COMPUTING

STUDENT REFERENCE AND EXERCISES
PART II
> S = <

3
%
Y

Minecraft Pi Book

Craig Richardson

June 13, 2013

Thisbook is licensed under the Creative Commons license of Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work
Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Noncommercial — You may not use this work for commercial purposes.

Share Alike — If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.
Other Rights — In no way are any of the following rights affected by the license:

e Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

e The author’s moral rights;

» Rights other persons may have either in the work itself or in how the work is
used, such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license
terms of this work.

More information can be found on the Creative Commons site:
http://creativecommons.org/licenses/

Disclaimer: Any reference or resemblance to the intellectual property of an individual
or organisation is used for educational purposes only.

This bookis not affiliated or endorsed by the Raspberry Pi Foundation, Mojang/Minecraft,
Codecademy or any organisation mentioned in this book.

http://creativecommons.org/licenses/

Confents

1 Introduction
11 UsingthisBook.
1.2 StandardsUsedinthisBook

2 Getting Started
2.1 ProgrammingwithPython.
211 TheMinecraftPiAPI
2.1.2 Writingand RunningCode

3 Python Syntax
3.1 MinecraftExercises
3.1.1 TeleportthePlayer
3.1.2 Teleportthe Player Precisely
3.1.3 TeleportationTour
3.1.4 StopSmashingThings
3.2 VariablesandDataTypes.
3.21 Integers
322 Floats e
323 Booleans.
3.2.4 Changing ValuesofVariables
3.3 Whitespaceand Statements
3.3.1 StatementsandLineBreaks................
3.3.2 Indentation..........................
34 Comments. e
3.4.1 SingleLineComments
3.4.2 Multi-lineComments

4 Maths Operations
4.1 MinecraftExercises,
411 StackingBlocks,
412 Superjump i e

ii

CONTENTS

413 SetBlockBelowPlayer 33
414 SpeedBuilding 34
415 Proportions 36

4.2 Operators, Expressions and Statements. 37
421 Addition 38
422 Subtraction, 39
423 Multiplication 39
424 Division 40
425 Exponentials 41
426 Modulo. 42

43 OperatorOrdert 43
4.4 Interchanging VariablesandValues 43
45 ShorthandOperators 44
Strings and Console Output 47
5.1 MinecraftExercises, 47
5.1.1 HelloMinecraftWorld 48
51.2 InputtingYourMessage 49

513 UserName 50
514 MadlLibs. 51
515 CreateaBlockwithInput 52
516 SprintRecord. 53

52 Strings 54
521 Substrings 54

5.3 String Functionsand Methods 56
531 len() e 57
532 dower(). e 57
533 upper() e 58
534 str(). e 58

54 Print 59
5.4.1 Printing String Variables 60
54.2 JoiningStrings 61
5.4.3 Concatenating Integers, Floats and Booleans 62
5.4.4 PlaceholdersinStrings 62
545 raw_input() o o 63
546 input() e 64

55 DateandTime, 65
55.1 Getting the Current DateandTime 66
Comparators and Control Flow 67
6.1 MinecraftExercises 67

CONTENTS iii

6.1.1 Swimming 68
6.1.2 Doyouwant to stop smashing things? 69
6.1.3 Bringusashrubbery 72
6.1.4 TakeaShower 74
6.15 SecretPassage 75

6.2 Comparators i v ittt 76
6.21 EqualTo, 77
6.22 NotEqualTo 78
6.23 LessThan 79
6.24 LessThanorEqualTo.................... 80
6.25 GreaterThan 81
6.2.6 GreaterThanorEqualTo.................. 83

6.3 Boolean Operators 84
631 and 84
6.3.2 OF . . . e e 86
633 not e 87
6.3.4 Boolean OperatorOrder 88

6.4 If ElseandElif 88
6.4.1 ifStatements. 89
6.42 else 90
6.43 elif, 92
6.4.4 NestedIfstatements 95
6.4.5 CheckingForletters 96

7 Functions 99
7.1 Minecraft Exercises 100
711 AForest 100
712 ArmingTNT. 101
713 WoolColour, 103
714 Turtle e 104
715 ImportBlockModule 106

7.2 Functionsyntax 0., 106
7.21 Callingafunction 108
7.22 Return e 109
7.2.3 Multiple Arguments 110

7.3 Modules e e 111
731 Import e 111
732 from 112
733 ImportAll* 113

7.4 Built-in Functionsand Methods 114

741 max()o e e e 114

iv CONTENTS
742 min() e e e 115
743 abs() 115
744 type() oo e 116

8 Lists and Dictionaries 119

8.1 MinecraftExercises 119
8.1.1 GlitchingSign 119
8.1.2 BlockbyNumbers 121
813 TeamCamera.o 122
8.1.4 DictionaryofWool 123
8.1.5 HackingaFriend'sGame 124

82 Lists. e 126
8.2.1 Definingalist 126
8.2.2 Accessingalistitem 127
8.23 Changingalistitem. 128

8.3 List Capabilitiesand Functions 128
8.3.1 Addinganitem 129
83.2 ListLength 130
83.3 ListSlicing 130
834 Searching 132
8.3.5 Imsertinganltem 132
8.3.6 Removinganltem...................... 133
8.3.7 Loopingthroughalist 134
8.3.8 Sortingalist 135
8.3.9 Adding TogetherItemsinalist. 136

8.4 Dictionaries 137
8.4.1 DefiningaDictionary. 137
8.4.2 AccessingItems in Dictionaries 138
8.4.3 Changing/Adding an Item with a Dictionary 138
8.4.4 Deleting Items in Dictionaries 139

9 Functions and Lists 141

9.1 MinecraftExercises, 141
9.11 PixelArt 141
9.1.2 ShadowCastle 143

9.2 UsingFunctionswithLists 144
9.21 ListsasArguments 144
9.2.2 LoopsandlListsinFunctions 145
9.2.3 Modifying Each ListItem 145
9.2.4 Functions to Modify EachIteminalist. 147
9.25 MoreOnrange()« .o v vt 147

CONTENTS

9.2.6 ConvertingalistintoaString
9.2.7 Splittinga Stringintoalist
9.3 UsingMultipleLists
9.3.1 Multi-dimensional Lists
9.3.2 JoiningTwolists.
9.3.3 Using an Undefined Number of Lists

10 Loops
10.1 MinecraftExercises
10.11 MidasTouch
10.1.2 TreeFighter.
10.1.3 Chatwithaloop
1014 Pyramid
10.15 HotandCold
10.1.6 AdaptExercises
10.2 WhileLoop i e e
10.2.1 Boolean Operators and WhileLoops
10.2.2 Avoiding InfiniteLoops
1023 Break.
10.24 while/else
103 FOorLoops o v v i i e e e e e
10.3.1 StringsasLists
10.3.2 Looping Over a Dictionary
10.3.3 Using Indexes with ForLoops
10.3.4 Zipping TwolLists
10.3.5 For/EIseLoops o v v v v i e e
10.3.6 Breakinga For/Elseloop.

11 Advanced Topics in Python
11.1 Minecraft Exercises
11.2 Iterating Over Data Structures
1122 items()
1122 Tuples o e e e
1123 keys() . . . v o v e e e
11.24 values() e
11.3 ListComprehension
11.3.1 List ComprehensionSyntax
11.3.2 List Comprehension With Operators
114 ListSlicing o e
1141 Stride e
11.4.2 Omitting Index Arguments

vi CONTENTS

11.4.3 Reversingalist 180

115 Lambdas e 181
1151 LambdaSyntax. 181

1152 filter() o e 182

12 Binary and Bitwise Operators 185
13 Classes 187
13.1 Minecraft Exercises, 188
13.2 BasicClassConcepts. o v i v vt i 188
133 CreatingaClass, 189
1331 _dnit_ (). ..o 191

13.3.2 Argumentswith __init_ () 191

13.4 CreatinganObject 192
13.4.1 Accessing Attributes, 193

13.4.2 Class SCOPE . . . v v v v i e e e e 193

13.4.3 CreatingMethods 194

13.4.4 MultipleObjects 195

135 Inheritance 196
13.5.1 InheritingaClass 196

13.5.2 Overriding Methods and Attributes 197

13.5.3 Referencing Superclass Methods in a Subclass 197

14 File Input and Output 199
14.1 Minecraft Exercises, 199
14.2 IntroductiontoFileI/O 199
14.2.1 OpeningaFile 200

14.2.2 Writing and ClosingaPFile 201

14.2.3 ReadingaPFile 202

14.2.4 ReadingalineofaFile. 203
143 TheBuffer e 204
14.3.1 Automatically ClosingaFile. 204

14.3.2 Closed Attribute 205

15 Error Handling 207
Appendices 209

A Checklist of Topics Covered 211

Chapter 1
Intvoduction

Technology is essential for our everyday lives. Understanding technology
is not only necessary for a successful career, but it is also necessary for
understanding the world welive in. Programming underlies all computer
technologies and learning to program is a very powerful skill.

Put simply, by creating programs we can communicate instructions to a
computer. It is creative. With programming you can create nearly any-
thing you can think of. To create a program we use a programming lan-
guage.

This book provides exercises and documentation in the Python program-
ming language. All of the exercises use Minecraft Pi on the Raspberry Pi
to provide concrete and fun ways to develop programming skills. Along-
side this book it is recommended that students complete the Codecademy
Python track. Codecademy is an excellent resource for supporting stu-
dents as they learn programming with Python. Exercises follow on from
Codecademy so that students can further develop their problem solving
skills and apply their knowledge in an environment that is fun and chal-
lenging.

When learning to program, developing problem solving skills is just as
important as remembering a programming language.

1.1 Using this Book

Thisbook develops programming skills through exercises using Minecraft
and Python on the Raspberry Pi. It assumes you are using this resource

1

2 CHAPTER 1. INTRODUCTION

alongside the Codecademy Python track and provides reference materi-
als that supplement this.

Every exercise in this book is challenging and has a number of suggested
extensions. You apply your knowledge of Python to create some really
useful programs with Minecraft Pi. Along the way you'll develop problem
solving skills that are essential for programming.

Trying out your own ideas is highly encouraged. Use the concepts you've
learned to work out how to make your ideas a reality. If you want to do
something, but can’t work out how to do it yet, try finding it out for your-
self by skipping ahead in the book or try searching for help online. Find-
ing things out for yourself'is a really important skill.

The reference parts of chapters provide supplementary material based
on the Codecademy Python track. These materials are meant to be used
when you need extra support to understand a concept or when you're de-
veloping a program and need a reference for a certain piece of code. If
you're sitting exams you can also use the book to revise concepts and def-
initions.

Codecademy is an excellent, free, online site forlearning to program. You
work through programming exercises and learn at the same time. The
content of thisbook matches the content of the Codecademy Python track.
Itisrecommended that you work through each Codecademy lesson before
attempting the corresponding exercises in this book. However, if you're
feeling really adventurous and want a challenge, don’t use Codecademy
and try using the reference materials in this book or elsewhere as a start-
ing point for learning how to do things.

1.2 Standards Used in this Book

The following standards are used in this book:

Example code looks like this:

1 items = 6
2 # add more items
3 items = jitems + 5

When lines of code are too long to fit the page, the — indicates the code
has been pushed onto a new line in order to fit. When copying code with

1.2. STANDARDS USED IN THIS BOOK 3

this symbol ignore the line break and write code as a single line.

Code Syntax Definitions

syntax type
The syntax definition box explains a key piece of code in Python. It also
includes a definition of the code in its simplest form and an example.

Expression:
1 12

Statement:

ALERT: This is an alert. They usually contain important
information, tips and warnings.

CHAPTER 1. INTRODUCTION

Chapter 2
Getting Stewded

ALERT: This guide assumes you know how to install the
Raspbian operating system on your Raspberry Pi, you can
login, open a desktop environment (using startx) and can
use basic terminal commands. If you do not know how to
do any of these things there are plenty of excellent guides
online.

This first thing you'll need to do is install Minecraft Pi Edition on your
Raspberry Pi. Instructions for this can be found here:
http://pi.minecraft.net/

Now you need to open a terminal and move to the mcpi directory using
cd mcpi. Then to run Minecraft Pi use the following command in the
terminal . /minecraft-pi.

Onceyou've created a new game in Minecraft Pi, familiarise yourself with
the controls:

w Move the player forward

a Move the player left

s Move the player backwards

d Move the player right

mouse Change the player direction/camera angle

tab Release the mouse

http://pi.minecraft.net/

6 CHAPTER 2. GETTING STARTED

right click Place block

left click Smash block

scroll wheel Change selected block

space Jump (fly higher when flying)

double tap space Fly (double tap again to stop flying)
shift Crouch (fly lower when flying)

e Block selection menu

1-8 Change block selection from inventory

esc Open the options menu (also releases mouse)

Play around in Minecraft. Build some things. See how different blocks,
like water, react when you smash their neighbours.

To run Minecraft Pi you must be using a Desktop environment, you can’t
run it from the default command line interface that Raspbian boots to be
default.

2.1 Programming with Python

Python is a programming language that is suitable for beginners. It is
easy to read and write.

There are two versions of Python 2.7 and 3. We will be using 2.7 in this
book. There are some minor differences between the two versions. You
can find out more online or use a feature in Ninja-IDE (mentioned below)
to identify compatibility issues in your code.

2.1.1 The Minecraft Pi API

The Minecraft Pi API allows programmers to interface their code with a
Minecraft Pi game. In other words you can write a program that interacts
with Minecraft Pi, without changing the game itself.

The API is stored within a subdirectory of the mcpi directory. You will
need to copy it to the same directory as your Python code in order to use

2.1. PROGRAMMING WITH PYTHON 7

it. Navigate to the directory you will save your Python code and run the
following terminal command:

cp -r ~/mcpi/api/python/*

Don’t forget the full stop.

2.1.2 Writing and Running Code

There are a number of choices for writing your Python code with your
Raspberry Pi. We’ll go over your options. Whichever program you choose
to write and run your code is down to preference. Try the different op-
tions out and see what you like best.

Whatever option you use to write and run your code, make sure you are
in a Minecraft game world when you run it otherwise you will receive an
error.

Terminal + nano

The terminal is a way to interact with your Raspberry Pi using text. It
uses a command line interface instead of a graphical user interface. You
mightbeused tothe graphical environment of your desktop or file browser.
A terminal can does the same things, but with text instead of mouse clicks.

To create and edit a python file using the terminal we use the nano text
editor. In a terminal move to the directory that you want to create your
Python program and run the following command

nano filename.py

Change the file name to whatever you want.

The Nano text editor uses the cursor to place text. You can’t change the
cursor position with the mouse, you can only change it with the direc-
tion keys. Furthermore you can’t use ctrl-c and ctrl-v to copy and paste
text.

To save your file you use ctrl-o, followed by the name you want to save
your fileas. To exit the nano text editor you use ctrl-x. You will be prompted
to save your file when exiting.

8 CHAPTER 2. GETTING STARTED

The nano text editor can be difficult to use for people who are familiar
with using graphical userinterfaceinstead of acommandlineinterface.

After you have created your file you can run it with the following com-
mand in a terminal:

python filename.py

If you leave out the filename, Python will open as an interactive console,
which allows you to write code on the fly instead of running it from a file.
This is perfect for quickly testing a piece of code:

python

To exit the interactive console use ctrl+z.

IDLE

IDLE is the default integrated development environment of Python. An
integrated development environment gives you a space to write code and
provides other features like debugging and syntax highlighting. There
are two versions of IDLE included with the Raspberry Pi, we will be using
IDLE, not IDLE 3.

IDLE is a very basic IDE. By default it opens into an interactive console,
which is perfect for testing code quickly without the need to save. To cre-
ate anew file thatis not an interactive console, click on file > new window
or press ctrl + n.

Save the file using the file menu. Make sure you save the file in same
directory as the mcpi api directory.

To run a program that you have written in the text-editor window you
click on the run menu then run module or press the F5 key.

You can also your program from the terminal.

Geany

Geany is another IDE thatis more robust than IDLE. It is used for program-
ming in a number of programming languages. There are more features
in Geany than IDLE and I suggest you explore what it can do.

2.1. PROGRAMMING WITH PYTHON 9

Geany does not come pre-installed with Raspbian. To install it connect to
the internet and run the following commands in a terminal:

sudo apt-get update && sudo apt-get upgrade
sudo apt-get install geany

Geany will now be available under the programming section of the task
bar menu.

Once you've saved your program you can run it from Geany’s in-built ter-
minal or from a regular terminal.

Ninja-IDE

Ninja-IDE is relatively less well-known IDE than the other options. It is
an extremely well-made IDE that is specifically designed for Python. As a
result it has a number of very useful features for Python developers, like
compatibility highlighting between Python 2.7 and Python 3.

Atthe moment Ninja-IDE on the Raspberry Pi is a bit more complicated to
install. You can find instructions for it on my website:
http://bit.ly/11BasQ0

There is a run button on the side bar, which will run your program.

You can also open directories, which be managed as a project. There are a
number of useful plug-ins and colour customisations, which you can find
via the menu.

http://bit.ly/11BasQ0

10

CHAPTER 2. GETTING STARTED

Chapter 3
Python Syntax

Syntax is the basic set of rules that programming languages use. These
rules are Python's equivalent of grammar and punctuation.

Python's syntax is necessary for structuring a program so that the com-
puter can understand the instructions the programmer is giving it. With-
out syntax the computer would not understand what it was being told to
do.

Understanding syntaxis necessary as it underpins everything in program-
ming. Without it you can’t communicate with the computer.

This chapter covers the fundamentals of Python’s syntax. At the start of
this chapter there are several programming challenges using Minecraft
Pi. Each challenge states the knowledge you require to complete the task.
Before starting the exercises it is recommended you complete the first
Python tutorial on Codecademy, unless you're feeling adventurous. If
you can't quite remember how to use a certain concept we've included
reference for everything you have covered over at Codecademy.

Aswith every chapterin this book you can the reference part of this chap-
ter in a number of different ways:

 lookatthereferencesto support your understanding when attempt-
ing the exercises

e use it when you need extra help to understand a topic introduced in
Codecademy

» refer to it to as a reminder when you’re writing a program

e letit help you with revision for your exams.

11

12 CHAPTER 3. PYTHON SYNTAX

The book was written to support you when you're learning to program, so
use it for whatever support you need.

3.1 Minecraft Exercises

Let’s practice variables with Minecraft on the Raspberry Pi. Each of these
exercises introduces you to some code that uses variables. These exer-
cises will show you how changes the player’s position in Minecraft and
also stop the player from destroying blocks. For each exercise we’ll tell
you the concepts you'll practice and its difficulty. We'll even explain the
Minecraft bits of code to you as you go.

When using these exercises, identify where the variables are and how
they’re being used. This will help you understand what's going on. If
you're unsure of something refer back to the explanations earlier in the
chapter.

When you think you get it, try the extensions exercises. You can also be
creative and try your own ideas by changing, rearranging and combining
the code.

3.1.1 Teleport the Player

Skills and knowledge we’ll practice in this exercise:

SKILLS & . .
IR e Variables e The Mlnecraft API '
e Integers » Setting the player posi-

e Co-ordinates tion

Let’s get started with your first program using Python and the Minecraft
API. We'll start with something simple, teleporting the player to a new
location with integers.

Your character has a position in the Minecraft world. This is represented
by three numbers that you can see in the top left corner of the game win-
dow. These numbers are known as x, y and z.

3.1. MINECRAFT EXERCISES 13

(0,0,0

Figure 3.1: 3D Co-ordinates

When you move you’'ll notice that these numbers change. These variables
are co-ordinates and represent your position in Minecraft’s 3D world as
shown in figure 3.1.1: y represents height and x and z represent your po-
sition on a flat plane.

Aswell as moving your character with the keyboard, you can change their
position using Python. We'll take you through the code to do that.

Instructions

Create a new file and name it teleport.py. Move the Minecraft API folder
to the same folder, steps to achieve this can be found on page [page num-
ber].

Now open the teleport.py file in a text editor. First of all we need two lines
of code that connect to our program to Minecraft. You will use these two
lines of code in all programs that interact with Minecraft. Add these two
lines at the top of your program:

1 import mcpi.minecraft as minecraft
2 mc = minecraft.Minecraft.create()

We'll now create the three integer variables that represent the x, y and z
position that we want to teleport our character to. For now let’s set our
destination to co-ordinates (10, 11, 12).

4 x =10

14 CHAPTER 3. PYTHON SYNTAX

5y =11
6 z = 12
Finally we need a single line of code that will move the player.

7 mc.player.setTilePos(x,yY,2)

This is a function, you'll learn more about functions later. What you need
to know is that the setTilePos(x,y, z) bit at the end of the line tells
Minecraft to change the player’s position using the three variables that
we just set.

Here’s the full code. We’ve included some comments so that it’s easy to
understand:

#connect to Minecraft
import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()

""r"set x,y and z variables
to represent coordinates”””
X 10
y 11
z 12

=
RPrOwWVWOoKONOOULTPAWNPER

=

#change the player’s position

12 mc.player.setTilePos(X,Y,2)

Now let’s run the program. Do these steps:

1. Open Minecraft Pi (instructions on page [page number])

2. Open up a terminal and change the directory to where you saved
your program (instructions on page [page number]).

3. Type python teleport.py in the terminal and press enter.

Well done! Your program should now run and your character will be tele-
ported to co-ordinates (10,11,12).

Extensions

e Change the values of the x, y and z varaibles

» Use negative values for the x, y and z variables

3.1. MINECRAFT EXERCISES 15

ALERT: Don’t use a value larger than 127 for the x and z
variables or a value larger than [find value] for the y vari-
able. The Minecraft Piworld is only small and numbers big-
ger than this will cause the game to crash [check this]

Skills and knowledge we’ll practice in this exercise:

SKILLS & e Variables » Setting the player posi-
KNOWLEDGE e Floats tion in Minecraft with
» Following instructions Floats
e The Minecraft API

In this exercise we'll not give you the code to copy, instead we'll give you
help to work out what you have to do. Don't worry, it’s pretty similar to
the last exercise, with some tiny differences.

In the last exercise you learned how to set the player’s position using inte-
gers. You may have noticed that the location of the player in the top left
of the window has a decimal place. For more precise movement across
blocks, the location of the player is actually stored as a float in the game.
In this exercise you'll set the player’s position using Floats.

Instructions
Using the previous exercise as a guide follow these steps to teleport the
player using a float value:

1. create a new file named teleportPrecise.py (make sure the Minecraft
API folder is in the same directory)

16 CHAPTER 3. PYTHON SYNTAX

2. Open the teleportPrecise.py file and add the two lines of code that
connect our program to the Minecraft game

3. Define three variables named x, y and z and set their values to floats
4. Add the following line of code mc.player.setPos(x,y, 2)
5. Open a Minecraft world and run the code

Notice there is a difference between mc.player.setPos(x,y,z) and
mc.player.setTilePos(x,y,2),whichweusedinthelastexercise:

» setPos(x,y,z) uses floats to set the player’s position

e setTilePos(x,y,2z) usesintegers to set the player’s position

Extension

» Change the values of x, y and z variables. Use a mixture of positive
and negative floats.

o Seewhat happens when you only change the decimal values slightly.

3.1.3 Teleportation Tour

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE * Reusing Code * Setting the player posi-
e Changing values tion
» Time

In this exercise we’ll practice changing the values of variables. We're go-
ing to reuse some code from the first exercises to teleport the player to
several locations across the map. The player will teleport to one location,
wait a few seconds then teleport to another location.

For this we’ll show you how to make Python wait for a few seconds.

3.1. MINECRAFT EXERCISES 17
Instructions

We’ll be using the code from the first exercise. We've copied it here so
that it’s easier for you. You can use the code from the second exercise if
you want and it’ll work just the same.

#connect to Minecraft
import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()

#set x, y and z variables

X 10

Yy 11

z = 12

#change the player’s position
mc.player.setTilePos(x,Y,2)

SCuwouoNOTULTAWN R

=

Let’s get started. As usual do the following steps. You'll need these steps
for every exercise so we're going to stop telling you to do them from now
on.

1. Create a new file as usual, name it something simple that explains
it’s purpose, in this example use tour.py

2. Make sure the Minecraft API is in the same directory

3. Open the file in a text editor
Now let’s edit the code:

1. Copy the code from teleport.py into tour.py

2. On line 4 add the following code: import time

3. Online 11 add the following code: time.sleep(5)
4. Copy lines 5 to 10 and paste them on line 12 onwards
5

. Change the values of the x, y and z variables on lines 13, 14 and 15
respectively

6. Open a Minecraft world and run the code

You should see the player teleport to the first location, wait five seconds,
then teleport to the second location. The time.sleep(5) line makes
Python wait for five seconds.

18 CHAPTER 3. PYTHON SYNTAX

Extensions

» Wait a different amount of time
» Copy the code to move the player as many times as you want

e Change only one variable: you don’t have to change every variable
every time

3.1.4 Stop Smashing Things

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Booleans e Immutable Blocks
e Problem solving

Here’s a nice simple task to finish things off. In Minecraft it's easy to
smash blocks. This is useful when you want to smash things, but can be
annoying if you've spent ages building something really cool. In this ex-
ercise we'll make it so that the player can’t smash blocks.

