace is generated automatically.
Aliased by Kernel.raise.

Kernel.forkKernel.fork() { } #=> Integer or nil

Forks the current process to create a subprocess. If the block is specified, it is
run in the subprocess; otherwise this method returns to the parent, the
process ID of the child, and to the child, nil.

Kernel.formatKernel.format(formatformat, argument, …) #=> String

Applies the format String, format, to the argument(s) to create a new String,
which is returned. Aliased by Kernel.sprintf.

Kernel.getsKernel.gets(separator=$/) #=> String or nil

Returns the next line from ARGV, or nil at end of file. Lines are separated by,
and include, separator. A separator of nil treats an entire file as a single line,
while a separator of "" is equivalent to "\n\n". Each line read is assigned to
$_.

Kernel.global_variablesKernel.global_variables() #=> Array

Returns the names—as Symbols—of all defined global variables.

Kernel.gsubKernel.gsub(patternpattern, replacementreplacement) #=> String

Kernel.gsubKernel.gsub(patternpattern) { }{ } #=> String

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 472

Behaves as String#gsub with an implicit receiver of $_. If substitution occurs,
assigns the result back to $_. This method is only defined when the -n or -p
options are given to the interpreter.

Kernel.iterator?Kernel.iterator?() #=> true or false

Aliases Kernel.block_given?.

Kernel.lambdaKernel.lambda() { }{ } #=> Proc

Creates a Proc with lambda semantics from the given block.

Kernel.loadKernel.load(filenamefilename, wrap=false) #=> true

Resolves filename relative to a directory in $LOAD_PATH, then loads and
executes the Ruby code that it contains. If wrap is true, the code will be
executed within an anonymous module, preventing it from modifying the
global namespace.

Kernel.local_variablesKernel.local_variables() #=> Array

Returns the names of the current local variables as an Array of Symbols.

Kernel.loopKernel.loop() { }{ } #=> Object

Executes the given block repeatedly. If the block raises a StopIteration

exception, the exception is rescued automatically and the loop terminated.

Kernel.openKernel.open(filenamefilename, mode='r', permissions) {|io| } #=> Object

Opens a file named filename, which it returns as a File object. The mode may
be either a given as a mode string or a logical OR of the file open flags. The
permissions of the file are given by the Integer permissions, the meaning of
which is platform dependent. If a block is given, the new File object will be
passed to it, then closed when the block exits; the value of the block is
returned to the caller. If filename begins with a pipe character (|), a
subprocess is created instead. A pair of pipes connected to the standard input
and output of this process are returned as an IO object. If the filename is |-,
the interpreter forks, and nil is returned to the child; otherwise, the pipe
character should be followed by the name of a command that is to be run in
the subprocess. When a block is also given, it is run in both the parent and
child process: in the former, its passed an IO object connected to the child’s
standard input and output; in the latter, its passed nil. When the block exits,
the child process is terminated.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 473

Kernel.pKernel.p(argumentargument, …) #=> Object

Writes to standard output the #inspect output for each argument,
concatenated with the current output record separator.

Kernel.printKernel.print(argument=$_, …) #=> Object

Writes to standard output the #to_s output of each argument, concatenated
with the output field separator, and terminated with the output record
separator.

Kernel.printfKernel.printf(io=STDOUT, formatformat, argument, …) #=> nil

Writes to io the result of passing the remaining arguments to
Kernel.sprintf.

Kernel.procKernel.proc() { }{ } #=> Proc

Creates and returns a Proc with proc semantics for the given block.

Kernel.putcKernel.putc(argumentargument) #=> Object

Behaves as STDOUT.putc(argument). See IO#putc for details.

Kernel.putsKernel.puts(argument, …) #=> Object

Invokes IO#puts on STDOUT with the given arguments.

Kernel.raiseKernel.raise() #=> N/A

Kernel.raiseKernel.raise(messagemessage) #=> N/A

Kernel.raiseKernel.raise(exceptionexception, message="", backtrace) #=> N/A

Aliases Kernel.fail.

Kernel.randKernel.rand(max=0) #=> Numeric

Generates a pseudo-random number between 0 and the absolute, integer
value of max. If max is 0, it is assumed to be 1.0, and the return value is a
Float; otherwise, an Integer is returned.

Kernel.readlineKernel.readline(separator=$/) #=> String or nil

Returns the next line from ARGV, or raises EOFError at end of file. Lines are
separated by, and include, separator. A separator of nil treats an entire file as
a single line, while a separator of "" is equivalent to "\n\n". Each line read is
assigned to $_.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 474

Kernel.readlinesKernel.readlines(separator=$/) #=> Array

Returns the lines from ARGV as an Array of Strings. Lines are separated by,
and include, separator. A separator of nil treats an entire file as a single line,
while a separator of "" is equivalent to "\n\n".

Kernel.requireKernel.require(featurefeature) #=> true or false

Resolves feature to an absolute path, then loads and executes the Ruby code
or extension which it contains. If feature begins with ~, ../, or / it is resolved
relative to the current working directory; otherwise, against a directory in
$LOAD_PATH. If the filename does not end with a file extension, .rb and the
default shared library extensions are appended to it in turn. If feature cannot
be loaded, a LoadError is raised. Otherwise, it is searched for in the
$LOADED_FEATURES Array: if present, it is not loaded again, so false is
returned; if not present, it is appended, and true is returned.

Kernel.require_relativeKernel.require_relative(featurefeature) #=> true or false

Equivalent to Kernel.require, except feature is resolved relative to the path
of the current source file.

Kernel.selectKernel.select(read_arrayread_array, write_array, error_array, timeout) #=>

Array or nil

Waits for any of the given IO objects to become ready, then returns those
which are. The first three arguments are Arrays of IO objects: those in
read_array are checked for whether they can be read from without blocking;
those in write_array, for whether they be written to without blocking; and
those in error_array, for whether an error occurs on the associated device.
When at least one IO stream becomes ready, an Array of Arrays is returned:
the first element is the streams ready for reading, the second, the streams
ready for writing, and the third, the streams encountering an error. If timeout
is given, and there is no change in status for this many seconds, nil is
returned; otherwise, there is no timeout.

Kernel.set_trace_funcKernel.set_trace_func(procproc) #=> Proc or nil

Enables tracing of the current process by invoking the given Proc on every
event, passing the details to proc as, at most, six arguments: the event name,
the filename, the line number, the object ID, the binding, and the name of the
class. If proc is nil, tracing is disabled. See Tracing for further details.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 475

Kernel.sleepKernel.sleep(seconds=0) #=> Fixnum

Suspends the current thread for seconds seconds, returning the actual number
of seconds slept. seconds may be an Integer, or a Float specifying fractional
seconds; if it is 0, the thread sleeps forever.

Kernel.spawnKernel.spawn(environment={}, commandcommand, argument, …, options={}) #=>

Fixnum

Executes command with the given arguments in a subshell, returning
immediately with its PID. command is subject to shell expansion only if no
arguments are given. If command is given as an Array, its first element is the
command to be executed, and its last element is that command’s argv[0]. On
Unix-like systems, this method uses a system call from the exec(2) family, so
the new process inherits most of the current process’s
environment—including its file descriptors. If the environment Hash is
present, it specifies environment variables for the new process: a String

value sets the corresponding environment variable; a nil value clears it.
options is an options Hash. A SystemCallError is raised on failure.

Kernel.sprintfKernel.sprintf(format_stringformat_string, argument, …) #=> String

Expands the format string by interpolating the given arguments, then returns
the result. See Format Strings for further details.

Kernel.srandKernel.srand(seed) #=> Integer

Converts seed to an Integer, uses it to seed the pseudo-random number
generator, then returns the previous seed. If seed is omitted, it is derived from
a combination of the current time, the PID, and a sequence number.

Kernel.subKernel.sub(patternpattern, replacementreplacement) #=> String

Kernel.subKernel.sub(patternpattern) { }{ } #=> String

Behaves as String#sub with an implicit receiver of $_. If substitution occurs,
assigns the result back to $_. This method is only defined when the -n or -p
options are given to the interpreter.

Kernel.syscallKernel.syscall(numbernumber, argument, …) #=> Integer

Performs the system call identified by number, passing in the given
arguments. The arguments must be Strings or Integers that fit within a
native long.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 476

Kernel.systemKernel.system(environment={}, commandcommand, argument, …, options={})

#=> true, false, or nil

Executes command with the given arguments in a subshell, returning true if
it ran successfully, false if it exited with a non-zero status, and nil if it
failed to execute. command is subject to shell expansion only if no arguments
are given. If command is given as an Array, its first element is the command
to be executed, and its last element is that command’s argv[0]. On Unix-like
systems, this method uses a system call from the exec(2) family, so the new
process inherits most of the current process’s environment—including its file
descriptors. If the environment Hash is present, it specifies environment
variables for the new process: a String value sets the corresponding
environment variable; a nil value clears it. options is an options Hash. A
SystemCallError is raised on failure.

Kernel.testKernel.test(commandcommand, file1file1, file2) #=> Object

Performs the test given by the Integer command on the named files. See
Kernel.test for details.

Kernel.throwKernel.throw(symbolsymbol, object) #=> N/A

Jumps to the end of the enclosing catch block expecting symbol, or raises a
NameError if there is no such block. If object is given, it is returned by the
corresponding catch block.

Kernel.trace_varKernel.trace_var(namename, command) #=> nil

Kernel.trace_varKernel.trace_var(namename) {|value| } #=> nil

Traces explicit assignments to the global variable named name. If command
is a Proc, or if a block is supplied, the Proc or block is invoked on each
assignment with the variable’s new value as a parameter. Otherwise, if
command is a String, it is evaluated as Ruby code on each assignment.

Kernel.trapKernel.trap(signalsignal, procproc) #=> Object

Kernel.trapKernel.trap(signalsignal) { }{ } #=> Object

Aliases Signal.trap.

Kernel.untrace_varKernel.untrace_var(namename, command) #=> Array or nil

Disables tracing for the global variable named name. If command is given,
only tracing for that command is disabled, and nil is returned; otherwise, all
tracing is disabled, and an Array of the disabled commands is returned.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 477

Kernel.warnKernel.warn(messagemessage) #=> nil

Writes the given message to the standard error stream, unless $VERBOSE is
nil.

Kernel#!~Kernel#!~(objectobject) #=> true or false

Returns true if the receiver does not match, as per #=~, object; otherwise,
false.

Kernel#<=>Kernel#<=>(objectobject) #=> 0 or nil

Returns 0 if the receiver equals, as per #==, object; otherwise, nil.

Kernel#===Kernel#===(objectobject) #=> true or false

Aliases BasicObject#==. Usually overridden to test for case equality.

Kernel#=~Kernel#=~(objectobject) #=> nil

Returns nil. Usually overridden to match the receiver against a Regexp.

Kernel#classKernel#class() #=> Class

Returns the Class of the receiver.

Kernel#cloneKernel#clone() #=> Object

Returns a shallow copy of the receiver: its instance variables are copied by
reference rather than value, and its tainted and frozen state is preserved.

Kernel#define_singleton_methodKernel#define_singleton_method(namename, bodybody) #=> Proc

Kernel#define_singleton_methodKernel#define_singleton_method(namename) { }{ } #=> Proc

Defines on the receiver a singleton method named with the Symbol name. The
method body may be given as a Proc, Method, UnboundMethod, or literal block.
In the last case, the block is evaluated via BasicObject#instance_eval.

Kernel#displayKernel#display(stream=$>) #=> nil

Uses IO#write to write the receiver to the IO stream.

Kernel#dupKernel#dup() #=> Object

Returns a shallow copy of the receiver: its instance variables are copied by
reference rather than value, and its tainted state is preserved.

Kernel#enum_forKernel#enum_for(name=:each, argument, …) #=> Enumerator

Returns an Enumerator that will traverse the receiver using its method named

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 478

name. Any arguments are passed directly to this method. Aliased by
Kernel#to_enum.

Kernel#eql?Kernel#eql?(objectobject) #=> true or false

Aliases BasicObject#==.

Kernel#extendKernel#extend(modulemodule, …) #=> Object

Mixes-in each given Module to the receiver’s singleton class, returning the
receiver.

Kernel#freezeKernel#freeze() #=> Object

Freezes then returns the receiver.

Kernel#frozen?Kernel#frozen?() #=> true or false

Returns true if the receiver is frozen; otherwise, false.

Kernel#hashKernel#hash() #=> Fixnum

Returns the unique hash value for the receiver.

Kernel#__id__Kernel#__id__() #=> Fixnum

Aliases BasicObject#object_id.

Kernel#initialize_cloneKernel#initialize_clone(objectobject) #=> Object

Callback invoked by both Kernel#clone, expected to copy additional state
from the receiver to the new object, object. By default, invokes
Kernel#initialize_copy, passing in object.

Kernel#initialize_dupKernel#initialize_dup(objectobject) #=> Object

Callback invoked by both Kernel#dup, expected to copy additional state from
the receiver to the new object, object. By default, invokes
Kernel#initialize_copy, passing in object.

Kernel#inspectKernel#inspect() #=> String

Returns a human-readable representation of the receiver that is suitable for
debugging purposes.

Kernel#instance_of?Kernel#instance_of?(classclass) #=> true or false

Returns true if the receiver is an instance of the given Class object;
otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 479

Kernel#instance_variable_defined?Kernel#instance_variable_defined?(namename) #=> true or false

Returns true if the receiver defines an instance variable named name;
otherwise, false. name is a Symbol of the form :@identifier..

Kernel#instance_variable_getKernel#instance_variable_get(namename) #=> Object

Returns the value of the receiver’s instance variable named name, raising a
NameError if it is undefined. name is a Symbol of the form :@identifier..

Kernel#instance_variable_setKernel#instance_variable_set(namename, objectobject) #=> Object

Assigns object to the receiver’s instance variable named name, returning
object. name is a Symbol of the form :@identifier..

Kernel#instance_variablesKernel#instance_variables() #=> Array

Returns the names of instance variables defined in the receiver as an Array of
Symbols.

Kernel#is_a?Kernel#is_a?(classclass) #=> true or false

Returns true if the given Class or Module is an ancestor of the receiver’s
class; otherwise, false. Aliased by Kernel#kind_of?.

Kernel#kind_of?Kernel#kind_of?(classclass) #=> true or false

Aliases Kernel#is_a?.

Kernel#methodKernel#method(namename) #=> Method

Returns an objectification of the receiver’s method named name, where name
is a Symbol. Raises a NameError if the named method does not exist.

Kernel#methodsKernel#methods(all_public=true) #=> Array

Returns the names of both public and protected methods to which the
receiver responds, as an Array of Symbols. If all_public is false, equivalent to
Kernel#singleton_methods.

Kernel#nil?Kernel#nil?() #=> false

Returns false; overridden by NilClass#nil?.

Kernel#object_idKernel#object_id() #=> Fixnum

Aliases BasicObject#__id__.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 480

Kernel#private_methodsKernel#private_methods() #=> Array

Returns the names of the private methods to which the receiver responds, as
an Array of Symbols.

Kernel#protected_methodsKernel#protected_methods() #=> Array

Returns the names of the protected methods to which the receiver responds,
as an Array of Symbols.

Kernel#public_methodKernel#public_method(namename) #=> Method

Returns an objectification of the receiver’s public method named name,
where name is a Symbol. Raises a NameError if the named method does not
exist or isn’t public.

Kernel#public_methodsKernel#public_methods(inherited=true) #=> Array

Returns the names of the public methods to which the receiver responds, as
an Array of Symbols. If inherited is false, inherited methods are omitted.

Kernel#public_sendKernel#public_send(namename, argument, …) #=> Object

Invokes the receiver’s public method named name with the given arguments,
returning the method’s value.

Kernel#respond_to?Kernel#respond_to?(namename, private=false) #=> true or false

Returns true if the receiver responds to a public or protected method named
name; false, otherwise. If private is true, considers private methods, too.

Kernel#respond_to_missing?Kernel#respond_to_missing?(namename, private=false) #=> false

Hook called by Kernel#respond_to? when the receiver doesn’t define a
method named name. If an object responds to a message via
BasicObject#method_missing it is supposed to override this method to return
true when given the selector.

Kernel#sendKernel#send(namename, argument, …, &block) #=> Object

Aliases BasicObject#__send__.

Kernel#singleton_classKernel#singleton_class() #=> Class

Returns the receiver’s singleton class, creating it if necessary.

Kernel#singleton_methodsKernel#singleton_methods(from_modules=true) #=> Array

Returns the names of the receiver’s singleton methods, as an Array of

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 481

Symbols. If from_modules is false, the list excludes methods defined in
Modules mixed-in to the receiver’s singleton class.

Kernel#taintKernel#taint() #=> Object

Taints and returns the receiver.

Kernel#tainted?Kernel#tainted?() #=> true or false

Returns true if the receiver is tainted; otherwise, false.

Kernel#tapKernel#tap() {|object| }{|object| } #=> Object

Yields the receiver to the block then returns the receiver.

Kernel#to_enumKernel#to_enum(name=:each, argument, …) #=> Enumerator

Aliases Kernel#enum_for.

Kernel#to_sKernel#to_s() #=> String

Returns a String containing the receiver’s class and object ID. For the top-
level object, returns "main".

Kernel#trustKernel#trust() #=> Object

Trusts and returns the receiver.

Kernel#untaintKernel#untaint() #=> Object

Un-taints and returns the receiver.

Kernel#untrustKernel#untrust() #=> Object

Un-trusts and returns the receiver.

Kernel#untrusted?Kernel#untrusted?() #=> Object

Returns true if the receiver is not trusted; otherwise, false.

