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Preface

This book is about using a spreadsheet program to build biological models. Spread-
sheet programs have many uses, such as entering and organizing data, tracking
expenses, managing budgets, and graphing. In this book, we use a spreadsheet pro-
gram to create models to help you learn some basic and advanced concepts in ecolo-
gy, evolution, conservation biology, landscape ecology, and statistics.

Why build your own models when so many specific, prewritten models are wide-
ly available? Because when you program a model from scratch, you learn all aspects
of modeling—what parameters are important, how the parameters relate to each
other, and how changes in the model affect outcomes. In other words, you not only
learn about models, you also learn about modeling.

Why use a spreadsheet program rather than a dedicated modeling package or
general-purpose programming language? In part, because most colleges and univer-
sities have a spreadsheet program readily available for their students, and many stu-
dents are already familiar with basic spreadsheet operations. Using a spreadsheet
thus reduces expense and learning time. In addition, using a spreadsheet allows
more flexibility than is possible with most prewritten models. Students can easily
modify or elaborate a model, once they have mastered the basic versions presented
here. Finally, the spreadsheet takes care of much of the tedium of carrying out
repeated calculations and creating graphs. 

Why do modeling at all? Because modeling is a powerful learning tool. By build-
ing and manipulating models, you can achieve a deeper understanding of concepts.
Models allow you to explore concepts, examine them from various angles, extend
them in various directions, and ask “what if” all in rigorous and objective ways.
Many models generate a clear set of predictions that can be tested in a natural or lab-
oratory setting. Models offer a check on your understanding. When you plug values
into a model and get unexpected results, you have to ask, “Why?” Answering that
“why” leads to deeper understanding.
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How to Approach These Exercises

This book is intended to be a supplement to the primary text in an undergraduate or
a beginning graduate course in ecology, evolution, or conservation biology. Although
there are many excellent texts on the market, two primers were instrumental in help-
ing us develop many of the spreadsheet exercises in this book: Nick Gotelli’s Primer
of Ecology (2001) and Dan Hartl’s Primer of Population Genetics (2000). Both are
extremely well written and helped us fully understand the basic mathematics behind
many ecology and evolution models. 

Each exercise was written with the notion that an instructor would introduce the
basic material, and that the spreadsheet exercises would reinforce the concepts and
allow further exploration. We will assume that you have read the Introduction,
“Spreadsheet Hints and Tips,” and that you have mastered Exercises 1 and 2,
“Mathematical Functions and Graphs” and “Spreadsheet Functions and Macros,”
before attempting other exercises in the book.

Each exercise consists of an Introduction, followed by Instructions and Annota-
tions that guide you through the model development, and then by a series of Ques-
tions. In the introduction to each exercise, we have tried to include enough back-
ground material for you to understand the context and purpose of the exercise, but
we have also tried to keep these commentaries relatively brief. The Instructions give
rather generic directions for how to set up the spreadsheet, such as “Sum the total
number of individuals in the population.” The accompanying Annotations provide
the actual spreadsheet formulae that we used to accomplish each step, with a com-
plete explanation of the logic behind each formula. Because our formulae are provid-
ed for you, you may be tempted to leap to the Annotations section before attempting
to work through the problem on your own. Don’t. You will learn more about the
process of thinking through a model if you struggle through it on your own, and you
may come up with a better way of doing things than we did. As much as possible,
use the Annotations as a cross-check. 

The last portion of each chapter consists of a set of questions that will challenge
you to “exercise” your model and explore it more deeply. Some of the questions ask
you to change your spreadsheets in various ways. You may want to save your origi-
nal spreadsheet, and use a copy of the spreadsheet model when answering questions
to preserve your original entries. The answers to the questions are posted on the Web
site www.sinauer.com/spreadsheet-ee/. Although you can double-check your results
with those posted on the Web, in reality scientists don’t have the luxury of an answer
section when developing a new model. If your results look odd to you, an assump-
tion of the model may have been violated, you may have made a mistake in your
programming, or the result may be, in fact, correct. Learn to critically interpret your
own results—that is what scientists do.
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The Web site also contains all of the spreadsheets used in the book. Students have
access to “shell” versions, containing only titles, labels, headings, etc. Downloading
these before class can save class time. Instructors have access to complete spread-
sheet models, which they can use for exploration, modification, or verification. The
Web site is also a clearinghouse for errata, instructors’ comments, ideas for modifica-
tions, and links to related Web sites. 

The process of entering formulae, making graphs, and answering questions in
each exercise is just the beginning. We have attempted to build models that are very
open-ended and encourage you to play with the models and take them beyond the
questions posed. Don’t be shy about changing parameter values, initial variable val-
ues, and modifying formulae. Observe how the model responds, and think about
why it does whatever it does. Question, modify, and question again. Think about
how you might make the model more realistic, how you might include other
processes in it, or how the same model might be applied to a different system. All
these ways of thinking will help you understand the models that you encounter in
your texts and in the scientific literature.

T.M.D. AND C.W.W.



INTRODUCTION
SPREADSHEET HINTS AND TIPS

This introduction covers procedures that you’ll use in the exercises throughout
this book. It is intended to be a ready reference, and as such it has a different for-
mat than the exercises. The first two exercises, “Mathematical Functions and
Graphs” and “Spreadsheet Functions and Macros,” apply some of the procedures
discussed here to the exercise format and give you an opportunity to practice them.

If you are already familiar with spreadsheets, you may want to skip this chap-
ter, or perhaps just check out any unfamiliar topics. To help you find what  you’re
interested in, here’s an outline:

Starting Up: p. 2
Menus and Commands: p. 2
Spreadsheet Structure: p. 4
Selecting (Highlighting) Cells: p. 4
Copying Cell Contents: p. 5
Cutting Cell Contents: p. 5
Pasting Into a Cell: p. 5
Cell Addresses: p. 5
Entering Literals: p. 5
Entering Formulae: p. 7
Calculation Operators in Formulae: p. 7
Entering Functions: p. 9
Array Functions: p. 10
Relative and Absolute Cell Addresses: p. 12
Filling a Series: p. 12
Formatting Cells: p. 13
Creating a Graph: p. 14
Editing a Graph: p. 16
Automatic and Manual Calculation: p. 16
Macros: p. 16
Glossary of Terms and Symbols p. 18

Three warnings: First, this chapter is not a substitute for your spreadsheet user’s
manual. We base our instructions throughout the book on Microsoft Excel, and
most will work as written in other spreadsheets, but there may be differences in
the details. If you follow our instructions carefully, and they don’t work, con-

 



sult your spreadsheet user’s manual. Second, you should already be familiar with some
basic computer skills, such as booting up your computer, starting your spreadsheet
program, saving files, and printing. If you’re not, consult your operating system user’s
manual. Third, save your work frequently to disk! Few things are as frustrating as
spending hours building a model, then losing all your hard work when the computer
crashes.

Starting Up
How you start up your spreadsheet program will depend on whether you use a Mac-
intosh, an IBM-compatible computer, or a UNIX computer, whether the computer is
on a network or not, and which spreadsheet program you choose. Consult your oper-
ating system manual, your spreadsheet program manual, or a local computer expert.

All of the exercises in this book were developed with Microsoft Excel version 98 or
higher, which utilizes the “Visual Basic for Applications” code. If you are using an older
version of Excel or a different spreadsheet program, make sure the basic functions used
in the exercise are available. Some exercises require the use of the Solver function, an
optimization function that is within the spreadsheet’s Add-In Pak. Your system admin-
istrator may need to help you install the Solver

These exercises were written by several authors, using either Macintosh or Windows
platforms; most, however, were developed in Windows. Table 1 gives some alternative
commands and keystrokes that may help if the instructions are not tailored to your
machine.

Menus and Commands
Most spreadsheet programs have graphical user interfaces in which you use a mouse
to choose commands from menus across the top of the screen. Many menus have sub-

2 Introduction
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menus, and/or options as shown in Figure 1. Your mouse may have one, two, or three
buttons. All operations described in this section are performed with the left button. In
current Macintosh and Windows operating systems, a single mouse-click will open a
menu and keep it open. To execute a command from a menu, move the cursor over the
available commands until the one you want is highlighted, and then click the mouse
a second time. On Macintoshes running older operating systems, you must click the
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Table 1. Some Commonly Used Keyboard Commands in Microsoft Excel 

Windows Macintosh Action

Enter Return Complete a cell entry and move down 
in the selection

Tab Tab Complete a cell entry and move to the 
right in the selection

Control+Shift+Enter +Return Enter a formula as an array formula 

Esc Esc Cancel a cell entry

Backspace Delete Delete the character to the left of the 
insertion point, or delete the selection

Delete Right delete Delete the character to the right of the 
insertion point, or delete the selection

Arrow keys Arrow keys Move one character up, down, left, or 
right

Home Home Move to the beginning of the line

End End Move to the end of the line

Control+Home +Home Move to the beginning of a worksheet

Control+end +End Move to the last cell on the worksheet.

Control+x +x Cut the selection

Control+v +v Paste the selection

Control+c +c Copy the selection

Control+z +z Cancel or undo an entry in the cell or 
formula bar

Control+y +y Repeat the last action

Control+f +f Open the Find dialog box

Control+s +s Save your work

Control+d +d Fill down

Control+r +r Fill to the right

Control+F3 +l Define a name

F1 +/ Opens Help menu

F4 +t Makes cell reference absolute or relative
in the formula bar

F9 += Calculate (or re-calculate) all sheets in 
all open workbooks*

Tools | Options | Tools | Preferences | Set manual versus automatic calculation
Calculation Calculation

* The Calculate key, F9, is used extensively throughout these exercises. The F9 function key
will work on Macintosh machines provided the Hot Function Key option in the Keyboard
Control dialog box is turned OFF. If  the F9 key does not work on your Mac, use the alter-
native, +=.



mouse button and hold it down as you move the cursor down the menu options. Release
the mouse button when the command you want is highlighted. The command will flash
when it is successfully invoked.