Instructions

With setting(world immutable, True) you can make blocks im-
mutable. Immutable is another way of saying things cannot be changed.
Here’s the code you need to do this:

1 import mcpi.minecraft as minecraft
2 mc = minecraft.Minecraft.create()
3

4 mc.setting(world immutable, True)

After you've created this program and run it you'll notice that you can’t
smash blocks.

Your task now is to copy your program into a new file and change it to
allow the player to smash blocks. Hint: there’s a boolean in there.

3.2. VARIABLES AND DATA TYPES 19

Extensions

Try firing an arrow with your bow. What happens? Why do you think this
is?

3.2 Variables and Data Types

A variable stores a piece of data in the computer’s memory.

There are different types of data that a variable can store including num-
bers and strings. These data types can store a wide variety of things, from
names to GPS co-ordinates.

Variables are one of the most important concepts to learn as they are fun-
damental to programming.

Variable

concept

Variables store data in a computer’s memory. This data can be a number
of things such as numbers, letters and symbols. Every variable has a
name and a value. The = symbol is used to set the value of a variable.
When setting a variable, the variable name is always on the left of the =
and the value is always on the right.

Expression:
1 variableName = value
Statement:

1 age = 23
2 height = 162.5
3 canDrive = True

20 CHAPTER 3. PYTHON SYNTAX

When creating a variable you need three things: a variable name, an equals
sign = and a value. In this example "speed” is the variable name and 30 is
the value:

1 speed = 30

The variable name always goes on the left of the equals sign and the value
on the right.

The name of the variable can be whatever you want, although it is better
to name it something that explains its purpose. This makes it easier for
the programmer to understand what is going on in the future.

Variables can hold data of various types. In this chapter we will cover
three of these data types:

e Integers
e Floats

e Booleans

3.2.1 Integers

You have come across integers almost every day of your life. Integers are
whole numbers. For example there might be 12 people in the street, you
are going to meet 5 friends, or you've just bought 2 apples. The number
of these things are all described with integers.

Integers can represent positive and negative numbers. Negative numbers
are number less than 0. They have a - sign before the number.

Using integer in Python is easy. Say that we want 5 cats to take photos of.
In Python we can declare an integer variable to represent this like so:

1 cats = 5

As with all variables, the variable name is written at the start of the line.
We then put an equals sign to tell Python that we’re assigning a value to
a variable. Finally we write the integer value that we want to store in the
variable.

Thevalue side of the integer variable should not be written with any spaces,
letters or symbols. Otherwise Python will get confused and won’t under-

3.2. VARIABLES AND DATA TYPES 21

Integers

datea type

A data type for whole numbers, which are either positive or negative. For
example 10, 32, -6, 194689 and -5 are all integers. 3.14 and 6.025 are not
integers as they have decimal places.

Expression:
1 12

Statement:

stand that you want to create an integer. The - symbol is the one excep-
tion, which you must use if you want to create a negative value.

To say the temperature isnegative 5 degrees would set a variablelike so:

1 temperature = -5

3.2.2 Floats

Not all numbers are whole numbers. Decimal places are used to repre-
sent values that can’t be described with whole numbers. For example you
might have half (0.5) an apple, you hourly pay is £7.34 or the market is 2.6
miles away from your house.

Floating numbers are used instead of integers when more precise data is
required.

Integers only makes sense where things are measured in whole numbers,
likeyou have 2 cats. It wouldn’t make sense to have two and a half cats.

Floats on the other hand represent numbers where it makes sense to have
fractions of numbers. Like the temperature can be -6.3 degrees, 17.4 de-
grees, 18.9 degrees and so on.

Floats can represent whole numbers, but integers cannot represent num-
bers with decimal places.

22 CHAPTER 3. PYTHON SYNTAX

Float

data type

Number values with decimal places, either positive or negative. For
example 3.14, 6.025, 105896.7584926, -8.276 and 1.00 are all floats.

Expression:
1 17.5
Statement:

You canlink this with Maths. Integers are used for discrete data and floats
are used for continuous data.

In Python declaring a float variable is achieved in the same as declaring
all other variable types, except you include a decimal point within the
number value. For example to say we have 1.34 litres of water:

1 litresOfWater = 1.34

To create a negative float you precede the number with a - symbol:

1 temperature = -4.37

3.2.3 Booleans

Booleans are an interesting data type. There are only two possible values
for a boolean, True or False.

Think of a basic light switch, it can be either on or off. This is how a
boolean works, it is either True (on) or False (off).

In Python we can declare a boolean variable like this to represent that the
light is on:

1 light = True

When the light is off we would write this:
1 light = False

3.2. VARIABLES AND DATA TYPES 23

Boolean
data type
Data that is either True or False. Also represented as 1 or 0, On or Off.

Expression:

1 True
2 False

Statement:

True
False

1 canFly
2 isBird

The first letter of True and False values must always be capitalised.

Booleans have a number of uses. They are particularly useful for repre-
senting answers to questions with either True or False. For example, is
someone asleep? Is the dog hungry? Is it raining?

3.2.4 Changing Values of Variables

You can change the value of a variable at any time. You do this in the
same way as declaring a variable, with an equals sign. For example, say
we declared a variable "cats” as 5 and we then wanted to change it to 10
as we bought more cats. It would look like this in Python:

5
10

1 cats
2 cats

The cats variable started out as 5, but then it is changed to 10. When it is
changed the cats variable forgets the old value and remembers the new
one. Pretty simple.

24 CHAPTER 3. PYTHON SYNTAX

ALERT: Python reads programs in line order, starting at
the top and ending at the bottom. In other words it will ex-
ecute code on the first line, then the second line and so on.
Keep this in mind when changing the value of a variable.

3.3 Whitespace and Statements

Python needs to know when to stop reading one instruction in your code
and when to start reading the next one. This is where statements and
white space come in.

Think of sentences in English. If I didn't include any full stops in my sen-
tences you would find it very difficult to understand what I was trying to
tell you. Take following text:

There are no dragons in the pub there is a witch

That is quite difficult to understand. However with the correct punctua-
tion:

There are no dragons. In the pub there is a witch.

See what I mean? By using full stops my sentence becomes easier for you
to understand. It makes it easier to communicate. And that is what syn-
tax in programming is about, clearly communicating instructions to the
computer.

3.3.1 Statements and Line Breaks

Think of a single instruction in your code as a sentence. To end a sentence
in English you use a full-stop. Instead of a full stop, Python uses a newline
to indicate the end of an instruction.

Each instruction on a new line in Python is called a statement. Python
requires a new line between each statement so that it can see where one

3.3. WHITESPACE AND STATEMENTS 25

statement ends and another begins.

For example if we wanted to create a three variables in Python, we would
write it like this:

1 socks = 12
2 human = True
3 age = 25

Notice how each statement is on a new line. This means Python can un-
derstand that you want to create three variables.

Ifyoudon't puteach statement on a newline Python will get confused:

1 socks = 12 human = True age = 25

This code will confuse Python and it will not be able to follow your in-
structions. It doesn’t know where one statement starts and another be-
gins. When Python is confused it won't do what you want it to do. It will
tell you it is confused with an error message.

3.3.2 Indentation

Sometimes it is necessary to indicate that some code belongs in a group.
This is important for reusing code, trying different options and repeat-
ing the same instructions. Python uses indentation and spaces for these
things.

ALERT: Indentation is important in Python. We won’t
cover this topic in depth until later. For the moment it is
important to remember not to use the tab key or put in lots
of spaces at the start of a line as this will confuse Python,
cause errors, or make your program do something unex-
pected.

26 CHAPTER 3. PYTHON SYNTAX
3.4 Comments

Comments are statements in your code that the Python interpreter ig-
nores. Statements that are comments don’t do anything. They are useful
though.

Comments can be used to write notes in your code so that you can read
what pieces of code do in the future.

They can also be used to stop the interpreter reading statements in your
code. This is useful when you’re testing or trying to find bugs and er-
rors.

In Python there are two ways to write comments: on a single line or on
multiple lines.

Single Line Comments

cormument

Comments tell the Python interpreter not to read statements with com-
ments. Single line comments only block a single line from the Python
interpreter. The # symbol indicates the start of a comment.

Expression:
1 #Commented text
Statement:

1 #Sets characteristics of a person
2 name = "Helen” #person’s name

3.4.1 Single Line Comments

Let’s look at different ways to use the single line comment:

1 #We have 5 cats
2 cats = 5

In this code the Python interpreter would ignore the first line, but would
read the second line.

3.4. COMMENTS 27

If you wanted the interpreter to ignore the second statement as well you
would put a hash sign at the start of the line like this:

1 #We have 5 cats
2 #cats = 5

In this way Python would not create the variable cats and not set it to 5.
The comment makes it ignore that statement.

You don’t have to put a comment at the start of a line. You can put it at
the end, as long as there is a complete statement on that line. For exam-
ple:

1 cats = 5 #We have 5 cats

This would work and create a cats variable with a value of 5.

However if we were to move the comment symbol earlier in the line (e.g.
before the 5) we would get an error. The error would occur because the
statement is not complete:

1 cats = #5 We have 5 cats

Python would get confused as it expects you to include a value, but there
isn’t one as it ignores everything after the start of the comment. Avoid
this.

3.4.2 Multi-line Comments

Sometimes you want Python to ignore several lines of code. You might
have along explanation of what the code does or you simply want to block
it from reading large sections of code while you're debugging. Writing
the comment symbol at the start of each line is tedious and time consum-
ing for a large number of lines. We therefore use multi-line comments to
achieve this.

Multi-line comments in Python block out several lines of code, which the
interpreter will ignore.

The same principles apply to multi-line comments as single line comments,
but the syntax is different. Here is an example:

1 """This program takes picture of ducks.
2 No code has been written yet,
3 but we’re hopeful it will work”””

28 CHAPTER 3. PYTHON SYNTAX

Multi Line Comments

comment

Comments tell the Python interpreter not to read statements with com-
ments. Multi line comments block out several lines of code.

Expression:

1 """Commented
2 statements
3 go herellllll

Statement:

1 """We have flve cats
2 Jonesie likes swimming
3 The other four don’t”"”

Multi-line comments in Python start with three double quotation marks
on the first line that you want to block. It finishes with three more double
quotation marks at the end of the last line you want to block out.

Chapter 4
Moadhs Operations

Remember the last chapter when you learned how to declare variables? It
would be pretty useful to know how to do something with them wouldn’t
it?

That’s what maths operations are for: doing things with variables. Specif-
ically integer and float variables.

From maths you will know about addition, subtraction, multiplication
and division. Each of these is known as an operation. Python can do all of
these operations and more.

Operations are extremely useful and understanding them will make pro-
gramming a lot easier.

Don't worry if you're not great at Maths. As long as you understand the
very basics, like addition and subtraction, you'll be fine.

If you'd like some extra support with Maths, Khanacademy.com has some
excellent tutorials that are easy to understand and allow you to progress
at your own pace.

4.1 Minecraft Exercises

Let’s get more comfortable with maths operators. In this set of exercises
you’ll build upon the knowledge of this chapter and the previous chap-
ter. We'll introduce you to creating blocks in Minecraft with Python. This
makes it easy tobuild very complex structures in Minecraft really quickly.
Understanding maths operators compliments this well.

29

30 CHAPTER 4. MATHS OPERATIONS

As with the previous set of exercises we’ll start of with a lot of support in
the first exercise and gradually allow you to work things out on your own
using the knowledge you're developing.

4.1.1 Stacking Blocks

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE « Integers e Creating a block
e Addition

Let meintroduce you to setBlock(). We use this to create a block in Minecraft.
Like setPos() and setTilePos(), setBlock() uses x, y and z values for co-ordinates.
It also uses a fourth value, block type. As you'd expect this value states
which block type you want to place in the game, for example grass, lava

or melon.

Each type of block is represented with an integer. For example grass’
value is 2, air’s value is 0, water’s value is 8 and melon’s value is 103. For
a full list of blocks and their integer values see page [page number].

To use setBlock(), inside the brackets we provide the values of the x, y and
z coordinates that we want to place the block and block type we want the
block to be. Each of these should be seperated by commas. For example
we can place a melon block at co-ordinates (6, 5, 28) with the following
code:

1 import mcpi.minecraft as minecraft
2 mc = minecraft.Minecraft.create()
3

4 mc.setBlock(6, 5, 28, 103)

Simple. Of course you can substitute the values in the brackets with vari-
ables to get the same effect, like so:

1 import mcpi.minecraft as minecraft
2 mc = minecraft.Minecraft.create()
3

4.1. MINECRAFT EXERCISES 31

4 X = 6

5y =5

6 z = 28

7 blockType = 103

8 mc.setBlock(x, y, 2z, blockType)

In this code we set variables to represent the co-ordinates that we'll place
the block at. We also set a variable for the block type. We then provide
these variables to setBlock() and Minecraft works its magic.

When you combine this code with maths operators you can do some pretty
coolthings. Let’s start with something simple, creating a stack of blocks.

Instructions

Here's some simple code to create a stack of two blocks in Minecraft:

1 import mcpi.minecraft as minecraft
2 mc = minecraft.Minecraft.create()
3

4 X = 6

5 yv=25

6 z = 28

7 blockType = 103

8 mc.setBlock(x, y, 2z, blockType)

9

10 y=y +1

11 mc.setBlock(x, y, 2z, blockType)

You should be familiar with this code from above. The difference is on
line 10 where we add 1 to the value of y. We then use the same line of
code on line 11 as we did on line 8 to create a new block. As the value of y
has increased by 1, the second block is higher on the y axis than the first
block.

You task is to add another two blocks on top of the current two. So when
you run your program there should be a stack of 4 blocks.

Extensions

» Change the Block Type

32 CHAPTER 4. MATHS OPERATIONS

» Change the increments between blocks
e Change directions to make a square

e Use your imagination and make something cool appear

4.1.2 Super Jump

AIC R, Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

e Addition operator

During the exercises in the last chapter we learned how to change the
player’s location. In this exercises we'll take this one step further. First
we'll find out where the player is and then move them a set number of
blocks using operators.

To find the player’s location we use getTilePos(). For example we can ac-
cess the player’s location and then set it into our x, y and z variables with
the following code:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()

position = mc.player.getTilePos()
X = position.x
y = position.y
z = position.z

N oubhWwWN R

If we wanted to then teleport the player -5 blocks along the x-axis we'd
add this line:

8 x =x -5
9 mc.player.setTilePos(x, y, 2)

4.1. MINECRAFT EXERCISES 33
Intructions

Your task is to make the player jump ten blocks into the air directly above
their current position. To do this you can use the code above and change
it slightly.

Extensions

e Add a block below the player after they jump into the air

e Add more steps to the code and change it so that it looks like a stack
of blocks is lifting the player into the air

4.1.3 Set Block Below Player

SIS, Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

e Subtraction e Shorthand operators

It’s time for you to work things out for yourself. In this exercise you'll
change the block directly below the player. To achieve this you'll need to
use getTilePos() and setBlock().

Instructions

Using the comments below as a guide, write code to set the block directly
below the player. You've learned how to get the player’s position and set
blocks in the previous exercises. Adapt and combine the two.

Try using shorthands operators for this exercise. You can find more about
shorthand operators on page [pagenumber].

The comments below outline the structure of the code:

34 CHAPTER 4. MATHS OPERATIONS

1 # connect to Minecraft

2 # get the player’s position

3 # define x,y,z variables to store the player’s
— position

4 # define the block type

5 # set y to one block below the player’s postion

6 # set a block

Extensions

¢ Build a structure around the player

4.1.4 Speed Building

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Addition e Operator Order
e Subtraction

We use setBlock() to create a single block. setBlock() has a friend, set-
Blocks() who creates several blocks in the shape of a cuboid.

setBlocks() isuseful for creating alot of blocksin alarge area, where creat-
ing eachblock one atatime would be too time consuming and tedious.

To use setBlocks() we two sets of co-ordinates and the block type. The first
set of co-ordinates states where we want one corner of the cuboid and the
second set states where we want the opposite corner. Here’s a diagram of
where the co-ordinates tell the cuboid to go:

4.1. MINECRAFT EXERCISES 35

(12,10,32)

(6,5,18)

To create the above cuboid we would use the following code:

mc

x1
vyl
zl
X2
y2
z2

RrOwVWOoKONOULTPDWNPR

= =

import mcpi.minecraft as minecraft
minecraft.Minecraft.create()

6
5
22
12
10
32

blockType = 4
mc.setBlocks(x1l, yl, zl, x2, y2, z2, blockType)

The width, height and length of this cuboid are 6, 5 and 10 respectively.

Instructions

Yourtaskistochange the program to create a hollow cuboid at the player’s
position. In other words you need to create a cuboid made of blocks and
then inside that cuboid create another cuboid that is made of air. Kind of
like an empty box.

The above code needs to be adapted to include the following functional-

ity:

e Get the player’s position

36 CHAPTER 4. MATHS OPERATIONS

» Set one corner of the cuboid to the player’s position
» Set the opposite corner relative to the player’s position

e Hollow out the cuboid

ALERT: Build and test this exercise in stages. First get the
cuboid to appear next to the player. Instead of x2, y2 and
z2 use width, height and length variables to set the size of
the cuboid relateive to the player’s position. Finally use ad-
dition and subtraction to calculate the co-ordinates of the
inner cuboid made of air.

Extensions
This code is really useful for making buildings. See if you can add extra
bits to the code to achieve the following:

e Add an extra level

e Change the floor to wood

e Add an entrance with a door

» Create two rooms divided by a wall

4.1.5 Proportions

AIC R, Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

e Multiplication Division

To finish off this set of exercises we'll end with something simple. We'll
reuse code from the last exercise to create a building where its width,

4.2. OPERATORS, EXPRESSIONS AND STATEMENTS 37

height and length are proportional to one another.

Instructions

Copy and adapt the code in the last exercise so that:
» The length of the building is twice its width
» The height of the building is half its width

Extensions

4.2 QOperators, Expressions and Statements

When writing code it is important to know the difference between oper-
ators, expressions and statements.

Operators are bits of code that do something to variables. For example
the addition operator adds two variables.

Expressions are small pieces of code that can be used in a variety of places,
but cannot do anything unless part of a statement. Expressions can con-
tain operators. For example 2 + 2 is an expression.

A statement is a single line or block of code that does something in your
program. It can contain expressions, variables and operators. For exam-
ple people = 2 + 2

When a new Python concept is introduced we will write the syntax as an
expression so that you can understand it's most basic form. We'll also
demonstrate its usage with a statement so that you can see an example of
how it can be used.

38 CHAPTER 4. MATHS OPERATIONS

4.2.1 Addition

I'm pretty sure you can add two numbers. Python can add numbers too.

You write an addition expression in Python like you would in Maths, with
the + operator. Using the addition operator is similar to declaring a vari-
able.

Addition +

opeator
The addition operator adds two values. The + operator is used between
values for addition.

Expression:

1 numberl + number?2
Statement:

1 pizzas = 2 + 1

For example, we have two shoes and we buy another pair:

1 shoes = 2 + 2

Can you guess what the value of the shoes variable is in the statement
example? If you said 4 then you’d be correct. Python works out what is on
the right hand side of the equals sign and then assigns it to the variable.
In this case it’s 4.

ALERT: When using addition — or any other operators
— in your programs remember to write entire statements
and not just an expression.

4.2. OPERATORS, EXPRESSIONS AND STATEMENTS 39

4.2.2 Subtraction

Subtraction is very similar to addition. Instead of a plus sign, you just put
a minus sign.

Subtraction -
operator

Subtracts one value values from another. The - operator is used between
two number values for subtraction.

Expression:
1 numberl - number?2

Statement:

We're out for a run in a field and a cows steal one of our shoes:
1 shoes = 4 -1

The value of shoes in the statement is now 3. As with addition, Python
works out the operation on the right of the equals sign and sets the vari-
able to that value. This is the same with all operations when using them
to set variables.

4.2.3 Multiplication

Multiplication is slightly different than what you’'re used to in Maths. In-
stead of an x to multiply two numbers we use a *.

Other than the symbol, multiplication works exactly the same in maths
and Python. 2 * 2 still equals 4.

The number of cars parked outside our house has just doubled. We can
represent this in Python like this:

1 cars = 4 * 2

The value of cars in this example is 8. The code multiplied 4 by 2.

40 CHAPTER 4. MATHS OPERATIONS

Multiplication *

operaton
The multiplication operator multiplies two values. The * operator is used
between two number values.

Expression:

1 numberl * number?2

Statement:
1 seats = 6 * 9 # answer of 54
4.2.4 Division

Instead of the = symbol, the symbol for division in Pythonisa /.

As with division in Maths, you put the number that you want to divide on
the left of the / and the number you want to divide by on the right.

Division /
opeator
Divides one value by another. The / symbol is used between two number

values. The number that you want to divide on the left of the / and the
number you want to divide by on the right.

Expression:
1 numberl / number?
Statement:

1 hair = 4 / 2 # answer of 2

Half of the cars on the street have driven away. There were 8 cars. Here’s
how we represent this with a division operator in Python:

1 cars = 8 / 2

The value of cars is 4. We divided 8 by 2.

4.2. OPERATORS, EXPRESSIONS AND STATEMENTS 41

4.2.5 Exponentials

Exponentials are numbers that are multiplied by themselves a number of
times.

You might be familiar with writing exponentials as 22 (two to the power
of two) which is a short way of saying, two times by itself two times (2 *
2). Another example is 24 (two to the power of four), which is two times
by itself four times (2*2* 2 * 2).

Exponentials are very important in computing. All computers work using
a system called binary, which is made up of powers of 2. You will learn
more about binary later.

In Python you use ** as the exponential operator. The number you want
multiply goes on the left of the operator (the base) and the number of
times you want to multiply it by itself (the exponential) goes on the right.

Exponential **

operato
Raises one number to the power of another. The ** operator is used for

exponentials. The number you want multiply goes on the left of the
operator (the base) and the number of times you want to multiply it by
itself (the exponential) goes on the right.

Expression:

1 number ** toThePowerOf

Statement:

1 e.g. cube = 2 ** 3

2 # 2 to the power of 3, which equals 8

3
4 square = 4 ** 2
5 # 4 to the power of 2, which equals 16

We need to set out four sets of four rows of four chairs. Thisis4 *4 * 4 or
43, Here's the code to work out how many chairs we have:

1 chairs = 4 ** 3

Our answer should be 64. 4*4 is16. 16 * 4 is 64. So we need 64 chairs.

42 CHAPTER 4. MATHS OPERATIONS

4.2.6 Modulo

The modulo operator gives you the remainder of a division of two inte-
gers. For example 7 divides by 3 two times (2 * 3 = 6) with 1 left over (7 - 6
=1). Therefore the modulo of 7 /3 is 1.

If a number divides perfectly by the other number, the result will be 0.
For example 4 / 2 = 2 remainder 0, therefore the modulo is 0.

When you first learned to divide numbers you may have said things like
6 divided by 4 is eqaul to 1 remainder 2. This is the same concept.

Modulo %

opeator

Calculates the remainder of one number when it is divided by another.
The % symbol is used as the modulo operator in Python. The number you
want to divide goes on the left, and the number you want to divide by
goes on the right.

Expression:

1 numberl % number?2

Statement:
1 barrels = 10 % 2 # result is 0
2 pigeons = 13 % 5 # result is 3

We bought a chocolate bar with 7 pieces and we must share it evenly be-
tween 3 people. Any pieces we can’t share will be given to your cousin.
Here's the code to work out how much your cousin gets:

1 pieces =7 % 3

The values of pieces should be 3. 7 divides by 3 twice with one left over (3
*2=6,7-6=1). Sothe answeris1.

4.3. OPERATOR ORDER 43

4.3 Operator Order

Several maths operators can be used together. For example we could mul-
tiply 5 by 2 and then take away 1, all in the same statement.

1 turtles =5 * 2 - 1 #value of 9

ALERT: When using combining maths operators together
Python will evaluate them from left to right. This order is
important to know otherwise you may have unexpected re-
sults.

The only maths operator that is not evaluated in this order
is the exponential operator. It will always be evaluated be-
fore any other operator.

To change the order of operators we can use brackets (). Any expressions
with operators in brackets will be evaluate before anything else.

For example:

1 eggs = 6 * 3 - 2

This would normally have a value of 16. However, with brackets...
1 eggs =6 * (3 - 2)

...it now has the value 6.

4.4 Interchanging Variables and Values

Wherever you can put a value, you can also put a variable.
For example each house has five cats and there are four houses. You could
work out the total number of cats like this:

1 totalCats =5 * 4

However, what if the number of cats per house changed quite often? You
might use the value 5 many times within you code, making it very repet-
itive and difficult to change it every time it needs updating.

44 CHAPTER 4. MATHS OPERATIONS

There is a simpler way. You can replace one or both of the values with
variables.