Kernel.gemKernel.gem(namename, version, …) #=> true or false

Adds the directories holding the gem named name to $LOAD_PATH. By default,
the latest version of the gem is added; other versions can be specified by
supplying one or more version predicates, all of which must be satisfied. A
predicate has the form operator number. operator is one of = (this version
only), != (any version but this), > (a higher version than this), < (a lower
version than this), >= (at least this version), <= (at most this version), and ~>

(at least this version, but less than this version after incrementing its

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 482

penultimate digit by 1). number is up to three integers separated by periods
which correspond to the major version, the minor version, and the patch
level, respectively; omitted parts default to 0.

Kernel#initialize_copyKernel#initialize_copy(objectobject) #=> Object

Callback invoked by both Kernel#initialize_clone and
Kernel#initialize_dup, expected to copy additional state from the receiver
to the new object, object.

Kernel#remove_instance_variableKernel#remove_instance_variable(namename) #=> Object

Removes the receiver’s instance variable named name, returning its old
value. name is a Symbol of the form :@identifier.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 483

MARSHALMARSHAL
Marshal.dumpMarshal.dump(objectobject, io, limit=-1) #=> IO or String

Serialises object and all of its descendants, writing the result to the IO stream,
io, if specified, or returning it as a String. If limit is positive, it specifies the
maximum depth of descendant objects to serialise; if it is negative, there is no
limit.

Marshal.loadMarshal.load(sourcesource, proc) #=> Object

De-serialises the data in source to a Ruby object. source is either an IO stream
from which the data is read, or an object responding to #to_str. If proc is
given as a Proc, it is invoked with each object as it is de-serialised. Aliased by
Marshal.restore.

Marshal.restoreMarshal.restore(sourcesource, proc) #=> Object

Aliases Marshal.load.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 484

MATCHDATAMATCHDATA
MatchData#[]MatchData#[](groupgroup) #=> String

MatchData#[]MatchData#[](startstart, lengthlength) #=> Array

MatchData#[]MatchData#[](rangerange) #=> Array

The first form returns the text corresponding to the given group: a Fixnum

specifies a numbered group, and a Symbol specifies a named group. If group is
0, the entire matched string is returned. The second and third forms return
the text corresponding to the length consecutive capture groups starting from
start, or those in positions specified by the given Range.

MatchData#beginMatchData#begin(groupgroup) #=> Integer

Returns the character offset in the original string where the given capture
group began. group may be a group’s position, as a Fixnum, or name, as a
Symbol.

MatchData#capturesMatchData#captures() #=> Array

Returns the text corresponding to each capture group as an Array of Strings.

MatchData#endMatchData#end(groupgroup) #=> Integer

Returns the character offset in the original string where the given capture
group ended. group may be a group’s position, as a Fixnum, or name, as a
Symbol.

MatchData#lengthMatchData#length() #=> Integer

Returns the number of captured groups, i.e. the number of elements in
MatchData#captures. Aliased by MatchData#size.

MatchData#namesMatchData#names() #=> Array

Returns the names of each named capture group as an Array of Strings.

MatchData#offsetMatchData#offset(groupgroup) #=> Array

Returns the character offsets in the original string where the given capture
group began and ended. group may be a group’s position, as a Fixnum, or
name, as a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 485

MatchData#post_matchMatchData#post_match() #=> String

Returns the portion of the original string which follows this match.
Equivalent to $'.

MatchData#pre_matchMatchData#pre_match() #=> String

Returns the portion of the original string which precedes this match.
Equivalent to $`.

MatchData#regexpMatchData#regexp() #=> Regexp

Returns the regular expression used in this match.

MatchData#sizeMatchData#size() #=> Integer

Aliases MatchData#length.

MatchData#stringMatchData#string() #=> String

Returns a frozen copy of the original string used in this match.

MatchData#to_aMatchData#to_a() #=> Array

Returns the text corresponding to each capture group as an Array of Strings,
with the full string matched as the first element.

MatchData#to_sMatchData#to_s() #=> String

Returns the matched string.

MatchData#values_atMatchData#values_at(indexindex, …) #=> Array

Returns the text corresponding to each numbered group whose index is
given.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 486

MATHMATH
Math.acosMath.acos(xx) #=> Float

Returns the arc cosine of angle x, which is given in radians.

Math.acoshMath.acosh(xx) #=> Float

Returns the inverse hyperbolic cosine of angle x, which is given in radians.

Math.asinMath.asin(xx) #=> Float

Returns the arc sine of angle x, which is given in radians.

Math.asinhMath.asinh(xx) #=> Float

Returns the inverse hyperbolic sine of angle x, which is given in radians.

Math.atanMath.atan(xx) #=> Float

Returns the arc tangent of angle x, which is given in radians.

Math.atanhMath.atanh(xx) #=> Float

Returns the inverse hyperbolic tangent of angle x, which is given in radians.

Math.atan2Math.atan2(yy, xx) #=> Float

Returns the principal value of the arc tangent of y/x.

Math.cbrtMath.cbrt(nn) #=> Float

Returns the cube root of the given Numeric.

Math.cosMath.cos(xx) #=> Float

Returns the cosine of angle x, which is given in radians.

Math.erfMath.erf(xx) #=> Float

Returns the error function of x.

Math.erfcMath.erfc(xx) #=> Float

Returns the complementary error function of x.

Math.expMath.exp(xx) #=> Float

Returns Math::E ** x.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 487

Math.frexpMath.frexp(nn) #=> Array

Returns an Array whose first element is a Float which, when multiplied by 2

raised to the power of the last element, equals n.

Math.gammaMath.gamma(xx) #=> Float

Returns the result of the Gamma function for x.

Math.hypotMath.hypot(xx, yy) #=> Float

Returns the hypotenuse of the right-angled triangle with sides x and y.

Math.ldexpMath.ldexp(basebase, exponentexponent) #=> Float

Returns the product of the Float base and 2 raised to the Integer exponent.

Math.lgammaMath.lgamma(xx) #=> Array

Returns a two-element Array whose first element is the natural logarithm of
the absolute value of the Gamma function for x, and last element is -1 if the
Gamma function returned a negative number, or 1, otherwise.

Math.logMath.log(nn, base=Math::E) #=> Float

Returns the natural logarithm of the Numeric n in the base base.

Math.log10Math.log10(nn) #=> Float

Returns the base-10 logarithm of the given Numeric.

Math.log2Math.log2(nn) #=> Float

Returns the base-2 logarithm of the given Numeric.

Math.sinMath.sin(xx) #=> Float

Returns the sine of angle x, which is given in radians.

Math.sinhMath.sinh(xx) #=> Float

Returns the hyperbolic sine of angle x, which is given in radians.

Math.sqrtMath.sqrt(xx) #=> Float

Returns the non-negative square root of x, raising Math::DomainError if x is
negative.

Math.tanMath.tan(xx) #=> Float

Returns the tangent of angle x, which is given in radians.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 488

Math.tanhMath.tanh(xx) #=> Float

Returns the hyperbolic tangent of angle x, which is given in radians.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 489

METHODMETHOD
Method#[]Method#[](argument, …) #=> Object

Invokes the objectified method with the given arguments, returning the
result. Aliased by Method#call.

Method#==Method#==(objectobject) #=> true or false

Returns true if object is a Method object representing the same method as
objectified by the receiver, or an alias thereof; otherwise, false. Aliased by
Method#eql?.

Method#arityMethod#arity() #=> Fixnum

Returns the arity of the objectified method: if it accepts a fixed number of
arguments, this number is returned; for methods implemented in Ruby that
accept a variable number of arguments, the negative of this number less one
is returned; for methods implemented in C that accept a variable number of
arguments, -1 is returned.

Method#callMethod#call(argument, …) #=> Object

Aliases Method#[].

Method#eql?Method#eql?(objectobject) #=> true or false

Aliases Method#==.

Method#nameMethod#name() #=> Symbol

Returns the name of the objectified method, i.e. its selector.

Method#ownerMethod#owner() #=> Module

Returns the Class or Module in which the objectified method is defined.

Method#parametersMethod#parameters() #=> Array

Returns an Array, each element of which describes a parameter accepted by
the objectified method as an Array of the form [type, name]. type is :req if
the parameter is required, :opt if the parameter is optional, :rest if the
parameter accepts a variable number of arguments, or :block if the
parameter expects a block literal. name is the parameter’s name as a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 490

Method#receiverMethod#receiver() #=> Object

Returns the object to which the objectified method is bound.

Method#source_locationMethod#source_location() #=> Array or nil

Returns the absolute filename and line number where the objectified method
was defined, or nil if it is implemented in C.

Method#to_procMethod#to_proc() #=> Proc

Returns a Proc corresponding to the objectified method.

Method#unbindMethod#unbind() #=> UnboundMethod

Returns the objectified method detached from its receiver.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 491

MODULEMODULE
Module.constantsModule.constants(include_ancestors) #=> Array

Returns the names of top-level constants as an Array of Symbols. If
include_ancestors is true, the receiver’s ancestors are also searched;
otherwise, they’re not.

Module.nestingModule.nesting() #=> Array

Returns the enclosing Module, the Module which encloses that, and so on, as
an Array of Modules.

Module.newModule.new() {|module } #=> Module

Creates and returns a new, anonymous Module. If the block is supplied, it is
passed this object, then evaluated in the context of the new Module.

Module#<Module#<(modulemodule) #=> true, false, or nil

Returns true if module is included in, or a subclass of, the receiver Module or
one of its ancestors. Returns false if the two Modules are related in another
way, or nil if they’re not related at all.

Module#<=Module#<=(modulemodule) #=> true, false, or nil

Returns true if module is included in, a subclass of, or equal to, the receiver
Module or one of its ancestors. Returns false if the two Modules are related in
another way, or nil if they’re not related at all.

Module#>Module#>(modulemodule) #=> true, false, or nil

Returns true if module is included by, or subclasses, the receiver Module or
one of its ancestors. Returns false if the two Modules are related in another
way, or nil if they’re not related at all.

Module#>=Module#>=(modulemodule) #=> true, false, or nil

Returns true if module is included by, subclasses, or is equal to, the receiver
Module or one of its ancestors. Returns false if the two Modules are related in
another way, or nil if they’re not related at all.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 492

Module#<=>Module#<=>(modulemodule) #=> -1, 0, 1

Returns -1 if the receiver includes module, 0 if the two Modules are equal, or
1, otherwise.

Module#===Module#===(objectobject) #=> true or false

Returns true if object is either an instance or descendant of the receiver;
otherwise, false.

Module#ancestorsModule#ancestors() #=> Array

Returns an Array comprising the receiver and each of the Modules it includes.

Module#autoloadModule#autoload(namename, filenamefilename) #=> nil

Arranges for require(filename) to be invoked, in the top-level context, the
first time that the Module named name is referenced within the namespace of
the receiver. name may be either a String or Symbol.

Module#autoload?Module#autoload?(namename) #=> String or nil

Returns the filename that will be automatically loaded when the Module

named name is referenced within the namespace of the receiver, or nil if
there is no such file. name may be either a String or Symbol.

Module#class_evalModule#class_eval(rubyruby, filename, line) #=> Object

Module#class_evalModule#class_eval() {|module| }{|module| } #=> Object

Evaluates either a String of Ruby, ruby, or the given block, in the context of
the receiver. The String filename and Fixnum line are used as the filename
and line number, respectively, reported in error messages. The block is passed
the receiver as its argument. Aliased by Module#module_eval.

Module#class_execModule#class_exec(argument, …) {|*arguments| }{|*arguments| } #=> Object

Evaluates the given block in the context of the receiver, passing in its
arguments. Aliased by Module#module_exec.

Module#class_variable_defined?Module#class_variable_defined?(namename) #=> true or false

Returns true if a class variable named name is defined in the receiver;
otherwise, false. name is a Symbol of the form :@@identifier.

Module#class_variable_getModule#class_variable_get(namename) #=> Object

Returns the value of the class variable named name which is defined in the
receiver. name is a Symbol of the form :@@identifier.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 493

Module#class_variable_setModule#class_variable_set(namename, valuevalue) #=> Object

Assigns value to the class variable named name which is defined in the
receiver. name is a Symbol of the form :@@identifier.

Module#class_variablesModule#class_variables() #=> Array

Returns the names of class variables defined in the receiver as an Array of
Symbols.

Module#const_defined?Module#const_defined?(namename, include_ancestors=true) #=> true or

false

Returns true if a constant named name (a Symbol) is defined in the receiver;
otherwise, false. If include_ancestors is true, the receiver’s ancestors are
also searched.

Module#const_getModule#const_get(namename) #=> Object

Returns the value of the constant named name (a Symbol) which is defined in
the receiver.

Module#const_missingModule#const_missing(namename) #=> Object

Hook method invoked when an undefined constant named name (a Symbol) is
referenced, and expected to either return the corresponding value or delegate
to its parent with super.

Module#const_setModule#const_set(namename, valuevalue) #=> Object

Assigns value to the receiver’s constant named name (a Symbol), creating it if
necessary.

Module#constantsModule#constants(include_ancestors=true) #=> Array

Returns the names of constants accessible from the receiver as an Array of
Symbols. If include_ancestors is true, the receiver’s ancestors are also
searched.

Module#include?Module#include?(modulemodule) #=> true or false

Returns true if module is a Module included in the receiver or its ancestors;
otherwise, false.

Module#included_modulesModule#included_modules() #=> Array

Returns the Modules included in the receiver and its ancestors.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 494

Module#instance_methodModule#instance_method(namename) #=> UnboundMethod

Returns an objectification of the receiver’s instance method named name,
where name is a Symbol.

Module#instance_methodsModule#instance_methods(include_ancestors=true) #=> Array

Returns the names of the receiver’s non-private instance methods as an Array

of Symbols. When include_ancestors is true, the ancestors of the receiver are
included in the search; otherwise, they’re not.

Module#method_defined?Module#method_defined?(namename) #=> true or false

Returns true if a public or protected instance method named name is defined
in the receiver or its ancestors; otherwise, false.

Module#module_evalModule#module_eval(rubyruby, filename, line) #=> Object

Module#module_evalModule#module_eval() {|module| }{|module| } #=> Object

Aliases Module#class_eval.

Module#module_execModule#module_exec(argument, …) {|*arguments| }{|*arguments| } #=> Object

Aliases Module#class_exec.

Module#nameModule#name() #=> String

Returns the name of the receiver.

Module#private_class_methodModule#private_class_method(name, …) #=> Object

Makes private each class method with one of the given names.

Module#private_instance_methodsModule#private_instance_methods(include_ancestors=true) #=> Array

Returns the names of the receiver’s private instance methods as an Array of
Symbols. When include_parents is true, the ancestors of the receiver are
included in the search; otherwise, they’re not.

Module#private_method_defined?Module#private_method_defined?(namename) #=> true or false

Returns true if a private instance method named name is defined in the
receiver or its ancestors; otherwise, false.

Module#protected_instance_methodsModule#protected_instance_methods(include_ancestors=true) #=>

Array

Returns the names of the receiver’s protected instance methods as an Array

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 495

of Symbols. When include_parents is true, the ancestors of the receiver are
included in the search; otherwise, they’re not.

Module#protected_method_defined?Module#protected_method_defined?(namename) #=> true or false

Returns true if a protected instance method named name is defined in the
receiver or its ancestors; otherwise, false.

Module#public_class_methodModule#public_class_method(name, …) #=> Object

Makes public each class method with one of the given names.

Module#public_instance_methodModule#public_instance_method(namename) #=> UnboundMethod

Returns an objectification of the receiver’s public instance method named
name, where name is a Symbol.

Module#public_instance_methodsModule#public_instance_methods(include_ancestors=true) #=> Array

Returns the names of the receiver’s public instance methods as an Array of
Symbols. When include_parents is true, the ancestors of the receiver are
included in the search; otherwise, they’re not.

Module#public_method_defined?Module#public_method_defined?(namename) #=> true or false

Returns true if a public instance method named name is defined in the
receiver or its ancestors; otherwise, false.

Module#remove_class_variableModule#remove_class_variable(namename) #=> Object

Undefines the receiver’s class variable named name, where name is a Symbol

of the form :@@identifier.

Module#alias_methodModule#alias_method(aliasalias, namename) #=> Module

Defines an alias named alias for the receiver’s method named name.

Module#append_featuresModule#append_features(namename) #=> Module

Hook method invoked when the receiver is included in a module named
name. In order for Ruby to import the constants, methods, and class variables
of name into the receiver, this method should call super.

Module#attrModule#attr(namename, …) #=> nil

For each given name creates an instance variable named @name, and an
instance method named name which returns the value of this variable. name
is a Symbol. Aliased by Module#attr_reader.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 496

Module#attr_accessorModule#attr_accessor(namename, …) #=> nil

For each given name creates an instance variable named @name, an instance
method named name which returns the value of this variable, and an
instance method named name= which assigns its argument to this variable.
name is a Symbol.

Module#attr_readerModule#attr_reader(namename, …) #=> nil

Aliases Module#attr.

Module#attr_writerModule#attr_writer(namename, …) #=> nil

For each given name creates an instance variable named @name, and an
instance method named name= which assigns its argument to this variable.
name is a Symbol.

Module#define_methodModule#define_method(namename, bodybody) #=> Proc

Module#define_methodModule#define_method(namename) { }{ } #=> Proc

Defines in the receiver an instance method named name with a body of body
or the given block. name is a Symbol or String; body is a Proc, Method, or
UnboundMethod.

Module#extend_objectModule#extend_object(objectobject) #=> Object

Hook invoked by Object#extend on the Module with which object is being
extended. Should delegate to its parent with super. Aliased to
Module#extended.

Module#extendedModule#extended(objectobject) #=> Object

Aliases Module#extend_object.

Module#includeModule#include(modulemodule, …) #=> Module

Mixes in each of the given Modules to the receiver by iterating over its
arguments in reverse order, invoking Module#append_features, then invoking
Module#included.