For instance, if you wanted to record a macro in your spreadsheet to carry out a set
of instructions, you would open the Tools menu, select the Macro submenu, and choose
the Record New Macro Option. Throughout this book we will use the vertical bar (|)
and sans serif type (Menu) to indicate a menu, submenu, or option. Thus, the instruction
above would read, “Open Tools | Macro | Record New Macro.” The results of this opera-
tion are shown in Figure 1 (and discussed in more detail on p. 16).

Many menu commands also have keyboard shortcuts—key combinations that you
can press to execute the command without having to open a menu and sort through its
submenus and options. Shortcuts are listed next to the commands in the menus, and
always begin with <Control> in Windows and with  on a Macintosh, followed usu-
ally by a single letter (see Table 1). To use a shortcut, press and hold the <Control> or
the  key while simultaneously typing the indicated letter. We will represent this simul-
taneous key-pressing like this: +c on (Macs) or <Control>+c (Windows). This is the
shortcut for Edit | Copy. Many people use shortcuts for frequently used commands, and
you may find it worthwhile to memorize a few of these, such as the one for copy, and
+v (Macs), <Control>+v (Windows) for Edit | Paste.

Don’t be afraid to thrash around in the menus. In other words, if you’re not sure how
to do something, try opening menus and submenus, searching for a command that looks
like it might work. Try different commands and see what happens. This is how we
learned most of what we know about spreadsheets. However, be sure to save your work
before you start to thrash—then, just in case you do something that messes up your work,
you can close the file without saving any of the changes you made and the file will revert
to what it was before you started thrashing.

Spreadsheet Structure
A spreadsheet consists of a matrix, or grid, of cells. Any cell can contain information
(text, a number, a formula, or a function). The columns of a spreadsheet are identified
by letters; the rows are identified by numbers (although this may vary in different pro-
grams). Each cell has an address consisting of its column letter and row number. For
example, the top-left cell’s address is A1; two cells to the right is cell C1; two cells down
from cell C1 is cell C3 (Figure 2).

Selecting (Highlighting) Cells
To enter information into a cell, you must first select it by placing the cursor (the on-
screen arrow) in it and clicking the mouse button. You can move the cursor either with
the mouse or with the arrow keys. You can tell a cell has been selected because it will
be highlighted—either the entire cell or its outline will be shown in a different color
from other cells. You can simultaneously select more than one cell by any of the fol-
lowing procedures.

4 Introduction
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If the cells are in a contiguous block:

• Move the cursor to one corner of the block of cells.
• Click and hold the mouse button as you drag the cursor to the opposite corner

of the block.
• Release the mouse button when the cursor is in the cell at the opposite corner

of the block.
or

• Select a cell at one corner of the block of cells.
• Move the cursor to the opposite corner of the block.
• Hold down the <Shift> key and click the mouse button.

If the cells are not in a contiguous block:

• Use either procedure above to select some of the cells.
• Select additional cells by holding down the <Control> key while clicking-and-

dragging.
• Continue selecting rows, columns, or blocks until you have selected all the cells

you want.

Copying Cell Contents
Copy the contents of a cell or of multiple cells by selecting the cell or cells and using
either the Edit | Copy command or the keyboard shortcut +c or <Control>+c.

Cutting Cell Contents
Cutting is similar to copying except that copying leaves the original cell(s) unchanged,
whereas cutting deletes the contents of the cut cell(s) once they have been pasted into
another cell. The Cut command is Edit | Cut under the Edit menu; the shortcut is +x
or <Control>+x.

Pasting into a Cell
Paste information that you copied or cut from one cell into another cell by executing
the Edit | Paste command or the keyboard shortcut +v or <Control>+v.

Cell Addresses
Every cell has an address, consisting of its column letter and row number. The top-
left cell’s address is A1; two cells to the right is cell C1; two cells down from C1 is cell
C3 (see Figure 2). When you carry out spreadsheet operations, such as finding the sum
of two cells or the mean of a column of cells, you must tell the program the addresses
of the cells to operate upon. You use addresses rather than entering the values to oper-
ate upon, because this allows you use a principal advantage of spreadsheet programs:
their ability to update calculations when you change cell contents.

You can type single cell addresses—A1, C3, etc.—or you can type a range of cell
addresses in the form A1:C3. The latter designates a contiguous block of cells with its
top-left corner at cell A1 and its bottom-right corner at cell C3. You can designate any
contiguous block of cells by entering the addresses of any two opposite corners, sepa-
rated by a colon. A block may also consist of a single column (e.g., A1:A10) or single row
(e.g., B3:B20). Other spreadsheet programs may use different symbols than the colon,
so consult your spreadsheet user’s manual if the colon doesn’t work.

Entering Literals
The titles, headings, notes, and other pieces of text (or numbers) that you want to appear
on your spreadsheet are called literals because the program does not interpret them,
but represents them literally (i.e., exactly as you type them). To enter a literal, select the
cell in which you want the text to appear, and type.

Press the <Return> (or <Enter>) key only when you have finished entering text. The
<Return> key ends text entry; it does not give you a second line of text. If you want a
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label of more than one line, one way is to type the first line, press <Return> or the down
arrow key, place the cursor in the cell below (if it’s not already there), and type the sec-
ond line. Another way is to type all the text into a single cell and then format the cell to
turn on text wrapping (see p. 13 for how to format cells).

As you type text or numbers into a cell, what you type will appear in the cell and in
the formula bar above the spreadsheet column headings (Figure 3). If you make a mis-
take, use your mouse to place the cursor on the mistake either in the cell or in the for-
mula bar. Then use the backspace or delete key to erase the mistake, or highlight the
mistake using click-and-drag, and retype. The text will appear in the selected cell after
you press <Return>. If you discover an error later, you can simply select the cell again
and correct your mistake as above.

Sometimes strange things happen when you enter a literal, depending on your pro-
gram and how it is set up. For instance, if you enter 5-10 (meaning a range of values
from 5 to 10), the cell may show May 10. This is because the program interprets some
entries as dates. To force the program to treat your entry as a literal, precede it with an
apostrophe, ‘5-10, or open Format | Cells | General.

Another potentially confusing aspect of entering literals is spill-over. If the text you
enter is too long to fit into a single cell, it may spill over into adjacent cells if they are
empty, as does the text “Spreadsheet Hints and Tips” in cell A1 of Figure 4. The entire
text is actually in cell A1, although it appears to occupy cell B1 as well, because cell B1
is empty. If the adjacent cell holds information, the text is truncated rather than spilling
over. Note that the same text is present in cell A2 (as you can see in the formula bar), but
because cell B2 holds the text “Example,” the text in cell A2 is truncated.

6 Introduction
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Entering Formulae
A very important part of spreadsheet programming is entering formulae. A formula
tells the spreadsheet to carry out some operation(s) on the contents of one or more cells,
and to place the result into the cell where the formula is. A formula usually contains
one or more cell addresses and operations to be performed on the contents of the ref-
erenced cells. A formula must begin with a symbol to alert the spreadsheet that it is a
formula rather than a literal. In Excel, the symbol is typically the equal sign (=), but
other symbols (such as +) may work in this or other spreadsheet programs. 

Two useful tips to remember regarding formulas:
• The formula appears in the formula bar as you type it, and it will appear there

again if you select the cell later. But once you press <Return>, only the result of
the formula appears in the cell itself.

• A formula may not refer to the cell in which it resides; therefore, e.g., do not
enter the formula =2*B2 into cell B2. This will generate an error message com-
plaining about a “circular reference.”

In Figure 5 we wanted the range of height values (the maximum value minus the
minimum value) to appear in cell B16, so we entered =B15-B14 into cell B16. Although
the result (6.0) is shown in the cell, the formula bar shows the formula.

Calculation Operators in Formulae
Spreadsheet operators are keyboard entries that specify the type of calculation that you
want to perform on the elements of a formula. Microsoft Excel has four different types
of calculation operators: arithmetic, comparison, concatenation, and reference. These
are listed in Table 2.

• Arithmetic operators perform basic operations such as addition, subtraction, or
multiplication; combine numbers; and produces numeric results. The asterisk
(*) is used to specify multiplication; the forward slash (/) represents division;

Spreadsheet Hints and Tips 7
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and the carat (^) represents exponentiation (raising to a power). Other
arithemetic operators include the standard + and -.

• Comparison operators compare two values (for example, whether two values
are equal, or one is greater than the other) and return a logical value—either
true or false—for specified calculations.

• The ampersand (&) is the text concatenation operator. It joins, or “concate-
nates” two strings of text to produce a continues text string.

• Reference operators are the colon (:) and the comma (,). These operators com-
bine ranges of cells for calculations.

If you combine several operations in a single formula, Microsoft Excel performs the
operations in the order shown in Table 3. If a formula contains multiple operators with
the same precedence (i.e., if a formula contains both a multiplication and a division oper-
ator), the program evaluates the operators from left to right. You can change the order
of evaluation by enclosing the part of the formula to be calculated first in parentheses.

8 Introduction

Table 2. Calculation Operators in Microsoft Excel Formulae

Operator Meaning Example

Arithmetic operators
+ (plus sign) Add 3+3
- (hyphen) Subtract 3-1
- (hyphen Negation (negative value) -1
* (asterisk) Multiply 3*3
/ (forward slash) Divide 3/3
% (percent sign) Percent 20%
^ (caret) Exponentiation 10^3 (10 to the third 

power, or 1,000)

Comparison operators
= (equal sign) Equal to* A1=B1
> (right angle) Greater than A1>B1
< (left angle) Less than A1<B1
>= Greater than or equal to A1>=B1
<= Less than or equal to A1<=B1
<> Not equal to A1<>B1

Text concatenation operator
& (ampersand) Join two values to produce “A1”&”A2” becomes 

one continuous text value “A1A2”

Reference operators
: (colon) Range operator B5:B15 (Produces one 

reference to all the 
cells between B5 and
B15, including those 
two cells)

, (comma) Union operator SUM(B5:B15,D5:D15) 
(Combines multiple 

references into one 
reference)

*Recall that the equal sign is also a “start signal” that tells Excel to consider what follows
as a formula, as in =A1+B1.