1 catsPerHouse = 5
2 totalCats = catsPerHouse * 4

You could also use a variable for the number of houses, like this:

1 catsPerHouse = 5
2 houses = 4
3 totalCats = catsPerHouse * houses

You can even say that one variable is equal to the value of another vari-
able. Like this:

1 cats = 5
2 oldCats = cats

This will make both variables hold the same value, i.e. 5. You will find this
useful when you need to change the value of one variable, but also store
the old value somewhere else. When changing the value of one variable
it will not affect the other:

1 cats = 5

2 oldCats = cats #sets oldCats to 5
3 cats = 6

4 #oldCats is still 5

4.5 Shorthand Operators

Quite often you will want to use an operator on a variable and then store
the result in the same variable. For example we might wanttoadd 5to a
variable:

1 horses = 6
2 horses = horses + 5 #The value of horses is now 11.

As programmers like to achieve things as quickly as possible with little
repetition, there is shortcut to achieve this.

Shorthand operators in Python use a maths operator on a variable and
reassign the result into the same variable.

There are four shorthand operators:

4.5. SHORTHAND OPERATORS 45

Shorthand Operators

operatorn

Shorthand operators use a maths operator on a variable and reassign
the result into the same variable. There are four shorthand maths
operators: addition (+=), subtraction (-=), multiplication (*=) and division
(/=). The variable goes on the left of the statement, the operator in the
middle and the value to operate with on the right. [correct code examples]

Expression:

1 variable += value #addition

2 variable -= value #subtraction

3 variable *= value #multiplication
4 variable /= value #division

Statement:

1 shoes =5

2 shoes += 1 #value of 6
3 shoes 2 #value of 4
4 shoes *= 2 #value of 8
5 shoes /= 2 #value of 4

addition (+=)

subtraction (-=)

multiplication (*=)

e division (/=)
For example, we can rewrite the above example with the addition short-
hand operator:

1 horses = 6
2 horses += 5 #The value of horses will now equal
— 11.

46

CHAPTER 4. MATHS OPERATIONS

Chapter 5
Stungs and Console Oulput

Wehave already seen three types of variables: integers, floats and booleans.
There is also another variable type, strings.

Integers and floats store numerical data and booleans store True and False
conditions. We also need to store letters and symbols. This is where strings
come in.

Strings are a data type to store characters, symbols and numbers. In this
chapter we will show you how to use strings.

Displaying data to the user is an essential part of programming. Until
now you haven’t been able to tell Python to output data to the user. We’'ll
also learn how to output data to the console in this chapter.

5.1 Minecraft Exercises

In this chapter we covered strings and the console. You've learned how
to use the string data type, print things to the console and take input
from the console. All of these things can be combined with the Minecraft
API

During this chapter you were also introduced to functions. If you are ea-
gle eyed enough you might have noticed that you've seen functions be-
fore. [Minecraft Pi API functions that have been introduced] are all exam-
ples of functions. They’'re all reusable blocks of code that make it easier
for you to complete tasks. Pretty cool, huh?

47

48 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

In this set of exercises we'll build on the topics introduced in this chap-
ter and the previous ones. You'll be introduced to printing message to the
Minecraft chat using strings and will practice inputting data on the con-
sole to create things in the Minecraft world.

5.1.1 Hello Minecraft World

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE * Strings e Minecraft Chat
e Output

Minecraft Pi edition has a chat window. At the moment the only way to
use this chat window is via the API. It’s pretty simple to do this. We just
need to use the postToChat() function. The postToChat() function takes
a string as an argument and posts it to the Minecraft chat window. The
following code will post "Hello Minecraft World”:

1 import mcpi.minecraft as minecraft
2 mc = minecraft.Minecraft.create()

3

4 mc.postToChat(”Hello Minecraft World”)

Instructions

You task is to change the message in the chat to anything you want.

If you can connect to another Raspberry Pi with Minecraft try sending
messages via the chat with another person (instructions on connecting
to another game of Minecraft Pi or PE on page [page]).

Not the easiest way to chat is it? We'll improve the program in the next
exercise.

5.1. MINECRAFT EXERCISES 49
Extensions

Try out these extension tasks when you're happy with the chat:
» Print block type below player

e Print the player’s co-ordinates

5.1.2 Inputting Your Message

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Strings e Output
e Input e Minecraft Chat

Let's make using the chat easier. Instead of setting the chat message in
the program we can use the console to input a message into the program.

Instructions
Follow these steps to create a chat program that uses the console for in-
put:

1. Create a variable and set it to the value of:
raw_input(”Enter your message: ")

2. Use the mc.PostToChat() function and use your input variable as an
argument

3. Run your program and you should see a prompt in your terminal
saying "Enter your message: ”

4. Enter your message in the terminal and press enter
5. You should see your message appear in the chat window

Don’t forget the first two lines that connect your program to Minecraft!

50 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

See how much easier it is to chat using input than hard coding a string
value into your program? Good. We're learned something here.

Extensions

» Concatenate some strings and user input together and post it chat

e Calltheraw input functionseveraltimes tocollectdifferent pieces
of information from the user and post it to the chat

5.1.3 User Name

Skills and knowledge we’ll practice in this exercise:

SKILLS & .
KNOWLEDGE e Strings . e Input
e Concatenation e Output
e Upper e Minecraft Chat

When you're playing together with more than two people it can be con-
fusing who is writing a message in Minecraft’s chat. There is an obvious
solution to this, include the user’s name at the start of a message. In this
exercise you'll modify the previous exercise to include a username for all
messages sent to the chat.

Instructions

This one is a bit more challenging. Using the program you wrote in the
last exercise add the following functionality:

1. Take in the user’s name as input before taking in their message

2. When posting the message to chat, capitalise the user’s name put it
before the message

The message posted to chat should be in the following format: "DAVE: I
need diamonds.”

5.1. MINECRAFT EXERCISES 51
Extensions

 What happens if you leave your name blank in the input? Why do
you think this is?

e Change the username to lowercase characters.

5.1.4 Mad Libs

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Strings e Output
e Input e Placeholders

Mad Libs are well known songs and phrases with certain words swapped
out for stupid words. For example Mad Libbing the song Jingle Bells we
could swap out the words bells and sleigh for the words chicken and al-
phabet. Try Googling Mad Libs for some really funny examples. We'll
make our own version of Mad Libs and post the result to Minecraft’s chat.

Instructions

Use the %s placeholder to swap out words in Jingle Bells or another song
and get the user to input random words to replace them. Post the result
to chat.

ALERT: The raw_input () function can be used as many
timesasyouwantinaprogram. Use this toinputthe words
you want to use for your Mad Lib.

52 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

5.1.5 Create a Block with Input

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE Integers Blocks
e Input e Co-ordinates

The input () function allows you to input integers from the console. Us-
ing this function several times we can take in several variables from the
command line, and say, use them as the arguments for creating a block.
Let’s do that.

Instructions

Create a block using console input. You'll need four variables that are set
using four corresponding inputs from the command line. That'’s three
variables for the co-ordinates and one for the block type. You'll need to
use setBlock () to create the block.

Extensions

You can change your code to input co-ordinates for:
e Creating a block
» Creating several blocks
e Teleporting the player
» Hollow cuboid with co-ordinates as input
e Printing the block type at the given co-ordinates

Give them all a try if you can. They’re really useful when you want to
check things during testing your own programs.

5.1. MINECRAFT EXERCISES 53

5.1.6 Sprint Record

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Subtraction e Time
e Concatenation e Co-ordinates

This exercise combines variables and the maths operators, that you learned
in the previous chapter, with posting messages to the chat.

The exercise is meant to be a lot more challenging than the others. Say-
ing that, we've covered everything you need to create the program in this
chapter and the previous chapters.

This program will work out how far the player travels in 10 seconds and
displays the results in chat.

Instructions

Here's a step-by-step guide for creating this program:
1. Connect to Minecraft in the usual way

2. Get the player’s current position and create variables to record the
co-ordinates

3. Wait ten seconds while the player uses the keyboard to run in a di-
rection

4. Get the player’s new position and store the values in new variables

5. Compare the difference between the starting position and ending
position and post the results to the chat

6. The results should be in the following format "The player has moved
x: 10,y: 6 and z: -3”

If you've got the program running, but you're finding it too difficult to
switch between the command line and Minecraft fast enough, try adding
athree second countdown before step 2. Post this countdown to the chat.

54 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

Extensions

e Change the console output so that it displays points for the distance
moved

5.2 Strings

Strings are pretty much the same thing as text. When you want to include
words or sentences in your program, you use strings.

In the string data-type you can store letters, numbers and symbols. All
strings are enclosed in speech marks. For example, this is a string:
1 "Cats, cats everywhere and not a drop to drink.”

This is also a string:
1 'Turn left after 200 yards!’

Each individual letter, number or symbol in a string is called a character.
A string has its name as it is a string of characters.

ALERT: When writing a string you can use either type of
speech marks. Either’ or ”. The two types of speech marks
don’t mix. You must close a string variable with the same
type of quotation marks that you opened it with.

5.2.1 Substrings

The position of each character in a string can be referenced with a num-
ber. This is useful as you can get the letter at a certain point in a string.

5.2. STRINGS 55

String

vaviable type

A variable type that represents text. They include a combination of
characters: i.e. letter, numbers and symbols.

Expression:

1 "Your text in here”
2 'Your text in here’

Statement:

1 name = "Edward”

2 address = "64 Engl Drive, Southumbria, ST6 7HY”

3 paragraph = ”"Edward likes swimming. He would like

— to teach you how to swim.”

For example, when you want to use a person’s initial you would access the
character in the first position of their name and ignore all of the other
characters.

The position of a character in a string is known as the character’s index
position.

The first index in a string, instead of being 1 as you would expect, is 0. The
second position is 1, the third is 2 and so on. For example the positions of
the string "Cats” is:

0|1]2]3
Clalt]|s

Counting from 0 may seem stupid, but there is a reason. Old computers
were really slow and had very small memories. It was faster and more
efficient to start counting indexes from 0. Even though computers are
much faster these days, counting from 0 has stuck around as it would be
too much hassle to change.

Square brackets [] are used to access the character in a string. An integer
is put inside the brackets to tell Python which character index you want.
For example, when we want the initial of someone’s first name:

1 name = "Jim”
2 initial = name[0] #value of "J”

56 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

Substring

(ﬁhwﬁyb

The substring method accesses characters in a string using the index
positions of the character. To use a substring, square brackets [| are
used at the end of a string data-type with an index position as an integer

inside the brackets.

Expression:

1 "String”[index]

Statement:

1 firstLetter = ”"Cats”[0] #vaue of "C”

2 #OR

3 position = 3 #integer with value of 3

4 fourthLetter = ”"Cats”[position] #value of s
5 #OR

6 name = "Barry”

7 initial = name[0] #value of "B”

5.3 String Functions and Methods

Within Python there are reusable bits of code called functions and meth-
ods. As these bits of code are reusable it means the programmer doesn'’t
have to rewrite code for common tasks over again.

The difference between a method and a function is subtle and we'll ex-
plain it later on in another section.

Strings have their own set of functions and methods. In this section we’ll
cover four of them:

e len()
» lower()
» upper()
e str()

5.3. STRING FUNCTIONS AND METHODS 57

5.3.1 len()

Returns the length of a string as an integer. The string is provided as an
argument in the function’s brackets.

Expression:
1 len(”String”)
Statement:

1 lengthOfName = len(”Anny”)

2 #This sets the variable to the value of 4.
3 #OR

4 animal = "Goose”

5 animalLength = len(animal) #5

The len() function returns the length of a string. You use it by putting a
string inside of the brackets.

For example if we wanted to find out how many characters are in some-
one’s name:

1 name = "Humbaba”
2 length = len(name) #value of 7

5.3.2 .lower()

The lower() method makes all of the characters in a string lowercase. In
other words it replaces any capitalletters with the smaller equivalent.

We use it slightly differently to len(). We put lower() at the end of a string
with a full stop in the middle. This is called dot notation.

To change someone’s name from uppercase to lowercase we use the lower()
method like so:

1 name = "VIX"
2 name = name.lower() #value of "vix”

58 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

lower()
method

The .lower() method converts a string into lower case letters.

Expression:

1 "String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country "BRAZIL"
4 country = country.lower() #value of "brazil”

5.3.3 .upper()

Another function exists to turn all characters in a string into uppercase.
In other words it capitalises everything.

The upper() method works like the lower() method. You put it at the end
of a string data-type with a full stop in between. For example:

1 animal = ”"fish”
2 animal = animal.upper() # value of "FISH”
5.3.4 str()

Converting one variable type to another is useful. For example sometimes
itis necessary to change an integer into a string.

For example you have an integer, say 2, that you want to be treated as a
string instead of integer. This is really easy:

1 houseNumber = str(2) # value is ”2”

You can do this with floats and booleans as well.

The str() function really becomes useful when we start using the print op-
erator.

5.4. PRINT 59

The .upper() method converts a string into upper case letters. HERE!!!

Expression:
1 "String”.upper()
Statement:

1 upperCaseName = "Pratap Jefferson”.upper()#value
— of "PRATAP JEFFERSON”

2 #OR

3 country = "Denmark”

4 country = country.upper() #value of "DENMARK”

The str() function turns non-string data types types into strings. It can
be used with integers, floats, booleans and other data types. To convert a
different variable type to a string, you put the value inside the brackets
of the function.

Expression:
1 str(value)

Statement:

1 partGuests = str(12) #value of 712"
2 pi = str(3.14) #value of ”3.14"
3 isFish = str(True)#value of "True”

Until now we have only made variables and changed them. Displaying
values to the user is important for user interaction. This is known as out-
put and is where the print operator comes in.

60 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

print

opeator

The print statement takes a string and displays it on the console.
Expression:

1 print value

Statement:

1 sentence = "These are not the droids you're
— looking for”
2 print sentence

The print operator outputs data to the console.

If you've been using IDLE, the console is the same thing as the interactive
shell. Print will display data on a new line in the interactive shell. For
those of you who have been using a console or Geany’s built-in console,
print will display data on a new line in these windows. You can find more
information on the console on page [page number]

To use the print statement you start the line with the print operator fol-
lowed by a string:

1 print ”String”
So if we wanted to print the word "chocolate” to the console, our code
would look like this:

1 print ”chocolate”

5.4.1 Printing String Variables

Asvariables can take the place of values, you use print to output variables
to the console. For example we have a name string and we want to display
it on the console:

1 name = ”"Charles Christopher”
2 print name

5.4. PRINT 61

This outputs Charles Christopher tothe console. Pretty simple.

You can use the print operator on integer, float and boolean data-types as
well.

5.4.2 Joining Strings

Quite often we need to print a combination of a pre-defined string and a
variable. We may also need join two or more strings. Concatenation in
Python makes it easy to do this.

Concatenation +

operatorn

When used with strings, the + operator combines the strings into a single
string.

Expression:

1 "string” + "string”

Statement:

1 name = "Gilgamesh”
2 print ”"Your name is ” + name

Remember the addition operator from earlier? Yes, the +. Itis used toadd
numbers together, but can also be used to concatenate strings.

The + operator is used to concatenate strings together. For example:

1 firstName = ”"Charles”
2 lastName = "Christopher”
3 print firstName + lastName

The output will be CharlesChristoper. There is no space character in
between the values when we print them. We can add this to the third like
like so:

1 print firstName + ” ” + lastName

What if we want a string that won't change at the start of the output?
Simple, we just write the value in like we would any other string:

62 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

1 print "His name is ” + firstName + ” ” + lastName

This will output “His name is Charles Christoper”.

5.4.3 ConcatenatingIntegers, Floats and Booleans

Concatenating and printing variable types other than strings on the con-
sole is slightly different than strings.

To concatenate two pieces of data they must be string data-types. As the
+ operator is used for addition and concatenation, the operator will try
to add number values, instead of concatenate them. Integers, floats and
booleans are not strings so we must change them to strings in order to use
concatenate. Can you think how we do this?

We use the str() function to convert these variables into strings (we intro-
duced str() in section [sectionNumber]). For example, if we wanted the
output "Age: 23":

1 age = 23

2 print "Age: " + str(age)

How about joining two numbers instead of adding them? Pretty simple,
just remember to include the str() method.

1 print str(19) + str(84) #outputs 1984

You can do the same with floats and booleans.

Concatenation can be used as many times as you want within a statement.
For example:

1 print "The year is ” + str(19) + str(84)

5.4.4 Placeholders in Strings

There is another approach for using variables with a string. This method
substitutes placeholders in a string with variables. It uses the % opera-
tor.

In a string you place "%s” in locations that you want to substitute with a
variable. You then follow the string with a % and brackets containing the

5.4. PRINT 63

Placeholder %s

opeator

The %s operator is used as a placeholder to substitute variables into a
string. The string containing the %s placeholder must be followed by a
% operator and a list of values in brackets. You need to have the same
number of values in the brackets as the number of "%s"” in the string. All
values in the brackets should be separated by a comma.

Expression:
1 "string %s” % (values)
Statement:

1 noun = "cheeses”

2 verb = "paying”

3 print "These are not the %s you’'re %s for.” %
— (noun, verb)

values that will replace "%s” in the string. Each value should be seperated
with a comma. For example:

1 name = "Townsen”

2 brothers = "three”

3 print "I am %s. I have %s brothers.” % (name,
— brothers)

This outputs "I am Townsen. I have three brothers.”

54.5 raw_input()

Quite often you will want to provide your program with input. This in-
teraction between the program and the user is a very important as it can
change the data that the program uses.

Up until now all of your variables have been set in the program without
any interaction from the user when the program is running. It would
be nice to be able to change these variables while the program is run-
ning.

64 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

raw_input()
Lﬁbkﬂbﬂ

A function that allows the user to input strings into the program via the
command line.

Expression:
1 raw_input(”string”)
Statement:

1 hats = raw_input(”How many hats do you have?”)
2 print hats

One way of interacting with your program is with the raw_input() func-
tion. It prints a string to the console and then waits for the user to type a
response. The value that the user inputs is then returned to the program.
For example:

1 name = raw_input(”What is your name?”)
2 print name

In this example the string "What is your name?” is printed to the console.
The user then enters a response, and this response is used as the name
variable. The variable name is then printed to the console.

54.6 input()

Like raw_input(), the input() function allows the user to input data from
the command line.

The difference between raw_input() and input() is that raw_input() will
always convert the user’s value into a string, whereas input() allows other
datatypes.

You use the input() function to inputintegers, floats and booleans. Whereas
you use the raw_input function to input strings. The input() function can
input strings, but they must be enclosed in speech marks.

1 bill = 120

5.5. DATE AND TIME 65

A function that allows the user to input data, including integers, floats
and booleans, into the program via the command line.

Expression:
1 input(”string”)
Statement:

1 hats = input(”How many hats do you have?”)
2 print hats

2 people = input(”How many people are sharing the
— bill?")
3 print "The cost each is ” + str(bill / people)

5.5 Date and Time

Python has functions that allow you to use the date and time as variables.
Let’s briefly cover the basics of date and time.

Unlike the string functions we were introduced to earlier, the date and
time functions aren’t included in every Python program. They are stored
in a separate location called a module. A module is a collection of func-
tions grouped around a similar theme, in this case date and time. In order
to use this module we must import them.

To use the date and time in your code you need to write this statement
first:

1 from datetime import datetime

[finish this bit]

66 CHAPTER 5. STRINGS AND CONSOLE OUTPUT

5.5.1 Getting the Current Date and Time

[This hasn’t been written yet]
datetime.now()

For example: print datetime.now()
Extracting Information

.month .day .year .hour

Chapter 6
Companators and Contwol Flow

Making decisions is very important for everyday life. If it’s cold outside
you wouldn’t wear shorts, you'd wear a coat. If you're hungry you'd eat
something. We make decisions based on conditions. Programs can also
make decisions using conditions.

In Python control flow is used to decide whether a piece of code will ex-
ecute or not. This allows us to change the outcome of the program de-
pending on conditions. For example you might want to display a warn-
ing message if the user inputs an incorrect data type or create an inven-
tory system that tells the user to restock an item if there are less than 5 in
stock.

In this chapter we will first cover comparators and binary operators, which
are necessary for determining whether a condition is True or False. We
will then coverif statements, which execute ablock of code based on whether
a condition is True or False.

6.1 Minecraft Exercises

Comparators and if statements are really useful with Minecraft.

67

68 CHAPTER 6. COMPARATORS AND CONTROL FLOW

6.1.1 Swimming

SANS Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

e Equal-to comparator

We're going to make a program that states whether the player is in wa-
ter. We'll use comparators to achieve this. The results will be posted to
Minecraft chat.

To find out the block type at certain co-ordinates we use the getBlock()
function. This function takes the co-ordinates as three arguments and
returns the block type as an integer. Take the following code sample:

1 blockType = mc.getBlock(10, 18, 13)

If theblock type at co-ordinates (10,18,13) is a melon (value 109), the block-
Type variable will now hold a value of 109.

Instructions

To create this program follow these steps:
1. Create a variable that stores the player’s position.

2. Create a variable that uses the getBlock() function to store the block
type at the player’s position. Name this variable blockType.

3. Using the equal to comparator (==) compare the blockType variable
to the value 9, which is the value of water. Store this comparison in
a variable called swimming.

4. Print the value of the swimming variable to chat.

When the player is in water, the chat will say True. When the player isn’t
in water the chat will say False.

Try changing the chat message so that it’s more user friendly.

6.1. MINECRAFT EXERCISES 69

ALERT: At the moment you will not be able to run this pro-
gram in real-time. You must run the program every time
you want to make the program work. This applies to all of
the other exercises in this chapter. You'll learn how to up-
date the program in real-time in the loops chapter.

Extensions

Try these extension exercises if you want to take this exercise further:

» Find out if the player is standing in a tree

6.1.2 Do you want to stop smashing things?

Skills and knowledge we’ll practice in this exercise:

SRILLS & e Input e Equalto

e if statement e Immutable Blocks
e else statement

KNOWLEDGE

Remember back to the first chapter, we made a program that stopped
the player from smashing blocks. In other words blocks were made im-
mutable. The program was useful as it allowed you to protect your pre-
cious creations from accidents or vandals. As useful as the program is it
became a bit cumbersome when you wanted to turn immutable off, which
required a second program.

Using an if statement, an else statement and console input we can make
a program that handles turning immutable on and off. Our program will
ask whether you want the blocks to be immutable and then setimmutable
to True or False, depending on your response.

70

CHAPTER 6. COMPARATORS AND CONTROL FLOW

Instructions

In this exercise we'll introduce you to planning programs with a flowchart.
You learned about flow charts in chapter [chapter number]

We'll work through the flowchart step-by-step and give you the code for
each step:

1.

Start at the top of the diagram, where it says start. Follow the arrow
to the next box.

. Arectangle represents a process, in this case we're asking the a ques-

tion

. The next box is an input, in this case we’re taking the user’s response

to our question. This box and the above process can be combined
when we’re writing Python code:

4 response = raw_input(”Do you want blocks to be
— immutable?”)

. The next item is a condition that determines whether the user’s re-

sponse was "Yes”.

. When the response is True we follow the arrow labelled True.
. This step sets immutable to True in Minecraft.

. We then print a statement to the user to say that immutable is now

True. We'll use an if statement for steps 4-7:

5 if response == "True”:
6 mc.setting(”world immutable, True)
7 mc.postToChat (”World is immutable”)

Going back to the comparator, if the comparison is False, we set im-
mutable to False and tell the user this. Effectively we do the oppo-
site of steps 4-7. We can represent the False flow with the following
code:

8 else:
9 mc.setting(”world immutable, False)
10 mc.postToChat (”"World is mutable”)

Copy the code and make it complete with the code at the top of the pro-
gram that we use every exercise.

6.1. MINECRAFT EXERCISES

Ask user: Do you
want to make blocks
immutable?

Read user
response

to True

Set Immutable

Response

llYeSlI

Prlnt
“Immutable
True”

Set Immutable

to False

Prlnt
m “Tmmutable
False”

/

71

72 CHAPTER 6. COMPARATORS AND CONTROL FLOW
Extensions

e You'll notive that you get the same result for entering "No” as you
would for entering non-sensical input, like "banana”. Extend the
if statement to handle incorrect input. Include an elif statement to
handle the "No” response and change the else code to ask for correct
input.

» Useboolean operatorstoaccept different variation of "Yes” and "No”,
such as lower case "yes”, upper case "YES” and a single character re-
sponse "Y".

6.1.3 Bring us a shrubbery

Skills and knowledge we’ll practice in this exercise:

SKILLS & .
KNOWLEDGE if statement o Block type .
* else statement e Systems modelling
e Equal-to

Collecting anitem and delivering it toa certainlocation is a staple of video
games. We'll create a simple program that checks whether a certain block
has a tree sapling placed on it.

Instructions

Follow the instructions in the flowchart.

A simple tip, you'll need to find a convenient location in the game world
and use it's co-ordinates to set the x, y and z variables in the first step.
Also, the value of a tree sapling is 6. Also make sure you have set the co-
ordinates to the correct location; it's easy to spend ages wondering why
it’s not working only to realise you were one block off on the x-axis. The
rest of the instructions on the flowchart can be achieved with code that
you've learned so far.