Module#method_addedModule#method_added(namename) #=> Object

Hook method invoked when a method is defined on the receiver. name is the
new method’s name as a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 497

Module#method_removedModule#method_removed(namename) #=> Object

Hook method invoked when a method is removed from the receiver. name is
the removed method’s name as a Symbol.

Module#method_undefinedModule#method_undefined(namename) #=> Object

Hook method invoked when a method is undefined from the receiver. name
is the undefined method’s name as a Symbol.

Module#module_functionModule#module_function(name, …) #=> Module

Copies the receiver’s instance method named name to the receiver’s singleton
class, then makes the instance method private. Repeats this process for each
name specified. If called without arguments, applies this process to each
instance method defined subsequently in the same scope.

Module#privateModule#private(name, …) #=> Module

Makes each named instance method private, where name is a Symbol. If no
arguments are given, sets the visibility of each instance method subsequently
defined in the same scope to private.

Module#protectedModule#protected(name, …) #=> Module

Makes each named instance method protected, where name is a Symbol. If no
arguments are given, sets the visibility of each instance method subsequently
defined in the same scope to protected.

Module#publicModule#public(name, …) #=> Module

Makes each named instance method public, where name is a Symbol. If no
arguments are given, sets the visibility of each instance method subsequently
defined in the same scope to public.

Module#remove_constModule#remove_const(namename) #=> Object

Removes from the receiver the definition of the constant named name (a
Symbol), returning its value.

Module#remove_methodModule#remove_method(namename) #=> Module

Removes from the receiver the definition of the method named name (a
Symbol).

Module#undef_methodModule#undef_method(namename) #=> Module

Undefines each named method from the receiver, where name is a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 498

MUTEXMUTEX
Mutex.newMutex.new() #=> Mutex

Creates and returns a new Mutex.

Mutex#lockMutex#lock() #=> Mutex

Tries to place a lock on this mutex. If already locked by another thread, blocks
until the lock has been removed; if locked by the current thread, raises a
ThreadError.

Mutex#locked?Mutex#locked?() #=> true or false

Returns true if this mutex is locked; otherwise, false.

Mutex#sleepMutex#sleep(duration=nil) #=> Integer

Unlocks this mutex, sleeps for duration seconds, re-locks this mutex, then
returns the number of seconds slept. If duration is nil, sleeps forever.

Mutex#synchronizeMutex#synchronize() { }{ } #=> Object

Locks this mutex, yields to the block, releases the lock, then returns the value
of the block.

Mutex#try_lockMutex#try_lock() #=> true or false

Tries to place a lock on this mutex without blocking: if it is unlocked, locks it,
then returns true; otherwise, returns false.

Mutex#unlockMutex#unlock() #=> Mutex

Releases the current thread’s lock on this mutex.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 499

NILCLASSNILCLASS
NilClass#&NilClass#&(objectobject) #=> false

Performs a logical AND between the receiver and object.

NilClass#^NilClass#^(objectobject) #=> true or false

Performs an exclusive OR between the receiver and object: returns false if
object is false or nil; otherwise, true.

NilClass#|NilClass#|(objectobject) #=> true or false

Performs a logical OR between the receiver and object: returns false if object
is false or nil; otherwise, true.

NilClass#nil?NilClass#nil?() #=> true

Returns true.

NilClass#rationalizeNilClass#rationalize() #=> Rational

Returns a new Rational object whose numerator is 0, and denominator is 1.

NilClass#to_aNilClass#to_a() #=> Array

Returns [].

NilClass#to_cNilClass#to_c() #=> Complex

Returns a new Complex object whose real part and imaginary part are both 0.

NilClass#to_fNilClass#to_f() #=> Float

Returns 0.0.

NilClass#to_iNilClass#to_i() #=> Integer

Returns 0.

NilClass#to_rNilClass#to_r() #=> Rational

Returns a new Rational object whose numerator is 0, and denominator is 1.

NilClass#to_sNilClass#to_s() #=> String

Returns "".

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 500

NUMERICNUMERIC
Numeric#%Numeric#%(numbernumber) #=> Numeric

Returns the result of the receiver modulo number. Aliased by
Numeric#modulo.

Numeric#+@Numeric#+@() #=> Numeric

Returns the receiver with a positive sign.

Numeric#-@Numeric#-@() #=> Numeric

Returns the receiver with a negative sign.

Numeric#<=>Numeric#<=>(numbernumber) #=> 0 or nil

Returns 0 if the receiver is equal to number; otherwise, nil.

Numeric#absNumeric#abs() #=> Numeric

Returns the absolute value of the receiver. Aliased by Numeric#magnitude.

Numeric#abs2Numeric#abs2() #=> Numeric

Returns the square of the absolute value of the receiver.

Numeric#angleNumeric#angle() #=> Numeric

Returns Math::PI if the receiver is negative; otherwise, 0. Aliased by
Numeric#arg and Numeric#phase.

Numeric#argNumeric#arg() #=> Numeric

Aliases Numeric#angle.

Numeric#ceilNumeric#ceil() #=> Integer

Converts the receiver to a Float then returns Float#ceil.

Numeric#coerceNumeric#coerce(objectobject) #=> Array

Returns an Array containing object and the receiver. If object isn’t a Numeric,
both elements of the Array are converted to Floats.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 501

Numeric#conjNumeric#conj() #=> Numeric

Returns the receiver. Aliased by Numeric#conjugate.

Numeric#conjugateNumeric#conjugate() #=> Numeric

Aliases Numeric#conj.

Numeric#denominatorNumeric#denominator() #=> Integer

Converts the receiver to a Rational then returns Rational#denominator.

Numeric#divNumeric#div(numbernumber) #=> Numeric

Divides the receiver by number, using #/, then converts the result to an
Integer.

Numeric#divmodNumeric#divmod(numbernumber) #=> Array

Divides the receiver by number, returning an Array whose first element is the
quotient, and last element, the modulus. The quotient is rounded toward −∞.

Numeric#eql?Numeric#eql?(numbernumber) #=> true or false

Returns true if the receiver and number have both the same type and value;
otherwise, false.

Numeric#fdivNumeric#fdiv(numbernumber) #=> Float

Returns the result of dividing—using floating-point division—the receiver by
number. Aliased by Numeric#quo.

Numeric#floorNumeric#floor() #=> Integer

Converts the receiver to a Float then returns Float#round.

Numeric#iNumeric#i() #=> Complex

Returns a new Complex whose real part is 0, and imaginary part is the
receiver.

Numeric#imageNumeric#image() #=> 0

Returns 0. Aliased by Numeric#imaginary.

Numeric#imaginaryNumeric#imaginary() #=> 0

Aliases Numeric#image.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 502

Numeric#integer?Numeric#integer?() #=> true or false

Returns true if the receiver is an Integer, or a subclass thereof; otherwise,
false.

Numeric#magnitudeNumeric#magnitude() #=> Numeric

Aliases Numeric#abs.

Numeric#moduloNumeric#modulo(numbernumber) #=> Numeric

Aliases Numeric#%.

Numeric#nonzero?Numeric#nonzero?() #=> Numeric or nil

Returns the receiver if non-zero; otherwise, nil.

Numeric#numeratorNumeric#numerator() #=> Integer

Converts the receiver to a Rational then returns Rational#numerator.

Numeric#phaseNumeric#phase() #=> Numeric

Aliases Numeric#angle.

Numeric#polarNumeric#polar() #=> Array

Returns an Array whose first element is the absolute value of the receiver,
using #abs, and last element is the arg of the receiver, using #arg.

Numeric#quoNumeric#quo(numbernumber) #=> Numeric

Converts the receiver to a Rational then divides it, using Rational#/, by
number, returning the result.

Numeric#realNumeric#real() #=> Numeric

Returns the receiver.

Numeric#real?Numeric#real?() #=> true

Returns true.

Numeric#rectNumeric#rect() #=> Array

Returns an Array whose first element is the receiver, and last element 0.
Aliased by Numeric#rectangular.

Numeric#rectangularNumeric#rectangular() #=> Array

Aliases Numeric#rect.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 503

Numeric#remainderNumeric#remainder(numbernumber) #=> Numeric

Computes the modulo of the receiver and number using #modulo. Returns the
modulo minus number if the receiver and number have different signs;
otherwise, the modulo.

Numeric#roundNumeric#round() #=> Integer

Converts the receiver to a Floatthen returns Float#round.

Numeric#stepNumeric#step(stopstop, stepstep) {|n| } #=> Numeric or Enumerator

Yields each number from the receiver to the Numeric stop, incrementing by
step with #+. If step is positive, counts up from the receiver until #> than end;
otherwise, counts down until #< than end. Returns an Enumerator if the block
is omitted.

Numeric#to_cNumeric#to_c() #=> Complex

Returns a new Complex number whose real part is the receiver, and imaginary
part is 0.

Numeric#to_intNumeric#to_int() #=> Integer

Converts the receiver to an Integer using #to_i.

Numeric#truncateNumeric#truncate() #=> Integer

Converts the receiver to a Float then returns Float#truncate.

Numeric#zero?Numeric#zero?() #=> true or false

Returns true if the receiver has a zero value; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 504

OBJECTOBJECT
Defines no methods of its own, but mixes in the Kernel Module.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 505

OBJECTSPACEOBJECTSPACE
ObjectSpace._id2refObjectSpace._id2ref(idid) #=> Object

Converts an Integer object ID, id, to the corresponding Object.

ObjectSpace.count_objectsObjectSpace.count_objects() #=> Hash

Returns a Hash mapping each internal object type to the number of objects
having that type. See Listing and Counting for details.

ObjectSpace.define_finalizerObjectSpace.define_finalizer(objectobject, procproc) #=> Array

Arranges for the Proc, proc, to be invoked just prior to object being garbage
collected. proc is passed object’s object ID, a Fixnum, as an argument.

ObjectSpace.each_objectObjectSpace.each_object(module) {|object| } #=> Integer or

Enumerator

Yields each living, non-immediate object in the current process. If a Class is
given for module, only objects with that class, or a subclass thereof, are
selected; if a Module is given, only objects that include that module are
selected. If the block is given, objects are yielded to it, then their count
returned; otherwise, an Enumerator is returned.

ObjectSpace.garbage_collectObjectSpace.garbage_collect() #=> nil

Starts the garbage collector.

ObjectSpace.undefine_finalizerObjectSpace.undefine_finalizer(objectobject) #=> Object

Removes any finalizers that were defined for object, then returns its
argument.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 506

PROCPROC
Proc.newProc.new() { } #=> Proc

Creates and returns a new Proc object for the given block. If the block is
omitted, must be called within a method that has a block parameter: the
block passed to the method becomes the body of the Proc.

Proc#[]Proc#[](argument, …) #=> Object

Invokes the block associated with the receiver, passing in any arguments as
block parameters. Returns the value of this block. Aliased by Proc#call and
Proc#yield.

Proc#==Proc#==(objectobject) #=> true or false

Returns true if object is a Proc identical to the receiver; otherwise, false.

Proc#===Proc#===(objectobject) #=> Object

Returns the result of invoking the receiver with object as an argument.

Proc#arityProc#arity() #=> Integer

Returns the arity of the receiver. A receiver that requires exactly n arguments
has an arity of n. If it also accepts optional arguments, its arity is -(n + 1).

Proc#bindingProc#binding() #=> Binding

Returns the binding associated with the receiver.

Proc#callProc#call(argument, …) #=> Object

Aliases Proc#[].

Proc#curryProc#curry() #=> Proc

Returns a curried version of the receiver. If a curried Proc receives as many
arguments as it expects, it behaves as the receiver. If it is called with fewer
arguments than it expects, it returns a new curried Proc, p, with each
argument it did receive already assigned to the corresponding block
parameter. Therefore, p expects the remaining arguments, which it will assign
to the remaining block parameters.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 507

Proc#lambda?Proc#lambda?() #=> true or false

Returns true if the receiver has lambda semantics; otherwise, false.

Proc#parametersProc#parameters() #=> Array

Returns an Array, each element of which describes a parameter accepted by
the receiver as an Array of the form [type, name]. type is :req if the
parameter is required, :opt if the parameter is optional, :rest if the
parameter accepts a variable number of arguments, or :block if the
parameter expects a block literal. name is the parameter’s name as a Symbol.

Proc#source_locationProc#source_location() #=> Array or nil

Returns the filename and line number of the source file in which the receiver
was defined, or nil if it was defined in C.

Proc#to_procProc#to_proc() #=> Proc

Returns the receiver.

Proc#to_sProc#to_s() #=> String

Returns a String specifying the object ID and source location of the receiver.

Proc#yieldProc#yield(argument, …) #=> Object

Aliases Proc#[].

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 508

PROCESSPROCESS
Process.abortProcess.abort(message) #=> N/A

Aliases Kernel.abort.

Process.daemonProcess.daemon(keep_directory=false, keep_stdio_open=false) #=> 0

Detaches the current process from its controlling terminal and runs it in the
background. The working directory of the process is changed to / unless
keep_directory is true; otherwise, the working directory is unchanged. The
standard output, input, and error streams are redirected to /dev/null unless
keep_stdio_open is true. Uses the daemon(3) function, if available, or forks
then calls Process.setssid. If neither approach is supported by the current
platform, a NotImplementedError is raised.

Process.detachProcess.detach(pidpid) #=> Thread

Creates and returns a Thread that monitors the process with given PID, and
reaps it when it terminates.

Process.egidProcess.egid() #=> Integer

Returns the effective group ID for the current process.

Process.egid=Process.egid=(egidegid) #=> Integer

Sets the effective group ID for the current process to egid, which it then
returns. Raises NotImplementedError on platforms lacking setresgid(2),
setregid(2), setegid(3), and setgid(2).

Process.euidProcess.euid() #=> Integer

Returns the effective user ID for the current process.

Process.euid=Process.euid=(euideuid) #=> Integer

Sets the effective user ID for the current process to euid, which it then
returns. Raises NotImplementedError on platforms lacking setresuid(2),
setreuid(2), seteuid(3), and setuid(2).

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 509

Process.execProcess.exec(environment={}, commandcommand, argument, …, options={}) #=>

N/A

Aliases Kernel.exec.

Process.exitProcess.exit(status=1) #=> N/A

Aliases Kernel.exit.

Process.exit!Process.exit!(status=1) #=> N/A

Aliases Kernel.exit!.

Process.forkProcess.fork() { } #=> Integer or nil

Aliases Kernel.fork.

Process.getpgidProcess.getpgid(pidpid) #=> Integer

Returns the process group ID for the process with the given PID. Raises
NotImplementedError on platforms lacking getpgid(2).

Process.getpgrpProcess.getpgrp() #=> Integer

Returns the process group ID for the current process. Raises
NotImplementedError on platforms lacking both getpgrp(2) and getpgid(2).

Process.getpriorityProcess.getpriority(whichwhich, whowho) #=> Integer

Returns the scheduling priority of the process, process group or user, as
indicated by which and who. which is one of the following constants:
Process::PRIO_PROCESS, Process::PRIO_PGRP, and Process::PRIO_USER. In
the first case, who is a PID; in the second, a PGID; and in the third, a UID. If
who is 0 it refers to the current process, the process group of the current
process, or the real UID of the current process, respectively. Raises
NotImplementedError on platforms lacking getpriority(2).

Process.getrlimitProcess.getrlimit(resourceresource) #=> Array

Returns the soft and hard limit for the resource identified by resource. See
Resource Limits for details. Raises NotImplementedError on platforms lacking
getrlimit(2).

Process.gidProcess.gid() #=> Integer

Returns the group ID for the current process.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 510

Process.gid=Process.gid=(gidgid) #=> Integer

Sets the group ID for the current process to gid, which it then returns. Raises
NotImplementedError on platforms lacking setresgid(2), setregid(2),
setrgid(3), and setgid(2).

Process.groupsProcess.groups() #=> Array

Returns the supplementary group IDs of the current process as an Array of
Integers. Raises NotImplementedError on platforms without getgroups(2).

Process.groups=Process.groups=(groupsgroups) #=> Array

Sets the supplementary group IDs of the current process to the given Array.
groups may specify groups by GID, as a Fixnum, or name, as a String.
Returns the new value of Process.groups. Raises NotImplementedError on
platforms without setgroups(2).

Process.initgroupsProcess.initgroups(useruser, groupgroup) #=> Array

Initialises the group access list with all groups of which the named user is a
member, plus the GID, group. Returns the new value of Process.groups.
Raises NotImplementedError on platforms without initgroups(2).

Process.killProcess.kill(signalsignal, pidpid, …) #=> Integer

Sends the signal identified by signal to each process identified by the PID pid,
where signal is the name (as a Symbol or String) or number (as a Fixnum) of a
POSIX signal. If signal is negative or its name begins with -, its process group
is killed instead.

Process.maxgroupsProcess.maxgroups() #=> Integer

Returns the maximum number of supplementary groups handled by
Process.groups and Process.groups=.

Process.maxgroups=Process.maxgroups=(maxmax) #=> Integer

Sets the maximum number of supplementary groups handled by
Process.groups and Process.groups= to the lowest value of max and 4096.

Process.pidProcess.pid() #=> Integer

Returns the process ID for the current process.

Process.pidProcess.pid() #=> Integer

Returns the process ID for the current process.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 511

Process.ppidProcess.ppid() #=> Integer

Returns the process ID for the current process’s parent, or 0 on Windows.

Process.setpgidProcess.setpgid(pidpid, pgidpgid) #=> 0

Sets the process group ID of the process identified by the given PID to pgid.
A pid of 0 refers to the current process; a pgid of 0 sets the process group of
the process specified by pid to its PID. Raises an NotImplementedError on
platforms lacking setpgid(2).