Entering Functions
A function is similar to a formula, but it usually carries out a more complex operation
or set of operations, and it has been prewritten for you by the spreadsheet program-
mers. We use functions extensively; many of the exercises in this book rely on them.
Excel has over 100 functions, and you will probably not remember them all. Fortunately,
most spreadsheet packages provide a simple means of entering functions so that you
don’t need to memorize them.

Functions are entered by pasting them into the formula bar. You can use the “Paste
Function” button on the toolbar, fx (indicated by an arrow in Figure 6), or you can
open Insert | Function to guide you through entering a function. Either way, the dialog
box headed Paste Function will appear (Figure 6).

Look at the column on the left side of the dialog box, labelled Function category. It asks
what kinds of functions you want to examine. In the figure, the Most Recently Used cat-
egory was selected, so a list of the most recently used functions appears in the right side
of the dialog box. Note that the function SUM is selected, and the program displays a

Spreadsheet Hints and Tips 9

Table 3. Order of Operation in Microsoft Excel Formula

Precedence Description Operator
of calculation

1 Reference operators : ,
2 Negation -
3 Percent %
4 Exponentiation ^
5 Multiplication and division * /
6 Addition and subtraction + –
7 Concatenation %
8 Comparison = < > <= >= <>

Figure 6

Paste function key



brief description of the SUM function at the bottom of the window. If you choose the
Function category All, you’ll see every function available, listed in alphabetical order.

Use your mouse to select the function you want, and a brief description of the func-
tion will appear. Click OK when you’ve got the function you want. When you select a
function, a new dialog box will appear (Figure 7). In Figure 7, we selected the SUM func-
tion. Excel asks you to specify the cells you want to sum. There are two handy features
in this dialog box. First, notice the small figure with the arrow pointing upward and left-
ward (located to the right of the blank space labeled Number 1). If you click on this
arrow, the dialog box will shrink, exposing your spreadsheet so that you can use your
mouse to select the range of cells you want to sum. After you’ve selected the cells you
want to sum (in this case, cells B2:B6), click on the arrow again and the SUM dialog box
will reappear. Click OK and Excel will return the calculated value. 

Note that although the box is labeled Number 1, it is not limited to a single cell
address, but can (and often should) hold a range of cell addresses. You can also type cell
addresses or ranges of cell addresses into the boxes, if that’s easier.

The second handy feature of all paste function dialog boxes is the question mark
located at the bottom-left corner of the window. If you don’t know how the function
works, click on the question mark and Excel will provide more information. 

After you’ve become familiar with some frequently used functions, you may find it
faster to type them into a cell directly. Like formulae, functions begin with an equal sign
to alert the program that they are not literals.

Array Functions
In some exercises, you will use an array function rather than a standard function. An
array function acts on two or more sets of values rather than on a single value. These sets
of values are called array arguments. You create array formulae in the same way that
you create other formulae, with this major exception: Instead of selecting a single cell
to enter a formula, you need to select a series of cells, then enter a formula, and then
press <Control>+<Shift>+<Enter> (Windows) or +Return (Macs)to enter the formula
for all of the cells you have selected. 

For example, the FREQUENCY() function is an array function that calculates how
often values occur within a range of values, and then returns a vertical array of num-
bers. Suppose you want to construct a frequency distribution for the weights (in grams)
of 10 individuals (Figure 8).
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In Figure 8, the column labeled “Bins” tells Excel how you want your data grouped.
You can think of a “bin” as a bucket in which specific numbers go. The bins may be very
small (hold only a few numbers) or very large (hold a large set of numbers). For exam-
ple, suppose you want to count the number of individuals that are 1 g, 2 g, 3 g, 4 g, and
5 g. The numbers 1 through 5 represent the five bins. If we want Excel to return the num-
ber of individuals of given weights in cells D2–D6, then we need to first select those cells
(rather than a single cell) before using the paste function key to summon the frequency
procedure. The dialog box in Figure 9 will appear.

The Data_array is simply the data you want to summarize, given in cells B2:B11. The
Bins_array is cells C2–C5. Instead of clicking OK, press <Control>+<Shift>+<Enter> on
Windows machines; Excel will return your frequencies. On Macs, type the formula in
by hand, then press +Return. After you’ve obtained your results, examine the formu-
las in cells D2 through D6 (Figure 10). Every cell will have a formula that looks like this:
{=FREQUENCY(B2:B11,C2:C6)}. The { } symbols indicate that the formula is part of an
array, rather than a standard formula.
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Relative and Absolute Cell Addresses
Cell addresses are said to be either “relative” or “absolute.” It’s critical that you know
the difference between these two kinds of addresses. A relative address refers to the
position of a cell relative to the position of the currently selected cell. For example, if you
enter the formula =2*B2 into cell C3, the cell address B2 does not really refer to cell
B2; it refers to a cell one column to the left and one row up from the cell you’re typing
into (cell C3). If you copy this formula into cell D5, the program will automatically
change the formula into =2*C4, which is one column to the left and one row up from
cell D5.

In Excel, the dollar sign ($) indicates an absolute address. An absolute address always
refers to the same cell, even if you copy or move the formula to a new cell. For example,
if you enter the formula =2*$B$2 into cell C3, the cell address $B$2 really does refer to
cell B2 regardless of which cell holds the formula. If you copy this formula into cell D5,
it will still read =2*$B$2. Addresses without dollar signs are relative addresses. Other
programs may use symbols other than $ to indicate an absolute address.

You can mix relative and absolute references in one address. In the address $B2, the
column reference is absolute, and the row reference is relative. In the address B$2, the
column is relative and the row is absolute. (In the Windows version of Excel, you can
quickly add dollar signs to cell addresses by pressing the F4 button at the top of your
keyboard.) 

Filling a Series
In many exercises, you will be told to create, or fill, a series of values, usually in a col-
umn. What we mean is to create a sequence of numbers, like the one shown in col-
umn A, Cells A5–A9 of Figure 11. You can do this in either of two ways. The first is:

• Give the program an example of what you want (e.g., enter 1 into cell A5 and 2
into cell A6).

• Tell the program to extend this series by selecting the example cells (A3 and
A4), then placing the cursor at the bottom-right corner of the last cell in the
example (cell A6).

• The cursor will turn into a bold cross. Click and hold the mouse button while
dragging down the column to cell A9.

• The program will extend the series down the column, showing you the current
value in a small box as it goes.

• When the series reaches the maximum desired value, release the mouse button.

The alternatetive way to fill a series is:
• Enter the first value of the series in the first cell (enter 1 into cell A5).
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• Enter a formula to calculate the next value in the series into cell A6 (=A3+1).
• Copy the formula in cell A6 (select the cell and press <control>+c or +c).
• Select the cells to hold the rest of the series (select cells A7:A9).
• Paste the formula into the selected cells (<control>+v or +v).

You can also just click on the bottom-right hand corner of cell A6 (the cursor will change
to a bold cross) and then “drag” the formula down to cell A9. Any of these proce-
dures will work with series in rows as well as in columns.

Formatting Cells
The appearance of a cell’s contents depends on how the cell is formatted. To access all
the options for formatting a cell or range of cells, select the cell(s) and then open 
Format | Cells. You can also use toolbar shortcuts to format font, size, alignment, num-
ber of decimal places, borders, shading, or color.

With some exceptions (an important one, is formatting column width), formatting
cells is a matter of taste. Our guiding principles have been to keep fancy formatting to
a minimum, and to format cells to enhance readability. In the exercises in this book, you
will see cells with borders, shading, bold type, and other formats. Unless otherwise
noted, you need not reproduce these unless you wish to.

However, some aspects of formatting cells are not just a matter of appearance. If a num-
ber is too large to fit in the space provided by a cell, it will be represented by hashmarks
(#######). To see the number, you must either reduce the number of decimal places (which
may not be applicable or desirable), or expand the column width to accommodate the num-
ber. There are several ways to format column width. All begin with the same first step:

• Select the column to be formatted either by clicking in a cell in the column or
by clicking on the column letter at the top of the column.

You can then follow one of three procedures. The first procedure is:
• Open Format | Column | Width.
• Type a number in the dialog box.
• The relationship of the number to the column width is obscure (i.e., we don’t

understand it), so you’ll have to experiment until you get the result you want.

The above steps can be used to adjust several columns to a uniform width. A second
procedure is:
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• Open Format | Column | AutoFit Selection. Excel will adjust the column width to
permit display of the widest element in the selected block or column.

A third alternative:
• Place the cursor at the right-hand edge of the space around the letter at the top

of the column to be adjusted. The cursor will change to a vertical bar with
arrows pointing to the right and the left.

• Click and hold down the mouse button.
• While holding down the mouse button, drag to the right to widen the column

or to the left to narrow it.
• When the column width is appropriate, release the mouse button.

Creating a Graph
Most spreadsheet programs call graphs “charts.” We will follow scientific usage and
call them graphs. In these exercises, you’ll make lots of graphs. To create a graph (chart),
you must tell the program:

• Which data to graph
• To start a graph
• Which kind of graph to use
• Other details of how to set up the graph

Select data to graph by selecting the appropriate cells (see p. 4–5). Excel will always
place the leftmost column or topmost row of data on the horizontal axis of the graph.
If you want to change this, move columns or rows using the cut-and-paste proce-
dures described on page 5.

To start a graph, click on the Chart Wizard button (the little bar graph in the toolbar;
Figure 11) or open Insert | Chart. You will be presented with a series of dialog boxes
that take you through the process of creating a graph. After finishing each dialog box,
move to the next by clicking on the OK button.

In the first dialog box (Chart Type), click on the kind of graph you want to create
(Figure 12). You will frequently choose an X-Y axis scatterplot, XY (Scatter), or sometimes
a line graph (Line) or a vertical bar graph (Column), or other.
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We strongly advise you to avoid “chart junk.” Three-dimensional graphs, lots of
colors, and bizarre chart-types usually detract from the readability of a graph. Keep in
mind that your purpose is to communicate clearly and immediately, not to impress with
fancy graphics.