6.1. MINECRAFT EXERCISES

v

Set x,yand z
co-ordinates
variables

v

Get block type at
co-ordinates

True Block Type False
\6/

Print Print
T “Bring a shurb-
' bery to (x, y, 2)"

73

74 CHAPTER 6. COMPARATORS AND CONTROL FLOW

Extensions

e Check for a different block type, like a diamond.

» Change the body of the if statement do something else, like change
the ground to lava or build a house. Be creative.

» Accept leaves (block type 18) as an equivalent for a shrubbery using
the OR boolean operator.

e Accept more than one block type with different responses using elif
statements.

6.1.4 Take a Shower

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE if statement e greaterthanorequalto
* else statement less than or equal to

The best Minecraft houses have a lot of attention to detail. Many people
include wooden flooring, fireplaces and pictures in their houses to make
them more homely. You're going to go one step further and make a work-
ing shower.

Instructions

Create a 3 x 4 block area on the ground. Using an if statement, the less
than or equal to comparator and the greater than or equal to comparator
work out if the player is in the shower. When the player is in the shower,
make water appear several blocks above. When the the playeris notin the
shower, stop the water.

6.1. MINECRAFT EXERCISES 75
Extensions

o Make a trap door that opens if the player is on top of it

6.1.5 Secret Passage

Skills and knowledge we’ll practice in this exercise:

SKILLS & e Greater than e or operator
KNOWLEDGE e Less than if statement
» not equal to * elif statement
e and operator * else statement

Special items in many video games open secret passages. These items are
often placed onto small stands, known as plinths. In this exercise we'll
create a building with a secret passage that opens when a diamond block
is placed on a plinth. When any other type of block is placed on the plinth
the floor will turn to lava.

Instructions

Build a cuboid shaped building with an entrance and a secret room be-
hind a wall. Outside the entrance to the building make a single block to
represent the plinth.

Work out if the player is inside the walls of the building using greater
than and less than comparators alongside binary operators.

When the player is inside the building:

 If the player is inside the building and a diamond block is on the
plinth, open a secret passage to the secret room.

» If the player is inside the building and a block that is not a diamond
block is on the plinth, make the floor lava. Hint: check that the block
is not a diamond and the block is not air.

76 CHAPTER 6. COMPARATORS AND CONTROL FLOW

 If the player is inside the house and there is nothing on the plinth,
post “bring us something of value” to the chat.

As this is a more complex program, build it and test it in stages. Make
sure each part works before moving on. This will make debugging a lot
easier.

Look out forbugs. Test each of the above conditionsin different orders.

Extensions

e Something

6.2 Comparators

Even without a computer we are very good at comparing things. We know
that5is bigger than 2, 8 and 8 are the same number, and 6 and 12 are not
the same number.

Comparators in Python allow us to compare data. There are six compara-
tors in Python:

e Equalto (==)

Not equal to (!=)

Less than (<)

Less than or equal to (<=)

Greater than (>)

Greater than or equal to (>=)

The comparator goes between two pieces of data. In this case we're using
an equal to operator to compare two integer values:

1 8==

6.2. COMPARATORS 77

Each comparator will return a boolean value that states whether the con-
dition has been met. As all comparators return a boolean value you can
use them anywhere that you can use a boolean value. In the above exam-
ple the the boolean value is False. Keep reading to see how we worked
that out.

6.2.1 Equal To

When you want to tell if one value is the same value as the other one, you
use the equal to comparator. Equal to compares two values, if they are the
same it evaluates to True, if they are different it evaluatestoFalse.

Equal To

compaadorn

The equal to operator compares two values to check whether they are
the same. When the values are the same the comparison will return the
boolean value True, when the values are different we get false.

Expression:

1 valuel == wvalue?2

Statement:

1 triforce = 3

2 hasTriforce = triforce == 3 # value of True
3 hasTriforce = triforce == 2 # value of False

For example:

1 length = 2
2 width = 2
3 square = length == width #value of True

The square variable is true as the value of the length and width variables
are the same value. If they are different we get a False:

1 length = 4
2 width =1
3 square = length == width # value of False

78 CHAPTER 6. COMPARATORS AND CONTROL FLOW

The Equal To comparator can be used on all variable types: strings, inte-
gers, floats and booleans.

ALERT: Notice how == is used for the comparison instead
of =, which is used to set a variable. This is so that Python
can tell the difference between a comparison and setting a
variable. Try to remember this difference, even the best of
us make a mistake by using = instead of == every once in
awhile.

6.2.2 Not Equal To

The Not Equal To comparator is the exact opposite of the Equal To com-
parator.

Instead of comparing whether two values are the same, it compares whether
they are different. When the two values are different the comparison will
evaluate to True, when they are the same it will evaluate to False.

A rectangle is a four sided shape with different values for length and
width. The comparison on line 3 compares the length and width of our
shape:

1 width = 3
2 length = 2
3 rectangle = width != length #value of True

In this example the value of rectangle is True as width and length
have different values. To make the comparison return False, these val-
ues need to the same:

1 width = 3
2 length = 3
3 rectangle = width != length #value of False

The Not Equal To comparator works with strings, integers, floats and booleans.

6.2. COMPARATORS 79

Not Equal To

compaviator
The not equal to operator compares two values to check whether they are

not the same. When the variables contain different values, it returns a
True boolean value. When they are the same, it returns a False boolean
value.

Expression:
1 valuel != wvalue?2
Statement:

1 cakes =5
2 enoughCakes
3 enoughCakes

value of False
value of True

o u
H* I

Less Than

compaadorn
The less than operator compares two values to check whether the first is

smaller than the second. When the value on the left is larger than or the
same as the value on the right, the result will be false.

Expression:
1 wvaluel < value2
Statement:

1 cakes =5

2 enoughCakes = cakes < 5 # value of False
3 enoughCakes = cakes < 4 # value of False
4 enoughCakes = cakes < 6 # value of True

6.2.3 Less Than

The Less Than comparatoris used to determine whether one value is smaller
than another. When the value on the right of the comparator is larger
than the other value, True will be returned. When the value on the right

80 CHAPTER 6. COMPARATORS AND CONTROL FLOW

is smaller or the same as the other value, then False will be returned.

A van driving under a bridge needs to know whether it’s small enough to
fit under:

=

vanHeight = 8

2 bridgeHeight = 12

3 willPass = vanHeight < bridgeHeight
4 # Value of True

In this case the van will fit as it’s smaller than the bridge: 8 is less than 12.
Later in its journey, the same van might encounter another bridge that is
too low to drive under:

1 vanHeight = 8

2 bridgeHeight = 7

3 willPass = vanHeight < bridgeHeight
4 # Value of False

This comparator does not work with Strings, though it does work with
Integers, Floats and Booleans.

6.2.4 Less Than or Equal To

This comparator works almost the same as the Less Than comparator. It
will compare whether the value on theright is less than or the same as the
value on the left.

The difference between less than or equal to and less than comparators is
that the less than or equal to comparator will return True if both values
are the same, where as the less than comparator will return False.

We're presenting our amazing program to a group of people. There are
only 30 seats in the room. We can write a program to check if there are
enough seats for all the people who want to attend:

1 seats = 30

2 people = 30

3 enoughSeats = people <= seats
4 # Value of True

In this case thereis exactly therightamount of seats, sothe enoughSeats
variable will be True; if there were fewer people we’d still have enough
seats. Five more people wants to see your amazing program:

6.2. COMPARATORS 81

Less Than or Equal To

compaviator
The less than operator compares two values to check whether the first is
smaller than or equal to the second. When the value on the left is smaller

than or the same as the value on the right, the result will be True.

Expression:
1 valuel <= wvalue?2
Statement:

1 cakes =5

2 enoughCakes = cakes <= 5 # value of False
3 enoughCakes cakes <= 4 # value of True
4 enoughCakes cakes <= 6 # value of True

1 seats = 30

2 people = 35

3 enoughSeats = people <= seats
4 # Value of False

Unfortunately the enoughSeats variableis now False so therearen’t enough
seats for these new people.

This comparator does not work with Strings, though it does work with
Integers, Floats and Booleans.

6.2.5 Greater Than

When you need to work out whether one value is bigger than another you
use the Greater Than comparator.

When the Greater Than operator is used it will return True when the value
on the left is greater than, but not the same as, the number on the right.
Falsewillbereturned when the left value is smaller than theright value.

Our robot has a lifting limit of 100 bananas. It can’t lift more than 99
bananas. Aslong our robot’s lifting limit is greater than the number of
banana’s it’s lifting, they can be lifted:

82 CHAPTER 6. COMPARATORS AND CONTROL FLOW

Greater Than

compaviator

The greater than operator compares two values to check whether the
first is larger than the second. When the value on the left is larger than
the value on the right, the result will be True.

Expression:
1 wvaluel > value2

Statement:

1 seeds = 6

2 surplusSeeds = seeds > 5 #value of True
3 surplusSeeds = seeds > 6 #value of False
4 surplusSeeds = seeds > 7 #value of False

1 limit = 100

2 bananas = 99

3 canLift = limit > bananas
4 # value of True

The canLift variableis True. Brilliant, ourrobot canliftit: 100 is greater
than 99. Looks like someone’s added another banana to the pile:

1 limit = 100

2 bananas = 100

3 canLift = limit > bananas
4 # value of False

Oh no, the limit has been reached. The canLift variable is now False:
100 is not greater than 100, it’s the same. Our robot can't lift the ba-

nanas.

This comparator does not work with Strings, though it does work with
Integers, Floats and Booleans.

6.2. COMPARATORS 83

6.2.6 Greater Than or Equal To

Like the Greater Than comparator the Greater Than or Equal To compara-
tor will determines whether one value is greater than another. Unlike the
Greater Than comparator it will also evaluate to True if the values are the
same.

Greater Than or Equal To

compaadorn

The greater than operator compares two values to check whether the
first is larger than or the same as the second. When the value on the left
islarger than or the same as the value on the right, the result will be True.

Expression:
1 valuel >= value2
Statement:

1 seeds = 6

2 surplusSeeds = seeds >= 5 #value of True
3 surplusSeeds seeds >= 6 #value of True
4 surplusSeeds seeds >= 7 #value of False

We're giving stickers to all of the people who came to see our amazing pro-
gram presentation. We need to check whether we have enough stickers
for everyone who came:

1 stickers = 30

2 people = 30

3 enoughStickers = stickers >= people
4 # value of True

We have enough stickers: 30 is the same as 30. If one or more peopledon’t
turn up, we'll still have enough stickers. One of your friends thinks the
stickers look cool and wants one, there are now 31 people who want stick-
ers:

1 stickers = 31

2 people = 30

3 enoughStickers = stickers >= people
4 # value of False

84 CHAPTER 6. COMPARATORS AND CONTROL FLOW

What a shame, we don’t have enough stickers: 30 is not greater than 31.
Looks like your friend can’t have a sticker.

This comparator does not work with Strings, though it does work with
Integers, Floats and Booleans.

6.3 Boolean Operators

Combining two or more comparators is often necessary in programs. You
might want to determine whether two conditions are true, like a caris red
and it costs less than £10,000.

For combining two or more comparisons we use boolean operators. These
operators work with both boolean variables types and comparators, which
evaluate into booleans.

There are two operators in Python that compare booleans:
e and
e Or

There is also a third operator, the not operator that changes the value of
a single boolean.

Like comparators, boolean operators can be used anywhere that you would
use a boolean value.

Boolean operators are also called logical operators.

6.3.1 and

The and operator is used when you want to check whether two compar-
isons are both True.

For an expression with an and operator tobe True, both comparisons must
beTrue. If either comparisonisFalse, the statement will return False.

This table summarises the results of all of the possible boolean combina-
tions and results when using the and operator:

Wewant to find out whether a personisolderthan 18 and owns a car:

6.3. BOOLEAN OPERATORS 85

and | True False
True | True False
False | False False

1 age = 21

2 ownsCar = True

3 eligible = age > 18 and ownsCar == True
4 #value of True

Theageof the personis greater than 18 and theyownacar,sotheeligible
variable evaluates to True. If one of these comparisons was False then
the statement would evaluate to False. Like if they don't own a car, but
are older than 18:

1 age = 25

2 ownsCar = False

3 eligible = age > 18 and ownsCar == True
4 #value of False

opeator
The and boolean operator will return True when the boolean values on
either side of it are both true. If one or both of the values are False, then

the and Operator will return False.

Expression:
1 booleanl and boolean2?

Statement:

1 trueStatement = True and True

2 #OR

3 name = "Sam”

4 age = "45"

5 canRegister = name != ”"Jim” and age >= 18
6 #value of True

86 CHAPTER 6. COMPARATORS AND CONTROL FLOW

6.3.2 or

The or comparator works slightly differently to and. When either or both
comparisons are True, the or expression will return True.

That means that as long as one comparison is True either of the compar-
isons can be False and the expression will still be True. If neither compar-
ison is True, the expression will evaluate to False.

or

opeator

If either conditions are True, then the statement evaluates to True. So
one of the booleans can be False and it will still return True. If both
booleans are False, then it will return False.

Expression:

1 booleanl or boolean2

Statement:

1 trueStatement = True or False

2 #OR

3 name = "Jim”

4 age = "32"

5 canRegister = name != ”"Jim” or age >= 18
6 #value of True

This table the possible combinations and results of using the or operator
with booleans:

or \ True False
True | True True
False | True False

If we want to adopt a cat that is either black or ginger we could use this
code:

1 catColour = raw_input(”What colour is the cat?”)

2 myCatNow = catColour == "black” or catColor ==
— "ginger"”

3 print ”Adopt this cat: ” + str(myCatNow)

6.3. BOOLEAN OPERATORS 87

As long the catColour is either "black” or "ginger” we'll adopt it. In or-
der formyCatNowtoreturna False value, the catColour value needs to
be neither "black” nor "ginger”. So we wouldn’t adopt a "blue” cat.

6.3.3 not

The not operator works differently to the and and or operators.

The not operator changes aboolean to its opposite. It changes a True into
a False and vice versa.

not

operatorn
The not operator changes condition to their opposites. It makes True
values into False values and False values into True.

Expression:
1 not boolean
Statement:

1 lights =1
2 notEnoughLights = not lights > 2

So:

1 hungry = not True #This is False
2 sleepy = not False #This is True

You can combine the not operator with the other two like this:

3 timeForBed = not hungry and sleepy
4 #value of True

The not operator only applies to boolean it is in front of. So for the above
example it will reverse the hungry variable and leave the sleepy variable
alone.

88 CHAPTER 6. COMPARATORS AND CONTROL FLOW

6.3.4 Boolean Operator Order

Itis possible to combine as many boolean operators as youwantin asingle
statement. For example you can use a combination of and, or and not
like so:

1 flying = True and not False or False
2 #value of True

| ALERT: There is a certain order that boolean operators are
H evaluated by Python. If you get the order wrong you might
get a result you weren't expecting. This is the order:

1. not

2. and

3. or

So in the above example the not False part of the statement is evalu-
ated first to create True. The and is then evaluated, with True and True
evaluating to True. Finally the or is evaluated with True or False becoming
True.

Practice creating statements with boolean operators in IDLE and see if
you can guess the result of each.

6.4 If, Else and Elif

You're about to learn how to instruct a computer to make decisions. This
may not sound like a lot, but it is pretty powerful.

If statements use boolean conditions to decide whether to or not execute
some code. These conditions are the same as comparators, which makes
comparators really useful.

6.4. IF, ELSE AND ELIF 89
6.4.1 if Statements

In Python, if statements enable the computer to make decisions based on
a condition.

An if statement has three parts: an if operator; a condition; and a body of
code.

Conditions are the same things as comparators. An if statement will only
execute the code contained in its body if the condition is True. So when
the condition is True, the body of code will execute then continue through
the rest of the program. When the condition is False the body of the if
statement is ignored and the program will continue on the line after the
if statement.

If statements can be described as a flowchart:

Y

True

Condition

Body of if
statement

A colon and indentation tells Python which block of code makes up the
body of the if statement. A colon comes at the end of the line with the if
operator and the condition. This colon tells Python that everything fol-
lowing the colon is the body of the if statement.

The body is the code that will execute when the condition is True. The
body can haveas manylinesof codeinit, allof which mustbeindented.

The following code uses an if statement to check whether a password is
correct:

90 CHAPTER 6. COMPARATORS AND CONTROL FLOW

if

Staternent

An if statement tells the computer whether or not to do execute some
code based on a condition. Boolean operators are used in if statements to
decide whether a condition has been met. The indented code will only run
iftheboolean is True. When the boolean is False the indented will not run.

Expression:

1 if condition:
2 #body of if statement

Statement:

1 height = 15
2 if height >= 12:

3 print "The height is too high”

1 password = "cats”

2 attempt = raw input(”Please enter the password”)
3 if attempt == password:

4 print "Password is correct”

The attempt == password expression is the condition as it follows the
ifoperator. Theline print “Password is correct” makesup thebody
of the code as it is indented.

The code will only print "Password is correct” if the attempt variable is the
same as the password variable. If they are not the same it will not print
anything to the console.

6.4.2 else

An if statement will only do something if the boolean condition is True.
What if you want it to do something if that condition is False, in addition
to when it’s True? That’s where the else statement comes in.

An else statement works with an if statement. It will execute a block of
code when the condition of the if statement evaluates to False. This can
be summarised in the following diagram:

6.4. IF, ELSE AND ELIF 91

Start

Y

False
True @

Body of if Body of else
statement ; statement
else
Statement

An else statement works with an if statement. It will execute code if the
condition of the if statement is not met, i.e. when the if condition is False

Expression:

1 if condition:

2 #body of if statement

3 else:

4 #body of else statement

Statement:

1 shells = 12

if shells == 32:
3 print ”"You have all of the shells”
4 else:

5 print ”"You need more shells”

N

Aswith an if statement, in Python the else statement uses a colon and in-
dented code to indicate which code belongs to the body of the else state-
ment. The else statement does not have its own condition as it shares this
with the if statement.

92 CHAPTER 6. COMPARATORS AND CONTROL FLOW

Returning to the password example using if statements, we can use an
else statement to print a message when the password is incorrect.

1 password = "cats”

2 attempt = raw input(”Please enter the password”)
3 if attempt == password:

4 print ”"Password is correct”

5 else:

6 print ”"Password is incorrect”

When the attempt variable matches the password variable, the if condi-
tion will be true and the program will run the code in the if statement
block that prints "Password is correct”.

When the attempt variable does not match the password variable, the if
condition will be false and the program will run the code in the else state-
ment block that prints "Password is incorrect”.

ALERT: An else statement cannot be used without an if
statement.

6.4.3 elif

Sometimes you want an else statement to only execute if a condition is
met that is different to the condition of the if statement.

The else if statement, or elif in Python, gives you this functionality. An
elif statement has its own condition and body. The elif statement will ex-
ecute when the condition of the if statement is False and the condition
of the elif statement is True.

When an else statement follows an elif statement it will execute when the
if statement is False and the elif statement is also False.

The following flowchart summarises this:

6.4.

IF, ELSE AND ELIF 93

False
if Condition

elif Condition

Body of if
statement

For

Body of elif Body of else
statement statement

example, you could design a program that monitors the temperature

of an oven and states whether it is the desired temperature, say 200 de-
grees celsius. It would need to do three things:

1. when the oven is 200 degrees tell you it’s the correct temperature;

2. tell you to increase the heat when the temperature is less than 200;

3.

and

tell you decrease the heat when the temperature is more than 200.

Here is the code:

N ouh WwN R

ovenTemp = input(”Enter the oven temperature: ")
desiredTemp = 200
if ovenTemp == desiredTemp:
print "Temperature is perfect”
elif ovenTemp > desiredTemp:
print "Temperature is too hot”
elif ovenTemp < desiredTemp:

94 CHAPTER 6. COMPARATORS AND CONTROL FLOW

elif

statement

An elif will execute when the if statement condition evaluates to False,
and the condition of the elif evaluates to True. It must be used in combi-
nation with an if statement.

Expression:

1 if condition:

2 #body of if statement
3 elif condition:

4 #body of elif

5

else:
6 #body of else statement
Statement:
1 shells = 17

2 if shells == 32:
3 print ”“You have all of the shells”
4 elif shells > 16:
5 print ”"You’ve collected more than half of the
— shells”
6 else:
print ”"You need more shells”

8 print "Temperature is too cold”
9 else:
10 print ”"Something weird happened”

The code goes through each part of the if statement from the top to the
bottom. The else statement will execute when the if statement and elif
statement conditions are all false.

6.4. IF, ELSE AND ELIF 95

ALERT: You can use as many elif statements as you want,
aslongastheyareafteranifstatementand before any else
statements. The elif statement cannot be used without an
if statement.

6.4.4 Nested If statements

It is possible to use if statements within the body of another if statement.
This is known as a nested if statement. There are different circumstances
where this is useful.

Let’s see an example of a nested if statement. We have a simple cash ma-
chine that checks if you have enough money and then asks you to confirm
your withdrawal if you do. Notice how the nested if statement is indented
within the body of the first if statement.

1 withdraw = input(”How much do you want to
— withdraw? ")

2 balance = 1,000

3

4 if balance <= withdraw:

5 confirm = raw input(”Are you sure you want to
— withdraw ” + str(withdraw) + "?2")

6

7 if confirm == ”"Yes” or confirm == "y” or
— confirm == "yes”:

8 print "Here is your money”

9 #some more code to give them the money

10 else:

11 print ”“"You do not have enough money”

96 CHAPTER 6. COMPARATORS AND CONTROL FLOW

ALERT: The else and elif statements can be used with
nested if statements and if statements can be nested
within else and elif statements.

isalpha()
method

The isalpha() method checks whether a string only contains letters. In
other words, it doesn’t contain numbers or symbols. If it only contains
letters, it returns True, otherwise it returns False.

Expression:

1 ”"String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country "BRAZIL"
4 country = country.lower() #value of "brazil”

To check whether a string contains only alphabetic characters, i.e. no
number or symbols, you use the isalpha() function.

For example:

1 "cats”.isalpha() #true
2 "9 cats”.isalpha() #false

This function is useful for validating user input. For example registration
forms frequently require you to include your name. Names don’t have

6.4. IF, ELSE AND ELIF 97

numbers or symbols in them, so we need to check whether the name only
contains letters. The isalpha() function can be used to check this.

As it returns a boolean value the function can also be used as a condition
in an if statement. Here is some code to check whether the user has input
a valid name, i.e. a name with only letter values, no numbers or sym-
bols:

1 name = raw_input(”Please enter your name: ")
2

3 if(name.isalpha()):

4 print ”“"Name accepted. Thank you.”

5 else:

6 print ”“Name must not include numbers or

— symbols. Letters only.”

98

CHAPTER 6. COMPARATORS AND CONTROL FLOW

Chapter 7

functions

Functions are reusable blocks of code that perform specific tasks.

For example, you have a block of code that capitalises the first letter of ev-
ery sentencein a several strings. You could rewrite (or copy and paste) the
capitalisation code every time you need to use it on a new string, however
this would be inefficient.

Instead you could write the capitalisation code as a function. Making it
easier and faster to repeat the same task multiple times.

Wehave already seen some functions earlier. Remember str(), raw_input()
and len()? They’re all pre-written functions that come with Python. You
can also create your own functions.

We use functions for the following reasons:

Reusability functions save time. They stop you from rewriting the same
code over and over again, making it faster and easier to write a pro-
gram.

Debugging By containing tasks in groups of code it is easier to identify
where a problem originates.

Modularity Functions within the same program can be developed inde-
pendently of one another without needing to know the internal work-
ingsof each one. This makes it easier to share code with other people,
whether in a team or through open source software.

Scalability it is easier to increase the amount of data used in code with-
out having to rewrite or copy the code every time. [expand on this]

In this chapter we’ll cover how you can write and use your own functions.

99

100 CHAPTER 7. FUNCTIONS

Once you're comfortable with functions we’ll introduce you to modules.
Modules are a collection of functions that are packaged together around
a common theme.

7.1 Minecraft Exercises

Functions make it easy to reuse code. You've been using functions in
Minedraft for a while, such as...in this set of exercises we’ll create our own
functions.

Surprise, you've been using modules all along.

7.1.1 A Forest

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Creating Functions e Arguments
e Function Call

A forest is essentially just a bunch of trees. To create a forest in Minecraft
we’ll make a function that builds a tree and then reuse the function sev-
eral times to create a forest.

Instructions

This is the basic code that you'll be using.
import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()

1
2
3
4 def growTree(x,y,z):

5 #Write your code here
6

7

8

pos = mc.player.getTilePos()
X = poOSs.X

7.1. MINECRAFT EXERCISES 101

9 y = pos.y
10 z = pos.z
11

12 growTree(x + 1, y, 2)

The growTree() function created in this code takes arguments that repre-
sent co-ordinates. Your task is to write code in the body of of the function
that creates a tree at the given co-ordinates. Use the setBlock() and set-
Blocks() functions to do this.