Process.setgrpProcess.setgrp() #=> 0

Sets the process group of the current process to its PID. Raises an
NotImplementedError on platforms lacking both setpgid(2) and setpgrp(3).

Process.setpriorityProcess.setpriority(whichwhich, whowho, prioritypriority) #=> 0

Sets the scheduling priority of the process, process group or user, as indicated
by which and who, to priority. which is one of the following constants:
Process::PRIO_PROCESS, Process::PRIO_PGRP, and Process::PRIO_USER. In
the first case, who is a PID; in the second, a PGID; and in the third, a UID. If
who is 0 it refers to the current process, the process group of the current
process, or the real UID of the current process, respectively. Raises
NotImplementedError on platforms lacking getpriority(2).

Process.setrlimitProcess.setrlimit(whichwhich, softsoft, hard=soft) #=> 0

Sets the soft and hard limits of the resource identified by which to soft and
hard, respectively. Raises NotImplementedError on platforms lacking
setrlimit(2). See Resource Limits for details.

Process.setsidProcess.setsid() #=> Integer

Creates a new session with the current process as its sole member—i.e. makes
the current process a process group leader. If the current process is already a
process group leader, does nothing. Returns the session ID. Raises
NotImplementedError on systems lacking either setsid(2) or both
setpgrp(3) and TIOCNOTTY.

Process.spawnProcess.spawn(environment={}, commandcommand, argument, …, options={})

#=> Fixnum

Aliases Kernel.spawn.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 512

Process.timesProcess.times() #=> Struct::Tms

Returns the user and system CPU times for the current process. Raises
NotImplementedError on systems lacking times(2).

Process.uidProcess.uid() #=> Integer

Returns the user ID of the current process.

Process.uid=Process.uid=(uiduid) #=> Integer

Sets the user ID of the current process to the given Integer, which it then
returns. Raises NotImplementedError on platforms lacking setresuid(2),
setreuid(2), setruid(3), and setuid(2).

Process.waitProcess.wait(pid=-1, flags=0) #=> Integer

Suspends the calling process until one of its children exit. A pid less than -1

refers to the child process identified by the absolute value of pid; a pid of -1
refers to any child; a pid of 0 refers to any child whose PGID is that of the
current process; and a positive pid refers to the child with a PID of pid. flags
is a either 0 or a logical OR of Process::WNOHANG (don’t block unless there is a
matching child process) and Process::WUNTRACED (return stopped children
that haven’t previously been reported). Raises a SystemError if there are no
child processes. Aliased by Process.waitpid.

Process.waitallProcess.waitall() #=> Array

Waits for all child processes to terminate. Returns an Array whose elements
have the form [pid, status], where pid is the PID of a child, and status the
corresponding Process::Status object.

Process.wait2Process.wait2(pid=-1, flags=0) #=> Array

Behaves as Process.wait but returns an Array containing the PID of the child
process and the corresponding Process::Status object. Aliased by
Process.waitpid2.

Process.waitpidProcess.waitpid(pid=-1, flags=0) #=> Integer

Aliases Process.wait.

Process.waitpid2Process.waitpid2(pid=-1, flags=0) #=> Array

Aliases Process.wait2.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 513

PROCESS::GIDPROCESS::GID
Process::GID.change_privilegeProcess::GID.change_privilege(gidgid) #=> Integer

Sets the real, effective, and saved group IDs of the current process to the
given Integer, which it then returns.

Process::GID.eidProcess::GID.eid() #=> Integer

Aliases Process.egid.

Process::GID.eid=Process::GID.eid=(eideid) #=> Integer

Sets the effective group ID of the current process to the given Integer. If
possible, also sets the saved group ID to the same value. Returns eid. Aliased
by Process::GID.grant_privilege.

Process::GID.grant_privilegeProcess::GID.grant_privilege(eideid) #=> Integer

Aliases Process::GID.eid=.

Process::GID.re_exchangeProcess::GID.re_exchange() #=> Integer

Swaps the real and effective group IDs. Sets the saved group ID to the new
effective group ID, which it then returns.

Process::GID.re_exchangeable?Process::GID.re_exchangeable?() #=> true or false

Returns true if this platform supports exchanging the real and effective group
IDs; otherwise, false.

Process::GID.ridProcess::GID.rid() #=> Integer

Aliases Process.gid.

Process::GID.sid_available?Process::GID.sid_available?() #=> true or false

Returns true if this platform supports saved group IDs; otherwise, false.

Process::GID.switchProcess::GID.switch() { } #=> Object

Exchanges the effective and real group IDs of the current process, then
returns the new effective group ID. If a block is given, the IDs are restored to
their original values once it has been yielded to; the return value is that of the
block.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 514

PROCESS::STATUSPROCESS::STATUS
Process::Status#==Process::Status#==(objectobject) #=> true or false

Returns true if object is a Process::Status object whose Integer values are
equal; otherwise, false.

Process::Status#&Process::Status#&(numbernumber) #=> Fixnum

Performs a logical AND between the receiver’s Integer value and the given
Integer.

Process::Status#>>Process::Status#>>(numbernumber) #=> Fixnum

Right shifts the bits in the receiver by number places.

Process::Status#coredump?Process::Status#coredump?() #=> true or false

Returns true if the associated process generated a coredump; otherwise,
false.

Process::Status#exited?Process::Status#exited?() #=> true or false

Returns true if the associated process exited normally; otherwise, false.

Process::Status#exitstatusProcess::Status#exitstatus() #=> Fixnum

Returns least significant byte of the receiver’s Integer value, or nil if the
associated process exited abnormally.

Process::Status#pidProcess::Status#pid() #=> Fixnum

Returns the PID of the associated process.

Process::Status#signaled?Process::Status#signaled?() #=> true or false

Returns true if the associated process terminated because of an uncaught
signal; otherwise, false.

Process::Status#stopped?Process::Status#stopped?() #=> true or false

Returns true if the associated process is stopped; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 515

Process::Status#success?Process::Status#success?() #=> true, false, or nil

Returns true if the associated process exited successfully; false if it exited
abnormally; and nil if it didn’t exit.

Process::Status#stopsigProcess::Status#stopsig() #=> Fixnum or nil

Returns the number of the signal that caused the associated process to stop,
or nil if it isn’t stopped.

Process::Status#termsigProcess::Status#termsig() #=> Fixnum or nil

Returns the number of the signal that caused the associated process to
terminate, or nil if it didn’t terminate due to an uncaught signal.

Process::Status#to_iProcess::Status#to_i() #=> Fixnum

Returns the Integer value of this status.

Process::Status#to_sProcess::Status#to_s() #=> String

Returns the Integer value of this status as a String.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 516

PROCESS::SYSPROCESS::SYS
Process.getegidProcess.getegid() #=> Integer

Aliases Process.egid.

Process.geteuidProcess.geteuid() #=> Integer

Aliases Process.euid.

Process.getgidProcess.getgid() #=> Integer

Aliases Process.gid.

Process.getuidProcess.getuid() #=> Integer

Aliases Process.uid.

Process.issetugidProcess.issetugid() #=> true or false

Returns true if the current process environment or memory address space is
considered tainted by UID or GID changes; otherwise, false. Raises
NotImplementedError on platforms that lack issetugid(2).

Process.setegidProcess.setegid(gidgid) #=> nil

Sets the effective group ID of the current process to the given Integer. Raises
NotImplementedError on platforms that lack setegid(2).

Process.seteuidProcess.seteuid(uiduid) #=> nil

Sets the effective user ID of the current process to the given Integer. Raises
NotImplementedError on platforms that lack seteuid(2).

Process.setregidProcess.setregid(realreal, effectiveeffective) #=> nil

Sets the real and effective group IDs of the current process to real and
effective, respectively. Raises NotImplementedError on platforms that lack
setregid(2).

Process.setresgidProcess.setresgid(realreal, effectiveeffective, savedsaved) #=> nil

Sets the real, effective, and saved group IDs of the current process to real,
effective, and saved respectively. Raises NotImplementedError on platforms
that lack setresgid(2).

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 517

Process.setresuidProcess.setresuid(realreal, effectiveeffective, savedsaved) #=> nil

Sets the real, effective, and saved user IDs of the current process to real,
effective, and saved respectively. Raises NotImplementedError on platforms
that lack setresuid(2).

Process.setreuidProcess.setreuid(realreal, effectiveeffective) #=> nil

Sets the real and effective user IDs of the current process to real and effective,
respectively. Raises NotImplementedError on platforms that lack setreuid(2).

Process.setrgidProcess.setrgid(realreal) #=> nil

Sets the real group ID of the current process to the given Integer. Raises
NotImplementedError on platforms that lack setrgid(2).

Process.setruidProcess.setruid(realreal) #=> nil

Sets the real user ID of the current process to the given Integer. Raises
NotImplementedError on platforms that lack setruid(2).

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 518

PROCESS::UIDPROCESS::UID
Process::UID.change_privilegeProcess::UID.change_privilege(uiduid) #=> Integer

Sets the real, effective, and saved user IDs of the current process to the given
Integer, which it then returns.

Process::UID.eidProcess::UID.eid() #=> Integer

Aliases Process.euid.

Process::UID.eid=Process::UID.eid=(eideid) #=> Integer

Sets the effective user ID of the current process to the given Integer. If
possible, also sets the saved user ID to the same value. Returns eid. Aliased
by Process::UID.grant_privilege.

Process::UID.grant_privilegeProcess::UID.grant_privilege(eideid) #=> Integer

Aliases Process::UID.eid=.

Process::UID.re_exchangeProcess::UID.re_exchange() #=> Integer

Swaps the real and effective user IDs. Sets the saved user ID to the new
effective user ID, which it then returns.

Process::UID.re_exchangeable?Process::UID.re_exchangeable?() #=> true or false

Returns true if this platform supports exchanging the real and effective user
IDs; otherwise, false.

Process::UID.ridProcess::UID.rid() #=> Integer

Aliases Process.uid.

Process::UID.sid_available?Process::UID.sid_available?() #=> true or false

Returns true if this platform supports saved user IDs; otherwise, false.

Process::UID.switchProcess::UID.switch() { } #=> Object

Exchanges the effective and real user IDs of the current process, then returns
the new effective user ID. If a block is given, the IDs are restored to their
original values once it has been yielded to; the return value is that of the
block.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 519

RANGERANGE
Range.newRange.new(beginbegin, endend, exclusive) #=> Range

Creates and returns a Range of begin to end, inclusive. If exclusive is true, end
is omitted.

Range#==Range#==(objectobject) #=> true or false

Returns true is a Range whose beginning and end values are #== to the
corresponding values in the receiver, and they are both either exclusive or
inclusive; otherwise, false.

Range#===Range#===(objectobject) #=> true or false

Returns the value of Range#include? when passed object.

Range#beginRange#begin() #=> Object

Returns the beginning value of the receiver.

Range#cover?Range#cover?(objectobject) #=> true or false

Returns true if object is between—using the comparison operators—the
beginning and end value of the receiver. If the receiver is inclusive, object
may equal the end value; otherwise, it may not.

Range#eachRange#each() {|value| } #=> Range

Generates successive elements of the receiver with #succ, yielding them to
the block. If the block is omitted, an Enumerator is returned.

Range#endRange#end() #=> Object

Returns the end value of the receiver.

Range#eql?Range#eql?(objectobject) #=> true or false

Returns true is a Range whose beginning and end values are #eql? to the
corresponding values in the receiver, and they are both either exclusive or
inclusive; otherwise, false.

Range#exclude_end?Range#exclude_end?() #=> true or false

Return true if the receiver is exclusive; otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 520

Range#firstRange#first(n=1) #=> Object or Array

Returns the first n elements of the receiver as an Array. If n is omitted,
returns the first element itself.

Range#include?Range#include?(objectobject) #=> true or false

If the endpoints of the receiver are Numeric, behaves as Range#cover?.
Otherwise, uses Enumerable#include? to determine whether object is an
element of the receiver, returning true if it is; otherwise, false. Aliased by
Range#member?.

Range#lastRange#last(n=1) #=> Object or Array

Returns the last n elements of the receiver as an Array. If n is omitted, returns
the last element itself.

Range#maxRange#max() {|a,b| } #=> Object or nil

Returns the largest element of the receiver, or nil if the beginning value
exceeds the end value. If a block is given it is used to find the maximum
value: it is passed each pair of elements in turn, and expected to behave like
#<=>.

Range#member?Range#member?(objectobject) #=> true or false

Aliases Range#include?.

Range#minRange#min() {|a,b| } #=> Object or nil

Returns the smallest element of the receiver, or nil if the beginning value
exceeds the end value. If a block is given it is used to find the maximum
value: it is passed each pair of elements in turn, and expected to behave like
#<=>.

Range#stepRange#step(n=1) {|value| } #=> Range

Generates successive elements of the receiver with #succ, or if the endpoints
are numeric, #+, yielding every nth to the block. If the block is omitted, an
Enumerator is returned.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 521

RATIONALRATIONAL
Rational#*Rational#*(numbernumber) #=> Numeric

Returns the result of multiplying number with the receiver.

Rational#**Rational#**(numbernumber) #=> Numeric

Returns the result of raising the receiver to the numberth power.

Rational#+Rational#+(numbernumber) #=> Numeric

Returns the result of adding the receiver to number.

Rational#-Rational#-(numbernumber) #=> Numeric

Returns the result of subtracting number from the receiver.

Rational#/Rational#/(numbernumber) #=> Numeric

Returns the result of dividing—using rational division if possible; otherwise,
floating-point division—the receiver by number. Aliased by Numeric#div and
Rational#quo.

Rational#<=>Rational#<=>(numbernumber) #=> -1, 0, 1

Returns -1 if the receiver is less than number, 0 if they are equal, and 1 if it is
greater.

Rational#==Rational#==(numbernumber) #=> true or false

Returns true if the number is a Numeric with the same value as the receiver;
false, otherwise. If number is a Float, the receiver is coerced into a Float

prior to the comparison.

Rational#ceilRational#ceil(precision=0) #=> Integer or Rational

Returns the smallest Integer greater than or equal to the receiver. If precision
is given, returns the receiver rounded toward positive infinity: if precision is
positive, it specifies the number of digits following the decimal point;
otherwise, it specifies the number of digits preceding the decimal point.

Rational#coerceRational#coerce(objectobject) #=> Array

Returns an Array whose first element is object, and second, the receiver—both

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 522

coerced to Numerics of the same class. If object is an Integer, it is converted
to a Rational; if it is a Float, both are converted to Floats; if it is a Complex

without an imaginary part, it is converted to a Rational whose numerator
equals the real part, and whose denominator is 1; otherwise, a TypeError is
raised.

Rational#denominatorRational#denominator() #=> Numeric

Returns the denominator of the receiver.

Rational#fdivRational#fdiv(numbernumber) #=> Float

Returns the result of dividing—using floating-point division—the receiver by
number. Aliased by Rational#quo.

Rational#floorRational#floor(precision=0) #=> Integer or Rational

Returns the largest Integer less than or equal to the receiver. If precision is
given, returns the receiver rounded toward negative infinity: if precision is
positive, it specifies the number of digits following the decimal point;
otherwise, it specifies the number of digits preceding the decimal point.

Rational#numeratorRational#numerator() #=> Numeric

Returns the numerator of the receiver.

Rational#quoRational#quo(numbernumber) #=> Numeric

Aliases Rational#/.

Rational#rationalizeRational#rationalize(epsilon) #=> Rational

Returns the simplest rational number differing from the receiver by no more
than the absolute value of epsilon. If epsilon is omitted, returns the receiver.

Rational#roundRational#round(precision=0) #=> Integer or Rational

Returns the Integer nearest to the receiver: rounding upwards if there’s a tie.
If precision is positive, it specifies the number of digits following the decimal
point; otherwise, it specifies the number of digits preceding the decimal
point.

Rational#to_fRational#to_f() #=> Float

Converts the receiver to a Float.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 523

Rational#to_iRational#to_i() #=> Integer

Returns the receiver truncated to an Integer.

Rational#to_rRational#to_r() #=> Rational

Returns the receiver.

Rational#to_sRational#to_s() #=> String

Returns a String comprising the numerator and denominator of the receiver,
separated by a solidus.

Rational#truncateRational#truncate(precision=0) #=> Integer or Rational

Returns the receiver truncated toward zero. If precision is given, the result is
a Rational; otherwise, it is an Integer. When precision is negative, it
specifies the number of digits preceding the decimal point; otherwise, it
specifies the number of digits following the decimal point.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 524

REGEXPREGEXP
Regexp.compileRegexp.compile(patternpattern, options, encoding) #=> Regexp

Regexp.compileRegexp.compile(regexpregexp) #=> Regexp

Creates and returns a new Regexp. pattern is a regular expression as a String.
If options is a Fixnum it is the bitwise-OR of one or more of the following
constants: Regexp::EXTENDED, Regexp::IGNORECASE, and Regexp::MULTILINE;
if it is nil, it is equivalent to Regexp::IGNORECASE. The Regexp will have the
encoding of pattern, unless encoding is "n" or "N", in which case it will have
the ASCII-8BIT encoding. In the second form, a new Regexp is created from
the given Regexp, inheriting its options. Aliased by Regexp.new.

Regexp.escapeRegexp.escape(stringstring) #=> String

Returns the given String with all Regexp metacharacters escaped. Aliased by
Regexp.quote.

Regexp.last_matchRegexp.last_match(capture) #=> MatchData

Returns the MatchData object representing the last successful match;
equivalent to $~. If capture is given, returns the text corresponding to the
specified capture group: a Fixnum specifies a numbered group, and a Symbol

specifies a named group.