In the second dialog box (Chart Source Data), you will be given some choices about
the data to be graphed (Figure 13). Most often, the default settings will work, but some-
times you may have to tell the program that your data are arranged in rows rather
than columns, or vice versa. The Series tab provides additional options. This window
enables you to name a series of values (such as weight) and to specify the x and y val-
ues to be used in the chart if the default values are not appropriate.

In the third dialog box (Chart Options), you will be presented with a variety of choices
for formatting your graph (Figure 14). This dialog box is very important because it is
your opportunity to label the graph, its axes, and legend. It is extremely important to
label your graphs thoroughly, including units when appropriate.

Spreadsheet Hints and Tips 15

Figure 14

Figure 13



In the final dialog box (Chart Location; Figure 15), you will be asked to specify where
to save the graph (Figure 15). Most commonly (and by default) we choose to save the
graph on the spreadsheet, but in some circumstances you may want to save it on a sep-
arate sheet. Click on the Finish button and your chart will appear on your spreadsheet.

Editing a Graph

After you have created a graph, you can change its appearance by editing it in various
ways. To begin, select the graph by clicking anywhere in it. To change a feature of the
graph, double-click (two mouse clicks in rapid succession) on the feature you want
to change, and choose the desired options from those offered in the resulting dialog
box(es). When you have finished changing that feature, click on OK. For example, to
change an axis to a logarithmic scale, double-click on the axis, click in the box for log-
arithmic scale, and click OK.

Alternatively, you may open the Chart menu after selecting the graph. The submenus
within the Chart menu will allow you to modify nearly any feature of the graph to suit
your needs.

Automatic and Manual Calculation
By default, the spreadsheet program re-calculates all formulae and functions every time
you press the <Return> or <Enter> key (or perform certain other actions). This is called
automatic calculation. In some circumstances, you will want to prevent this, and take
direct control of when calculations are updated. This is called manual calculation.
You can choose whether calculation is automatic or manual by opening Tools | Options
| Calculation on Windows machines, or Tools | Preferences | Calculation on Macs.

After you set calculation to manual, you can update all formulae and functions by
pressing the recalculate key: F9 on Windows, or += on Macs.

Macros
A macro is a miniature program that you create to run a sequence of Excel actions. For
example, suppose you wanted to perform the same fairly long, tedious series of actions
many times. Typing and mouse-clicking your way through them over and over would
not only be time-consuming and boring, but also error-prone. A macro allows you to
achieve the same results with a single command.

You create a macro using Excel’s built-in macro recorder. Start the recorder by open-
ing Tools | Macro | Record New Macro. The program will prompt you to name the macro
and create a keyboard shortcut. Then, a small window will appear with the macro
recorder controls (Figure 17). If this button does not appear, go to View | Toolbars |
Stop Recording, and the Stop Recording figure will appear.

The square on the left side of the button is the Stop Recording button (Figure 17).
When you press this square, you will stop recording your macro The button on the right
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is the relative reference button. By default this button is not selected so that your macro
recorder assumes that the cell references you make in the course of developing your
macro are absolute. In other words, if you select cell A1 as part of a macro, Excel will
interpret your keystroke as cell $A$1. There are cases (for example, the survival analy-
sis exercise) in which you will want to select the relative reference button as you create
your macro. 
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From this point on, Excel will record every action you take. Carry out the entire
sequence of operations you want the spreadsheet to do, and then press the Stop Record-
ing button in the macro recorder control window. The program will mimic that entire
sequence of actions whenever you press the shortcut key or issue the macro command.

Obviously, planning pays off when recording a macro. If you’re creating your own
macro, go through the sequence of actions at least once in preparation to make sure it
actually achieves the desired result. Write down each action, so that you can repeat
and record them correctly. If you’re following our instructions to create a macro, be care-
ful to execute each step precisely as given. Remember, the computer doesn’t know what
you want to do; it records everything faithfully, mistakes and all.

Exercise 2, “Spreadsheet Functions and Macros,” provides exercises to help you mas-
ter creating macros.

GLOSSARY OF TERMS AND SYMBOLS
Absolute address A cell address (see Cell address) that refers to a specific loca-

tion in the spreadsheet, regardless of its position relative to the selected cell
(see p. 12). An absolute address does not change if copied to a new loca-
tion. In Excel, an absolute address is indicated by preceding the column let-
ter or row number (or both) by a dollar sign ($).

Cell address The location of a cell in the spreadsheet. The cell address consists of
a letter representing the column and a number representing the row (see p.
5). Addresses may be relative (see Relative address) or absolute (see
Absolute address).

Formula A symbolic representation of a set of operations to be carried out by the
spreadsheet (see p. 7). Usually, a formula contains one or more cell
addresses and one or more mathematical operations to be carried out on
the contents of those cells. The result of the operation(s) appears in the cell
in which the formula is entered. In Excel, formulae begin with the equal
sign (=).

Function A prewritten formula or set of formulae (see p. 9). Enter a function by
typing it in, by opening Insert | Function and choosing from the list, or by
clicking the Paste Function button (fx) and choosing from the list. In Excel,
functions begin with the equal sign (=).

Literal Text or a number that is not interpreted or manipulated by the spread-
sheet program (see p. 5). Row labels, column labels, and model constants
are literals. To force the program to treat an entry as a literal, begin it with
an apostrophe (‘).

Macro A sequence of commands to be executed automatically (see p. 16).
Relative address A cell address that refers to a location in the spreadsheet relative

to the position of the selected cell (see p. 12). A relative address changes if
copied to a new location, preserving the original relationship. Cell address-
es are relative by default in Excel, and require no special symbol.

Series A column or row of values in sequence. Most frequently these will be a
simple linear series (0, 1, 2, 3, …). See p. 12 for shortcuts to enter a series.

* In a formula, the asterisk (*) represents multiplication. In text, it represents a
wildcard: a stand-in for any letter or digit.

$ In a cell address, the dollar sign ($) indicates that the following column or
row reference is absolute rather than relative. See Cell address, Absolute
address, and Relative address.

^ In a formula, the carat (^) represents exponentiation. That is, 3^2 is equiva-
lent to 32.
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Objectives

• Learn how to enter formulae and create and edit graphs.
• Familiarize yourself with three classes of functions: linear,

exponential, and power.
• Explore effects of logarithmic plots on graphs of each kind

of function.

MATHEMATICAL FUNCTIONS 
AND GRAPHS1

INTRODUCTION
This exercise serves two main purposes: to allow you to practice some of the pro-
cedures outlined in “Spreadsheet Hints and Tips,” and to acquaint you with three
classes of mathematical functions. Biology, like all sciences, uses mathematical
relations to describe natural phenomena. In many cases, the mathematics is only
implied, as in any graph of one variable against another. In other cases, it is made
explicit in the form of an equation. Such relationships take a variety of forms, but
you will encounter three classes of relationships with some regularity in textbooks
and journal articles: linear functions, exponential functions, and power functions.

For example, the number of lizard species in a given area of desert habitat rises
linearly with the length of the growing season; a bacterial population introduced
into an empty vial of nutrient broth will grow exponentially (at least for a time); and
the number of species on an island is a power function of the island’s area.

A mathematical function relates one variable to another. For example, we may
say that the death rate in a population is a function of population density, mean-
ing that death rate and population density (both numbers that change from pop-
ulation to population, and even within a population—i.e., numbers that are “vari-
able”) are related in some way. By writing an equation, we can specify precisely
how these variables relate to one another.

For convenience, we usually refer to one variable as the independent variable
and the other as the dependent variable, and we speak of the dependent vari-
able “depending on” the independent variable. For example, we may say that
death rate depends on population density. If one variable is clearly a cause of the
other, we take the cause as the independent variable and the effect as the depend-
ent variable. But in many cases, cause and effect relationships are not clear, or each
variable may in a sense cause the other and be an effect of the other. Population

 



density and death rate offer an example of such a mutual cause-effect relationship. In
such cases, our choice of which variable to treat as independent and which to treat as
dependent is a matter of convenience or convention.

As a matter of convention, we denote the independent variable as x and plot it on the
horizontal axis of a graph, and we denote the dependent variable as y and plot it on
the vertical axis.

More strictly speaking, a function is a rule that produces one and only one value of
y for any given value of x. Some equations, such as y = , are not functions because
they produce more than one value of y for a given value of x. We can often treat such
equations as functions by imposing some additional rule; in this case, we might restrict
ourselves to positive square roots.

Functions take a variety of forms, but to begin with, we will concern ourselves with
the three broad categories of functions mentioned earlier: linear, exponential, and power.
Linear functions take the form

y = a + bx

where a is called the y-intercept and b is called the slope. The reasons for these terms
will become clear in the course of this exercise. Exponential functions take the form

y = a + qx

Power functions take the form

y = a + kxp

Note the difference between exponential functions and power functions. Exponential
functions have a constant base (q) raised to a variable power (x); power functions have
a variable base (x) raised to a constant power (p). The base is multiplied by a constant
(k) after raising it to the power (p).

PROCEDURES

The left-hand column of instructions gives rather generic directions; the right-hand col-
umn gives a step-by-step breakdown of these and explanatory comments or annota-
tions. If you are not familiar with an operation called for in these instructions, refer to
“Spreadsheet Hints and Tips.” 

Try to think through and carry out the instructions in the left-hand column before
referring to the right-hand column for confirmation. This way, you will learn more about
using the spreadsheet, rather than simply following directions. We hope that, with prac-
tice, you will gain enough skill in using the spreadsheet that you will be able to mod-
ify our models, or create your own from scratch, to suit your own uses. 

Your goals in this exercise are to learn how to use a spreadsheet program to calculate
and graph these functions and to see how these graphs look with linear and logarith-
mic axes. In achieving these goals, you will learn about the behavior of these classes of
functions, how to use formulae, how to make graphs, and the utility of logarithmic plots.
Save your work frequently to disk!

x
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ANNOTATION

These are all literals, so select each cell by clicking in it with the mouse, then type in
each title or heading. Use the delete (backspace) key or highlight and overtype to cor-
rect errors.