Onceyou've got something resembling a tree appearing write several more
calls to the function with different arguments. You should create at least
three rows of three trees in front of the player each time you run your
program.

Extensions

» Randomise the tree height, distance apart and number of trees

7.1.2 Arming TNT

SIS, Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

e Arguments o If statements

There’s something about the setBlock() and setBlocks() methods that you
might not know. They can take an extra argument. You're used to using
these methods with arguments for co-ordinates and block type. There’s
also an extra argument at the end that sets the block state.

Each block has 16 states. Wool for example has a different colour for
every state. TNT (block id 46) is explosive in block state 1. There are 16
states for every block, but not all of them are different. To set the state
of a blocks we provide these functions with an extra argument after the
others. The code below creates armed TNT:

102 CHAPTER 7. FUNCTIONS

4 mc.setBlock(10, 3, -4, 46, 1)
5
6 mc.setBlocks(11l, 3, -4, 20, 6, -8, 46, 1)

Your mission is to create a function that checks whether a certain block
is TNT. If it is, make the TNT explosive.

Instructions

Using the skeleton code below write your program:

1 # create a function, co-ordinates as arguments
2 # get the block type

3 # check block type is TNT

4 # create armed TNT if it is

5 # otherwise post "not TNT”

Once you've written the program to check whether a certain location is
TNT, design some tests by calling the function to see if it works. Make
sure you test the function on TNT blocks and non-TNT blocks

One way to test it is placing TNT at different locations and calling the
function with their co-ordinates. You could also get the player’s position
and pass it to the function. This way you can test it by standing on the
TNT.

ALERT: Once you have armed the TNT you must hit it to
make it explode. Don't test your code on multiplayer as set-
Block() doesn’t work very well on multiplayer.

extensions

» Try finding out all the blocks and their different states.

» Increment states instead of just setting itto 1

7.1. MINECRAFT EXERCISES 103

7.1.3 Wool Colour

Skills and knowledge we’ll practice in this exercise:

SKILLS &

L IR . arguments o If .statements
e funcitons e elif statements
e return e else statements

Wool (block id 35) has many uses in Minecraft, due to its different colours.
As explained in the last exercise, it has 16 different colours that are ac-
cessed using an optional block state argument in the setBlock() and set-
Blocks() methods. However, it's difficult to remember these block states
and why would you want to when a program can remember for you? Let’s
make a program that remembers the block states of wool.

Instructions

You'll need to do some detective work here. First things first, you'll need
to find out the colours for each block state of wool are. Achieve this in
whatever way you prefer. Here's one to start you off: pink is state 6.

Once you've worked out the block ids, create a function that returns the
state value of a colour based on a string argument. For example providing
the argument "pink” will return the value 6. It must return the correct
value for each colour.

You'll also need to post a useful error message to chat if the argument is
not a valid colour.

104 CHAPTER 7. FUNCTIONS

7.1.4 Turtle

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Functions e Global variables
e Arguments

Logo is a programming language designed for learning. In logo you con-
trol an on screen turtle or robotic turtle that draws lines. To make the tur-
tle move it is given commands like forwards 5, which will make it move
five pixels forward. Likewise backwards 5 would make the turtle move
backwards 5 pixels. In this exercise you’'ll create a program that works
similar to the turtle in logo.

This exercise use global variables, which is not covered at Codecademy.
When changing the value of a variable in a function Python needs to know
whether it is specific to that function (local) or if it accessible to every
other function (global). If the variable name exists outside of function in
the main body of the code you must include the global operator along-
side the variable in order to change its value in your function. For exam-
ple:

1 x =10

2

3 def doubleX()
4 global x
5 X =X * 2

Instructions

Build a program using functions that achieves the following list of re-
quirements:

o The forward function moves the player a number of blocks forward
along the x-axis

e The backward function moves the player a number of blocks back-
wards along the x-axis

7.1. MINECRAFT EXERCISES 105

The right function moves the player a number of blocks along the
z-axis in a positive direction

The left function moves the player a number of blocks along the z-
axis in a negative direction

The up function raises the player a number of blocks along the y-axis

the down function lowers the player a number of blocks along the
y-axis

The penDown function sets the draw variable to true

the penUp function sets the draw variable to false

For all of the above functions, the following must apply:

If the draw variable is true, moving the player will create blocks
If the draw variable is false, moving the player will not create blocks

After a function runs it must wait 0.1 seconds before moving on

Once you have created a program that achieves the above functionality,
call the functions to draw the following items:

1.
2.

3.

Square
Three parallel lines

Smiley face

ALERT: If you're familiar with logo, you should notice our
program works differently. Using right and left in Logo ro-
tate the turtle by an angle. Our program doesn’t do this.
Instead these functions should move the turtle in a direc-
tion.

Extensions

e Add functions to change the colour of the pen

e Add a rubber mode that erases blocks instead of placing them

106 CHAPTER 7. FUNCTIONS

7.1.5 Import Block Module

Let’s finish with something simple. The import operator allows you to
use other Python modules to extend the capabilities of your program. You've
in fact been using this for ages. The line at the start of everyone of your
Minecraft programs uses the import operator:

1 import mcpi.minecraft as minecraft

This module comes with Minecraft and allows you to interface Minecraft
with your program. Another module comes with Minecraft, the block
module. Up until now you have used integers to represent the block type
of blocks. The block module allows you to replace these integers with pre-
set variables. For example the AIR variable replaces the integer 0 in the
following code:

1 import mcpi.block as block
import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()

o WN

mc.setBlock(0, 0, 0, block.AIR)

Using variables instead of integers makes block values easier to remem-
ber.

Instructions

In order to use the variables of the block module you will need to out what
they are. Find the file that contains the block module. Hint: it’'s name is
block.py and it is somewhere in the mcpi folder.

7.2 Function syntax

Now we know the usefulness of functions, let’s see how we use them.

7.2. FUNCTION SYNTAX 107

function definition

statement

Functions are reusable blocks of code. They contain a def operator, a
name and arguments.

Expression:

1 def functionName(arguments):
2 #body of the function goes here

Statement:

1 def addTwoNumbers (numberl, number2):
2 sum = numberl + number2
3 print str(sum)

All function definition statements contain four things:
1. def operator
2. A function name (also called an identifier)
3. Optional arguments in brackets () followed by a colon
4. Body of the function

The def operator, which is an abbreviation of define, tells Python that you
are writing a function.

The function’s name is used to identify the function. Each function needs
adifferent name, otherwise Python doesn’t know which block of code you
want to use. In the following example codeName is the name of the func-
tion:

1 def codeName(agentName):
2 print ”"Code Name: ” + agentName

Arguments are values that are passed to the function when it is used.
They tell the function what values to use for specific variables when it
runs. In the above example agentName is an argument. Multiple argu-
ments are separated by commas.

A function definition does not need to have arguments. You can leave the
brackets empty to indicate that you don’t want the function to accept ar-

108 CHAPTER 7. FUNCTIONS

guments. For example here is a function that doesn’t take any arguments
and simply prints "Hello”:

1 def printHello():
2 print ”"Hello”

Don’t forget the colon at the end of theline. Thelines that follow the colon
are the body of the function: the code that will run when the function is
called.

The body of the function is always indented by one tab or four spaces,
never a mixture of the two. A function can contain as many statements
as you want. It can also include if statements and everything else we've
covered so far. When you reach the end of the function code you stop
indentation.

7.2.1 Calling a function

To use a function, also known as calling a function, you write the name
of the function with any arguments it requires in brackets.

Calling a Function

expressto

In order to use a function the code must call it. The statement should
include the function name and any arguments it requires. Multiple
arguments are separated by commas.

Expression:

1 functionName (arguments)
Statement:

1 addTwoNumbers (5, 3)

To call the codeName() and printHello() functions we defined earlier, we
would use the following code:

1 codeName(”Solid Snake”)
2
3 printHello()

7.2. FUNCTION SYNTAX 109

7.2.2 Return

There are two types of functions: those that return a value and those that
don’t return a value. So far we’ve created functions that don’t return a
value. Let’s have a look at the ones that do return a value.

Returning a value from a function is very useful. For example we have a
heart rate monitor that takes the pulse of a person. We can use a function
to return data from the heart rate monitor. Without the return operator
we would not be able to access data sent from hear rate monitor.

When making your own functions, you use the return operator to return
the value of a variable. For example the following code returns a value
that is the people argument plus 2:

1 def plusTwo(people):
2 return people + 2

return

Staterment

The return statement is used within a function to return a value. It will
return the value to the position the function was called and can be used
like any other data.

Expression:

1 def functionName(arguments):
2 #body of function
3 return variable

Statement:
1 def addFullStop(string):
2 return string + ”.”

3
4 #calling the funciton
5 sentence = addFullStop(”Hello”)

To use a function that returns a value, you call it in a place that would
expect a value. For example we'll call the plusTwo() function:

1 total = plusTwo(6) #value will be 8

110 CHAPTER 7. FUNCTIONS

Functions that return values can be used in statements to set the values
of variables. They can be used anywhere that you are expected to put a
value.

ALERT: The return operator determines whether a func-
tion will return a value or not. Functions that do not return
a value cannot be used to set values. Instead they form a
statement by themselves.

7.2.3 Multiple Arguments

We have already seen that you can use commas to separate multiple ar-
guments in a function. What if you don’t know how many arguments the
function call will provide?

Well, Python has a very handy way of accepting an unknown number of
arguments: an * operator at the start of the argument name when the
function is defined.

We have a program to print the values passed to the function:
1 def createlList(*items):

2 print items

It could be called like this...

1 createList(”Grover”, "Elmo”, "Snuffy”)

..this...
1 createList(”Grover”)

...or this...

1 createlList(”Hawk”, "Fox”, "Snake”, "Hippo”,
[N "Monkey" ’ "FrOg" ’ 1/ Snake 14 ’ "Jim")

The * actually tells the function to expect an list of unspecified length. We
will cover lists in the lists chapter, which will make the * operator more
useful.

7.3. MODULES 111

Unspecified Number of Arguments *

operatorn
When used with arguments the * operator tells a function to expect any
number of arguments.

Expression:

1 def functionName (*arguments):
2 #body of function
3 #optional return variable

Statement:

1 def printMembers(*members):

2 print members

3

4 printMembers(”Fox”, "Slippy”, "Falco”, "Peppy”)

7.3 Modules

Modules are reusable collections of functions. Functions are bundled to-
getherinto modules so that similar functions are easily shared together.

For example you might have a module for images. The module most likely
contains functions that load, save and modify images.

In this section we’ll acquaint ourselves with the ways that we can include
and use modules in our programs.

7.3.1 Import

In order to use the functions in a module you need to import them into
your program.

A module that deals with maths is called the math module, surprisingly.
Here's how we import it:

1 import math

112 CHAPTER 7. FUNCTIONS

import
Statement
Import is used to include modules in Python programs.

Expression:

1 import moduleName
2 #Using a module function
3 moduleName.function(arguments)

Statement:

1 import math
2 #using a function in a module
3 print math.sqgrt(4)

Once you've included the module in your program you can then use the
functions in the module. After importing a module, to use a module’s
function you use dot notation. In other words you include the module
name, a dot and the function that you want to use from that module.

For example square root (sqrt) is a function in the math module that re-
turns the square root of an argument.

1 print math.sqrt(4) #prints 2

To find out all of the functions from a module you can use the pydoc mod-
ule. This module contains all of the documentation on other modules. To
access the documentation we import the pydoc module and use the help()
function. The name of the module you want to find out about is provided
as a string argument to the help() funciton. Here's an example to access
the math module documentation:

1 import pydoc
2 pydoc.help(”math”)

7.3.2 from

Sometimes you only need one function from a module. To do this you use
the from operator.

7.3. MODULES 113

This allows you to access the function without prefacing it with the mod-
ule name and dot notation i.e. you would just write function() instead of
module.function().

from

keyword

The form statement is used to import specific functions from a module,
instead of all functions from that module.

Expression:

1 from moduleName import function
2 #Using a module function
3 function(arguments)

Statement:

1 from math import sqrt
2 #using a function in a module
3 print sqrt(4)

For our math example you would change the code to this:

1 from math import sqrt

2 print sqrt(4) #prints 2
You can import more than one function from a module you using the
from operator. Just simply separate the funciton nameswith a comma.

1 from math import sqrt, sin

7.3.3 Import All *

You can also import the entire library using the from module. This is
achieved with the * in the place of the function’s name.

1 from module import *

This removes the need to use dot notation and reference the name of the
module as before. So we could use the all the funcitons from the math
module without the use of dot notation:

114 CHAPTER 7. FUNCTIONS

1 from math import *
2 print sqrt(4)
3 print sin(6)

There is a risk to using the * operator.

ALERT: Sometimes different modules share the same
function names. When this happens Python will get con-
fused which module the function should be taken from.

It is therefore recommended not to use this method of importing every
function modules, unless you are clear that there will be no conflicts.

7.4 Built-in Functions and Methods

Earlier we covered some string methods and functions. Methods are ef-
fectively the same thing as functions, with one slight difference, which
we will discuss when we cover objects.

In this section of Codecademy we were introduced to four new methods:
e max()
e min()
 abs|()
* type()

7.4.1 max()

The max() function returns the highest value (maximum) in a list of ar-
guments:

1 highest = max(7,9,2,3) #value of 9

7.4. BUILT-IN FUNCTIONS AND METHODS 115

Takes a list of numerical values as arguments and returns the highest
value.

Expression:

1 max(values)

Statement:

1 highest = max(10, 100, 63)

min()

Junction

Takes several numerical values as arguments and returns the lowest
value.

Expression:

1 min(values)

Statement:

1 lowest = min(10, 100, 63)

To return the lowest value (minimum) in a list of arguments we use the
min() function:

1 lowest = min(7,9,2,3) #value of 2

7.4.3 abs()

To return the number’s distance from zero as a positive integer, we use
the absolute function, abs():

116 CHAPTER 7. FUNCTIONS

Takes a single numerical value as an argument and returns its absolute
distance from 0 as a positive integer. This makes the function useful for
turning negative numbers into positive numbers.

Expression:
1 abs(value)

Statement:

1 absolute abs(-100)

1 distance abs(-231) #value of 231

7.4.4 type()

The type() function returns the variable type of a value, whether it's a
string, integer, boolean, float or another type we haven’t covered yet.

Takes an argument and returns its data type.

Expression:
1 type(value)
Statement:

1 userInput = input(”Enter a value: ")
2 print type(userInput)

There are many occasions where you will need to find out the data type
of a value. You use the type() function for this.

For example:

7.4. BUILT-IN FUNCTIONS AND METHODS 117

1 print type(1l9)

This code will return the variable type in the following format: <type’int’>.
The type function is useful when checking two variables of the same data

type.

118 CHAPTER 7. FUNCTIONS

Chapter 8

Lists and Oictionavdes

Lists in the real world are a collection of items. You may be used to shop-
ping lists or a list of instructions. They are used to remember a group of
items or so that you can work through steps in a certain order. Lists in
Python are very similar.

In Python lists are used to store a collection of data within a sequence. A
list can store several types of data, including strings, numbers, booleans
and even other lists.

Normally variables can only hold one value. Lists are useful as they allow
you to store several values in a single variable.

Lists are also known as arrays. Referring to a list as an array is very com-
mon.

8.1 Minecraft Exercises

8.1.1 Glitching Sign

SKILLS & Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

o lists » forloop

119

120 CHAPTER 8. LISTS AND DICTIONARIES

Lists store several values in a single variable. This is useful for animations
and movement. You're going to create a program that places a sign in
front of the player and makes it spin around erratically.

As introduced in the previous set of exercises, each block has 16 states
that can be accessed with an optional variable in the setBlock() and set-
Blocks() methods. Each of the the sign block’s states represent the angle of
the sign. So state O makes it face forward, state 1 makes it turn a bit, state
2 makes it turn more and so on until it’s spun all the way around.

Our program will use a list of integers and a loop to make the sign turn
erratically in front of the player.

Instructions

Complete the code below. Some code has been provided and the com-
ments describe what else you need to complete. The states list needs to
contain a list of integers for the sign to change angle. Use the description
above to help you plan what you need to do.

#connect to Minecraft

import time

get player position
variables for sign position

#
X
y
z
list of sign states
states = []

=
RrOwVoOoONOOUVTPhWNR

=

for state in states:
12 mc.setBlock(x, vy, 2z, 35, state)
13 time.sleep(0.2)

Try out different values in the list. See if you can get the sign to rotate
normally in one spin without glitching.

Extensions

o Alternate thelist between the same two values to make the sign wig-
gle

8.1. MINECRAFT EXERCISES 121

e Make a group of signs spin in sync

8.1.2 Block by Numbers

TG Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

» index positions

Painting by numbers is probably a better analogy.

Often for designers keeping things simple by using a limited number of
colours and materials is essential for good design. Think of a logo, it’s
easier to remember simpler logos with only a few colours and elements
than it is to remember complex logos.

In a similar way that designers use a limited colour palette, we're going
to use a limited palette of blocks to create a simple picture

Instructions

Here is a list of 5 different block types.
1 blocks = [47, 20, 103, 81, 57]

Using index positions place the blocks to create the following sequences:
» bookshelf, glass, melon, cactus, diamond
e diamond, diamond, cactus, melon, bookshelf
e melon, glass, melon, glass, melon
» bookshelf, bookshelf, glass, bookshelf, bookshelf
e diamond, cactus, melon, glass, bookshelf

Make sure you place the sequences of blocks on the same co-ordinates.

122 CHAPTER 8. LISTS AND DICTIONARIES
Extensions

» Change the values of the items in the array

8.1.3 Team Camera

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE) o
e lists e list indexes

Playing together with other people in Minecraft is fun. Of course you can
build things together. With the Minecraft Pi API you can also find out
where the other players are and watch them. We'll create a program that
allows you to follow other players with a camera.

ALERT: This exercise works best when you have several
players connected to the same game world.

ThegetPlayerEntityIds () methodreturnsalistofintegersthatiden-
tify each player currently in the game world. Here's the code used in a
program that posts the number of players connected:

4 players = mc.getPlayerEntityIds()
5 mc.postToChat(str(len(players)))

A set of method exist that control the player’s camera. The setFollow()
method can be used to make the camera follow another player around
the world. The player’s ID must be provided as an argument in order to
achieve this. For example:

8.1. MINECRAFT EXERCISES 123

4 playerId = 150
5 mc.camera.setFollow(playerId)

The setNormal () method sets the camera view to the normal view of the
player. An argument is optional. If no argument is provided the camera
will be set to the normal view of your player. When a player ID integer is
provided as an argument the camera will change to the normal view of
that player. For example:

4 mc.camera.setNormal()

Instructions

Using the getPlayerIds method getthelist of all the connected players.
Then using list indexes to access the player IDs, change the camera view
to follow the second player in the list. Wait 10 seconds before changing
the camera back to normal.

If you're playing by yourself set the camera to follow the first player in
the list.

Extensions

e Try smashing blocks or placing new ones while in another player’s
normal view. See how annoying you can be.

e Cycle through the camera views of all of the other players.

e Surround every player with a building.

8.1.4 Dictionary of Wool

SKILLS & Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

e dictionaries

124 CHAPTER 8. LISTS AND DICTIONARIES

In programming there are many different ways to achieve exactly the
same thing. In some circumstances for example we can use a dictionary
to serve the same purpose as in if statement.

Using a dictionary we are going to remake an exercise from earlier. On
page [pagenumber] we used a function with if statements to return the
different state IDs for wool based. A string was used to input the human
readable colour e.g. "red”.

Instructions

Here’s a tiny bit of code to start you off:
1 wool = {’pink’: 6}

Complete the dictionary of wool colours and add the following function-
ality to the above code:

1. Takes a colour in a string as user input
2. Prints the integer value of a wool colour based on user input

Extensions

» What happens when you provide a string that isn’t a dictionary key?

8.1.5 Hacking a Friend’s Game

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e Networks e IP Addresses
e Lists

You can play together with friends on Minecraft Pi. Players must be con-
nected together on the same network and can join each other’s games us-
ing the Join Game option on the menu.

8.1. MINECRAFT EXERCISES 125

Even better than playing together with your friends on Minecraft Pi is
hacking their games with the Minecraft APIand Python. Effectively you'll
be sending commands over the network to your friend’s version of Minecraft
as they're playing.

To complete this exercise you'll need to have several Raspberry Pi con-
nected on a the same network.

In order to connect to another Raspberry Pi, you'll need its IP address. An
IP address uniquely identifies each computer on a network, like a tele-
phone number:

1. Getyour friend to open a terminal i fconfig
2. Copydown theIPaddress, itshould look similartothis192.168.1.69

3. In a terminal on your computer test the connection between your
computer and your friend’s with ping [IP Address] e.g. ping
— 192.168.1.69

 If your terminal states that bytes have been received, the con-
nection is working

» If you get an error message, the connection is not working and
you must fix it before you can proceed

If the connection between your computer and your friend’s computer is
working you can now connect to their Minecraft game. Make sure they're
in the game world before proceeding.

Remember the two reusablelines of code that we use with every Minecraft
Pi program? Copy the second line and give it a new variable name. This
will be the connection to your friend’s Pi. Include their IP address as a
string argument in the create() method.

1 import mcpi.minecraft as minecraft
2 #local connection
3 mc = minecraft.Minecraft.create()
4 #friends connection, change IP address as
— appropriate
5 friendsGame =
— minecraft.Minecraft.create(”192.168.1.69")

N O

friendsGame.player.setTilePos(16,16,16)

You can now mess around with your friend’s game. Just replace the mc

126 CHAPTER 8. LISTS AND DICTIONARIES

variable name that usually proceeds a Minecraft function with the vari-
able name of your friend’s connection.

Instructions

After testing the above, complete the following:

1. Create a list of all of the IP addresses of Minecraft Pi players on your
network.

2. Connect to all of their games and store these connections in a list.
3. Using a loop to run any piece of code you want on all of the players

4. Use index positions to target specific people

Extensions

» Create multi-player games using this technique

8.2 Lists

Lists are sequences of data. This data can be a variety of things including
variables and even other lists.

8.2.1 Defining a list

Making a listis easy. You use the square brackets (also called parentheses)
to define a list. Within the list you can have any number of items, even
no items.

The entire list should be enclosed in square brackets and each item is sep-
arated by a comma.

8.2. LISTS 127

Defining a list

date~type

A list is a series of values. They are enclosed in square brackets [] and
separated by commas.

Expression:
1 [variablel, variable2, variable3]
Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”"Ninja”]

Forexample, we might want alist of ingredients for our noodle soup:
1 noodleSoup = ["water”, "soy sauce”, "spring
— onions”, "noodles”, "beef”]
You can create an empty list like this:
1 emptyList = []

You would use an empty list when you want to add values later in your
program.

8.2.2 Accessing a list item

To access a value in a list, we reference the item'’s position in the list,
known as it’s index.

Using our noodle soup example we can access the first item in the list like
this:

1 print noodleSoup[0] #prints the value "water”
Notice that the first index in a list is 0. The second item is index 1, third

is index 2 and so on. This is because computers count from 0 when using
lists, whereas we are used to counting from 1.

You may remember indexes from the substring section on page [pagenum-
ber]. This is exactly the same thing. Strings are a special type of list that

128 CHAPTER 8. LISTS AND DICTIONARIES

contains characters, so you can access their index position in exactly the
same way.

List Index

date~-type
Each item in a list is referenced with an index position. The index posi-

tions in a list start at 0. The value stored in each index can be accessed
using square brackets [].

Expression:
1 listName[index]
Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”Ninja”]
2 print team[l] #prints "Monkey”

8.2.3 Changing a list item

It is possible to change the value of an item in a list. To do this we use the
item’s index position and set it’s value in exactly the same way we would
set the value of a variable.

We want to change the beefin our noodle soup to chicken. The beefis fifth
item ourlist soit has anindex of 4. We can easily change it to chicken like
so:

1 noodleSoup[4] = "chicken”

8.3 List Capabilities and Functions

Lists have a set of functions that allow you to manipulate them. These
functions include common operations like adding an item to the list or
deleting an item.

Aswe can change the contents of lists in Python we describe them as "mu-
table”. Some other programming languages, such as Java, do not allow

8.3. LIST CAPABILITIES AND FUNCTIONS 129

Changing a list item

data~type
The values of list items can be changed using their index position and

setting their value in the same way that you’d change a variable’s value.

Expression:

1 listName[index] = value

Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”"Ninja”]

2 team[2] = "Snake”

you to modify lists once you create them, in which case you would de-
scribe the lists as immutable.

8.3.1 Adding an item

append)

method

The append() method adds a new item to the end of a list. The value of
the item is included as an argument.

Expression:

1 ”"String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

"BRAZIL"
country.lower() #value of "brazil”

3 country
4 country

You can add an item to the end of a list using the .append() function.

130 CHAPTER 8. LISTS AND DICTIONARIES

Our noodle soup would be nice with some vegetables. To do this we simply
use the .append() function:

1 noodleSoup.append(”vegetables”)

The noodle soup list now contains the a vegetables string as the last item
in the string.