Regexp.newRegexp.new(patternpattern, options, encoding) #=> Regexp

Regexp.newRegexp.new(regexpregexp) #=> Regexp

Aliases Regexp.compile.

Regexp.quoteRegexp.quote(stringstring) #=> String

Aliases Regexp.escape.

Regexp.try_convertRegexp.try_convert(objectobject) #=> Regexp or nil

Returns object if it’s a Regexp, otherwise tries to convert it to one with
#to_regexp. If this approach fails, returns nil.

Regexp.unionRegexp.union(pattern, …) #=> Regexp

Regexp.unionRegexp.union(patternspatterns) #=> Regexp

Returns a Regexp that matches any of the given patterns. If pattern is a

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 525

String, its metacharacters are escaped; if it’s a Regexp, it corresponds to a
group matching the same pattern with the same options. If no patterns are
given, /(?!)/—a Regexp that will never match—is returned. In the second
form, the patterns are given as an Array.

Regexp#==Regexp#==(regexpregexp) #=> true or false

Returns true if regexp is a Regexp with the same pattern, encoding, and case-
fold setting as the receiver; otherwise, false. Aliased by Regexp#eql?.

Regexp#===Regexp#===(objectobject) #=> true or false

Returns true if object is a String that matches the receiver; otherwise, false.

Regexp#=~Regexp#=~(stringstring) #=> Integer or nil

If the given String matches the receiver, sets $~ to the corresponding
MatchData object, then returns the offset in string where the match begins;
otherwise, returns nil.

Regexp#~Regexp#~() #=> Integer or nil

Behaves as Regexp#=~, but matches the receiver against $_.

Regexp#casefold?Regexp#casefold?() #=> true or false

Returns true if the receiver is case-insensitive; otherwise, false.

Regexp#encodingRegexp#encoding() #=> Encoding

Returns the Encoding associated with the receiver.

Regexp#eql?Regexp#eql?(regexpregexp) #=> true or false

Aliases Regexp#==.

Regexp#fixed_encoding?Regexp#fixed_encoding?() #=> true or false

Returns true if the receiver contains non-ASCII characters; otherwise, false.

Regexp#matchRegexp#match(stringstring, offset=0) #=> MatchData or nil

Regexp#matchRegexp#match(stringstring, offset=0) {|matchdata| }{|matchdata| } #=> Object or nil

Matches the receiver against the String string, starting from the offsetth

character. If the match fails, nil is returned. Otherwise, the first form returns
the MatchData object, and the second form yields the MatchData object to the
block then returns the block’s value.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 526

Regexp#named_capturesRegexp#named_captures() #=> Hash

Assuming each named capture group has an integer index, with the first
being 1, returns a Hash associating each unique name with an Array of
indices corresponding to the groups that capture it.

Regexp#namesRegexp#names() #=> Array

Returns the unique names corresponding to each named capture group as an
Array of Strings.

Regexp#optionsRegexp#options() #=> Integer

Returns the bitwise-OR of the options with which the receiver was created.

Regexp#sourceRegexp#source() #=> String

Returns the receiver’s pattern.

Regexp#to_sRegexp#to_s() #=> String

Returns the receiver as a String, i.e. the pattern and the associated objects in
a form that re-compiles to a semantically identical Regexp.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 527

SIGNALSIGNAL
Signal.listSignal.list() #=> Hash

Returns a Hash whose keys are signal names, and values the corresponding
signal numbers.

Signal.trapSignal.trap(signalsignal, commandcommand) #=> Object

Signal.trapSignal.trap(signalsignal) {|signal_number| }{|signal_number| } #=> Object

Registers a signal handler for the signal identified by signal, where signal is a
signal name—as a String or Symbol—or a signal number. If signal is a Proc, or
a block is given, they are called with the signal number as their argument. If
signal is nil, "", or "IGNORE", the signal is ignored. If signal is "DEFAULT", the
operating system’s default handler will be used. If signal is "EXIT", the signal
will terminate the interpreter. Returns the previous handler for this signal.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 528

STRINGSTRING
String.newString.new(object) #=> String

Initialises and returns a new String. If object is given, uses String#replace to
substitute object for the receiver.

String.try_convertString.try_convert(objectobject) #=> String or nil

Attempts to convert object to a String—if it isn’t one already, uses
#to_str—which it returns. Returns nil if the conversion failed.

String#%String#%(objectobject) #=> String

Formats the receiver as with Kernel.sprintf, using object as the value(s) to
interpolate. If object is an Array, its values are interpolated, instead.

String#*String#*(nn) #=> String

Returns a new String comprising n copies of the receiver, where n is a
Numeric truncated to an Integer.

String#+String#+(stringstring) #=> String

Returns a new String comprising the receiver concatenated with the given
String.

String#<<String#<<(objectobject) #=> String

Concatenates the receiver with object in-place, returning the new receiver. If
object is a Fixnum it is interpreted as a codepoint in the receiver’s encoding,
and converted accordingly. Aliased by String#concat.

String#<=>String#<=>(objectobject) #=> -1, 0, 1, or nil

Returns -1 if the receiver is less than, 0 if it is equal to, and 1 if it is greater
than object. If object responds to both #to_str and <=>, the #<=> method of
object is used to compare it with the receiver, then the negation of the result
is returned; otherwise, nil is returned.

String#==String#==(objectobject) #=> true or false

Returns true if object is a String with the same Encoding, length, and
content as the receiver. If object responds to #to_str, returns the result of

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 529

calling object’s #== with the receiver as the argument. In all other cases,
returns false.

String#=~String#=~(objectobject) #=> Integer or nil

Returns the result of calling object’s #=~ method with the receiver as the
argument. If object is a Regexp, #=~ is not actually called, for performance
reasons, but the semantics are identical. If object is a String, raises a
TypeError.

String#[]String#[](offsetoffset, length) #=> String or nil

String#[]String#[](rangerange) #=> String or nil

String#[]String#[](regexpregexp, group) #=> String or nil

String#[]String#[](stringstring) #=> String or nil

The first form returns the portion of the receiver which begins at the given
Fixnum offset and extends to either the last character or, if a Fixnum length is
given, the character length characters after offset. The second form selects the
characters from the receiver whose offsets are covered by the given Range,
returning them as a String. In both cases, negative offsets count from the end
of the receiver. The third form matches the receiver against the given Regexp,
returning either the text that matched or, if group identifies a capturing group
by either a Symbol name or Fixnum number, the text captured by that group.
In the last form, the given String is returned if it occurs in the receiver. In all
cases, nil is returned if there was no matching sub-String. Aliased by
String#slice.

String#[]=String#[]=(offsetoffset, length, replacementreplacement) #=> String or nil

String#[]=String#[]=(rangerange, replacementreplacement) #=> String or nil

String#[]=String#[]=(regexpregexp, group, replacementreplacement) #=> String or nil

String#[]=String#[]=(stringstring, replacementreplacement) #=> String or nil

Replaces a sub-String of the receiver with the given replacement String,
which it then returns. The first form replaces the portion of the receiver
which begins at the given Fixnum offset and extends to either the last
character or, if a Fixnum length is given, the character length characters after
offset. If this sub-String doesn’t exist, an IndexError is raised. The second
form replaces the characters from the receiver whose offsets are covered by
the given Range, raising a RangeError if there is no such sub-String. In both
cases, negative offsets count from the end of the receiver. The third form
matches the receiver against the given Regexp, replacing either the text that

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 530

matched or, if group identifies a capturing group by either a Symbol name or
Fixnum number, the text captured by that group. If the Regexp didn’t match,
an IndexError is raised. In the last form, replaces the first occurrence of the
String string in the receiver, raising an IndexError if it never occurs.

String#ascii_only?String#ascii_only?() #=> true or false

Returns true if the receiver has an ASCII-compatible encoding and contains
no ASCII characters; otherwise, false.

String#bytesString#bytes() {|byte| } #=> String or Enumerator

Yields each byte in the receiver as a Fixnum, returning the receiver. If the
block is omitted, returns an Enumerator. Aliased by String#each_byte.

String#bytesizeString#bytesize() #=> Integer

Returns the number of bytes contained within the receiver.

String#capitalizeString#capitalize() #=> String

Returns a copy of the receiver with the first character converted to uppercase,
and the remainder to lowercase. However, this only affects ASCII-characters;
others remain as they are.

String#capitalize!String#capitalize!() #=> String or nil

Behaves as String#capitalize except the receiver is converted in-place.
Returns the receiver, or nil if it wasn’t modified.

String#casecmpString#casecmp(objectobject) #=> -1, 0, 1, or nil

Returns -1 if the receiver is less than, 0 if it is equal to, and 1 if it is greater
than object. Differences in case of ASCII characters are ignored. Returns nil
if the encoding of the receiver is incompatible with that of object. Raises a
TypeError if object can’t be converted to a String.

String#centerString#center(lengthlength, padding=" "padding=" ") #=> String

Returns a new String of length length with the receiver in the middle,
surrounded either side with padding. If length is less than or equal the length
of the receiver, returns the receiver.

String#charsString#chars() {|character| } #=> String or Enumerator

Yields each character of the receiver as a String, returning the receiver. If the
block is omitted, returns an Enumerator. Aliased by String#each_char.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 531

String#chrString#chr() #=> String

Returns the first character of the receiver, or if the receiver is empty, an
empty String.

String#clearString#clear() #=> String

Deletes the contents of the receiver, returning the new receiver.

String#chompString#chomp(remove=$/remove=$/) #=> String

Returns a copy of the receiver with the given String remove deleted from the
end. If remove has the value "\n", removes the longest of the following,
instead: "\n", "\r", and "\r\n".

String#chomp!String#chomp!(remove=$/remove=$/) #=> String or nil

Behaves as String#chomp, but modifies the receiver in-place. Returns the
receiver, or nil if it wasn’t modified.

String#chopString#chop() #=> String

Returns the receiver with the last character removed. If it ends with "\r\n",
both characters are removed. If the receiver is empty, it is returned.

String#chop!String#chop!() #=> String or nil

Behaves as String#chop, but returns nil if the receiver was empty.

String#codepointsString#codepoints() {|codepoints| } #=> String or Enumerator

Yields each codepoint of the receiver as a Fixnum, returning the receiver. If the
block is omitted, returns an Enumerator. Aliased by String#each_codepoint.

String#concatString#concat(objectobject) #=> String

Aliases String#<<.

String#countString#count(stringstring, …) #=> Fixnum

Returns the number of characters contained in the receiver which are
specified as arguments. Each argument specifies a set of characters as a
String: if their first character is a circumflex accent ("^), their contents are
negated; if they comprise two characters separated by a hyphen minus sign
("-"), they represent the range of characters between the two given. Counts
the characters contained in the intersection of these sets.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 532

String#cryptString#crypt(saltsalt) #=> String

Returns a one-way cryptographic hash of the receiver using crypt(3). The
salt should be at least two characters long and only contain ASCII letters,
numbers, "." and /. Please do not, under any circumstances, use this method
to perform cryptography; the algorithm used by crypt(3) is a variation of
DES which is known to be insecure.

String#deleteString#delete(stringstring, …) #=> String

Returns a copy of the receiver with the characters specified as arguments
removed. Each argument specifies a set of characters as a String: if their first
character is a circumflex accent ("^), their contents are negated; if they
comprise two characters separated by a hyphen minus sign ("-"), they
represent the range of characters between the two given. Deletes the
characters appearing in the intersection of these sets.

String#downcaseString#downcase() #=> String

Returns a copy of the receiver with its uppercase ASCII characters converted
to lowercase.

String#downcase!String#downcase!() #=> String or nil

Behaves as String#downcase, but modifies the receiver in-place, then returns
it. Returns nil if no modifications were made.

String#dumpString#dump() #=> String

Returns a copy of the receiver with non-printable ASCII characters and non-
ASCII characters replaced by character escapes. The String returned will
evaluate to the receiver.

String#each_byteString#each_byte() {|byte| } #=> String or Enumerator

Aliases String#bytes.

String#each_charString#each_char() {|character| } #=> String or Enumerator

Aliases String#chars.

String#each_codepointString#each_codepoint() {|codepoints| } #=> String or Enumerator

Aliases String#codepoints.

String#each_lineString#each_line() {|line| } #=> String or Enumerator

Aliases String#lines.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 533

String#empty?String#empty?() #=> true or false

Returns true if the receiver has a size of 0; otherwise, false.

String#encodeString#encode(options) #=> String

String#encodeString#encode(target_encodingtarget_encoding, source_encoding, options) #=> String

Transcodes the receiver from one encoding to another, returning the result.
The first form transcodes from the receiver’s current encoding to the default
internal encoding. The second form transcodes from source_encoding, or the
receiver’s current encoding if that argument is omitted, to
destination_encoding. The first form replaces invalid byte sequences and
undefined characters with "?"; the others raise
Encoding::InvalidByteSequence and Encoding::UndefinedConversionError,
respectively. options is an Encoding options Hash.

String#encode!String#encode!(options) #=> String

String#encode!String#encode!(target_encodingtarget_encoding, source_encoding, options) #=> String

Behaves as String#encode, but modifies the receiver in-place before
returning it.

String#encodingString#encoding() #=> Encoding

Returns the receiver’s encoding.

String#end_with?String#end_with?(suffixsuffix, …) #=> true or false

Returns true if the receiver ends with any of the given Strings; otherwise,
false.

String#eql?String#eql?(objectobject) #=> true or false

Returns true if object is a String with the same length and content as the
receiver; otherwise, false.

String#force_encodingString#force_encoding(encodingencoding) #=> String

Associates the receiver with the given encoding, then returns the receiver.
encoding may be either an Encoding object or an Encoding name as a String.

String#getbyteString#getbyte(offsetoffset) #=> Integer or nil

Returns the byte at the given offset in the receiver, or nil if there is no such
byte. If offset is negative it counts from the end of the receiver.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 534

String#gsubString#gsub(patternpattern, replacementreplacement) #=> String

String#gsubString#gsub(patternpattern) {|matchdata| } #=> String or Enumerator

Replaces all occurrences of pattern with replacement or the value of the
block. pattern is either a Regexp or a String; in the latter case, metacharacters
are ignored. If replacement is a String it may contain references to capture
groups as either \digit or \k<name>; otherwise, it is a Hash whose keys are
Strings containing the text captured by a group, and values the Strings that
they should be replaced with. In the second form, the block is invoked on
each match with the corresponding MatchData object as a parameter. Returns
the result or, if both replacement and block are omitted, an Enumerator.

String#gsub!String#gsub!(patternpattern, replacementreplacement) #=> String or nil

String#gsub!String#gsub!(patternpattern) {|matchdata| } #=> String, nil, or Enumerator

Behaves as String#gsub except the receiver is modified in-place. Returns the
receiver if it was changed; otherwise, nil.

String#hexString#hex() #=> Integer

Interprets the leading characters of the receiver as a hexadecimal integer,
with an optional sign and 0x prefix, returning the Integer equivalent.
Returns 0 if no such number was found.

String#include?String#include?(stringstring) #=> true or false

Returns true if the given String is contained by the receiver; otherwise,
false.

String#indexString#index(needleneedle, offset) #=> Integer or nil

Searches the receiver for the given sub-String or Regexp, returning the
character offset where the first occurrence begins, or nil if the search failed.
If offset is given it is the Fixnum character offset in the receiver from which
the search begins.

String#insertString#insert(indexindex, stringstring) #=> String

Inserts the String string into the receiver before the character at the Fixnum

offset. A negative offset counts from the end of the receiver, inserting string
after this character.

String#internString#intern() #=> Symbol

Returns the receiver converted to a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 535

String#lengthString#length() #=> Fixnum

Returns the number of characters contained in the receiver. Aliased by
String#size.

String#linesString#lines(separator=$/) {|line| } #=> String or Enumerator

Yields each line of the receiver that is separated by separator, returning an
Enumerator if the block is omitted. A separator of "" is equivalent to one of
"\n\n".

String#ljustString#ljust(widthwidth, padding= " ") #=> String

Returns a copy of the receiver width characters long, left-justified using
padding if necessary.

String#lstripString#lstrip() #=> String

Returns a copy of the receiver with leading ASCII-whitespace characters
removed.

String#lstrip!String#lstrip!() #=> String or nil

Behaves as String#lstrip but modifies the receiver in-place. Returns the
new receiver, or nil if it was’t changed.

String#matchString#match(patternpattern) {|matchdata| } #=> MatchData or nil

Matches the receiver against pattern. If successful, returns the corresponding
MatchData object or, if the block is given, yields it to the block then returns
the block’s value; otherwise, returns nil. pattern may be a String, in which
case its compiled into a Regexp, a Regexp, or an object which can be
converted to one of the aforementioned types.

String#nextString#next() #=> String

Returns the String which succeeds the receiver. Starting with the last
alphanumeric character, or the last character if there are no alphanumerics,
increments it as follows: a digit produces the successive digit, a letter
produces the successive letter, preserving case, and any other character
produces the character with the successive codepoint. If the character
incremented was the last of its type, e.g. "z" or "9", the character to its left is
incremented, ad infinitum; if there is no character to the left, the new
character is appended to the receiver. However, if the receiver matches
/(?<a>\d+)(?)[^\d](?<c>\d+)$/, whereas the last character of b would

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 536

normally be incremented, the last character of a is, instead—i.e. the two
sequences of digits are treated like a number containing a decimal point.
Aliased by String#succ.

String#next!String#next!() #=> String

Behaves as String#next, but modifies the receiver in-place before returning
it. Aliased by String#succ!.

String#octString#oct() #=> Integer

Interprets the leading characters of the receiver as octal digits prefixed by an
optional sign, and returns the Integer corresponding to their value.

String#ordString#ord() #=> Integer

Returns the codepoint of the first character in the receiver.