Enter the value 0 as a literal in cell A10.
In cell A11, enter the formula =A10+1. Copy the formula in cell A11.
Select cells A12–A19. Paste.

In cell B10, type the formula =5+1*A10.
We could omit the 1 in the equation and in the formula, but we keep it for consistency
with the others.

Copy the contents of cell B10.
Select cells B11–B19. Paste.

These should be:
Cell C10: =0+5*A10
Cell D10: =10+5*A10
Cell E10: = 60-5*A10

Select cells C10–E10. Copy.
Select cells C11–E19. Paste.

INSTRUCTIONS

A. Set up the spread-
sheet.

1. Enter titles and head-
ings through Row 9, as
shown in Figure 1. You
need not enter the text
shown in Rows 2 through
6, but if you don’t enter
the text, leave these rows
blank so that the cell
addresses in your formu-
lae will match the ones
given in these instructions.

Linear Functions

2. Set up a linear series from
0 to 9 in cells A10–A19. This
will provide values for the
independent variable x.

3. In cell B10, enter a
spreadsheet formula that
expresses the equation
shown in cell B9.

4. Copy the formula in cell
B10 down the column
through cell B19.

5. Enter formulae for the
equations shown in cells
C10, D10, and E10 into
cells C11, D11, and E11,
respectively.

6. Copy these formulae
down their respective
columns.
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13

A B C D E F
Functions and Graphs

The first part of this exercise will familiarize you with several kinds of mathematical 
functions, entering formulae, and graphing in Excel.

The second part will compare functions. 

Part 1: Kinds of Functions

Independent
variable

(x) y=5+1x y=0+5x y=10+5x y=60-5x
0 5 0 10 60
1 6 5 15 55

2 7 10 20 50
3 8 15 25 45

Linear functions

Figure 1



Select the column(s) to be modified.
You can either open Format | Column | AutoFit Selection, or click and drag column bound-
aries at the top of the page to achieve the desired widths.

These are all literals, so enter them as before (see Step 1).

Enter the number 0 as a literal in cell A23.
In cell A24, enter the formula =A23+1.
Copy the formula in cell A24.
Select cells A25–A32. Paste.

These should be
Cell B23: =0+1.1^A23
Cell C23: =0+1.5^A23
Cell D23: =0+1.5^-A23

We could omit the zeros in the equations and in the formulae, but we keep them for
consistency with the others.

Select cells B23–D23. Copy.
Select cells B24–D32. Paste.
At this point, your spreadsheet should contain the values shown above.

See Step 7.

These are all literals, so enter them as before (see Step 1).

7. Adjust the widths of
columns to accommodate
text and numbers.

Exponential Functions

8. Enter titles and head-
ings in Rows 21 and 22.

9. Set up a linear series
from 0 to 9 in cells
A23–A32. This will pro-
vide values for the inde-
pendent variable x.

10. In cells B23–D23, enter
spreadsheet formulae that
express the equations
shown in cells B22–D22.

11. Copy the formulae in
cells B23–D23 into cells
B24–D32.

12. If needed, adjust col-
umn widths to accommo-
date text and numbers.

Power Functions

13. Enter titles and head-
ings in Rows 34 and 35.
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23
24
25

A B C D E

x y=0+1.1^x y=0+1.5^x y=0+1.5^-x
0 1.00 1.00 1.00
1 1.10 1.50 0.67
2 1.21 2.25 0.44

Exponential functions

Figure 2

34
35
36
37
38

A B C D E

x y=0+x^2 y=0+x^0.5 y=0+x^-0.5
1 1.00 1.00 1.00
2 4.00 1.41 0.71
3 9.00 1.73 0.58

Power functions

Figure 3



Enter the number 1 as a literal in cell A36.
In cell A37, enter the formula =A36+1.
Copy the formula in cell A37.
Select cells A38–A45. Paste.
Note that this differs from previous examples by starting at 1 rather than 0. We will
explain why later.

These should be
Cell B36: =0+A36^2
Cell C36: =0+A36^0.5
Cell D36: =0+A36^-0.5

Again, we could omit the zeros in the equations and in the formulae, but we keep them
for consistency with the others.

Select cells B36–D36. Copy.
Select cells B37–D45. Paste.
At this point, your spreadsheet should contain the values shown above.

These are all literals, so enter them as before (see Step 1).

Enter the number 1 as a literal in cell A56.
In cell A57, enter the formula =A56+1.
Copy the formula in cell A57.
Select cells A58–A65. Paste.

The formulae should read:
Cell B56: =$C$49+$C$50*A56
Cell C56: =$C$49+$C$51^A56
Cell D56: =$C$49+A56^$C$52

Select cells B56–D56. Copy
Select cells B57–D65. Paste.
At this point, your spreadsheet should contain the values shown in Figure 4.

14. Set up a linear series
from 1 to 10 in cells
A36–A45. This will pro-
vide values for the inde-
pendent variable x.

15. In cells B36–D36, enter
spreadsheet formulae that
express the equations
shown in cells B35–D35.

16. Copy the formulae in
cells B36–D36 into cells
B37–D45.

Comparing Functions

17. Enter titles and head-
ings in Rows 47–55. Also
enter the values shown for
the parameters (constants).

18. Set up a linear series
from 1 to 10 in cells
A56–A65.

19. Enter formulae into
cells B56–D56 to calculate
the functions in cells
B55–D55.

20. Copy the formulae
down their columns.

Your spreadsheet is
complete. Save your
work!
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47
48

49
50
51
52
53
54
55
56
57
58

A B C D E
Part 2:Comparing Functions

y-Intercept (a) 0
Slope (b) 1
Base (q) 2
Power (p) 3

Linear Exponential Power
x y=a+bx y=a+q^x y=a+x^p
1 1 2 1
2 2 4 8
3 3 8 27

Parameters (constants)

Figure 4



Select the contiguous block of cells from cell A9 through cell E19. Note that you should
select the column headings as well as the data to be graphed. This lets the program
label the graph legend correctly.
Click on the Chart Wizard icon or open Insert | Chart.
In the Chart Type dialog box, select XY (Scatter). Then, from the chart subtypes shown,
choose the one at bottom left, which has data points connected with straight lines.

Click the Next button.

In the Chart Source Data dialog box, select Series in Columns. This will probably already
be selected for you, in which case you need only click on the Next button.

In the Chart Options dialog box, enter a figure title and axis labels as shown in Figure 6.

B. Create graphs.

Linear Functions

1. Graph all four linear
functions on the same
graph.
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Note the tabs across the top of the dialog box. Clicking on one of these will take you
to another page of chart options. We usually go to the gridlines page and remove the
horizontal gridlines that appear by default because we find them distracting. This has
already been done in Figure 6.
Click the Next button.

In the Chart Location dialog box, select Place Chart: As Object In: Sheet 1 and click on the
Finish button.

Often, the shaded background and default colors of data markers and lines are dif-
ficult to see and print poorly, especially on black-and-white printers. To change to
an uncolored (clear) background, double-click inside the graph axes, away from
any lines or data markers, and you should see the dialog box shown below.
Click on the buttons labeled None for Border and Area, as shown in Figure 7.

Double-click on a data point marker, and you should see the dialog box in Figure 8.

The left-hand section offers several options for formatting the line connecting data
points. Click and hold on the arrow in the box labeled Color and a color palette will pop
up. Still holding down the mouse button, select Black.
You can change the style of the line (solid, dashed, dotted, etc.) and its weight (thick-
ness) similarly. In general, you should not use the smoothed line option.

The right-hand section offers options for formatting data markers. Change the fore-
ground and background colors to black as you did for line color. You can use the Style
pop-up menu to choose the shape of the data marker. To make hollow markers, choose
No Color from the color palette for background color.
Edit each data series similarly, making all black and choosing easily distinguished mark-
ers or line-styles.

2. Edit your graph to
improve readability.
Change to an uncolored
background.

3. Make all data lines and
markers black and give
each function an easily
distinguished marker or
line type.

Mathematical Functions and Graphs 25

Figure 7



Click once inside the box around the graph, but outside the graph axes. The graph box
should now have small, square “handles” at the middle of each side. If it does not, try
clicking in a different place inside the graph box.
Press and hold the mouse button while dragging the graph to the desired location.
If only part of the graph moves, rather than the entire graph moving as a unit, open
Edit | Undo Move and try again.

Select the contiguous block of cells A22–D32. Note that you should select the column
headings as well as the data to be graphed. This lets the program label the graph leg-
end correctly.

4. Your graph should 
now resemble the one 
in Figure 9.

5. If the graph obscures
cells A19–E9 of your
spreadsheet, drag it to the
right so that those cells
are visible.

Exponential Functions

6. Graph all three expo-
nential functions on a
new graph.

26 Exercise 1

Figure 8

Linear Functions

0

10

20

30

40

50

60

70

0 10

Independent variable (x)

D
ep

en
d

en
t

va
ri

ab
le

(y
)

y=5+1x

y=0+5x

y=10+5x

y=60-5x

5

Figure 9



Click on the Chart Wizard icon or open Insert | Chart.
Follow the steps for graphing linear functions given in Section B1.

Follow the steps given in Section B2 on linear functions: Remove gridlines and label the
graph and its axes. Remove background color and change all lines and data markers
to black. Choose markers and line types so that different functions are clearly labeled.
When you are done, your graph should look something like the graph in Figure 10.

Double-click on the vertical axis. A dialog box will appear. Click on the tab labeled Scale.
The page shown in Figure 11 will appear. Click in the box labeled Logarithmic Scale.
Do not click on the OK button yet.

7. Edit your graph to
improve readability. 

8. Change the vertical axis
to a logarithmic scale.
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Click on the tab labeled Number. The page shown in Figure 12 will appear. Select Num-
ber from the category list on the left. Use the little arrows next to the Decimal Places box
to select 2 decimal places.

Now click on the OK button.

Note that exponential functions are graphed as straight lines when the vertical axis is
logarithmic and the horizontal axis is linear. A graph with such axes is called a semi-
log plot. Plotting variables on a semi-log plot is a good way to test for an exponential
relationship.