8.3.2 List Length

When alistis used as an argument, the len() function returns the number
of items in that list.

Expression:
1 len(list)
Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”Ninja”]
2 print len(team) #value of 4

You can find out the number of items in a list by using the len() function.
For example:

1 noodleSoup = [”water”, "soy sauce”, ”"spring
— onions”, "noodles”, "beef”, "vegetables”]
2 print len(noodleSoup) #prints 6

When getting the length of a list, the computer counts from 1, not 0. This
is unlike when accessing items in a list using indexes, which counts from
0.

8.3.3 ListSlicing

We can access segments of a list using list slices. Slices return theitemsin
a list from one index position to another. For example we might want to

8.3. LIST CAPABILITIES AND FUNCTIONS 131

list slice

opeator
List slicing is used to access sections of a list, without access every item.

To slice a list the : operator is used.

Expression:
1 listName[startIndex:cutOffIndex]
Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”"Ninja”]
2 eliteTeam = team[0:2]
3 #value of [”"Pirate”, "Monkey”]

access all of the items from the third index position to the end and ignore
all other items.

To do this you use the normal syntax of a list with a colon. The colon goes
between two values. the first item states which item will be the first in the
new list. The second value is the index that the new list must cut off.

How would we print the second, third and fourth items (index positions
1, 2 and 3) in the noodle soup list? Simple:

1 print noodleSoup[l:4]

The value at the cut off index will not be included in the new list. It is
exclusive. In other words the item at this position will not be included;
the slice will stop before it reaches the item at this position. For example,
if you want the last item in the list to be index number 5, you would use 6
for the second value in your slice.

Slicing From Start or End
By leaving out one of the values in a list slice, you can either slice from
the start or to the end of the list.

To slice from the start you omit the first value:
1 firstHalf = noodleSoup[: 3]

132 CHAPTER 8. LISTS AND DICTIONARIES

To slice to the end you omit the second value:
1 secondHalf = noodleSoup[3 :]

8.3.4 Searching

Youcan find theindex position of avalue in alist using the index() method.

index()

method

The index() method is used to search for the value of an item in the list.
It takes the value that you want to find as an argument and returns its
index position. If there is no item in the list with that value you will
receive an error.

Expression:
1 listName.index(value)
Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”Ninja”]
2 search = team.index(”Robot”)
3 #value of 2

For example searching for the value "noodles” in our noodle soup list will
return the value 3 as it is in index 3 of our list:

1 noodleSoup = ["water”, "soy sauce”, ”"spring
— onions”, "noodles”, "beef”, "vegetables”]
2 whereAreTheNoodles = noodleSoup.index[”noodles”]

If the item you are searching for does not exist in the list you will get an
error.

8.3.5 Inserting an Item

It is possible to insert an item into a list. This will place it between two
existing items.

8.3. LIST CAPABILITIES AND FUNCTIONS 133

Insert()

method

To insert an item anywhere in a list you use the insert() method. This
method takes the index position and value of the item you want to insert
as arguments.

Expression:
1 listName.insert(index, value)
Statement:

1 team = ["Pirate”, "Monkey”, "Robot”, ”"Ninja”]
2 team.insert(2, ”Snake”)

To insert an item into a list we use the .insert() function. This function
takes two arguments, the index position where you want to insert the
item and the value that you want to insert.

For example, we want to add pepper into our noodle soup list, in the third
index position:

1 noodleSoup.insert(3, "pepper”)

The updated list will hold the following values after the insert:

1 ["water”, "soy sauce”, "spring onions”, "pepper”,
— "noodles”, "beef”, "vegetables”]

8.3.6 Removing an Item

Sometimes you want to get rid of an item in a list. We use the .remove()
function for this. Theindex value goes in the function as an argument.

For example we want to remove the beef item in index position 5 of our
noodleSoup list:

1 noodleSoup.remove(5)

Use this in combination with the .index() function if you want to find the
index position of an item and then remove it:

134 CHAPTER 8. LISTS AND DICTIONARIES

remove()

method

To remove an item from a list, the remove method is used. The index
position of the item to be removed needs to be provided as an argument.

Expression:
1 listName.remove (index)

Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”Ninja”]
2 team.remove(2)

1 beefPosition = noodleSoup.index(”beef”)
2 noodleSoup.remove (beefPosition)

8.3.7 Looping through a list

Accessing each item in a list is a very common task in programming. You
could copy and modify the code for each item in the list, however this is
inefficient and you will have to change the code every time you change
the length of the list.

A for loop can repeat the same block of code on every item of a list. This
allows reuse of a single piece of code without the need to copy and modify
it for every item in a list. To repeat the same code for every item in a list,
the for loop comes in very handy.

If we wanted to print every item in our noodle soup list we would use the
following code:

1 noodleSoup = [”water”, "soy sauce”, ”"spring
— onions”, "pepper”, "noodles”, "beef”,
— "vegetables”]

2
3 for ingredient in noodleSoup:
4 print ingredient

You use the for operator to tell Python you are using a loop.

8.3. LIST CAPABILITIES AND FUNCTIONS 135

for loop

statement

For loops exist so that you can repeat the same code several times. They
are useful with lists as they can access each item in a list and execute the
same code on each item.

Expression:
1 for item in list:
2 #body of loop
Statement:

1 team = [”"Pirate”, "Monkey”, "Robot”, ”"Ninja”]
2

3 for member in team:

4 print member

After the for keyword we have a variable. This variable represents the
item that the loop is currently using. The value will change every time
the loop starts again, until it has looped through each item in the list. The
first time the loop executes the value will be the same as the item in index
position 0, the second time it will be the value in index 1, third time is
index 2 and so on.

Theinoperator and thelistname atthe end of the statement tell the Python
which list you are using.

The loop will execute once for each item in the list.

8.3.8 Sorting a list

The sort() method rearranges a list values into ascending order.

To sort a list containing letters into we can use the sort() method:

1 letters = [Ilbll, Ildll, ”C”, Ilall]
2 letters.sort()

The order of the list will now be ["a”, "b”, "c”, "d"].

136 CHAPTER 8. LISTS AND DICTIONARIES

sort()
method

To sort a list into ascending order you use the .sort() function. This will
sort numbers based on their numerical value and strings in order of the
alphabet.

Expression:
1 list.sort()
Statement:

1 team = ["Pirate”, "Monkey”, "Robot”, ”Ninja”]
2 team.sort()

8.3.9 Adding Together Items in a List

Python has a built in function that adds all of the items in a list. It is called
the sum() function.

For example:

1 numbers = [1, 29, 7]
2 total = sum(numbers) #value of 37

The sum() function adds together all numerical values in a list

Expression:

1 sum(list)

Statement:
1 score = [1, 5, 8, 3]
2 total = sum(score) #value of 17

8.4. DICTIONARIES 137

8.4 Dictionaries

Dictionaries are a type of list that uses a different approach to the kind
we've been introduced to. Instead of using an index to identify items,
dictionaries identify items a set of keys that are defined by the program-
mer.

Likelists dictionaries are mutable, meaning that their content can be changed.

Dictionaries are lists that use programmer defined keys to reference the
items in the dictionary.

8.4.1 Defining a Dictionary

To define a dictionary you use a pair of curly brackets around the items
in the dictionary.

For example you can use a dictionary to describe a person. You can use
indexes like "name” and "favouriteAnimal” to store information about
the person like so:

1 person = {’'name;: "David”, 'age’: 42,
— 'favouriteAnimal’: "”Snake”, 'favouritePlace’:
— "Inside a cardboard box"}

Dictionary

list

Dictionaries are a type of list, where each item has a key and a value. The
key uniquely identifies each value in the dictionary.

Expression:
1 {'key’: item, 'key’: item}
Statement:

1 pilots = {'Wing’: "Heero”, 'Wing Zero’: "Quatre”,
— 'Heavy Arms’': "Trowa”}

138 CHAPTER 8. LISTS AND DICTIONARIES

A key uniquely identifies each item in a dictionary. Each key is paired
with a value using a colon. Items in the dictionary are then separated by
commas.

You may have noticed that using dictionaries makes it easier for the pro-
grammer to understand what each item in the list represents, i.e. a key
like "name” is more expressive of its purpose than an index number like
0.

8.4.2 Accessing Items in Dictionaries

To access the value of an item in a dictionary you use square brackets and
a key. The key must be a string, that is it must be in quotation marks.

Accessing a Dictionary Item

list

The values of items in a dictionary are accessed using their key values.
Expression:

1 dictionary|['key’]

Statement:

1 pilots = {'Wing’: "Heero”, 'Wing Zero’: "Quatre”,
— 'Heavy Arms’: "Trowa”}
2 print pilots['Wing’]

Forexample to access the value of the name key in the person dictionary:

1 agentName = person[’'name’] #value of "David”

8.4.3 Changing/Adding an Item with a Dictionary

To change anitem to a dictionary it’s pretty simple. You use square brack-
ets with a key to access the item and set it as you would a normal variable.
Adding a new item is also possible using this approach.

Wewanttochange thevalue of the ageitem in the persondictionary:

8.4. DICTIONARIES 139

Changing/Adding a Dictionary Item

list

The values of dictionary items are changed by accessing their key and
changing the value as you would a variable, i.e. with an =.

Expression:
1 dictionary[’'key’] = value
Statement:

1 pilots = {'Wing’: "Heero”, 'Wing Zero’: "Quatre”,
— 'Heavy Arms’': "Trowa”}

2 pilots[’Epyon’] = "Zechs” #adds a new pilot

3 pilots[’Wing Zero’'] = 'Heero’ #changes pilot

1 person[’age’] = 43

We also want to add a new item called location with the value "USS Dis-
covery”:

1 person['’location’] = "USS Discovery”

8.4.4 Deleting Items in Dictionaries

Sometimes you want to delete an item in a dictionary. You use the del
operator to do this.

For example, we want to delete the favouriteAnimal item in our person
list:

1 del dictionaryName[’'favouriteAnimal’]

140 CHAPTER 8. LISTS AND DICTIONARIES

del

operator
The del operator is used to delete an item in a dictionary.

Expression:
1 del dictionary['key’]

Statement:

1 pilots = {'Wing’: "Heero”, 'Wing Zero’: "Heero”,
— 'Hevay Arms’: "Trowa”}
2 del pilots[’'Wing’']

Chapter 9

functions and Lists

We've learned how to use functions, we’ve learned how to use lists. Let’s
combine the two.

In this chapter we’ll create our own functions to perform common tasks
on lists. We'll also introduce some useful, pre-made functions that are
used with lists.

9.1 Minecraft Exercises

9.1.1 Pixel Art

In this exercise you'll use multi-dimensional to create pixel-like images in
Minecraft. This may sound mind-blowing, but it's actually quite simple.
Take a simple pixel image like a space invader:

As you can see we have a square of smaller squares. Each smaller square
is called a pixel. A pixel in our image is either one of two colours, so we

141

142 CHAPTER 9. FUNCTIONS AND LISTS

can represent each square with a value, let’s say 1 and O:

—
(=]
<
<
<
<
<
<
S
<
<
<
o

=d
(=] K=}
< <
= k=l K=l K=
< <
< S
< <
~ <
~ <
< S
< <
< <
< S
(@) o)

o

—
—_
~
~
~
~
~
~
~
~
~
~
—

- o
o -
o el 08 BN Fel 0N Y Ne)
o e 08 B0 B8 BN el He)
o el 0N EEE BN BN el He)
o el 08 BN Fel 0N BN Ne)
=1 =] =] B &) k=] k=) k=)
— = =10

(@l 8 N BTN BN BN Ne) B

(@l 08 EEE EEE BN B Ne) R
[a—

@l fe) 0V BN 2N FEY Feol fe)

=
=] [=]

These values of 1s and Os can then be stored in a list for each row. Each
list containing a row can also be stored as an item in a larger list.

So a pixel image can be stored as a multi-dimensional list. Let’s see how

we can use this knowledge in Minecraft to create our own pixel art.

Instructions

Create a multi-dimensional list that contains the data for the above space
invader. You will need to nest one for loop inside of another for loop in
order to work through each item in the rows list and the items in each
TOW.

Extensions

e Multi-colour pixel images

9.1. MINECRAFT EXERCISES 143

9.1.2 Shadow Castle

TG Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

» forloop

Bad guys in video games hang out in evil looking buildings. Lava and ob-
sidian are pretty evil. Copying is even more evil. Let’s copy one of your
buildings and make it more evil looking.

Youshould really use the getBlocks method that comeswith the Minecraft
API. However, getBlocks () doesn’t work at the moment. We'll need to
make our own version to replace it. Here is our version that does the same
thing:

1 def getBlocks(xl, yl, zl1, x2, y2, z2):
2 xhigh = max(xl, x2)

3 xlow = min(xl, x2)

4 yvhigh = max(yl, y2)

5 ylow = min(yl, y2)

6 zhigh = max(zl, z2)

7 zlow = min(zl, z2)

8

9 blocks = []

10 for x in range(xhigh - xlow + 1):

11 blocks.append([])

12 for y in range(yhigh - ylow + 1):

13 blocks[x].append([1])

14 for z in range(zhigh - zlow + 1):

15 blocks[x][y].append([])

16 block = mc.getBlock(xlow + x, ylow
— + vy, zlow + z2)

17 blocks[x][y]1[z] = block

18 return blocks

144 CHAPTER 9. FUNCTIONS AND LISTS

Instructions

This exercise is meant to really challenge you. You need to work out how
to achieve a set of requirements with code. You have all of the knowledge
necessary, you just need to work out how to apply it.

The requirements of your program are:
e Copy a building and store in lists
» Replace all stone block in the copy with obsidian and water with lava
e Place the copy at a new location on the map

You may notice abug with blocks that have different states, like stairs and
wool. Modify the getBlocks () function that we’ve provided for you to
fix this bug.

9.2 Using Functions with Lists

As we have already covered, making your own functions means you can
reuse code; saving you time and effort. Lists can be used with functions
in a number of ways.

Lists can be provided as arguments, they can be used with loops nested in
functions and functions can be used to modify the items in a list.

9.2.1 Lists as Arguments

When using functions we can pass arguments to them. This allows us
to provide data to the function, which can change how the function be-
haves.

It is possible to use lists and dictionaries in functions as an argument
type. Remember back to when we were introduced to arguments in func-
tions?

9.2. USING FUNCTIONS WITH LISTS 145

The syntax for using a list as an argument is exactly the same as a normal
argument. As is the syntax for using dictionaries as an argument.

Let’s make a basic function that prints returns the item in index position
1ofalist:

1 def secondItem(list):

2 return list[1l]
3
4 animals = ["crow”, "mantis”, "snake”]

5 print secondItem(animals) #prints mantis

9.2.2 Loops and Lists in Functions

Loops can be used in functions to access each item within a list. The loop
works the same as the loop would outside of a function.

Here we have a simple function that uses a loop to print each item in a list
individually:

1 def printList(list):
for item in list:
print item

animals = [”"crow”, "mantis”, "snake”]
printList(animals)

9.2.3 Modifying Each List Item

Changing the values of items in list is a common task in programming.
Normally you would achieve this by accessing the index position of an
item and changing it’s value like so:

1 list[index] = newValue

Changing the value of every item in a list is also very common.

Weuse a forloop tomodify every item in a list, however we need to change
the for loop slightly to achieve this. Currently the for loop uses the value
of each item in the list every time it loops. To change the value we need to

146 CHAPTER 9. FUNCTIONS AND LISTS

use the index position of the item instead of its value. The range() func-
tion combined with the len() function allows us to do this.

The range() function creates a list of integers between two arguments.
The start index and the position it will cut off. The list it creates can be
used to represent the index positions of our list.

range() - Two Arguments
j%wﬂaw

The range function creates a list of integers. It can take one, two or three
arguments. When two are provided the first will determine the first

value in the list, the second is where the list will cut off.

Expression:
1 range(startIndex, cutOffIndex)
Statement:

1 #prints the values 0 to 9
2 for index in range(0,10):
3 print index

For example...
1 aList = range(0, 5)

..would create the list:
1 aList = [0, 1, 2, 3, 4]

To create a loop that uses the index positions of a list we use the following
code:

1 for item in range(0, len(listName)):
2 #body of for loop

This way the for loop sets the item variable to the index position of the list
instead of setting it to its value. For example we could double the value of
every item in a list like so:

1 numbers = [3, 6, 2, 8]
2 for index in range(0, len(numbers)):
3 numbers[index] = numbers[index] * 2

9.2. USING FUNCTIONS WITH LISTS 147

This would change the values of the numbers list to:
1 [6, 12, 4, 16]

9.2.4 Functions to Modify Each Item in a List

You can enclose a loop within a function to modify every item in a list,
making the code reusable. Let’s concatenate the string "codename: ” to
the start of every item in our list, then return the list:

1 def codeName(list):

2 for index in range(0, len(list)):

3 list[index] = "codename: ” + list[index]
4 animals = ["crow”, "foxhound”, "snake”]

5 animalsWithCodenames = codeName(animals)

9.2.5 More On range()

range() - One Argument

Lﬁbuﬂbn

The range function creates a list of integers. It can take one, two or three
arguments. When one argument is provided it will determine the integer

value that the list will cut off.

Expression:
1 range(cutOffvalue)
Statement:

1 #prints the values 0 to 9
2 for index in range(10):
3 print index

The range() function, as we know, creates an list of integers. When used
with a for loop and the len() function, It is useful for representing the in-
dex positions of another list.

148 CHAPTER 9. FUNCTIONS AND LISTS

The range() function can be provided with either 1, 2 or 3 arguments. This
changes how the function works.

When using one argument the function will start the list with the the
value 0 and cut off at the value of the argument provided.

For example:

1 agents = range(5) # creates list [0, 1, 2, 3, 4]

When using two arguments the list will start at the first argument pro-
vided and cut off before the second argument. For example:

1 agents = range(2, 5) \# creates [2, 3, 4]

With three arguments, the third argument states the size of each incre-
ment.

range() - Three Arguments
Sunction

The range function creates a list of integers. It can take one, two or three
arguments. When three argument are provided, the first will be the
starting value, the second the cut off value and the third is the increment
between each value.

Expression:
1 range(startValue,cutOffvalue,increment)
Statement:

1 #prints the values 0,2,4,6,8
2 for index in range(0,10,2):
3 print index

In other words the value of each new item is usually bigger than the pre-
vious value by 1. By changing the increment you can make each next item
bigger by the value of the increment. For example this list adds 2 to the
previous value to get the next value. We say it increments by two:

1 agents = range(3, 10, 2) \# creates [3, 5, 7, 9]

9.2. USING FUNCTIONS WITH LISTS 149

9.2.6 Converting a List into a String

Using the join() method you can combine all of the items in a list into a
single string.

Join

method

The join function combines all of the items in a list into a string. It takes
the list you want to use as an argument. The character that you want

to divide each item in the new string precedes the method using dot
notation.

Expression:
1 "divider”.join(list)
Statement:

1 shoppingList = [”shoes”, "hat”, "trousers”]
2 print ”/”.join(shopping)
3 #prints shoes/hat/trousers

The first part of the expression states the divider you want to use between
each string, for example a space between each item would be ” ”, or if you

want tousea comma ”,”. You then use dot notation and the join function.

The list you want to join is used as an argument by the join function.

For example:

1 cats = ["fluffy”, "charles”, "igor”, "ginger”]
2 print ” + ”.join(cats)

This will print "fluffly + charles + igor + ginger”.

9.2.7 Splitting a String into a List

It is possible to split a string into a list of strings. To do this we use the
split() method on a string. It will return the string as a list.

By default the function will split the string using spaces. It is possible to
split the string using another character by providing it as an argument.

150 CHAPTER 9. FUNCTIONS AND LISTS

Split

method

The split() method splits a string into a list. When no arguments are
used the method creates a new item from the string every time it finds
a space. When a string argument is provided the method will split the
main string whenever it finds the argument string.

Expression:
1 "string”.split(”divider”)
Statement:

sentence = ”"Do a barrell roll”
2 myList = sentence.split()

3 #creates a list with wvalues:

4 #["Do”, "a", "barrell”, "roll”]

=

For example using ”,” as an argument would split the string into a new
item every time a comma is found in the string.

For example:

1 instructions = ”Strip the paint/sand the
— wood/apply a primer/apply the paint”

2 instructionsAsList = instructions.split(”/")
3 #value of:
4 ["Strip the paint”, "sand the wood”, "apply a

— primer”, "apply the paint”]

9.3 Using Multiple Lists

Within your program you can use multiple lists together for a number
of reasons. It is possible to include lists within lists, combine lists into a
single list and use an undefined number of lists as arguments with func-
tions. We'll cover these uses for lists in this section.

9.3. USING MULTIPLE LISTS 151

9.3.1 Multi-dimensional Lists

Lists can contain any variable type, including other lists.

Think of a list like a number of cardboard boxes. Inside the first box there
is a snake, the second box contains a banana and the third a robot. In this
example each box represents an index of a list and the item inside it is the
value. Boxes can also contain boxes. In the first box we now have 3 boxes,
each with a different animal inside. In the same way boxes can contain
other boxes, lists can contain other lists.

Here we represent each box from the above example as a list containing
another list:

1 boxes = [[”Snake”, "Cat”, "Bear”], "banana”,
— "robot”]

To access the value of a list with a list we use two sets of square brackets.
The first set of brackets contains the index position of the outer list and
the second set accesses the index position of the inner lists. To print the
"Cat” item in the above example we would use the following:

1 print boxes[0][1l]

Any number of lists can be nested within other lists. You have just seen
a two-dimensional list. There are also three-dimensional lists and so on.
Lists within can be disorientating so it is recommended you master two-
dimensional lists before attempting anything more complex.

9.3.2 Joining Two Lists

When adding two numbers or combining two strings we use the + opera-
tor. The + operator can also be used to join two lists.

By joining the two lists we create a new list that contains all of the ele-
ments from both lists.

Say we have a list of electronic parts and we want to join it with another
list of electronic parts to create a new list:

1 gps = ["gps module”, "circuit board”, "wires”]
2 arduino = ["arduino”, "wires”, "battery”, "jack”]
3 tracker = gps + arduino

152 CHAPTER 9. FUNCTIONS AND LISTS

Multi-Dimensional List

data~type
A mutli-dimensional list is a list within a list. It is defined by by putting

one list inside of another. The values of list items within the inner
list are accessed using two or more sets of square brackets. The first
set of brackets represents the outerlist and the second set is the inner list.

Expression:
1 1list[]1[]
Statement:

1 team = [[”Jim”, "Cat”, "Milk”], "Monkey”, "Robot”,
— "Ninja”]

2 print team[0][2] #prints Milk

3 print team[2] #prints Monkey

Joining Lists +

operaton
The + operator can be used to join two lists.

Expression:
1 list + list
Statement:

1 clothesList = [”"shoes”, "hat”, "trousers”]
2 foodList = [”"cake”, "butter”, "fish”]
3 shoppingList = clothesList + foodList

The tracker list contains all items from both lists:
1 ["gps module”, "circuit board”, "wires”,

— "arduino”, "wires”, "battery”, "jack”]
A function to combine two lists would look like this:

1 def combineLists(listl, list2):
2 return listl + list2

9.3. USING MULTIPLE LISTS 153

9.3.3 Using an Undefined Number of Lists

You may remember the use of the * operators when defining arguments
in functions.

The * operator tells the function to expect an undefined number of argu-
ments:

1 def functionName(*argument):
2 #body of function

When the function receives the arguments it converts them into a single
list.

It is possible to use the * operator to pass a function any number of lists.
For example:

1 def packageElectronics(*list):

2 return list

3

4 gps = ["gps module”, "circuit board”, "wires”]

5 arduino = [”"arduino”, "wires”, "battery”, "jack”]
6 wireless = ["Electric Imp”, "April”]

7

8

parcel = packageElectronics(gps, arduino, wireless)

Thevaluereturned by this functionis thelistargument without any changes
made to it. The value it returns in this example would be:

1 [["gps module”, "circuit board”, "wires”],
— ["arduino”, "wires”, "battery”, "jack”],
— ["Electric Imp”, "April”]]

If youlook carefully you will see that there is onelist with threelists inside
ofit. The syntax is not different from the syntax of a regular list: each list
starts with [allitems are seperated by commas and the each list ends with

].

This is an example of a list within a list. A multi-dimensional list.

154 CHAPTER 9. FUNCTIONS AND LISTS

Chapter 10

Loops

Loops make it easy to repeat the same piece of code several times.

They have slightly different benefits to functions: functions allow you to
reuse pieces of code whereas loops allow you repeat pieces of code.

You have already encountered forloops in thelists section. In this chapter
we will cover for loops in more depth as well as introduce a new type of
loop.

Iteration and to iterate are other common ways of saying that loops re-
peat.

10.1 Minecraft Exercises

10.1.1 Midas Touch

TG Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

» while loop » nested if statement

Midas is a king of legend. Everything he touched turned to gold. You are
going to write a program that changes every block below the player to

155

156 CHAPTER 10. LOOPS

gold. However, not every block will turn to gold. You need to make sure
air and water stay the same. The gold block has a value of 41.