String#partitionString#partition(patternpattern) #=> Array

Searches the receiver for the first occurrence of pattern. If successful, returns
an Array whose first element is the portion of the receiver before the match,
second element is the portion of the receiver which matched, and last element
is the portion of the receiver after the match. Otherwise, returns an Array

with the receiver as first element, and two empty Strings as the last two.
pattern may be either a String or Regexp.

String#replaceString#replace(stringstring) #=> String

Changes the receiver’s contents, encoding, and taintedness to the respective
values of the given String. Returns the new receiver.

String#reverseString#reverse() #=> String

Returns a copy of the receiver with the characters reversed.

String#reverse!String#reverse!() #=> String

Behaves as String#reverse but modifies the receiver in-place.

String#rindexString#rindex(needleneedle, offset) #=> Integer or nil

Searches the receiver for the given sub-String or Regexp, returning the
character offset where the last occurrence begins, or nil if the search failed. If
offset is given it is the Fixnum character offset in the receiver at which the
search ends.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 537

String#rjustString#rjust(widthwidth, padding= " ") #=> String

Returns a copy of the receiver width characters long, right-justified using
padding if necessary.

String#rpartitionString#rpartition(patternpattern) #=> Array

Searches the receiver for the last occurrence of pattern. If successful, returns
an Array whose first element is the portion of the receiver before the match,
second element is the portion of the receiver which matched, and last element
is the portion of the receiver after the match. Otherwise, returns an Array

whose first two elements are empty Strings, and last element is the receiver.
pattern may be either a String or Regexp.

String#rstripString#rstrip() #=> String

Returns a copy of the receiver with trailing ASCII-whitespace characters
removed.

String#rstrip!String#rstrip!() #=> String or nil

Behaves as String#rstrip but modifies the receiver in-place. Returns the
new receiver, or nil if it was’t changed.

String#scanString#scan(patternpattern) {|match| } #=> Array or String

Searches the receiver for pattern yielding the sub-String matched or, if the
pattern contains capturing groups, the text matched by each group as an
Array of Strings. If the block is omitted, the values that would have been
yielded are returned as an Array. pattern may be a Regexp or a String; in the
latter case, metacharacters that it contains are ignored.

String#setbyteString#setbyte(nn, bytebyte) #=> Integer

Replaces the nth byte of the receiver with the Fixnum byte, returning byte. A
negative n counts from the end of the receiver, and if n falls outside the
receiver an IndexError is raised.

String#sizeString#size() #=> Fixnum

Aliases String#length.

String#sliceString#slice(offsetoffset, length) #=> String or nil

String#sliceString#slice(rangerange) #=> String or nil

String#sliceString#slice(regexpregexp, group) #=> String or nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 538

String#sliceString#slice(stringstring) #=> String or nil

Aliases String#[].

String#slice!String#slice!(offsetoffset, length) #=> String or nil

String#slice!String#slice!(rangerange) #=> String or nil

String#slice!String#slice!(regexpregexp, group) #=> String or nil

String#slice!String#slice!(stringstring) #=> String or nil

Behaves as String#[], but deletes and returns the matching portion of the
receiver. If the receiver wasn’t modified, nil is returned.

String#splitString#split(pattern=$;pattern=$;, limit) #=> Array

Divides the receiver into an Array of String fields, each a run of consecutive
characters up to, but excluding, pattern. A delimiter of nil or " ", splits on
consecutive whitespace. Any other String pattern is interpreted literally.
When pattern is a Regexp, the delimiter is the matching text, however text
matched by a capturing group is included in the result as its own field. If
pattern matches "", each character of the receiver is an field. Unless limit is
negative, trailing empty fields are dropped. If limit is positive, it specifies the
maximum number of elements in the result; if 1, the receiver is the sole
element in the result.

String#squeezeString#squeeze(set, …) #=> String

Returns a copy of the receiver in which runs of the same character are
replaced by one of that character. If arguments are given, only runs of the
characters they specify are collapsed in this way. Each argument specifies a
set of characters as a String: if their first character is a circumflex accent ("^),
their contents are negated; if they comprise two characters separated by a
hyphen minus sign ("-"), they represent the range of characters between the
two given.

String#squeeze!String#squeeze!(set, …) #=> String or nil

Behaves as String#squeeze, but modifies the receiver in-place. Returns the
receiver if actually modified; otherwise, nil.

String#start_with?String#start_with?(prefixprefix, …) #=> true or false

Returns true if the receiver begins with any of the given Strings; otherwise,
false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 539

String#stripString#strip() #=> String

Returns a copy of the receiver with leading whitespace, trailing whitespace,
and trailing "\0" characters removed.

String#strip!String#strip!() #=> String or nil

Behaves as String#strip, but modifies the receiver in-place. Returns the
receiver if actually modified; otherwise, nil.

String#subString#sub(patternpattern, replacementreplacement) #=> String

String#subString#sub(patternpattern) {|matchdata| } #=> String or Enumerator

Behaves as String#gsub, except only the first match is replaced.

String#sub!String#sub!(patternpattern, replacementreplacement) #=> String or nil

String#sub!String#sub!(patternpattern) {|matchdata| } #=> String or Enumerator

Behaves as String#sub, but modifies the receiver in-place. Returns the
receiver if actually modified; otherwise, nil.

String#succString#succ() #=> String

Aliases String#next.

String#succ!String#succ!() #=> String

Aliases String#next!.

String#sumString#sum(bits=16) #=> Integer

Calculates a checksum of the receiver by computing byte % (2 ** bits - 1)

for each byte of the receiver, then summing the result.

String#swapcaseString#swapcase() #=> String

Returns a copy of the receiver with uppercase ASCII characters converted to
lowercase, and lowercase ASCII characters converted to uppercase.

String#swapcase!String#swapcase!() #=> String or nil

Behaves as String#swapcase, but modifies the receiver in-place. Returns the
receiver if actually modified; otherwise, nil.

String#to_cString#to_c() #=> Complex

Assumes the leading characters of the receiver represent a complex number
comprising a numeric literal then, optionally, a solidus followed by another
numeric literal, an optional sign, then the letter i. Interprets the portion

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 540

before the solidus as the real part of the complex number, and the portion
between the solidus and i as the imaginary part. If the imaginary part is not
specified, 0 is assumed. Returns a Complex number with the values extracted,
or Complex(0, 0) on failure.

String#to_fString#to_f() #=> Float

Assumes the leading characters of the receiver represent a floating-point
number comprising an integer literal then, optionally, a full stop followed by
another integer literal. Interprets the first portion as the whole part of the
Float, and the last portion as its fractional part. Assumes a fractional part of
0 if the latter portion is omitted. Returns a Float with the value extracted.

String#to_iString#to_i(base=10) #=> Integer

Assumes the leading characters of the receiver constitute an integer in the
given base, where base is between 2 and 36. Ignores leading whitespace, but
honours a leading sign. If base is 0, infers the base by looking for a prefix: 0b
implies binary, 0o and 0 imply octal, 0d implies decimal, and 0x implies
hexadecimal. Returns this value, or 0 if no value could be found, as an
Integer.

String#to_rString#to_r() #=> Rational

Assumes the leading characters of the receiver represent a rational number
comprising a numeric literal then, optionally, a solidus followed by another
numeric literal. These characters may be enclosed by parentheses. Interprets
the first portion as the numerator, and the last portion as the denominator. If
either part couldn’t be read they have the values 0 and 1, respectively.
Returns a new Rational with the value extracted.

String#to_sString#to_s() #=> String

Returns the receiver. Aliased by String#to_str.

String#to_strString#to_str() #=> String

Aliases String#to_s.

String#to_symString#to_sym() #=> Symbol

Returns the receiver as a Symbol.

String#trString#tr(fromfrom, toto) #=> String

Returns a copy of the receiver with the characters in the from String

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 541

translated to the corresponding characters in the to String. Either argument
may specify ranges of characters by separating the beginning and end points
with -. If from begins with ^ it represents the characters not listed. When to is
shorter than from, its last character is repeated to redress the difference.

String#tr!String#tr!(fromfrom, toto) #=> String or nil

Behaves as String#tr, but modifies the receiver in-place. Returns the receiver
if actually modified; otherwise, nil.

String#tr_sString#tr_s(fromfrom, toto) #=> String

Translates the receiver with String#tr then collapses runs of identical
characters in the translated regions.

String#tr_s!String#tr_s!(fromfrom, toto) #=> String or nil

Behaves as String#tr_s, but modifies the receiver in-place. Returns the
receiver if actually modified; otherwise, nil.

String#unpackString#unpack(formatformat) #=> Array

Separates the receiver into an Array of sub-Strings according to the given
template. For more details see Unpacking.

String#upcaseString#upcase() #=> String

Returns a copy of the receiver with lowercase ASCII characters converted to
uppercase.

String#upcase!String#upcase!(fromfrom, toto) #=> String or nil

Behaves as String#upcase, but modifies the receiver in-place. Returns the
receiver if actually modified; otherwise, nil.

String#uptoString#upto(maxmax) {|string| } #=> String or Enumerator

Generates, using String#succ, each String from the receiver to the String

max, inclusive, yielding each to the block. Returns an Enumerator if the block
is omitted.

String#valid_encoding?String#valid_encoding?() #=> true or false

Returns true if the contents of the receiver is valid according to its encoding;
otherwise, false.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 542

STRUCTSTRUCT
Struct.newStruct.new(name, member, …) { } #=> Struct::Example

Initialises and returns a new Class inheriting from Struct. It is named
Struct::name, or is anonymous if name is omitted. An accessor method is
defined for each member Symbol. If a block is given, it is evaluated in the
context of the new Struct’s class. In the descriptions that follow,
Struct::Example is a Class returned by this method.

Struct::Example.newStruct::Example.new(valuevalue, …) #=> Struct::Example

Instantiates and returns an instance of the receiver. Each value is assigned to
the corresponding member; an omitted value is nil. An ArgumentError is
raised if more values are given than there are members. Aliased by
Struct::Example[].

Struct::Example[]Struct::Example[](valuevalue, …) #=> Struct::Example

Aliases Struct::Example.new.

Struct::Example.membersStruct::Example.members() #=> Array

Returns the names of the receiver’s members as an Array of Symbols.

Struct::Example#==Struct::Example#==(objectobject) #=> true or false

Returns true if object was generated by Struct.new and has the same number
of members as the receiver, each of which have the same names and equal
values according to #==; otherwise, false.

Struct::Example#[]Struct::Example#[](positionposition) #=> Object

Struct::Example#[]Struct::Example#[](namename) #=> Object

Returns the value of the given member, identified either by its Fixnum
position or Symbol name. If there isn’t such a member, the first form raises an
IndexError, and the second form raises a NameError.

Struct::Example#[]=Struct::Example#[]=(positionposition, objectobject) #=> Object

Struct::Example#[]=Struct::Example#[]=(namename, objectobject) #=> Object

Sets the value of the given member to object. A member is identified either

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 543

by its Fixnum position or Symbol name. If there isn’t such a member, the first
form raises an IndexError, and the second form raises a NameError.

Struct::Example#eachStruct::Example#each() {|value| }{|value| } #=> Struct::Example or

Enumerator

Yields the value of each member in turn, returning the receiver. If the block is
omitted, an Enumerator is returned.

Struct::Example#each_pairStruct::Example#each_pair() {|member, value| }{|member, value| } #=> Struct::Example

or Enumerator

Yields the name of each Symbol member, in turn, along with its value,
returning the receiver. If the block is omitted, an Enumerator is returned.

Struct::Example#lengthStruct::Example#length() #=> Integer

Returns the number of members in the receiver. Aliased by
Struct::Example#size.

Struct::Example#membersStruct::Example#members() #=> Array

Returns the names of the receiver’s members as an Array of Symbols.

Struct::Example#sizeStruct::Example#size() #=> Integer

Aliases Struct::Example#length.

Struct::Example#to_aStruct::Example#to_a() #=> Array

Returns the values of the receiver’s members. Aliased by
Struct::Example#values.

Struct::Example#valuesStruct::Example#values() #=> Array

Aliases Struct::Example#to_a.

Struct::Example#values_atStruct::Example#values_at(positionposition, …) #=> Array

Returns the values corresponding to the given members, which are specified
as Fixnum positions or Ranges of the same.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 544

STRUCT::TMSSTRUCT::TMS
Struct::Tms#cstimeStruct::Tms#cstime() #=> Float

Returns the number of seconds of system CPU time consumed by waited-for,
terminated child processes, i.e. the sum of their Struct::Tms#stime and
Struct::Tms#cstime values. Returns 0.0 on Windows.

Struct::Tms#cutimeStruct::Tms#cutime() #=> Float

Returns the number of seconds of user CPU time consumed by waited-for,
terminated child processes, i.e. the sum of their Struct::Tms#utime and
Struct::Tms#cutime values. Returns 0.0 on Windows.

Struct::Tms#stimeStruct::Tms#stime() #=> Float

Returns the number of seconds of system CPU time consumed by the calling
process.

Struct::Tms#utimeStruct::Tms#utime() #=> Float

Returns the number of seconds of user CPU time consumed by the calling
process.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 545

SYMBOLSYMBOL
Symbol.all_symbolsSymbol.all_symbols() #=> Array

Returns the names of all Symbols currently defined.

Symbol#<=>Symbol#<=>(objectobject) #=> -1, 0, 1, or nil

Converts both the receiver and object to Strings then compares them with
String#<=>.

Symbol#==Symbol#==(objectobject) #=> true or false

Returns true if object is a Symbol with the same Symbol#object_id as the
receiver; otherwise, false. Aliased by Symbol#===.

Symbol#===Symbol#===(objectobject) #=> true or false

Aliases Symbol#==.

Symbol#=~Symbol#=~(patternpattern) #=> Integer or nil

Converts the receiver to a String, then returns the value of String#=~ with
the same argument. Aliased by Symbol#match.

Symbol#[]Symbol#[](offsetoffset, length) #=> String or nil

Symbol#[]Symbol#[](rangerange) #=> String or nil

Symbol#[]Symbol#[](regexpregexp, group) #=> String or nil

Symbol#[]Symbol#[](stringstring) #=> String or nil

Converts the receiver to a String then returns the result of String#[] for the
same arguments. Aliased by Symbol#slice.

Symbol#capitalizeSymbol#capitalize() #=> Symbol

Converts the receiver to a String, capitalises it with String#capitalize, then
returns the result as a Symbol.

Symbol#casecmpSymbol#casecmp(objectobject) #=> -1, 0, 1, or nil

Returns nil unless object is a Symbol. Otherwise, converts the receiver and
object to Strings, then returns the value of String#casecmp when given the
converted object as argument.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 546

Symbol#downcaseSymbol#downcase() #=> Symbol

Converts the receiver to a String, changes it to lowercase with
String#downcase, then returns the result as a Symbol.

Symbol#empty?Symbol#empty?() #=> Symbol

Converts the receiver to a String, then returns the result of String#empty?.

Symbol#encodingSymbol#encoding() #=> Encoding

Returns the encoding of the receiver.

Symbol#id2nameSymbol#id2name() #=> String

Returns the receiver as a String. Aliased by Symbol#to_s.

Symbol#inspectSymbol#inspect() #=> String

Returns a String which evaluates to the receiver.

Symbol#internSymbol#intern() #=> Symbol

Returns the receiver.

Symbol#lengthSymbol#length() #=> Integer

Converts the receiver to a String, then returns the result of String#length.
Aliased by Symbol#size.

Symbol#matchSymbol#match(patternpattern) #=> Integer or nil

Aliases Symbol#=~.

Symbol#nextSymbol#next() #=> Symbol

Converts the receiver to a String, then returns the result of String#next as a
Symbol. Aliased by Symbol#succ.

Symbol#sizeSymbol#size() #=> Integer

Aliases Symbol#length.

Symbol#sliceSymbol#slice(offsetoffset, length) #=> String or nil

Symbol#sliceSymbol#slice(rangerange) #=> String or nil

Symbol#sliceSymbol#slice(regexpregexp, group) #=> String or nil

Symbol#sliceSymbol#slice(stringstring) #=> String or nil

Aliases Symbol#[].

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 547

Symbol#succSymbol#succ() #=> Symbol

Aliases Symbol#next.

Symbol#swapcaseSymbol#swapcase() #=> Symbol

Converts the receiver to a String, adjusts its letter case with
String#swapcase, then returns the result as a Symbol.

Symbol#to_procSymbol#to_proc() #=> Proc

Converts the receiver to a Proc of the form {|object|

object.send(symbol)}, where symbol is the receiver. In other words,
interprets the receiver as a name of a method to call on each object passed to
the block.

Symbol#to_sSymbol#to_s() #=> String

Aliases Symbol#id2name.

Symbol#to_symSymbol#to_sym() #=> Symbol

Returns the receiver.