9. Change the numbers on
the vertical axis to display
two decimal places.

10. Your graph should
now resemble the one in
Figure 13.
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Select the contiguous block of cells A35–D45. Note that you should select the column
headings as well as the data to be graphed. This lets the program label the graph leg-
end correctly.
Click on the Chart Wizard icon or open Insert | Chart.
Follow the steps given in Section B1 on linear functions.

Follow the steps given in Section B2 on linear functions:  Remove gridlines and label
the graph and its axes. Remove background color and change all lines and data mark-
ers to black. Choose markers and line types so that different functions are clearly
labeled.

The graph of y = x2 resembles an exponential function but, as we will show shortly, it
is not. The other functions lie almost on top of the x-axis.

Double-click on the vertical axis.
In the dialog box, click on the Scale tab and select Logarithmic Scale. Do not click OK yet.

Click the Number tab, and use the Decimal Places box to select 1 decimal place.
Now click OK.

Note that none of the functions appears as a straight line; this tells you that they are
not exponential functions.

Follow the same procedure that you used in changing the vertical axis to a logarithmic
scale.

Note that all these power functions are graphed as straight lines when both axes are
logarithmic. A graph with such axes is called a log-log plot. Plotting variables on a log-
log plot is a good way to test for a power relationship.

Power Functions

11. Graph all three power
functions on a new graph.

12. Edit your graph to
improve readability. Your
graph should resemble the
one in Figure 14.
Graphing each function
separately reveals the
shapes of their graphs.

13. Change the vertical
axis to a logarithmic scale.

14. Change the numbers
on the vertical axis to dis-
play one decimal place.

15. Change the horizontal
axis to a logarithmic scale.
Your graph should now
resemble the one in Figure
15.
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Select cells A55–D65. Note that you should select the column headings as well as the
data to be graphed. This lets the program label the graph legend correctly.
Click on the Chart Wizard icon or open Insert | Chart.
Follow the steps given in the section on linear functions.

Follow the steps given in Section B2 on linear functions: Remove gridlines and label
the graph and its axes. Remove background color and change all lines and data mark-
ers to black. Choose markers and line types so that different functions are clearly
labeled.

Comparing Functions

16. Graph the three func-
tions in cells A55–D65 on a
new graph.

17. Edit your graph to
improve readability. Your
graph should resemble the
one in Figure 16.
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Try:
• Both axes linear
• Logarithmic x-axis, linear y-axis(semi-log)
• Both axes logarithmic (log-log)

See instructions above for details of changing axis scaling.

Simply enter new values in the cells labeled “Parameters” (constants)—cells C49
through C53. You do not need to edit the formulae.

QUESTIONS

1. How does changing the value of the y-intercept (a) affect each of the kinds of
functions? Enter different values in cell C49 and observe the effects on your
graph of three kinds of functions. The effects may be difficult to see at first,
because the spreadsheet automatically rescales the y-axis to accommodate val-
ues to be graphed. Be sure to note the values along the y-axis in your compar-
isons. Also compare the four linear functions you graphed in step B1.

2. How does changing the value of the slope (b) in cell C50 affect the linear func-
tion? Try values greater and less than zero. Also compare the four linear func-
tions you graphed in step B1.

3. How does the exponential function look if you enter different values for the
base (q) in cell C51? Try values greater than one, equal to one, less than one,
and less than zero. You will have to reformat the axes of your graph to see some
of these effects. Also compare the three exponential functions you graphed in
step B6.

4. How does the power function look if you enter different values for the power
(p) in cell C52? Try values greater than one, equal to one, less than one, and less
than zero. You will have to reformat the axes of your graph to see some of these
effects. Also compare the three power functions you graphed in step B11.

5. Find examples of all three kinds of functions in your textbook or in other books
or papers about ecology or biology. Look for explicit equations and for graphs
that imply these functions by their axis formats (both axes linear, y-axis loga-
rithmic, or both axes logarithmic).
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18. Experiment with dif-
ferent combinations of log-
arithmic and linear axes.

19. Experiment with dif-
ferent values of y-inter-
cept, slope, base, and
power, and observe the
effects on the graph.



SPREADSHEET FUNCTIONS 
AND MACROS2

Objectives

• Learn how to use the Paste Function menu on your spread-
sheet to carry out a set of mathematical operations.

• Become familiar with three types of spreadsheet functions:
standard functions, nested functions, and array functions.

• Practice using a variety of common spreadsheet functions.
• Develop and run a macro.

INTRODUCTION
Mathematical functions describe natural phenomena in the form of an equation,
relating one variable to another. In Exercise 1, you learned about linear, expo-
nential, and power mathematical functions.

In this exercise, the “function” under discussion is quite different. Spreadsheet
functions are formulae that have been written by a computer programmer to per-
form mathematical and other operations (see pp. 9–12). Your spreadsheet package
likely has over 100 functions available for your use. These functions can make mod-
eling easier for you, and you will use them extensively throughout this book.

Standard Functions
As an introduction to spreadsheet functions, let’s suppose that there are eight peo-
ple in an elevator. The names of the eight individuals and their weights are given
in Figure 1.

1
2
3
4
5
6
7
8
9

10

A B
Individual Weight (lbs)

Tim 180
Anne 135
Pat 200
Donna 140
Kathleen 142
Joe 190
Mike 176
Tansy 135
SUM =>

Figure 1

 



Imagine that the elevator can hold a maximum of 1,500 pounds, and that a ninth
person would like to get on. Would the addition of a ninth person exceed the 1,500-pound
safety limit? To answer this question, we need to know how much the eight people in the
elevator collectively weigh, and the weight of the ninth person. We could add cells B2–B9
to determine how much the eight people weigh. If we entered a mathematical formula
in cell B10 to compute this, the formula reads =B2+B3+B4+B5+B6+B7+B8+B9. The result
is 1,298 pounds. The more complicated a formula becomes, however, the more likely it
is that you will make a mistake in entering it. This is where spreadsheet functions come
into play. Instead of entering =B2+B3+B4+B5+B6+B7+B8+B9 in cell B10, we can use
the SUM spreadsheet function and have the spreadsheet do the work.

To enter a spreadsheet function, first select the cell in which you want the function to
be computed (in this case, cell B10). Then you can do either of one of two things. You
can use the Paste Function button fx on your toolbar (indicated in Figure 2), or you can
open Insert | Function to guide you through entering a function. Either way, the dialog
box will appear as shown in Figure 2.

Look at the column on the left side of the dialog box. It asks what kinds of function
category you want to examine. You could choose to look at the most recently used func-
tions, or you can look at all the available functions, or  you can check out the functions
in a specific category, such as financial functions, statistical functions, and so on. If you
choose All as a Function category, you’ll see every function available in your spreadsheet
package, listed in alphabetical order.

In Figure 2, we selected the Most Recently Used function category, so a list of the
most recently used functions appears in the right side of the dialog box. Note that the
function SUM is selected, and the program displays a brief description of the function
at the bottom of the box: “Adds all the numbers in a range of cells.” Click OK when
you’ve got the function you want (in this case, the SUM function). Another box will then
appear, called the formula palette (Figure 3). Each function has its own formula palette.
You are asked to enter the addresses of the cells you wish to sum in the SUM formula
palette. You can enter cell B2 as Number 1, cell B3 as Number 2, cell B4 as Number 3,
and so on. Or you can type in the range B2:B9 as Number 1 and the spreadsheet will
recognize that the entire range of cells is to be added. When you are finished, click the
OK box, or click on the green check-mark button to the left of the formula bar. If you
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change your mind and decide to abandon the formula entry, click on the red × button
to the left of the formula bar.

There are two handy features in a formula palette that you should note.
• First, notice the small figure with a red arrow pointing upward and leftward

(located to the right of the blank space labeled Number 1). If you click on this
arrow, the dialog box will shrink, exposing your spreadsheet so that you can
use your mouse to select the range of cells you want to add. This is handy
because you don’t have to type in the cell references—just point and click on
the appropriate cells. After you’ve selected the cells you want to add (in this
case, use your mouse to highlight cells B2–B9), click on the arrow again and the
SUM dialog box will reappear.

• The second handy feature of all Paste Function dialog boxes is “Help” informa-
tion, accessed by clicking on the question mark located at the bottom-left cor-
ner of the window. If you don’t know how the function works, clicking on the
question mark will provide additional information.

Once you have entered all the necessary data and pressed OK, the spreadsheet will
return the answer in cell B10. Although the spreadsheet displays the answer (1,298) in
cell B10, the formula bar shows that the cell really contains the function =SUM(B2:B9).
Note that the spreadsheet automatically inserted an equal sign before the function name,
alerting the spreadsheet that a function is being used (Figure 4).
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Nested Functions
In some cases, you may need to perform more than one function, “nesting” one func-
tion inside another to give you the result you want. Returning to our elevator exam-
ple, suppose that a ninth person, Peter, would like to board the elevator. He weighs 200
pounds. We want to enter a formula in cell B13 to determine whether he can safely
board or not. If the total weight is less than 1,500 pounds, he can safely board. If the
total weight is more than 1,500 pounds, he cannot safely board. We can use an IF
function in cell B13 to carry out the operation and return the word “yes” if he can board
or “no” if he cannot board (Figure 5). 

As with the SUM function, you can use the Paste Function menu and then search for
and select the IF function (Figure 6). You will notice at the bottom of the dialog box the
words IF(logical_test,value_if_true,value_if_false). This is the syntax for the IF for-
mula, and it provides the “rules” for entering an IF function. You should also see a brief
description of the function that tells you the function “returns one value if a condition
you specify evaluates to TRUE and another value if it evaluates to FALSE.” 
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For our example, we want to determine whether the total weight is less than or equal
to 1,500 pounds. This is the logical test. If the logical test is TRUE, we want the word YES

to be returned (he can safely board). If the logical test is FALSE, we want the word NO to
be returned (he should not board). The formula palette for the IF function is shown in
Figure 7.