Instructions

Copy and complete the following code using the comments as a guide:

1 # connect to Minecraft
2 while True:

3 # get the player’s position

4 # if the block below the player is not water
— Oor air:

5 # change the block to gold

To exit theinfinite loop you need to stop the program. This can be achieved
using control + cin a terminal or the stop button in some IDEs.

10.1.2 Tree Fighter

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE » while loops e variables
» forloops addition

The Minecraft pol1BlockHits method returns a list of blocks that the
player has hit with their sword using the right click on their mouse. As it
returns a list we can use this method with a for loop to run some code for
every block hit.

As the for loop will end once it has completed all of the items in the block
hits list we also need to use a while loop to make the for loop repeat a few
times every second. The basic code looks like this:

1 import mcpi.minecraft as minecraft
2 import time

3 mc = minecraft.Minecraft.create()
4

10.1. MINECRAFT EXERCISES 157

5 while True:
6 hits = mc.events.pollBlockHits()
7 for hit in hits:
8 print str(hit.pos.x) + ", " +
— str(hit.pos.y) + ”, ” + str(hit.pos.z)
9 time.sleep(0.1)

This will print out the position of any block hits and the type of block you
have hit. Sleep is included so that the loop does not repeat too quickly and
make the game run really slowly.

Instructions

Your task is to write a mini-game where the player has to right click on
twenty pieces of tree wood with their sword.

Modify the above code so that

» thewhileloop stops after the player hasright clicked on twenty pieces
of tree wood

e the number of wood hits is posted to chat after every hit

o aftertwenty hitsa congratulations message is posted to chat and the
program stops

e adapt it so that the player can delete blocks even when the world is
immutable

Extensions

e Randomly change the block type when you hit a block

o The player can currently cheat by clicking on the same piece of wood
several times. Keep a record of which blocks the player has hit and
stop them from repeating the same block.

158 CHAPTER 10. LOOPS

10.1.3 Chat with a Loop

Skills and knowledge we’ll practice in this exercise:

SKILLS &

KNOWLEDGE e while loop conditions
e break statement e input/output

Earlier in the book when you were introduced to strings, input and out-
put, you were given the task to create a program that posts the user’s mes-
sage to chat. Although this program was really useful, it was quite annoy-
ing that you had to rerun the program every time you wanted to post a
new message.

In this exercise you’'ll improve your chat program using a while loop so
that users can post as many messages as they want without the need to
restart the program.

Instructions

Create a chat program to meet the following requirements:
e User name requested at the start of the program
» User can input message from the terminal
e Posts chat message from the users to Minecraft
o User name is included on all messages
» Program repeats request for message
» Notifications are posted when the user joins and leaves the chat
e When "/exit” is input the user will exit the chat

For hints on the Python concepts you'll need to use, look in the exercise
objectives.

10.1. MINECRAFT EXERCISES 159

Extensions

10.1.4 Pyramid

TG Skills and knowledge we’ll practice in this exercise:

KNOWLEDGE

» Nested for loops

Loops arereally useful for creating structures and building. You can build
really complex things by using code. For example the following code builds
a triangle:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()

pos = mc.player.getTilePos()
X = pos.x + 2

Y = pos.y

Z = pPOS.z

base = 9

10 height = 0

11 sandstone = 24

12

13 while base - (2 * height) > O0:

14 for block in range(base - (2 * height)):

15 mc.setBlock(x + block + height, y +
— height, 2z, sandstone)

16 height += 1

Instructions

Modify the triangle code so thatitbuilds a Pyramid in the Minecraft world.

160 CHAPTER 10. LOOPS
Extensions

 hollow it out and include floors every 5 blocks.

10.1.5 Hot and Cold

Skills and knowledge we’ll practice in this exercise:

SKILLS & « while loop o elif statements

e conditions e else statements
o if statements

KNOWLEDGE

Hot and cold is a game you might have played as a child. The idea is that
your friend hides an object and you must find it. Your friend gives you
hints based on how far away from the object you are. The closer you are
the hotter you are and when you're further away you're colder. On fire
is means you're right next to the object. Freezing means you're really far
away.

Instructions

Using your knowledge of Python and the Minecraft Pi AP, create a pro-
gram that reacreates the Hot and Cold game in Minecraft. The player’s
objective is to find and smash a diamond block that has been placed ran-
domly in the game world.

You program must end when the player finds and smashes the diamond
block. Use Pythagorus to calculate the player’s distance to the diamond
block.

The code to place a block in a random location has been written for you.
It makes sure the diamond block is not placed underground.

1 import mcpi.minecraft as minecraft
2 import math

3 import time

4 import random

10.1. MINECRAFT EXERCISES 161

5 mc = minecraft.Minecraft.create()

6

7 tileX = random.randint(-127, 127)

8 tileZ = random.randint(-127, 127)

9 tileY = mc.getHeight(tileX, tileZ)
10

11 diamond = 57

12 block = diamond

13 mc.setBlock(tileX, tileY, tileZ, diamond)
14 mc.postToChat(”Block set”)

Extensions

» Hide blocks of dynamite across the map and give them 5 minutes to
find them and disarm them using hot and cold

10.1.6 Adapt Exercises

Several exercises from previous lessons required you to rerun a program
every time you wanted it to do something. These exercises would benefit
from a infinite for loop. Here is a list of exercises that you can adapt to
loop:

» Set Block Below Player
e Chat

e Swimming

e Bring us a Shrubbery
e Take a Shower

e Secret Passage

e Arming TNT

e Glitching Signs

o Team Camera

162 CHAPTER 10. LOOPS

While loop
While loops iterate over a block of code as long as a condition is True.

Expression:

1 while conditon:
2 #body of while

Statement:

1 userPassword = raw_input(”Enter Password: ")

2 password = "Mistletoe”

3 while password != userPassword:

4 userPassword = raw_input(”Enter Password: ")
5 print "Password accepted”

When the condition is True the while loop will iterate. The while state-
ment works in the following steps:

1. Checks whether the condition is True
2. If the condition is true
(a) Execute the body of code
(b) Repeatstep1
3. If the condition is False
(@) Ignore the body of code
(b) Continue to the line after the while loop block

10.2. WHILE LOOP 163

While loops are used to repeat blocks of code. They will repeat as long as
a condition is True.

This is similar to an if statement. However, the code in the if statement
will only execute at most once, whereas the while loop can iterate many
times.

For example, this code uses a while loop to print the numbers 1 to 5:

1 count =1

2 while count <= 5:

3 print count

4 count = count + 1

Any code you want can go inside the body of the loop, including other
loops.

This diagram explains each iteration of the whileloop: [Draw a flowchart]

10.2.1 Boolean Operators and While Loops

Boolean operators, like and, or and not, can be used with a while loop
when you want the loop to use more than one condition.

For example this loop will iterate while the user has not input the cor-
rect password and has had 3 or less attempts to input the correct pass-
word:

password = "cats”
input = raw input(”Please enter the password”)
attempts =1

while input != password and attempts <= 3:
attempts + 1
input = raw_input(”Incorrect. Please enter the
— password”)

N ouhWN R

10.2.2 Avoiding Infinite Loops

It is very important that the boolean condition will eventually become
False, otherwise theloop will iterate forever and your computer may crash.

164 CHAPTER 10. LOOPS

There are also some instances where you may want an infinite loop. For
example video games use an infinite loop to check user input.

Whether or not you meant to create an inifinite loop, there is a way to get
out of it. Pressing control-c while in the command line that is running
your program will exit the program and stop it executing.

10.2.3 Break

Sometimes you will want your code to immediately exit a while loop in-
stead of waiting for the condition to become True. The break statement
allows you to do this.

break

opeator
The break statement is used in a while loop to immediately exit the loop.

Expression:

1 while conditon:
2 #body of while
3 break

Statement:

1 userPassword = raw_ input(”Enter Password: ")

2 password = "Mistletoe”

3 count = 0

4 while password != userPassword:

5 userPassword = raw_input(”Enter Password: ")
6 count += 1

7 if count > 4:

8 break

9 print "Password accepted”

The break statement immediately exits a while loop.

It is common to put the break statement within an if statement nested
within the loop. This will immediately stop the loop’s execution when the
if condition is met. For example this code will loop infinitely, ask the user

10.2. WHILE LOOP 165

for input and print that input. The only way to stop the loop is to type
"exit”:

1 while True:

2 userInput = raw input(”Enter a command”)
3 if userInput = "exit”:

4 break

5 print userInput

10.2.4 while/else

Like anifstatement, the whileloop can be used with an else statement.

else

statement
When used with a while loop an else statement will only execute its body

when the while loop’s condition is False. It will not execute when a break
statement is used.

Expression:

1 while conditon:

2 #body of while
3 else:

4 #body of else

Statement:

1 temperature = raw input(”Enter the temperature: ")
2 while temperature < 100:

3 print "Water is not boiling”

4 temperature = raw_input(”Enter the
— temperature: ")

5 else:

6 print "Water is boiling”

The else statement will execute when the condition of a while statement
is False. Unlike the body of a while statement, the else statement will ex-
ecute once and only once. For example:

166 CHAPTER 10. LOOPS

1 message = raw_input(”Please enter a message”)
2

3 while message != "\exit”:

4 print message

5 else:

6 print "User has left the chat”

When the break statement is used, the body of the else statement will not
execute.

10.3 For Loops

We have already been introduced to for loops in the lists section. We'll
recover the basics and go into more depth.

loop

The for loop iterates through items in a list.

Expression:

1 for item in list:

2 #body of code
Statement:

1 horsePrices = [1, 8, 5, 4]

2 total =0
3 for horse in horsePrices:
4 total += horse

The forloopiterates through eachiteminalist untilthe end of thelist.

Lists can contain any number of items of any data type. The for loop will
iterate through each one in index order.

To generate a list containing indexed integers we use the range() function
(section [number] to refresh your memory).

10.3. FOR LOOPS 167

10.3.1 Strings as Lists

Strings can be treated like lists. We can access individual characters in a
string using their index.

This means we can manipulate strings with for loops like we would a list.
The following code uses a for loop to replace every letter a in string with
the letter u:

orignalString = "cats”
newString = ""

for letter in originalString:
if letter == "a”
newString = newString + "u”
else
newString = newString + letter
print newString

VOOV, WN PR

The value of newString after the forloop has executed would be "cuts”.

10.3.2 Looping Over a Dictionary

It is also possible to use a for loop with a dictionary.

When using a dictionary with a for loop the syntax is the same, however
the key value will be used as the variable each time the loop iterates.

For example, the following code prints the for loop’s variable each time
the loop iterates. In this case it will print the key of each item in the dic-
tionary:

1 inventory = {’'tranquilisers’: 5, ’'rations’: 2,
— 'boxes’: 1}

2

for key in inventory:
print key

W

This example will print:

1 tranquilisers
2 rations
3 boxes

168 CHAPTER 10. LOOPS

To print the value access the value associated with each you need to use
the dictionary[key] syntax as we covered earlier. Let’s change the code so
it prints the value each time with the key:

1 inventory = {’'tranquilisers’: 5, ’'rations’: 2,
— 'boxes’: 1}

2

3 for key in inventory:

4 print key + ” ” + inventory[key]

This example will now print:

1 tranquilisers 5
2 rations 2
3 boxes 1

10.3.3 Using Indexes with For Loops

When using a for loop, not being able to access the index of a list was a
problem that we came across earlier. We temporarily solved the problem
with the range() function, however there is another way.

The enumerate() function provides a corresponding index for each item
in a list.

enumerate

Junction

The enumerate function is used with for loops to access the index posi-
tion as well as the corresponding value.

Expression:

1 for index, value in enumerate(list):

2 #body of code

Statement:

1 steps = [”"place blue portal”, "place orange

— portal”, "walk through portal”]
2 for index, value in enumerate(steps):
3 print str(index) + ” " + steps

10.3. FOR LOOPS 169

The syntax is a slight modification on the for loop that we're used to. The
forloop statement now has two variables — the first is the index, the sec-
ond is the value — and the enumerate function now surrounds the list
that the loop is using.

Here's an example that prints out the index and the value of each item in
a list:

1 foxhound = [”Decoy Octopus”, "Psycho Mantis”,
— "Revolver Ocelot”, "Sniper Wolf”, "Liquid
— Snake”, "Vulcan Raven”]

2

3 for index, item in enumerate(foxhound):

4 print str(index) + ” " + item

This will print:

0 Decoy Octopus
Psycho Mantis
Revolver Ocelot
Sniper Wolf
Liquid Snake
Vulcan Raven

oVl WN PR
(G2 SOV I \SI

10.3.4 Zipping Two Lists

It is possible to iterate over two lists simultaneously.

The zip() function creates sets of items from two or more lists. As a for
loop iterates it will move through each index of all zipped lists simultane-
ously.

The syntax once again varies slightly from the regular for loop. There will
be the same amount of variables defined in the loop statement as argu-
ments sent to the zip() function. For example, if you have two arguments
in the zip() statement you will have two variables; 4 arguments, 4 vari-
ables; and so on.

In the following example we zip two lists and print their output together:

1 title = ["liquid”, "decoy”, "psycho”, "revolver”]
2 name = ["snake”, "octopus”, "mantis”, "ocelot”]

3

4 for codeTitle, codeName in zip(title, name):

170 CHAPTER 10. LOOPS

The zip function allows you to use the values of two lists simultaneously
in a for loop.

Expression:

1 for iteml, item2 in zip(listl, list2):

2 #body of code

Statement:

1 adjectives = [”sleepy”, "hungry”, "angry”]
2 nouns = ["rock”, "octopus”, "spanner”]

3

4 for adjective, noun in zip(adjectives, nouns):
5 print adjective + ” ” + noun

5 print codeTitle + ” " + codeName

This will output:

1 liquid snake

2 decoy octopus

3 psycho mantis

4 revolver ocelot

When one list contains more items than the other, the for loop will iter-
ate the same number of times as the length of the shorter list. So if you
zipped a list of 5 items and another of 3, the for loop would only iterate 3
times.

10.3.5 For/Else Loops

The else statement can also be used with a for loop. It works differently
to the else statement used in the while loop and the if statement.

The else statement, when used with a for loop, will execute when the for
loop ends naturally. As long as the for loop reaches the end of it’s list, it
will execute the body of the else statement.

10.3. FOR LOOPS 171

else

operatorn
When used with a for loop, an else statement will execute when the for

loop has reached the end of its list. It will not execute if the for loop stops
due to a break statement.

Expression:

1 for items in list:

2 #body of for loop

3 else:

4 #body of else statement

Statement:

1 group = ["Jatinder”, "Steve”, "David”]
2 for member in group:

3 print member

4 else:

5 print ”"list complete”
[diagram]

For example

1 foxhound = [”Decoy Octopus”, "Psycho Mantis”,
— "Revolver Ocelot”, ”Sniper Wolf”, ”Liquid
— Snake”, "Solid Snake”, "Vulcan Raven”]
2
3 for item in foxhound:
4 print item
5 else
6 print "Those are the members of team FOXHOUND”

This would print:

Decoy Octopus

Psycho Mantis

Revolver Ocelot

Sniper Wolf

Liquid Snake

Vulcan Raven

Those are the members of team FOXHOUND

N ouh WwN R

172 CHAPTER 10. LOOPS

10.3.6 Breaking a For/Else Loop

Using a break statement to exit a for loop is one way to prevent the else
statement from executing.

The following example slightly modifies the above example. It incorpo-
rates a break statement that is nested within an if statement. The loop
will break if the current item is "Solid Snake”:

1 foxhound = [”Decoy Octopus”, "Psycho Mantis”,
— "Revolver Ocelot”, "Sniper Wolf”, "Liquid
— Snake”, "Solid Snake”, "Vulcan Raven”]

2

3 for item in foxhound:

4 if item == ”"Solid Snake”:

5 print ”Solid Snake is longer a member of
— FOXHOUND"

6 break

7 else

8 print item

9 else

10 print "Those are the members of team FOXHOUND”

Can you work out what the output is?

[diagram including break statement]

Chapter 11
Advanced Topics in Python

This chapter covers advanced topics. In particular we'll cover list meth-
ods, tuples, list comprehension, list slicing and lambdas.

All of these topics require a thorough understanding oflists, so make sure
you understand them.

11.1 Minecraft Exercises

Reflect a building stored in a list.

Slice a building.

11.2 Iterating Over Data Structures

We have already covered methods of iterating lists and dictionaries us-
ing for loops. There are also other ways of iterating these data struc-
tures.

In this section we will cover techniques to iterate over dictionaries using
functions. We will also be introduced to a third type of list, a tuple.

173

174 CHAPTER 11. ADVANCED TOPICS IN PYTHON

11.2.1 items()

When used with a dictionary, the items() method will return all of the key
and value pairs of the dictionary. The items will be in no particular order
and are returned as a list of tuples.

.items

method
The items method returns a list of tuples containing every item stored in
a dictionary.

Expression:
1 dictionaryName.items()
Statement:

1 print dictionary.items()

We have items in our inventory. The code creates a dictionary to repre-
sent the inventory. Each item has a name, represented by the key, and
a quantity. The items() method creates a new list of all the items in the
inventory:
1 inventory = {’'tranquilisers’: 5, ’'rations’: 2,

— 'boxes’: 1}
2 inventoryMenu = inventory.items()

This will set the inventoryMenu value to:
1 [(u'boxes’, 1), (u’'tranquilisers’, 5),
— (u'rations’, 2)]

You'll notice that there is a a list with three items in it. What you’ll not
recognise is that each item is a tuple, a special type of list, which we'll
look at now.

11.2.2 Tuples

Tuples are a type of list that areimmutable. Meaning they can’tbe changed.
Like other lists they are a sequence of items of any variable type. Tuples

11.2. ITERATING OVER DATA STRUCTURES 175

use () for their syntax.

tuple

list

A tuple is type of list that can’t be changed after it is created. It used
regular brackets ()

Expression:

1 (item, item)
Statement:

1 tuple = (1, 5, 7)

Here's an example. Every day of every week we have a budget for food.
As this will never change we can represent this a tuple:

1 budget = (5.17, 5.20, 4.56, 53.64, 9.58, 6.41,
— 2.20)

To write a tuple including a single value you must include a comma:
1 dailyBudget = (5.12,)

When defining a tuple the brackets are optional, so you can just define a
tuple by placing commas between values.

1 budget = 5.17, 5.20, 4.56, 53.64, 9.58, 6.41, 2.20

To access values of tuples you use the [index] brackets notation that you
would with regularlists. You can alsouseslicing as you would normally.

The main difference between lists and tuples is that are immutable: you
cannot change the contents of a tuple. For example you cannot use ap-
pend to the end of the tuple, delete items or update any values.

11.2.3 keys()

The keys() method will return all of the keys of a dictionary in no partic-
ular order. It will return the keys as a list.

Let’s go back to our inventory example:

176 CHAPTER 11. ADVANCED TOPICS IN PYTHON

keys
method

The keys method returns a lists of all the keys stored in a dictionary.

Expression:

1 dictionary.keys()
Statement:

1 print dictionary.keys()

1 inventory = {’'tranquilisers’: 5, ’'rations’: 2,
— 'boxes’: 1}
2 inventoryKeys = inventory.keys()

The value of the inventoryKeys variable will be:

1 ['boxes’, 'tranquilisers’, ’'rations’]

Notice how the keys are not in any particular order.

11.2.4 values()

The values() method returns all of the values in a dictionary as an un-
ordered list.

Using our inventory example:

1 inventory = {’'tranquilisers’: 5, ’‘rations’: 2,
— 'boxes’: 1}
2 inventoryValues = inventory.values()

The value of the inventoryValues variable is:

1 [1, 5, 2]

Once again, notice how the list is in no particular order.

11.3. LIST COMPREHENSION 177

values

method
The values method returns a list of all of the values stored in a dictionary.

Expression:
1 dictionary.values()
Statement:

1 print dictionary.values()

11.3 List Comprehension

List comprehension can be summarised as a shorthand method of gener-
ating complex lists.

You have already been introduced to the range() function, which gener-
ates a list of integers based on the arguments you provide it. List compre-
hension enables you to make more complexlists based on conditions.

11.3.1 List Comprehension Syntax

List comprehension uses a combination of the for, in and if operators to
create alist of values if the values meet certain conditions. It enables you
to filter the values of one list using a condition and create a new list from
the result.

For example you could create a list containing all of your party guest’s
that aren’t called Jim:
1 party = [”"Jim”, "Jim”, "Catherine”, ”"Jim”, "Anita”]
2 partyWithoutJim = [guest for guest in party if

— guest != "Jim"]

ThepartyWithoutJimwould containthevalue ["Catherine”, "Anita”]

The two variables either side of the for operator must have the same name.
These variables can be called whatever you want. A list follows the in op-
erator and a condition must follow the if operator.

178 CHAPTER 11. ADVANCED TOPICS IN PYTHON

list comprehension

EX{INESSLOI

List comprehension is shorthand for filtering one list using a condition
and generating a new list from the result.

Expression:

1 [variable for variable in list if condition]

Statement:
1 androidNumber = [1, 6, 2, 5, 8, 2]
2 newAndroids = [item for item in androidNumber if

— item > 3]
3 # newAndroids contains [6, 5, 8]

Only values in the list that meet the condition at the end of the statement
will be added to the new list.

List comprehension is more flexible than the range() function as it can
use comparators and boolean operators.

11.3.2 List Comprehension With Operators

List comprehension allows you to use operators on values of the new list
as it is being created. For example we could add the string "Hi, ” to all of
the guests who are not called jim:
1 party = [”"Jim”, "Jim”, "Catherine”, "Jim”, "Anita”]
2 partyWithoutJim = [”"Hi, ” + guest for guest in

— party if guest != "Jim”]

11.4 List Slicing

List slicing is used when we only want segment of a list. We have already
met list slicing in a previous section. There are a couple more things to
learn about list slicing.

11.4. LIST SLICING 179

11.4.1 Stride

So far we have only used list slicing where we want all of the values be-
tween one index in a list and another. We can also access values in gaps.
For example you can access every other item or you could access every
fifth item. We do this using strides.

List Slice Stride

opeator
List slicing returns a segment of a list. Strides can be used to only return
every 2nd, 3rd, 4th value and so on.

Expression:

1 variableName = list[startIndex : cutOffIndex :
— stride]

Statement:

1 patriots = [”"Big Boss”, "Dr. Clark”, "Zero”,
— "Donald Anderson”]

2 partOfThePatriots = patriots[l:4:2]

3 print partOfThePatriots

Strides state theincrement between each item when we’re slicing a list.

The start index is inclusive, it will be included in the list. The cut off index
is exclusive, it will not be included in the list.

For example, we could take every third person from a list:

1 team = ["Terra”, "Locke”, "Edgar”, "Sabin”,
— "Shadow”, ”Cyan”, "Gau”, "Celes”, "Setzer”,
(SN IIMog"]

2 party = team[0:10:3]

11.4.2 Omitting Index Arguments

It is possible to omit any of the three indices when you use a list slice. For
example, you can omit the start index like so:

180 CHAPTER 11. ADVANCED TOPICS IN PYTHON
1 party = [:10:3]

Python has defaults for each of the indices in a slice:

e The start index is default of 0, meaning that if you omit the start
index the slice will start from the beginning of the list.

» The cut off index has a default of the last index in the list + 1. Omit-
ting the cut off means that the slice always reaches the end of the
list.

e The default stride is 1, so it will move through each item by default.

This is useful in many circumstances. If you want slice from the start and
to the end of a list, while using every other item:

1 alternateltems = [::2]

11.4.3 Reversing a List

The stride of a slice can either be positive or negative. As we have seen a
positive stride will work through in ascending index order.

A negative stride will work through a list in descending index order. In
other words, it will do it backwards.

For example, we can reverse the order of a list of team members:

1 team = ["Terra”, "Locke”, "Edgar”, "Sabin”,
— "Shadow”, ”Cyan”, "Gau”, "Celes”, "Setzer”,
(SN "Mog"]

2 reversedList = team[::-1]

You can of course change the stride length like you would with a posi-
tive stride. So if we wanted the list reversed with every other team mem-
ber:

1 team = ["Terra”, "Locke”, "Edgar”, "Sabin”,
— "Shadow”, ”Cyan”, "Gau”, "Celes”, "Setzer”,
(SN IIMogII]

2 reversedList = team[::-2]

11.5. LAMBDAS 181

11.5 Lambdas

Python has a special feature, which allows the programmer to treat cer-
tain functions as if they are variables. These special functions are called
lambdas.

Lambdas are shorthand functions that can be treated as arguments by
other functions.

11.5.1 Lambda Syntax

Lambdas take one or more arguments and return a value based on an ex-
pression.

lambda

operalorn

The lambda operator creates an anonymous function which can be
used as an argument. An argument is taken, which is ran through an
expression. The result of the expression is then returned.