Symbol#upcaseSymbol#upcase() #=> Symbol

Converts the receiver to a String, adjusts its letter case with String#upcase,
then returns the result as a Symbol.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 548

BIBLIOGRAPHYBIBLIOGRAPHY
Books

Aho86

Compilers, Principles, Techniques, and Tools; Alfred V. Aho, Ravi Sethi, and
Jeffrey D. Ullman; 1986; Addison-Wesley Publishing Company

Beck98

Linux Kernel Internals; Michael Beck, Harold Böhme, Mirko Dziadzka,
Ulrich Kunitz, Robert Magnus, and Dirk Verworner; 1998; Addison-Wesley
Publishing Company

Black09

The Well-Grounded Rubyist; David A. Black; 2009; Manning Publications

Brown09

Ruby Best Practices; Gregory T. Brown; 2009; O’Reilly Media

Bruce02

Foundations of Object-Oriented Languages: Types and Semantics; Kim B.
Bruce; 2002; MIT Press

Budd87

A Little Smalltalk; Timothy A. Budd; 1987; Addison Wesley

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 549

Fischer92

The Anatomy of Programming Languages; Alice E. Fischer and Frances S.
Grodzinsky; 1992; Prentice-Hall

Flan08

The Ruby Programming Language; David Flanagan and Yukihiro
Matsumoto; 2008; O’Reilly Media

Friedman08

Essentials of Programming Languages; Daniel P. Friedman and Mitchell
Wand; 2008; MIT Press

Goldberg76

Smalltalk-72 Instruction Manual; Adele Goldberg and Alan Kay; 1976;
Xerox Corporation

Graham96

ANSI Common Lisp; Paul Graham; 1996; Prentice Hall

James92

Mathematics Dictionary; Robert C. James; 1992; Chapman & Hall

Kernighan78

The Elements of Programming Style; Brian W. Kernighan and P. J. Plauger;
1978; Mcgraw-Hill

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 550

Kernighan84

The UNIX Programming Environment; Brian W. Kernighan and Rob Pike;
1984; Prentice Hall

Klas95

Metaclasses and Their Application; Wolfgang Klas and Michael Schrefl;
1995; Springer

LispStd

Programming Language—Common Lisp; American National Standard for
Information Systems; 1993;

Liu99

Smalltalk, Objects, and Design; Chamond Liu; 1999; toExcel

Loosemore07

The GNU C Library Reference Manual; Sandra Loosemore, Richard M.
Stallman, Roland McGrath, and Ulrich Drepper; 2007; The Free Software
Foundation

Love07

Linux System Programming; Robert Love; 2007; O’Reilly Media

Meyer00

Object-oriented Software Construction; Bertrand Meyer; 2000; Prentice Hall

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 551

Mitchell04

Concepts in Programming Languages; John C. Mitchell; 2004; Cambridge
Univeristy Press

Per10

Metaprogramming Ruby; Paolo Perrotta; 2010; Pragmatic Bookshelf

Raymond99

The New Hacker’s Dictionary; Eric Raymond; 1999; The MIT Press

Raymond03

The Art of UNIX Programming; Eric Raymond; 2003; Addison-Wesley

Scott06

Programming Language Pragmatics; Michael L. Scott; 2006; Morgan
Kaufmann

Stevens05

Advanced Programming in the UNIX® Environment; W. Stevens and
Stephen Rago; 2005; Addison Wesley Professional

Thom06

Programming Ruby; Dave Thomas, Chad Fowler, and Andy Hunt; 2009;
Pragmatic Bookshelf

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 552

Turbak08

Design Concepts in Programming Languages; Franklyn A. Turbak, David
K. Gifford, and Mark A. Sheldon; 2008; MIT Press

Wall00

Programming Perl; Larry Wall, Tom Christiansen, and Jon Orwant; 2000;
O’Reilly & Associates, Inc.

Articles
Buck06

Under the hood: ActiveRecord::Base.find, Part 3; Jamis Buck; 2006;

Fowler08

Dynamic Reception; Martin Fowler; 2008;

Harada09

The Design and Implementation of Ruby M17N; Yui Naruse; 2009;

Kay98

Prototypes vs Classes; Alan Kay; 1998;

Nutter08

Ruby’s Thread#raise, Thread#kill, timeout.rb, and net/protocol.rb libraries
are broken; Charles Nutter; 2008;

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 553

Taivalsaari96

Journal of Object-Oriented Programming: Classes vs. Prototypes — Some
Philosophical and Historical Observations; Antero Taivalsaari; 1996; Springer
Verlag

ruby-core:28281

[ruby-core:28281] [Bug:trunk] add explicit constraints for WONTFIX IO
bug; Yusuke Endoh; 2010;

Tr15285

An operational model for characters and glyphs; ISO/IEC; 1998; ISO/IEC

Uax44

Unicode Standard Annex #44: Unicode Character Database; Mark Davis
and Ken Whistler; 2009; Unicode Consortium

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 554

PREDEFINEDPREDEFINED
GLOBALGLOBAL

VARIABLESVARIABLES
Ruby predefines certain global variables automatically. They are

summarised in the following table.

Global Variable EnglishEnglish Name Value Meaning Thread-
local

$* $ARGV Array Read‐only alias of ARGV ✖

$$ $PID / $PROCESS_ID Fixnum
Process ID of the current
Ruby process. Read‐only.

✖

$? $CHILD_STATUS
nil or
Process::Status

Exit status of the last
terminated process.
Read‐only.

✔

$-d

$DEBUG
true or false

Whether Ruby was
invoked with the -d or --
debug switches.

✖

$"

$LOADED_FEATURES
Array of Strings

Absolute filenames of files
loaded with Kernel.load,
Kernel.require, or
Kernel.require_relative.
Read‐only.

✖

$:

$LOAD_PATH

$-I

Array of Strings

Absolute paths to
directories searched by
Kernel.load or
Kernel.require.
Read‐only, but the

✖

Predefined global variables

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 555

Global Variable EnglishEnglish Name Value Meaning Thread-
local

contents of the Array can
be modified.

$0

$PROGRAM_NAME
Strings

Filename of the Ruby
script being executed.
Equal to - if the program
was read from STDIN, or
-e if ruby was supplied
with the -e switch.

✖

$SAFE Fixnums
Current safe level. May be
set from the command-
line with the -T option.

✔

$-w

$-v

$VERBOSE

true, false, or
nil

true if the -v, -w, or --
verbose switches were
supplied on the command
line; nil if the -W0 switch
was supplied; false,
otherwise. Assigning nil

to this variable suppresses
all warnings.

✖

$! $ERROR_INFO Exception

Inside a rescue clause or
after the rescue modifier
holds the current
exception.

✔

$@ $ERROR_POSITION Array of Strings

Inside a rescue clause or
after the rescue modifier
holds the stack trace of
the current exception;
equivalent to
$!.backtrace.

✔

$_ $LAST_READ_LINE String

Last String read by
Kernel.gets or
Kernel.readline.
Method‐local.

✔

$< $DEFAULT_INPUT ARGF Read‐only alias for ARGF. ✖
$stdin IO Standard input stream. ✖

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 556

Global Variable EnglishEnglish Name Value Meaning Thread-
local

$>

$stdout
$DEFAULT_OUTPUT IOs Standard output stream. ✖

$stderr IO Standard error stream. ✖

$FILENAME String

Filename of the file
currently being read from
ARGF; - if ARGF is empty or
reading from STDIN.
Read‐only.

✖

$. $NR / $INPUT_LINE_NUMBER Fixnum

Number of the last line
read from the current
input file in ARGF.

✖

$/

$-0

$RS /
$INPUT_RECORD_SEPARATOR

String

Input record separator.
Default value is "\n". Can
be set with the -0 switch.

✖

$\
$ORS /
$OUTPUT_RECORD_SEPARATOR

String or nil

Appended to
Kernel.print output if
non‐nil. Default value is
nil, or $/ if the -l switch
is given.

✖

$,
$OFS /
$OUTPUT_FIELD_SEPARATOR

nil or String

Separator printed between
the arguments of
Kernel.print and the
default separator of
Array.join. Equal to nil

by default.

✖

$;

$-F
$FS / $FIELD_SEPARATOR String or nil

Default field separator of
String#split. Default
value is nil or the
argument to the -F switch.

✖

$F Array of Strings

If the -a and -n/-p
switches were given, holds
the return value of
String#split for the
current input line.

✖

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 557

Global Variable EnglishEnglish Name Value Meaning Thread-
local

$~ $MATCH_INFO MatchData or nil
MatchData from the last
regexp match.
Method‐local.

✔

$& $MATCH String

Text matched by last
regexp match. Read‐only.
Method‐local.

✔

$` $PREMATCH String

Text preceding the match
of the last regexp match.
Read‐only. Method‐local.

✔

$' $POSTMATCH String

Text following the match
of the last regexp match.
Read‐only. Method‐local.

✔

$+ $LAST_PAREN_MATCH String

Text enclosed in the last
successfully matched
group of the last regexp
match. Read‐only.
Method‐local.

✔

$-a true or false
true if the -a switch was
given; false otherwise.
Read‐only.

✖

$-i true or false
Argument of the -i

switch, if given; otherwise
nil.

✖

$-l true or false
true if the -l switch was
given; false otherwise.
Read‐only.

✖

$-p true or false
true if the -p switch was
given; false otherwise.
Read‐only.

✖

$-W Fixnum

Current verbosity level: 0
if the -W0 switch was
given; 2 if the -w, -v, or --
verbose switches were
given; 1 otherwise.
Read‐only.

✖

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 558

Global Variable EnglishEnglish Name Value Meaning Thread-
local

$1–$n String

Text matched by the nth

capturing group in the last
pattern match; nil if the
match failed or there were
fewer than n groups.
Read‐only.

✔

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 559

GLOSSARYGLOSSARY
#[]

Conventionally, indexes the receiver by the “key” supplied as the
argument(s), returning the requested slice or nil/[] if no corresponding data
was found. It is a special case of the message expression syntax because it
sends a selector named :[] to the receiver, passing in the contents of […] as
arguments, i.e. receiver[argument0 ,…,argumentn] is equivalent to
receiver.[](argument0 ,…,argumentn)

The simplest example is Array#[], which returns the element stored at the
given Integer index. Similarly, Hash#[] returns the value corresponding to
the given key object. In this role, :[] acts as an interface to a pre-computed
lookup table.

However, this abstraction conveniently extends to virtual slices, where the
values are computed dynamically, shielding the user from these unnecessary
details: he need not concern himself with how the data are derived, merely
that they satisfy the key. For example, Array#[] also accepts a Range

argument, for which it returns a sub-Array of elements whose indexes are
members of the Range. This is computationally quite a different operation to
the case with Integer arguments, yet the API makes no distinction. A clearer
case is Dir.[] which interprets its arguments as shell globs against the
current working directory, returning an Array of the matching entries. In this
way Dir behaves as if it maintains a Hash-style mapping from glob to files.

As alluded to with Array#[range], it is common for :[] to accept
arguments of wildly different types and try to produce a sensible result. For
example, String#[] accepts either an Integer, a pair of Integers, a Range, a
Regexp, a Regexp and an Integer, or a String.

formats = %w{MP3 CD Cassette 8-Track Record}

def i_buy(format)

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 560

"I buy my music on #{format.downcase}"

end

method(:i_buy)[formats[2]]

#=> "I buy my music on cassette"

method(:i_buy)[formats[-2..-1].join(' or ')]

#=> "I buy my music on 8-track or record"

#[]=
Conventionally, the assignment counterpart to #[]: the first argument(s)

describe the slice, and the final argument its new value. It is expected that
obj[key] = value then obj[key] == value. For this equivalency to hold,
#[]= may need to be more restrictive in the arguments it accepts than its
counterpart because some key forms make unsuitable assignment targets. For
example, Method#[] calls the objectified method with the supplied arguments,
but it is unclear what it would mean to assign to such a slice, so Method#[]=

is not defined.

For example, String#[regexp]= value assigns value to the portion of the
String matched by regexp; Array#[range]= value replaces the elements in
range with value.

tower = 'Tower of Pisa'

tower[/\w+$/] = 'Babel'

tower #=> "Tower of Babel"

tower[-5..-1] = 'London'

tower #=> "Tower of London"

tower = tower.split(//)

tower[0..4] = %w{C i t y}

tower.join #=> "City of London"

!
Right-associative unary operator which, conventionally, performs a

Boolean NOT operation. Definable as a method with a selector of !.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 561

~
Right-associative unary operator which, conventionally, performs a bitwise

complement. Definable as a method with a selector of ~.

+ (unary)
Right-associative unary operator which, conventionally, gives its operand a

positive sign. Definable as a method with a selector of +@.

See also:

• +

• -

**
Right-associative binary operator which, conventionally, performs

exponentiation. Definable as a method with a selector of **.

- (unary)
Right-associative unary operator which, conventionally, gives its operand a

negative sign. Definable as a method with a selector of -@.

*
Left-associative binary operator which, conventionally, multiples the

receiver by a sole numeric argument, returning the result. For example:
Fixnum#*, String#*, and Array#*.

45 * 2 #=> 90

'45' * 2 #=> "4545"

[45] * 2 #=> [45, 45]

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 562

/
Left-associative binary operator which, conventionally, divides its

operands. Definable as a method with a selector of /.

%
Left-associative binary operator which, conventionally, returns the

modulus of numeric operands. Definable as a method with a selector of %.

+ (binary)
Left-associative binary operator which, conventionally, sums or

concatenates the operands, which should be of the same class, returning a
new object. Definable as a method with a selector of +. Whereas << appends
the argument to the receiver, #+ combines the operands into a new object. For
example, Fixnum#+, String#+, Array#+.

Addition in this manner is not necessarily commutative when the
operands are non-numeric. For example, 'a' + 'b' != 'b' + 'a'.

4 + 64 #=> 68

'4' + '64' #=> "464"

[4] + [64] #=> [4, 64]

See also:

• +

-
Left-associative binary operator which, conventionally, performs

subtraction. Definable as a method with a selector of -.

See also:

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 563

• -

<<
Left-associative binary operator which, conventionally, appends the second

operand to the first, then returns the mutated receiver. When the receiver is
an Integer it is shifted left the amount of places specified by the argument.
For example, Array#, String#, IO#, and Enumerator::Yielder#. Definable as a
method with the selector <<.

4 << 64 #=> 73786976294838206464

'4' << 64 #=> "4@"

[4] << 64 #=> [4, 64]

See also:

• >>

>>
Left-associative binary operator which, conventionally, performs a

rightwards bitwise shift. Definable as a method with the selector >>.

See also:

• <<

&
Left-associative binary operator which, conventionally, performs bitwise

AND. Definable as a method with the selector &.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 564

|
Left-associative binary operator which, conventionally, performs bitwise

OR. Definable as a method with the selector |.

^
Left-associative binary operator which, conventionally, performs bitwise

XOR. Definable as a method with the selector ^.

<
Left-associative binary operator which, conventionally, determines

whether the receiver is less than the argument. Normally supplied by the
Comparable module which implements it in terms of <=> . Class# creatively
uses this selector to test whether the receiver is a kind of the argument
because it mirrors the syntax for defining a class with a superclass, i.e. class
name superclass…end. Definable as a method with the selector <.

42 < 43 #=> true

10 < 1 #=> false

'a' < 'aa' #=> true

'z' < 'Z' #=> false

<=
Left-associative binary operator which, conventionally, returns true if its

receiver is less than or equal to its argument; false otherwise. Provided by
the Comparable module, or definable as a method with the selector <=.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 565

>=
Left-associative binary operator which, conventionally, returns true if its

receiver is greater than or equal to its argument; false otherwise. Provided
by the Comparable module, or definable as a method with the selector >=.

>
Left-associative binary operator which, conventionally, determines

whether the receiver is greater than the argument. Provided by the
Comparable module, or definable as a method with the selector >. Class#
provides symmetry to Class# by testing whether the argument is kind of the
receiver.

42 > 43 #=> false

10 > 1 #=> true

'a' > 'aa' #=> false

'z' > 'Z' #=> true

==
Non-associative binary operator which, conventionally, determines

whether the operands are equivalent. Provided by the Comparable module, or
definable as a method with the selector ==.

1 == 1 #=> true

1 == 1.0 #=> true

1 == :one #=> false

===
Non-associative binary operator which, conventionally, performs case

equality. Definable as a method with the selector ===.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 566

!=
Non-associative binary operator which, conventionally, returns true if ==

returns false; false otherwise. Definable as a method with the selector !=.

=~
Non-associative binary operator which, conventially, matches the receiver

with the argument. One of the operands is typically a Regexp. This operator is
commutative, i.e. (a =~ b) == (b =~ a). For example, String#=~, Regexp#=~,
and Symbol#=~. Definable as a method with the selector =~.

"Hieronymus Bosch" =~ /Ron/i #=> 3

"Jheronimus van Aken" =~ /Ron/i #=> 3

/hero/ =~ "Jheronimus van Aken" #=> 1

/heretic/ =~ "Hieronymus Bosch" #=> nil

!~
Non-associative binary operator which, conventionally, returns true if =~

returns nil; false otherwise. Definable as a method with the selector !~.

<=>
Non-associative binary operator which, conventionally, compares the

operands. Colloquially: the spaceship operator. Definable as a method with
the selector <=>.

2 <=> 2 #=> 0

2 <=> 1 #=> 1

2 <=> 3 #=> -1

2 <=> :two #=> nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 567

&&
Left-associative binary operator that performs Boolean AND.

||
Left-associative binary operator that performs Boolean OR.

..
Non-associative binary operator that creates an inclusive Range from its

operands.

See also:

• ...

...
Non-associative binary operator that creates an exclusive Range from its

operands.

See also:

• ..

…?…:…
Right-associative ternary operator that returns its second operand if its

first is true, otherwise, it returns its third.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 568

=
Right-associative binary operator that performs assignment.

operator=
Right-associative binary operator that performs abbreviated assignment,

where operator is one of the following operators:

• **
• *
• /
• %
• + (binary)
• -
• <<
• >>
• &&
• &
• ||
• |
• ^

not
Right-associative, low-precedence, unary operator that performs Boolean

NOT.

and
Left-associative, low-precedence, Boolean operator that performs Boolean

AND.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 569

or
Left-associative, low-precedence, Boolean operator that performs Boolean

OR.

arity
An operator’s arity is the number of operands on which it operates,

including the receiver. The + operator, for example, has an arity of 2.
Consequently, an operator can be classified as follows:

Unary operator
An arity of 1.

Binary operator
An arity of 2.

Ternary operator
An arity of 3.