The logical test requires that we sum the weights of the original eight individuals in
cells B2–B9 and the weight of the ninth individual (cell B12) and determine whether the
sum is less than 1,500. Because the logical test (IF function) contains the SUM func-
tion, it is called a nested function. To nest the SUM function within the IF function,
place your cursor within the Logical_test box. Then select the down arrow to the left of
the formula bar. A list of functions appears. Search for the SUM function and click on
it, and the SUM function palette will appear as shown in Figure 3. Enter the cell range
B2:B9 as Number 1, and cell B12 as number 2. Instead of clicking OK when you are fin-
ished with the SUM function, click on the word IF on the formula bar; you will be
returned to the IF formula palette and can complete the IF function entries.

Notice that the formula palette in Figure 7 displays the result of the logical test (TRUE)
and the formula result (YES), indicating that Peter can board the elevator safely. The
final function in cell B13 reads =IF(SUM(B2:B9,B12)<1500,”YES”,”NO”). When func-
tions are nested within other functions, the spreadsheet will compute the answer to the
“nested” functions (in this case, SUM) first and then will complete the outer functions. 

Array Formulae
Functions such as SUM perform a calculation and generate a result in a single cell.
An array formula, on the other hand, can perform multiple calculations, returning
either a single result or multiple results. Array formulae act on two or more sets of val-
ues known as “array arguments.”

You create array formulae in the same way you create other formulae, with a few
major exceptions. First, instead of selecting a single cell to enter a formula, you need to
select a series of cells, then enter an array formula. And second, instead of pressing OK
after you have completed the entries in the function palette, you press
<Control>+<Shift>+<Enter> (on Windows-based machines) or <>+<Return> (on
Macs) to enter the formula for all of the cells you have selected. 

Let’s consider a new example. Suppose you want to construct a frequency distribu-
tion from the data in Figure 8. The weights (in grams) for 10 individuals are given in col-
umn B. Suppose you want to count the number of individuals that are 1 gram, 2 grams,
3 grams, 4 grams, and 5 grams. You could use the FREQUENCY function, which is an
array formula to generate frequency data quickly.
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The column labeled “Bins” in Figure 8 tells Excel how you want your data grouped.
You can think of a bin as a bucket in which specific numbers go. The bins may be very
small (hold a single or a few numbers) or very large (hold a large set of numbers). In
this case, the numbers 1 through 5 represent the bins, and each bin “holds” just a sin-
gle number. The task now is to have the spreadsheet count the number of individuals
in each bin and return the answer in cells D2–D6. Because the frequency function is an
array function, we need to select cells D2–D6 (rather than a single cell) before using the
fx button to summon the FREQUENCY formula. 

The FREQUENCY formula palette will appear (Figure 8) and will guide you through
the entries. The Data_array is simply the data you want to summarize, given in cells
B2:B11. The Bins_array is cells C2:C6. Instead of clicking OK, press
<Control>+<Shift>+<Enter> on Windows machines, or <>+<Return> on Macs, and
the spreadsheet will return your frequencies.If we examine the formulae in cells D2–D6,
every cell will have the formula {=FREQUENCY(B2:B11,C2:C6)}. The { } symbols indi-
cate that the formula is part of an array.

Typically, frequency data are depicted graphically as shown in Figure 9. If you change
the data set in some way, the spreadsheet will automatically update the frequencies. If
for some reason you get “stuck” in an array formula, just hit the Escape key and start
again. 

MACROS
As noted in the Introduction (p. 16), a macro is a miniature program that you build for
yourself in order to run a sequence of spreadsheet actions. Typing and mouse-clicking
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your way through a long series of commands over and over is time-consuming, boring,
and error-prone. A macro allows you to achieve the same results with a single command.

You record a macro using Excel’s built-in macro recorder. Start the recorder by open-
ing Tools | Macro | Record New Macro (Figure 10).

The program will prompt you to name the macro and create a keyboard shortcut.
Then a small window will appear with the macro recorder controls (Figure 11). If this
button does not appear, go to View | Toolbars | Stop Recording, and the Stop Recording fig-
ure will appear. The square on the left side of the button is the Stop Recording button.
When you press this square, you will stop recording your macro. The button on the right
is the Relative Reference button. By default this button is not selected so that your macro
recorder assumes that the cell references you make in the course of developing your
macro are absolute. In other words, if you select cell A1 as part of a macro, Excel will
interpret your keystroke as cell $A$1. There are cases (for example, the Survival Analy-
sis exercise) in which you will want to select the relative reference button as you record
your macro.

Once you have entered the macro name and shortcut key, the spreadsheet will record
every action you take. Carry out the entire sequence of operations you want the macro
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to do, and then press the Stop Recording button in the macro recorder control window.
From this point on, Excel will mimic that entire sequence of actions whenever you press
the keyboard shortcut or issue the macro command.

PROCEDURES

Now that you have been introduced to simple functions, nested functions, arrays,
and macros, it’s time to put them into practice. The following instructions will intro-
duce you to some 20 commonly used spreadsheet functions. As in Exercise 1, the left-
hand column of instructions gives rather generic directions, and the right-hand column
gives a step-by-step breakdown of these and explanatory comments or annotations.
Try to think through and carry out the instructions in the left-hand column before refer-
ring to the right-hand column for confirmation. It’s tempting to jump to the right hand
column for the answers and explanation, but you will learn a lot more about using
spreadsheet functions if you attempt it on your own. As always, save your work fre-
quently to disk.

ANNOTATIONINSTRUCTIONS

A. Set up the spread-
sheet.

1. Open a new spread-
sheet and enter headings
as shown in Figure 12.
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A B C
Spreadsheet Functions and Macros

Individual Height (cm)

1 12
2 2
3 8
4 20
5 3
6 5
7 12
8 6
9 4

10 9
11 7
12 4
13 1
14 7
15 7
16 10
17 1
18 3
19 2
20 4

Figure 12



We will consider a sample of 20 individuals and their heights. 
Enter 1 in cell A4.
Enter =1+A4 in cell A5.
Select cell A5 and copy it down to cell A23. 

These are the actual data, so just type in the numbers as shown in Figure 12.

In this section, you’ll use 11 standard spreadsheet functions to compute various things,
like the average height of the 20 individuals. For all functions, use the Paste Function
menu (the Paste Function button, fx, or open Insert | Function) to locate the appropriate
function, review the function’s formula palette, and complete the entries. You can dou-
ble-check your results with ours at the end of the section. 

The COUNT function counts the number of cells that contain numbers. In this case,
you want to count the number of times that a number is contained in cells B4–B23.
Select the COUNT function from the Paste Function menu and compute this result.
After you are finished, cell E5 should display the number 20, and its formula should
be =COUNT(B4:B23).

For each formula, use the Paste Function menu and read through the information on the
formula palette carefully. If you are unsure of the kind of information a statistic pro-
vides, click on the question mark on the bottom-left corner of the formula palette. After
you have finished, the formulae in your spreadsheet should look like Figure 14, except
that instead of seeing the formula in cells E5–E12, the answers to each formula will be
displayed.

2. Set up a linear series
from 1 to 20 in cells
A4–A23.

3. Enter the heights for the
20 individuals in cells
B4–B23 as shown.

B. Compute simple func-
tions.

1. Set up new headings as
shown in Figure 13. 

2. In cell E5, use the
COUNT spreadsheet func-
tion to count the total
number of individuals in
the sample. 

3. In cells E6–E12, use the
spreadsheet functions
SUM, AVERAGE, MEDI-
AN, MODE, MIN, MAX,
and STDEV to compute
basic descriptive statistics
for the population. 
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The LARGE function returns the kth largest value in a range of cells. In this case, the
range of cells is B4–B23 (Figure 12), and k = 4. Your formula should read
=LARGE(B4:B23,4), and the answer should be 10.

You will use the RAND function in many of the exercises in this book. This function
has the form =RAND(). The ( and ) are open and closed parentheses; you do not need
to put anything inside them. 

The RANDBETWEEN function generates a random integer between two specified val-
ues. The bottom value is the lowermost integer that can be randomly selected (1), and
the top value is the uppermost integer that can be randomly selected (20). This func-
tion could be used to randomly select an individual from the population. The for-
mula in cell E15 should read =RANDBETWEEN(A4,A23) or =RANDBETWEEN(1,20).

Note: If your spreadsheet doesn’t have the RANDBETWEEN function, you can enter
the nested functions =ROUNDUP(RAND()*20,0). This will generate a random num-
ber between 0 and 1, multiply it by 20, and round it up to the nearest zero decimal
places (i.e., to the nearest integer).

The Calculate key in Windows is the F9 key, located at the top of your keyboard.* When
this button is pushed, the spreadsheet will recalculate all of the formulae in the spread-
sheet. For random numbers, such as those generated by the RAND or RANDBE-
TWEEN functions, a new random number will be generated when the spreadsheet is
calculated. 
Verify this by examining the results in cells E14–E15 each time you press F9.

Now we will turn to nested functions and multi-step functions. Multi-step functions
are actually standard functions like SUM, MIN, and MAX, but there are more entries
involved in the formula palette. A function is nested if it uses more than one function
to complete the calculations.

4. In cell E13, use the
LARGE function to com-
pute the fourth largest
height. 

5. In cell E14, use the
RAND formula to gener-
ate a random number
between 0 and 1. 

6. In cell E15, use the
RANDBETWEEN func-
tion to generate a random
number between 1 and 20. 

7. Press F9, the Calculate
key, to generate new ran-
dom numbers in cells E14
and E15. 

8. Save your work.

C. Compute multistep
and nested functions. 
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Count =COUNT(B4:B23)
Sum =SUM(B4:B23)
Average =AVERAGE(B4:B23)
Median =MEDIAN(B4:B23)
Mode =MODE(B4:B23)
Min =MIN(B4:B23)
Max =MAX(B4:B23)
Stdev =STDEV(B4:B23)

Simple functions

Figure 14

*The F9 function key will work on Macintosh machines provided the Hot Function Key
option in the Keyboard Control dialog box is turned OFF. If  the F9 key does not work on
your Mac, use the alternative, +=.