Expression:
1 lambda arguments: expression
Statement:

1 chats = 6
2 loveChats = lambda chats: chats > 6
3 #value of False

lambda argument: expression

For example, we could return a boolean based on a condition. Say we want
to determine whether a team has more than five members:

1 team = ["Terra”, "Locke”, "Edgar”, "Sabin”,
— "Shadow”, ”Cyan”, "Gau”, "Celes”, "Setzer”,
(SN IIMogII]

2 largeTeam = lambda team: len(team) > 5

182 CHAPTER 11. ADVANCED TOPICS IN PYTHON

Or we could use an operator on the argument. Let’s keep it simple and
square the value:

1 cats = 5
2 moreCats = lambda cats: cats ** 2

You may have noticed that you can achieve these results without the use
of a lambda. Well done. You may have also noticed that these lambdas
don’treally do anything useful at the moment. These are just basic exam-
ples so that you become familiar with syntax, their true use will become
clear when we use them as arguments in other functions.

Lambdas are effectively really short functions that have noname. As they
are nameless they are known as anonymous functions.

The major difference between lambdas and regular functionsis that lamb-
das are not reusable, whereas regular functions are. This is because lamb-
das have no name to to identify them.

11.5.2 filter()

The filter() function uses a lambda as an argument to filter a list. The
lambda is used to determine whether each item in the list meets its con-
ditions.

The filter function fliters a list based on a lambda. The lambda provides
a condition for the filter and must return a boolean value.

Expression:
1 filter(lambda argument: expression, list)
Statement:

1 party = [”Jim”, "Jim”, "Catherine”, "Jim”, "Anita”]
2 partyWithoutJim = filter(lambda name: name !=
— "Jim"”, party)

11.5. LAMBDAS 183

For example you could use the filter function to remove two characters
from our team:

1 team = [”"Terra”, "Locke”, "Edgar”, "Sabin”,
— "Shadow”, ”Cyan”, "Gau”, "Celes”, "Setzer”,
(SN IIMOgII]

2 newTeam = filter(lambda name: name != "Terra” and
— name != "Gau”, team)

You'll see that our newTeam variable contains all of the items in the team
variable, except "Terra” and "Gau”.

184 CHAPTER 11. ADVANCED TOPICS IN PYTHON

Chapter 12
Binary and Bitwise Opervators

This chapter hasn’t been written yet.

185

186 CHAPTER 12. BINARY AND BITWISE OPERATORS

Chapter 13
Classes

[THIS CHAPTER IS NOT COMPLETE]

Reusability is a very important aspect of coding. It saves time and effort.
Object Oriented Programming is an advanced and effective way to make
code reusable.

Object oriented programming is a way of grouping functions and values
together to create things called classes. Each class can be used to create
something called an object, which shares the same groups of variables
and functions as the class. Many objects can be made from the same class.
This makes the grouped variables and functions of the class reusable.

Objects are data structures that contain functions and variables. When a
function is part of a class it is called a method and a variable that is part
of a class is called an attribute.

This can be a difficult concept to understand, so let’s relate it to some-
thing that is familiar.

You are a person. You have a number of methods: you can eat, breathe,
sleep, count to ten and do whole load of other things. You also have a
number of attributes: name, age, height, shoesize and so on.

Your friend Mary also has the same methods as you. She also has the same
variables, although they contain different values.

In fact all people have these methods and attributes. We can therefore
describe people as a class. Your friend Mary and you are both people, so
we could say you are both objects in the person class.

187

188 CHAPTER 13. CLASSES

13.1 Minecraft Exercises

No exercises yet.

13.2 Basic Class Concepts

Without realising it you have already been using classes and objects. All
data-types — strings, booleans, floats, integers, lists and so on — are all
pre-built classes used in Python. What's even more useful is that you can
also define your own classes.

Attribute
vaviahle

Variables that are associated with objects are called attributes.

Expression:

1 ”"String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

"BRAZIL"
country.lower() #value of "brazil”

3 country
4 country

You have encountered methods many times before. Remember using dot
notation like this:

1 print ”FROG”.lower()

...or this ...

13.3. CREATING A CLASS 189

Method

Lﬁhuﬂbn

Functions that are part of an object are associated with an object are
called methods.

Expression:

1 ”"String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country "BRAZIL"
4 country = country.lower() #value of "brazil”

1 inventory = {’'tranquilisers’: 5, ’'rations’: 2,
— 'boxes’: 1}
2 inventoryMenu = inventory.items|()

Well those functions are actually methods. They relate to the string and
dictionary classes respectively. Every time you have used a method like
this you have been using objects.

13.3 Creating a Class

Creating a new class is surprisingly easy.

You use the class keyword, the name that you want the class to be called
and the class that your class inherits from.

1 class className (object):
2 #body of class

Don’t worry about inheritance at the moment, we will cover it later. For
now we'll just inherit from the object class.

For example we can create the agent class. The pass statementisused as a
placeholder and it does nothing. We use it when we haven’t written some

190 CHAPTER 13. CLASSES

Expression:
1 "String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country "BRAZIL"
4 country = country.lower() #value of "brazil”

Expression:
1 "String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country = "BRAZIL"”
4 country = country.lower() #value of "brazil”

code, but we don’t want Python to throw an error.

1 class agent(object):
2 pass

13.3. CREATING A CLASS 191

13.3.1 __init_()

The __init_ () method run when we create an object using a class. It ini-
tialises the object.

Expression:

1 "String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

"BRAZIL"
country.lower() #value of "brazil”

3 country
4 country

The method always takes one argument, self, which refers to the object
you are creating. Including the __init_ () method is necessary whenever
you create a class.

1 class className(object):
2 def init (self):
3 #body of init ()

For example:

1 class agent(object):
2 def init (self):
3 pass

13.3.2 Arguments with __init_ ()

It is possible to provide arguments to the class when you initialise it. you
achieve thisby placing them after the selfargumentinthe__init_ () method.

192 CHAPTER 13. CLASSES

To set these arguments as attributes of the class we use the self argument
with dot notation.

class className(object): def __init__(self, argument): self.argument = ar-
gument

For example:

1 class agent(object):

2 def init (self, name, age):
3 self.name = name
4 self.age = age

The agent class now has a name and age attribute.

13.4 Creating an Object

To create an object you use the class name with brackets like you would a
function. className(arguments)

Expression:

1 "String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country "BRAZIL"
4 country = country.lower() #value of "brazil”

The number of arguments you provide when creating an object depends
ontheargumentsof__init_ (). Youalwaysignore the self argument when
counting the arguments. Self is automatically passed as an argument
without the need to write it.

13.4. CREATING AN OBJECT 193

For example:
1 class agent(object):

2 def init (self, name, age):
3 self.name = name

4 self.age = age

5

6 raiden = agent(”Raiden”, 26)

13.4.1 Accessing Attributes

To access the attributes of our object we use dot notation:

attributes

Expression:
1 "String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country = "BRAZIL"”

4 country = country.lower() #value of "brazil”

object.attribute
Forexample, if we want to print Raiden’s age from the above example:

1 print raiden.age

Member Variables and Functions

13.4.2 Class Scope

The scope of a variable refers to what parts of a program can use it.

194 CHAPTER 13. CLASSES

You have come across variables that can be accessed by any part of the
program. This type of attribute is called a global variable as it can be used
anywhere in the program.

The other type of variable is only accessible by members of a class. These
variables are known as local variables. [expand]

[Explain how to apply this]

Functions/methods can also be local or global.

13.4.3 Creating Methods

Classes can contain methods - functions which are associated with the
class.

To create a method you include a function in the body of a class:

Expression:

1 ”"String”.lower()

Statement:

1 lowerCaseName = "Pratap Jefferson”.lower ()#value
— of "pratap jefferson”

2 #OR

"BRAZIL"
country.lower () #value of "brazil”

3 country
4 country

class className(object): def __init_ (self): #body of __init_ ()
def methodName(self, arguments): #body of method

All methods in a class should have the self argument as their first argu-
ment. As with the __init_ () method, when you call a method you do not
need to include the self argument. It is sent automatically.

You must initialise the object before you can use any methods.

13.4. CREATING AN OBJECT 195

For example:

1 class agent(object):

2 def init (self, name, age):

3 self.name = name

4 self.age = age

5 def train(self, trainingType):

6 print ”"%s is undertaking %s training” %
— (self.name, trainingType)

7
8 raiden = agent(”Raiden”, 26)
9 raiden.train(”VR")

13.4.4 Multiple Objects

You can make several objects from the same class. This is achieved by
creating two or more objects with different names from the same class
constructor. For example:

1 class agent(object):

2 def init (self, name, age):

3 self.name = name

4 self.age = age

5 def train(self, trainingType):

6 print ”"%s is undertaking %s training” %
— (self.name, trainingType)

7

8 raiden = agent(”Raiden”, 26)

9 snake = agent(”Snake”, 42)

We now have two objects, raiden and snake. Each has the same attributes,
albeit with different values. The also have access to the same methods.

print raiden.name
print snake.name

raiden.train(”VR")
snake.train(”field”)

“undh WN R

196 CHAPTER 13. CLASSES
13.5 Inheritance

[REWRITE INHERITANCE WITH SUBCLASS AND SUPERCLASS TO DESCRIBE
INHERITANCE] Classes can share the same methods and attributes as other
classes. This is called inheritance.

For example, robins are a type of bird. They share the same methods (fly-
ing, eating) as otherbirds and they have attributes like other birds (weight,
wingspan). Therefore we can say that robins inherit from birds.

13.5.1 Inheriting a Class

When one class inherits from another it can use all of its methods and
attributes. It can also add extra classes and attributes to itself without
altering the original class.

inherited class

Expression:
1 ”"String”.lower()
Statement:

1 lowerCaseName = "Pratap Jefferson”.lower()#value
— of "pratap jefferson”

2 #OR

3 country

4 country

"BRAZIL"
country.lower() #value of "brazil”

To inherit from another class, the name of that class is put in the brackets
when the new classs is defined:

class derivedClass(baseClass): #body of class
[does the derived class need an __init_ ()?]

Other than this you can treat the derived class in the same way as any
other class. You can add methods and attributes.

13.5. INHERITANCE 197

For example, if we have one class... we can use all of its methods in a new
class. We have also added another method, which the new class can use,
but the original class cannot:

[example]

13.5.2 Overriding Methods and Attributes

It is possible for a derived class to redefine methods and attributes from
its parents class.

Forexample, the vehicle class has a method to make it move. If you wanted
to derive a boat class from the vehicle class you would want it to move
over water. If you wanted to derive a helicopter class from the vehicle
class it would move through the air. Therefore you would redefine the
move method for each derived class.

To override a method you simply define a new method with the same
name as the original within the derived class:

def className(arguments): #body of class

The number of arguments and their names can be different to that of the
original class.

Here is an example of a class method being overridden:

[example]

13.5.3 Referencing Superclass Methodsin a Subclass

[write this bit]

class DerivedClass(Base): def some_method(self): super(DerivedClass, self).meth()

198 CHAPTER 13. CLASSES

Chapter 14
file Tnput and Owlput

Files are a major part of computing. They allow us to save data for long
term storage and load data for immediate use.

So far your programs have been unable to store data. They've either had
data hard-coded into the program or taken data from the command-line.
This limits the potential of our programs as we can'’t store and retrieve
large amounts of data.

In this chapter we’ll cover file input and output with Python. Python hasa
set of in-built functions that make files easy tousein your programs.

14.1 Minecraft Exercises

Input a multi-dimensional array of blocks to a file
Save objects from one world and load them into another.

Output a multi-dimensional array of blocks from a file

14.2 Introduction to File I/0

199

200 CHAPTER 14. FILE INPUT AND OUTPUT

14.2.1 Opening a File

Opening a file is always the first thing we do when we’re working with
files. The open() is simple pretty to use. It takes two arguments, file lo-
cation and permissions. As you would expect file location is the path to
your file. Page [page number] shows you how to work out the path to a
file.

Expression:

1 open(”fileLocation”, "permissions”)

Statement:

1 shoppingList = open(”./files/shopping.txt”, "r")

The permissions argument states what the program can do with the file.
There are four options for this:

» w: write only mode allows the program to write new data to the file,
but it cannot read the contents of the file.

» 1: read only mode allows the program to read the contents of the file,
but it is not allowed to modify its contents.

» r+: read and write mode allows the program to read and modify the
contents of the file.

e a: append mode writes new data to the end of the file.

There are different circumstances in which you’d use each permission.
For example, if you only want someone to view a file, but not be able to
change it, you would use the read only permission. Alternatively if you
want someone to add data to a file, but not be able to see the other data
stored in the file, you would use the write only permission.

For example we want a file that we read, but can’t write to:

1 secretFile = open(”secretFile.txt”, "r")

14.2. INTRODUCTION TO FILE I/0 201

14.2.2 Writing and Closing a File

The write() method makes it easy to write to a file. You simply put the data
you want written to the file as an argument in the write() method.

Expression:
1 objectName.write(dataToWrite)
Statement:

1 shoppingList = open(”./files/shopping.txt”, "r+")
2 shoppingList.write(”Apples”)
3 shoppingList.close()

You must first open the file using the open() function otherwise this will
not work.

Expression:
1 objectName.close()
Statement:

1 shoppingList = open(”./files/shopping.txt”, "r+")
2 shoppinglList.write(”Apples”)
3 shoppingList.close()

Once you have written all of the data to the file you must use the close()
method. Unless you use the close() method after the write() method, the
data will not be stored.

202 CHAPTER 14. FILE INPUT AND OUTPUT

objectName.close()

For example, let’s open a file and write a simple string to it:

1 secretFile = open(”secretFile.txt”, "r+")
2 secretFile.write(”This is a secret file.”)
3 secretFile.close()

14.2.3 Reading a File

You can also read the contents of a file. You may want to use the data
in your program, modify the contents the send them back to the file or
output the data for viewing. Whatever the reason, the read() method is
the method used for reading files.

Expression:
1 objectName.read()
Statement:

1 shoppingList = open(”./files/shopping.txt”, "r+")
2 print shoppingList.read()

In order to use the file you must of course open it. It’s also a very good
idea to close the file once you're finished.

For example:

1 secretFile = open(”secretFile.txt”, "r")
2
3 print secretFile.read()
4

5 secretFile.close()

14.2. INTRODUCTION TO FILE I/0 203

14.2.4 Reading a Line of a File

There are times when you will want to read the file oneline at a time, and
not all at once. The readline() method is used for this.

readline

Expression:
1 objectName.readline()
Statement:

1 shoppingList = open(”./files/shopping.txt”, "r+")
2 print shoppingList.readline()
3 print shoppingList.readline()
4 print shoppingList.readline()

objectName.readline()

Once again you must open the file before you use this method, and close
it afterewards:

1 secretFile = open(”secretFile.txt”, "r")

print secretFile.readline()
print secretFile.readline()
print secretFile.readline()

N ouhwN

secretFile.close()

The readline() method starts on the first line of your file. Each time the
readline() method is used it will read the next line. Providing an integer
argument to the readline() method states how many characters from the
line you want to read. For example providing an argument of 5 will mean
the method will only return the first five characters of the line.

204 CHAPTER 14. FILE INPUT AND OUTPUT

14.3 The Buffer

When you write to a file Python does not immediately put the data into
that file. Instead it stores the data in a buffer. This buffer temporar-
ily stores all of the data your program has sent with the write() method.
Python will not transfer the data from the buffer into the file until it is
sure you have made all of the changes you need to. This is the reason we
use the close method.

The close() method is one way to transfer data from Python’s buffer into
the file, there are other ways to transfer data from the buffer.

14.3.1 Automatically Closing a File

with

Expression:

1 with open(”file”, "permissions”) as variableName:
2 #body of with statement

Statement:

1 with open(”./files/shopping.txt”, "r”) as
— shoppingList:

print shoppingList.readline()

print shoppingList.readline()

print shoppingList.readline()

print shoppingList.readline()

b, WN

Using awith...as statement it is possible to automatically close a file, with-
out the need to use the .close() method.

For example:

1 with open(”secretFile.txt”, "w”) as secretFile:
2 secretFile.write(”Secrets and stuff”)

14.3. THE BUFFER 205

Inside the body of the with statement, include all of the code you want
to use with your file. Once the body of the with statement has finished
the file will be closed automatically and all data from the buffer will be
written.

14.3.2 Closed Attribute

You may need to check whether your file is open or closed after you have
used some of the methods listed above.

Expression:
1 objectName.closed
Statement:

1 shoppingList = open(”./files/shopping.txt”, "r+")
shoppingList.write(”Apples”)
shoppingList.close()

print shoppingList.closed

The .closed attribute of a file objects states whether a file is closed as a
boolean.

When Trueisreturned, the file is closed. False means the file is open.

For example:

1 if secretFile.closed == False:
2 secretFile.close

206 CHAPTER 14. FILE INPUT AND OUTPUT

Chapter 15
Ewvwoe Handling

This unit is not currently included at Codecademy. Error handling is ex-
tremely useful. The topics covered in this chapter will inclide:

e try-catch statement

 error handling lists (not in)

207

208 CHAPTER 15. ERROR HANDLING

Appendices

209

Appendix A
Checklist off lopics Covered

Syntax
e Variables e Changing Variables
e Data types o Statements
 Integers e Whitespace and Tabs
 Floats e Single-line Comments
» Booleans e Multi-line Comments
Maths Operations
e Expressions and Statements e Exponentials
e Maths Operators e Modulo
* Addition « Operator Order
* Subtraction o Interchanging variables and
e Multiplication values
e Division e Shorthand Operators

String and console output

e Strings - len()
e Substrings - lower()
e String Functions - upper()

211

212 APPENDIX A. CHECKLIST OF TOPICS COVERED

- str() e Placeholders
e Print e Console input
e Concatenation e Date and Time
Comparators and Control Flow
e Comparators - Greater than or equal to
- Equal to (==) (>=)
— Not equal to (=) » Boolean Operators
- Less than (<) o If statements
- Less than or equal to (<=) * Else statements
- Greater than (>) Elif statements
Functions
e Creating and Calling Func- e Built-in Functions:
tions
' - max
* Returning a value
e Arguments - min
e Modules - abs
e Importing modules - type
Lists and Dictionaries
» Creating lists e Removing items
» Accessing index positions » forloop

o Adding items e Sorting a list

« Listlength e Combining lists
- e Defining a dictionary
» Slicing

e Changing/adding items in a
* Searching a list dictionary

» Inserting an item » Deleting items in a dictionary

Functions and Lists

Lists as arguments
Modifying every list item
Range function

Converting a list into a string

Loops

While Loops

Boolean Operators with While
Loops

Infinite Loops
Break
While/else

For Loops

Advanced Topics

Iterating data structures
items

tuples

keys

values

List comprehension

213

Splitting a string into a list
Multi-dimension lists
Joining two lists

Undefined number of lists

Strings as lists
Looping dictionaries
Indexes and for loops
Zipping two lists
For/else loops

For/else break

List slicing
Stride

Omitting slice index argu-
ments

Reversing a list
Lambdas

filter

Classes and Object Oriented Programming

Creating classes
__init_ ()

Arguments

» Creating objects
e Accessing attributes

 Class scope

214 APPENDIX A. CHECKLIST OF TOPICS COVERED

» Creating Methods .
o Multiple Objects

e Inheritance

File Input and Output
* Opening a file .
e Writing and closing a file .
» Reading a file .

Exercise structures:

» Following instructions .

» Reusing code .

Transferable Programmer Competencies

e Problem decomposition -
breaking down a problem into
smaller manageable parts .

» Debugging and grit - The pro-
cess and perseverance to suc-
ceed when a program fails .

e Systems thinking - under-
stand how parts of a program
relate to one another (func- .
tions and modularity)

e Communication - explain
what the program does in lay-
men’s terms

e Documentation - explain how
the program works in techni-
cal terms

e Sharing Knowledge - Share so-

Overriding methods and at-
tributes

Referencing superclass meth-
ods in a subclass

Reading a line
Automatically closing a file

Closed attribute

Problem solving

Flowchart

lutions to problems

Collaboration/Team work
- Working with others to
achieve a common objective

Testing - Checking the quality,
reliability and performance of
a program

Critical Analysis and Reflec-
tion - Constructively review-
ing the work of others and
their own work to explain
strengths and suggest im-
provements

Choice of technology - Choos-
ing appropriate approaches
and technologies to solve a
problem

215

* Requirements analysis - Un- the different needs of users of
derstanding and prioritising a system

	Introduction
	Using this Book
	Standards Used in this Book

	Getting Started
	Programming with Python
	The Minecraft Pi API
	Writing and Running Code

	Python Syntax
	Minecraft Exercises
	Teleport the Player
	Teleport the Player Precisely
	Teleportation Tour
	Stop Smashing Things

	Variables and Data Types
	Integers
	Floats
	Booleans
	Changing Values of Variables

	Whitespace and Statements
	Statements and Line Breaks
	Indentation

	Comments
	Single Line Comments
	Multi-line Comments

	Maths Operations
	Minecraft Exercises
	Stacking Blocks
	Super Jump
	Set Block Below Player
	Speed Building
	Proportions

	Operators, Expressions and Statements
	Addition
	Subtraction
	Multiplication
	Division
	Exponentials
	Modulo

	Operator Order
	Interchanging Variables and Values
	Shorthand Operators

	Strings and Console Output
	Minecraft Exercises
	Hello Minecraft World
	Inputting Your Message
	User Name
	Mad Libs
	Create a Block with Input
	Sprint Record

	Strings
	Substrings

	String Functions and Methods
	len()
	.lower()
	.upper()
	str()

	Print
	Printing String Variables
	Joining Strings
	Concatenating Integers, Floats and Booleans
	Placeholders in Strings
	raw_input()
	input()

	Date and Time
	Getting the Current Date and Time

	Comparators and Control Flow
	Minecraft Exercises
	Swimming
	Do you want to stop smashing things?
	Bring us a shrubbery
	Take a Shower
	Secret Passage

	Comparators
	Equal To
	Not Equal To
	Less Than
	Less Than or Equal To
	Greater Than
	Greater Than or Equal To

	Boolean Operators
	and
	or
	not
	Boolean Operator Order

	If, Else and Elif
	if Statements
	else
	elif
	Nested If statements
	Checking For Letters

	Functions
	Minecraft Exercises
	A Forest
	Arming TNT
	Wool Colour
	Turtle
	Import Block Module

	Function syntax
	Calling a function
	Return
	Multiple Arguments

	Modules
	Import
	from
	Import All *

	Built-in Functions and Methods
	max()
	min()
	abs()
	type()

	Lists and Dictionaries
	Minecraft Exercises
	Glitching Sign
	Block by Numbers
	Team Camera
	Dictionary of Wool
	Hacking a Friend's Game

	Lists
	Defining a list
	Accessing a list item
	Changing a list item

	List Capabilities and Functions
	Adding an item
	List Length
	List Slicing
	Searching
	Inserting an Item
	Removing an Item
	Looping through a list
	Sorting a list
	Adding Together Items in a List

	Dictionaries
	Defining a Dictionary
	Accessing Items in Dictionaries
	Changing/Adding an Item with a Dictionary
	Deleting Items in Dictionaries

	Functions and Lists
	Minecraft Exercises
	Pixel Art
	Shadow Castle

	Using Functions with Lists
	Lists as Arguments
	Loops and Lists in Functions
	Modifying Each List Item
	Functions to Modify Each Item in a List
	More On range()
	Converting a List into a String
	Splitting a String into a List

	Using Multiple Lists
	Multi-dimensional Lists
	Joining Two Lists
	Using an Undefined Number of Lists

	Loops
	Minecraft Exercises
	Midas Touch
	Tree Fighter
	Chat with a Loop
	Pyramid
	Hot and Cold
	Adapt Exercises

	While Loop
	Boolean Operators and While Loops
	Avoiding Infinite Loops
	Break
	while/else

	For Loops
	Strings as Lists
	Looping Over a Dictionary
	Using Indexes with For Loops
	Zipping Two Lists
	For/Else Loops
	Breaking a For/Else Loop

	Advanced Topics in Python
	Minecraft Exercises
	Iterating Over Data Structures
	items()
	Tuples
	keys()
	values()

	List Comprehension
	List Comprehension Syntax
	List Comprehension With Operators

	List Slicing
	Stride
	Omitting Index Arguments
	Reversing a List

	Lambdas
	Lambda Syntax
	filter()

	Binary and Bitwise Operators
	Classes
	Minecraft Exercises
	Basic Class Concepts
	Creating a Class
	__init__()
	Arguments with __init__()

	Creating an Object
	Accessing Attributes
	Class Scope
	Creating Methods
	Multiple Objects

	Inheritance
	Inheriting a Class
	Overriding Methods and Attributes
	Referencing Superclass Methods in a Subclass

	File Input and Output
	Minecraft Exercises
	Introduction to File I/O
	Opening a File
	Writing and Closing a File
	Reading a File
	Reading a Line of a File

	The Buffer
	Automatically Closing a File
	Closed Attribute

	Error Handling
	Appendices
	Checklist of Topics Covered