A few operators are both unary and binary: they can either be used with
one operand or two. +, again, serves to illustrate: in its unary form it changes
the sign of its operand; in its binary form it performs summation.

associativity
10 - 9 - 8 #=> -7

10 - (9 - 8) #=> 9

If one operator expression is followed by another with the same
precedence, the operator’s associativity determines their order of evaluation.
Left‐associative operators are evaluated from left to right; right‐associative
operators are evaluated in the opposite direction. Non‐associative operators
are ambiguous: parentheses must be employed to specify their order of
evaluation.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 570

_by
A selector with a _by suffix typically implies that the method expects a

block, the results of which constrain the computation. For example,
Enumerable#group_by, Enumerable#sort_by, and Enumerable#minmax_by.

(1..10).sort_by {|n| -n}

#=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

(1..10).sort_by {|n| n % 10}

#=> [10, 1, 2, 3, 4, 5, 6, 7, 8, 9]

#call
Conventionally, an instance method that accepts a variable-length

argument list with which it invokes its receiver. The return value is the result
of the invocation. Method and Proc objects both behave in this fashion.

This selector is notable because it instruments the following syntax:
receiver.call(arg0…arg n) is equivalent to receiver.(arg0…arg n). That is,
the selector’s name can be omitted from the message expression.

class Girl

def initialize(name)

@name = name.capitalize

end

def call(*sweet_nothings)

"#@name: #{sweet_nothings.sample}..."

end

end

jessica = Girl.new :jessica

jessica.call('Your eyes are a blue million miles',

'For all eternity')

#=> "Jessica: Your eyes are a blue million miles..."

rose = Girl.new :rose

rose.('I would walk 10, 000 miles',

'Superlatives cannot express')

#=> "Rose: Superlatives cannot express..."

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 571

default external encoding
The default value for the external encoding of new IO streams. See IO

Streams for details.

default internal encoding
The default value for the internal encoding of new IO streams. See IO

Streams for details.

#each
Classes mixing-in the Enumerable module are expected, by default, to

respond to #each by yielding the next element of the sequence.
Conventionally, it returns an Enumerator when the block is omitted.

(-2..2).each #=> #<Enumerator: -2..2:each>

(-2..2).each {|n| print " <#{n}> "}

<-2> <-1> <0> <1> <2>

#each_attribute
Conventionally, a message selector of the form :each_attribute request

their receiver enumerate the collection in terms of attribute, that is yielding
each successive attribute; as opposed to #each which presumably yields a
different sort of attribute. For example, String#each_codepoint interprets the
string as a collection of codepoints, yielding each in turn. String#each_char,
however, interprets the string as a collection of characters, so will yield a
different sequence of objects. An object need only respond to such messages
if it already responds to :each, and can sensibly be enumerated in another
fashion. It is common to provide an alias for a selector of this form named
with the plural of attribute, e.g. String#each_byte is aliased to String#bytes;
IO#each_line is aliased to IO#lines.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 572

coding: utf-8

"Böhm-Bawerk".each_line.to_a

#=> ["Böhm-Bawerk"]

"Böhm-Bawerk".each_char.to_a

#=> ["B", "ö", "h", "m", "-", "B", "a", "w", "e", "r", "k"]

"Böhm-Bawerk".each_byte.to_a

#=> [66, 195, 182, 104, 109, 45, 66, 97, 119, 101, 114, 107]

"Böhm-Bawerk".each_codepoint.to_a

#=> [66, 246, 104, 109, 45, 66, 97, 119, 101, 114, 107]

Element Reference
See: #[]

#empty?
The :empty? predicate is defined by Array, Hash, Set, SortedSet, String,

and Symbol. It returns true if the receiver doesn’t have any content; false
otherwise.

external encoding
The encoding of the data in an IO stream. See IO Streams for details.

internal encoding
The encoding to which data in an IO stream should be automatically

transcoded to. See IO Streams for details.

#length
See: #size

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 573

precedence
A compound expression might itself contain compound expressions, each

of which comprises an operator and its operands. For example, 1 - 2 * 3.
This expression is potentially ambiguous: is the intent to subtract 2 from 1,
then multiply the result by 3, or multiply 2 and 3, then subtract the result
from 1? In evaluating such an expression Ruby must apply precedence rules
so as to determine the order in which the operators should be performed.
Precedence is a relative order defined over the operators such that each
operator has lower, equal, or higher precedence than another. For a given
statement, the higher an operator’s precedence, the earlier it is evaluated. *
has a higher precedence than -, as in mathematics, so the example above
evaluates to −5.

4 * 3 + 1 ** 2 #=> 13

4 * (3 + 1) ** 2 #=> 64

(4 * (3 + 1)) ** 2 #=> 256

The default order of precedence may be overridden by grouping
sub‐expressions that should be performed earlier with parentheses, again
mirroring the rule in mathematics. When parenthetical groups contain other
parenthetical groups, the innermost is given the highest precedence.

#rewind
Enumerator’s respond to this selector by resetting their state to the initial

element. If the object being enumerated responds to :rewind, it is sent the
message instead. IO objects, such as Dir and File, respond in a similar way
by re‐position the stream to the beginning.

#size
Conventially, #size and #length, which are typically aliases of each other,

return an Integer representing the magnitude of the receiver. For example,
Array#size returns the number of elements the receiver contains; File#size
returns the receiver’s size in bytes.

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 574

4.size #=> 4

[:one, :two, :three, :four].size #=> 4

File.open('/tmp/four','w'){ print '1' * 4}

File.new('/tmp/four').size #=> 4

'five'.size #=> 4

Spaceship Operator
See: <=>

#to_
Conventionally, a message selector with a #to_ prefix converts the receiver

into an object of the corresponding core type.

10.to_s #=> "10" # String

10.to_f #=> 10.0 # Float

10.to_r #=> (10/1) # Rational

10.to_c #=> (10+0i) # Complex

10.to_enum #=> #<Enumerator: 10:each> # Enumerator

try_convert
Conventionally, a class method which implicitly converts the argument to

the receiver.

Array.try_convert [:violin] #=> [:violin]

Array.try_convert :violin #=> nil

Read Ruby 1.9 (DRAFT): http://ruby.runpaint.org/

2011-01-28 20:02:10 +0000 575

	Read Ruby 1.9
	Contents
	Language
	API
	Reference

	Language
	Programs
	Lexical Structure
	Comments
	Embedded Documentation
	Whitespace
	Literals
	Identifiers

	Syntactical Structure
	Expressions
	Operators
	Keyword Literals
	true
	false
	nil
	self
	__FILE__ / __LINE__
	__ENCODING__

	Statements
	Statement Terminators & Newlines

	__END__

	Interpretation
	Interpreter
	Source Files
	Shebang
	Source Encoding
	Warnings
	Loading Features
	require
	require_relative
	load

	IRB
	Evaluating Strings

	Tracing

	Variables
	Constants
	References
	Resolution Algorithm

	Scope
	Missing Constants
	Reflection

	Local Variables
	Scope
	Reflection

	Instance Variables
	Scope
	Reflection

	Class Variables
	Scope
	Reflection

	Global Variables
	Scope
	Reflection
	Tracing

	defined?
	Assignment
	Lvalues
	Variables
	Constants
	Attributes
	Element Reference Lvalues

	Rvalues
	Simple Assignment
	Abbreviated Assignment
	Parallel Assignment
	Equal Number of Lvalues to Rvalues
	Splat Operator
	Splatting an Lvalue
	Empty Splat

	Splatting an Rvalue

	One Lvalue, Many Rvalues
	Many Lvalues, One Rvalue
	Unequal Number of Lvalues to Rvalues
	Sub‐assignment
	Value of a Parallel Assignment Expression

	Messages
	Message Expression Syntax
	Arguments
	Block Literals
	Parentheses

	Chaining
	Dynamic Sending with Object#send

	Operators
	Conventions
	Tone
	Plurality
	Responding to Messages

	Objects
	Instantiation
	Constructors
	.new
	Allocation
	Initialization

	Identity
	Class
	Methods
	Relations
	Order
	Equivalence

	State
	Instance Variables
	Attributes
	Mutability

	References & Garbage Collection
	Listing and Counting
	BasicObject
	Duplication
	Cloning
	Marshaling
	Taint
	Safe Levels
	Level 1
	Level 2
	Level 3
	Level 4
	Trust

	Context
	Conversion
	Implicit Conversion
	try_convert
	Guidelines

	Explicit Conversion
	Summary
	Converting to “Boolean”

	Classes
	Names
	Inheritance
	Superclass
	Ancestors
	Class#inherited Hook

	Creation
	class Keyword
	Reopening Classes

	Class.new
	Anonymous Classes

	Structs
	Nesting

	Context
	Singleton Classes
	State
	Class Instance Variables

	Instances
	Methods
	method_defined? Predicate

	Missing Classes
	Enumeration
	Type

	Modules
	Creation
	module Keyword
	Reopening Modules

	Module.new

	Mixins
	Mixing a Module into a Class
	Mixing a Module into a Module
	Inclusion
	included Callback
	Class#include?
	Class#included_modules

	Extension
	Extending self

	Namespacing
	Nesting

	Module Functions
	Context
	Module Eval
	Module Exec

	Methods
	Instance Methods
	Global Methods
	Singleton Methods
	Class Methods
	Per-Object Behaviour

	Return Values
	super
	Names
	Operator Methods

	Defining
	method_added Callback
	Dynamic Method Definition

	Arguments
	Required Arguments
	Optional Arguments and Default Values
	Variable-Length Argument Lists
	Named Arguments
	Block Arguments
	Pass By Reference
	Arity
	Classification by Arity

	Undefining
	method_undefined Callback

	Removing
	method_removed Callback

	Visibility
	Advisory Privacy

	Aliases
	Lookup Algorithm
	Missing Methods
	Kernel#respond_to_missing?

	Method Objects
	Arity
	Calling
	Converting to a Proc.
	Equality
	Source Location
	Parameters

	UnboundMethod Objects

	Closures
	Proc Literals
	Semantics
	#lambda? Predicate
	yield Semantics
	Invocation Semantics
	Control Flow Statements

	Creation
	Proc.new
	proc Keyword
	& Parameter
	lambda keyword
	Lambda Literal

	Calling
	Parameters
	Block-Local Variables

	Binding
	Kernel.binding

	Methods

	Flow
	Conditionals
	Boolean Logic
	AND Operator
	OR Operator
	NOT Operator
	Flip Flops

	Branching
	if Statement
	Postfix Form
	else Clause
	elsif Clause

	unless Statement
	Postfix Form

	Ternary Operator
	case Statement
	when Clause
	else Clause
	Evaluation

	Looping
	Count-Controlled Loops
	Integer#times
	Integer#upto
	Integer#downto

	Condition-Controlled Loops
	while Loops
	Postfix Form

	until Loops
	Postfix Form

	Infinite Loops
	Control Flow Statements
	break Statement
	next Statement
	redo Statement
	throw/catch Statements
	yield Statement
	Arguments

	Iterators
	Internal
	for
	Custom Internal Iterators

	Begin / Exit Handlers
	BEGIN Block
	END Block
	Kernel.at_exit

	Exceptions
	Exception Objects
	Message
	Backtrace

	raise
	Propagation
	Handling
	begin Statements
	rescue
	Postfix Form
	$!
	else Clause
	ensure Clause

	Class Hierarchy

	Concurrency
	Threads
	Initialisation
	Termination
	Status
	Variables
	Joining
	Exceptions
	Scheduling
	Groups
	Synchronisation

	Fibers

	API
	Numerics
	Integers
	Immediates
	Bases
	Bit Twiddling

	Floats
	Constants
	Precision & Accuracy

	Rationals
	Complex
	Conjugation
	Arg Function
	Absolute Value
	Polar Form
	Rectangular Form

	Basic Arithmetic
	Conversion & Coercion
	Comparison & Equality
	Rounding
	Predicates
	Moduluar Arithmetic
	Exponentiation
	Finiteness
	Pseudo-Random Numbers
	Trigonometry
	Logarithms

	Strings
	Literals
	Single-Quoted Strings
	Alternative Delimiters

	Double-Quoted Strings
	String Interpolation
	Alternative Delimiters

	Here Documents

	String Escapes
	Character Escapes
	Byte Escapes
	Octal Byte Escapes
	Hexadecimal Byte Escapes

	Control Escapes
	Meta Character Escapes
	Unicode Escapes
	Summary

	Characters
	Bytes
	Codepoints
	Iteration
	Size
	Equivalence
	Comparison
	Concatenation
	Repetition
	Substrings
	Searching & Replacing
	Splitting, Partitioning, & Scanning
	Letter Case
	Whitespace
	Converting to Numeric
	Checksums
	Sets of Characters & Transliteration
	Debugging
	Encoding
	Forcing an Association
	Valid Encodings
	ASCII Only

	Format Strings
	Textual Conversions
	Numbers
	Converting Between Numerical Bases
	Numerical Notation

	Hash Interpolation
	Field Width & Justification
	Precision
	Relative & Absolute Arguments

	Unpacking
	Symbols
	Encoding

	Encoding
	Encoding Class
	Source Encoding
	IO Streams
	ASCII-8BIT
	Compatibility
	Transcoding
	Encoding::Converter
	Conversion Path
	Piecemeal Conversion
	Primitive Conversion

	Conversion Options
	Return Values of #primitive_convert
	Error Context
	Recovery from an Invalid Byte Sequence
	Recovery from an Undefined Conversion Error

	Regexps
	Literals
	Options
	Matching
	Metacharacters
	Escapes
	Grouping
	Capturing
	Quantifiers
	Character Classes
	Alternation
	MatchData
	Anchoring
	Zero-Width Assertions
	Readability
	Encoding
	Fixed Encoding

	Character Properties
	General Categories
	Simple Properties
	Derived Properties
	Script

	Enumerables
	Querying
	Filtering
	Transforming
	Iteration
	Sorting
	Minimums & Maximums
	Enumerator
	Instantiation
	External Iterators

	Classes with Multiple Iteration Strategies

	Arrays
	Literals
	Alternative Delimiters

	Array.new
	Lookup
	Insertion
	Replacement
	Concatenation
	Deletion
	Arrays of Arrays
	Permutations & Combinations
	Iteration
	Set Operations
	Ordering

	Hashes
	Literals
	Look-up
	Default Value
	Insertion
	Deletion
	Iteration
	Keys
	Values
	Transformations
	Merging
	Size
	Sorting
	Equality
	Coercion
	Identity

	Ranges
	Instantiation
	Start-points & End-points
	Membership Testing
	Iteration
	Equality

	Files & Directories
	Files
	Paths
	Reading
	Opening
	Existence
	Deletion
	Renaming
	Size
	Comparison
	File::Stat
	Types
	Permissions
	Links
	Locks
	Filename Matching
	Kernel.test

	Directories
	Working Directory
	Home Directory
	Instantiation
	Entries
	Creation
	Existence
	Deletion
	Globbing
	Position & Seeking

	Input & Output
	Standard Input, Output, & Error
	Writing
	Reading
	Access Mode
	Binary & Text Mode
	Opening
	Encoding String
	Initializing
	Mode String
	Options Hash

	Open Flags
	Buffering
	Closing
	Positions & Seeking
	Pipes
	Asynchronous & Multiplexed
	Manipulating File Descriptors
	ARGV
	ARGF

	Processes
	Executing & Forking
	Backticks
	Kernel.exec
	Kernel.system
	Kernel.spawn
	Kernel.fork
	IO.popen
	Options Hash

	Terminating
	Environment
	Status
	Waiting
	Process::Status

	Daemons
	Scheduling Priorities
	Resource Limits
	IDs
	Process::GID
	Process::UID
	Process::Sys

	Signalling
	Sending
	Trapping

	Times

	Times
	Instantiation
	Attributes
	Predicates
	Arithmetic
	Formatting
	Coercion
	Zone Conversions

	Reference
	Array
	BasicObject
	Bignum
	Binding
	Class
	Comparable
	Complex
	Dir
	Encoding
	Encoding::Converter
	Enumerable
	Enumerator
	Exception
	FalseClass
	Fiber
	File
	File::Stat
	FileTest
	Fixnum
	Float
	GC
	Hash
	Integer
	IO
	Kernel
	Marshal
	MatchData
	Math
	Method
	Module
	Mutex
	NilClass
	Numeric
	Object
	ObjectSpace
	Proc
	Process
	Process::GID
	Process::Status
	Process::Sys
	Process::UID
	Range
	Rational
	Regexp
	Signal
	String
	Struct
	Struct::Tms
	Symbol
	Bibliography
	Books
	Aho86
	Beck98
	Black09
	Brown09
	Bruce02
	Budd87
	Fischer92
	Flan08
	Friedman08
	Goldberg76
	Graham96
	James92
	Kernighan78
	Kernighan84
	Klas95
	LispStd
	Liu99
	Loosemore07
	Love07
	Meyer00
	Mitchell04
	Per10
	Raymond99
	Raymond03
	Scott06
	Stevens05
	Thom06
	Turbak08
	Wall00

	Articles
	Buck06
	Fowler08
	Harada09
	Kay98
	Nutter08
	Taivalsaari96
	ruby-core:28281
	Tr15285
	Uax44

	Predefined Global Variables
	Glossary
	#[]
	#[]=
	!
	~
	+ (unary)
	**
	- (unary)
	*
	/
	%
	+ (binary)
	-
	<<
	>>
	&
	|
	^
	<
	<=
	>=
	>
	==
	===
	!=
	=~
	!~
	<=>
	&&
	||
	..
	...
	…?…:…
	=
	operator=
	not
	and
	or
	arity
	associativity
	_by
	#call
	default external encoding
	default internal encoding
	#each
	#each_attribute
	Element Reference
	#empty?
	external encoding
	internal encoding
	#length
	precedence
	#rewind
	#size
	Spaceship Operator
	#to_
	try_convert