We use the COUNTIF formula extensively. It counts the number of times a specific
value occurs within a range of cells. Your formula should read =COUNTIF(B4:B23,E9)
in cell G5, and your result should be 3, indicating that 3 individuals are 4 cm. in height. 

The AND function returns the word TRUE or FALSE. It returns the word TRUE if all of
the arguments in the formula are true (cell B4 = 12 and cell B5 = 2). If either condition
is not true, the spreadsheet returns the word FALSE. Your result should be TRUE.

The OR function is similar to the AND function in that it returns the word TRUE or FALSE.
It returns the word TRUE if any of the arguments in the formula are true (cell B5 = 1 or
cell B5 = 2). Your result should be TRUE.

The CONCATENATE function joins several text strings into a single text string. The
formula =CONCATENATE(F6,F7) should return the word “AndOr.” This doesn’t
mean anything, but serves to illustrate the function. We will use this function in many
of the genetics exercises. (The formula =F6&F7 would generate the same result.)

The VLOOKUP function searches in the first column of a table for a value that you
specify and returns the value of the corresponding cell in a different column. The
VLOOKUP function needs three pieces of information: the value you want to find in
the first column of the table, the cells that define the table (the upper-left and lower-
right cells of the table), and the number of the column in the table that holds the
information you want the formula to return. The formula =VLOOKUP(1,A4:B23,2)
looks for the number 1 in the first column of the table defined by cells A4–B23, and it
returns the value of the cell from the same row in the second column. In our spread-
sheet, this formula returns the height of individual 1.

The NORMINV function is used extensively throughout the book, and is described
more fully in Exercise 3, “Statistical Distributions.” Since here you will use the RAND
function within the NORMINV function, this is a nested formula. Generally speak-
ing, for a set of normally distributed data, the function will generate a data value if you
specify a probability associated with a normal curve. The function in cell G10 should
read =NORMINV(RAND(),E7,E12). In this case, we will first generate a random prob-
ability between 0 and 1. This probability will be applied to a normal distribution whose

1. Set up new headings as
shown in Figure 15.

2. In cell G5, use the
COUNTIF formula to
count the number of times
the modal value (given in
cell E9) occurs. 

3. In cell G6, use the AND
function to determine if the
value in cell B4 = 12 and the
value in cell B5 = 2. 

4. In cell G7, use the OR
function to determine if
the value in cell B5 is
either 1 or 2. 

5. In cell G8, use the CON-
CATENATE function to
join the text in cell F6 with
the text in cell F7. 

6. In cell G9, use the
VLOOKUP function to
return the height of indi-
vidual 1. 

7. In cell G10, use the
NORMINV function to
draw a random data point
from a distribution whose
mean is given in cell E7,
and whose standard devi-
ation is given in cell E12. 
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mean is given in cell E7 and whose standard deviation is given in cell E12. The spread-
sheet will then return the data value associated with that probability. Note when you
press F9, the Calculate key, a new random number is computed, and thus a new ran-
dom data point from the normal distribution is drawn. Also note that occasionally a
negative number will appear. This is because the mean is close to 0 (6.35) and the
standard deviation is quite large (4.65), so some of the data points within this distri-
bution are below 0.

Your formula should read =ROUND(G10,0). Once you are familiar with this function,
you may find yourself typing it in by hand.

Your formula should read, =IF(G11<0,0,G11). This tells the spreadsheet to evaluate the
value in cell G11; if the number is < 0, return a 0; otherwise, return the number given
in cell G11. This formula will prevent the spreadsheet from generating negative heights. 

Your formula should read =VLOOKUP(E15,A4:B23,2).

Remember that the FREQUENCY function is an array function. For this example, each
bin “holds” several numbers. The bin labeled 5 holds heights that are up to and includ-
ing 5 cm. The bin labeled 10 holds heights that are 6, 7, 8, 9, and 10 cm. Don’t forget
that to enter an array function such as the FREQUENCY function, you must press
<Control>+<Shift>+<Enter> to generate a proper result. Cells I6–I9 should have the
formula {=FREQUENCY(B4:B23,H6:H9)}.

8. In cell G11, use the
ROUND function to
round cell G10 to 0 deci-
mal places. 

9. In cell G12, use an IF
function to return the
number 0 if cell G11 is a
negative number. 

10. In cell G13, use the
VLOOKUP function to
look up the height of the
randomly selected indi-
vidual listed in cell E15. 

11. Save your work.

D. Utilize an array 
function. 

1. Set up new headings as
shown in Figure 16.

2. Select cells I6–I9; then
use the FREQUENCY
function to generate fre-
quency data of heights in
the population. Use the
bins in cells H6–H9. 
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Your spreadsheet should now look as shown in Figure 18. Note that you will likely
have different values in cells E14–E15, G10–G11, and G13 because random numbers
are used to generate the results shown. 

Now we will write a macro to randomly select an individual from the population,
and we will record its height in column K. We will do this for 20 samples. Remember
that you generated a random number between 1 and 20 in cell E15. You also looked up
this randomly selected individual’s height with the VLOOKUP function in cell G13.
In our macro, we will press F9 to generate a new randomly selected individual, then
we will copy the value in cell G13 into cell K5. We will repeat the process for the sec-
ond sample, but we will record the height of the randomly selected individual in cell
K6 (and so on). 

3. Create a frequency his-
togram of the data in cells
I6–I9. Label your axes
fully (Figure 17).

4. Double-check your
results. 

5. Save your work.

E. Write a macro to ran-
domly select individuals
from the population. 
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There are many ways you can construct a macro to complete the task; here is one sug-
gestion.

• Open Tools | Options | Calculation, and set the Calculation key to manual.
• Open Tools | Macro | Record New Macro. A dialog box will appear.
• Enter in a macro name (such as Sample) and a shortcut key (such as

<Control>+<t>).
• If the Stop Recording button does not appear, open View | Toolbars | Stop

Recording. You should now see the Stop Recording toolbar on your spreadsheet.
The filled square on the left is the Stop Recording button. Press this button with
your mouse when you are finished recording your macro. 

• Press F9, the calculate key, to generate a new randomly selected individual.
• Select cell G13, the height of the randomly selected individual, and open Edit |

Copy.
• Select cell K4, the top row of the height column.
• Open Edit | Find. A dialog box will appear (Figure 21).

1. Set up new headings as
shown in Figure 19.

2. Write a macro to record
the heights of 20 randomly
sampled individuals from
the population.
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• Leave the box labeled Find What blank, and select the Search By Columns option.
Click on Find Next, then on Close. Your cursor should have moved down to the
next empty cell on your spreadsheet.

• Open Edit | Paste Special, and select the Paste Values option. Click OK.
• Click on the Stop Recording button. 

That’s all there is to it. Now when you press the shortcut key, <Control>+<t>, the
spreadsheet will repeat the steps in the macro automatically. Run your macro until you
have obtained the heights of 20 randomly sampled individuals. (Note that with this
process, the same individuals can be sampled more than once.)

You can view the code that the spreadsheet “wrote” as a result of your keystrokes by
going to Tools | Macros | Macro. Select the macro name of interest, and click on Edit. The
Visual Basic code will be revealed. When you are finished, click on the x button in the
upper-right hand corner of the spreadsheet to close the Visual Basic code. You will be
returned to your original spreadsheet.

You may want to switch your calculation key back to automatic; otherwise, you must
press F9 any time you want your spreadsheet to calculate values.

QUESTIONS

1. Explore the formulae used in the exercise by changing some of the heights of
the individuals. For example, change cell B5 from 2 to 1. How does this change
affect the outcome of the AND and OR functions? Change other values in the
data set as well. How do your changes affect the frequency distribution of the
data? 

2. Click on the Paste Function button, fx, and select the function category ALL. A list
of all functions is displayed on the right-hand side of the Paste Function dialog
box. Click on a function that looks interesting, and notice the description of the
function that appears in the lower portion of the dialog box. Select three functions
that were not used in this exercise and explore how each function works. Choose
functions that are likely to be relevant to the data set in the exercise. 

3. Save your work.
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STATISTICAL DISTRIBUTIONS3
Objectives

• Become familiar with properties of the normal distribution.
• Construct a frequency histogram of a trait for a population.
• Become familiar with properties of the binomial distribution.
• Become familiar with properties of the Poisson distribution.

INTRODUCTION
In your studies of ecology and evolution, you will very likely come across a vari-
ety of statistical distributions and their uses. If you haven’t taken a course on sta-
tistics, learning about these distributions may seem like learning a foreign language.
However, since they are so widely used in the sciences, it is important that you
become familiar with the most common statistical distributions used in ecology and
evolution. In this exercise, you will learn about three distributions: the normal (or
Gaussian) distribution, the binomial distribution, and the Poisson distribution.

Normal Distribution
Let’s start with some very basic concepts before introducing the normal distri-
bution. In the biological sense, a population is a group of organisms that occupy
a certain space and that can potentially interact with one another. In statistics the
term population has a slightly different meaning. A statistical population is the
totality of individual observations about which inferences are made, existing anywhere
in the world or at least within a specified sampling area limited in space and time (Sokal
and Rohlf 1981). Suppose you want to make a statement about the average height
of humans on earth. Your statistical population would then include all of the indi-
viduals that currently occupy the planet earth. Usually, statistical populations are
smaller than that. For example, if you want to make a statement about the size of
a certain fish species in a local stream or pond, your statistical population consists
of all of the fish currently occurring within the boundaries of a stream or pond.
Other examples of statistical populations include a population of business firms,
of record cards kept in a filing system, of trees, or of motor vehicles. By conven-
tion, Greek letters are used to describe the nature of a population. For example,
the average height of humans on earth would be denoted with the Greek letter
µ, and the variance in height would be denoted with the Greek letter σ2, and the
standard deviation would be denoted as σ. (We will define these terms shortly.)

 



In practice, it would be very difficult to measure the heights of all the individuals
on Earth or even to measure all the fish in a local pond. So, we sample from the popu-
lation. A sample is a subset of the population that we can deal with and measure. The
goal of sampling is to make scientific statements about the greater population from the
information we obtain in the sample. Quantities gathered from samples are called sta-
tistics. Statistics are denoted by letters from the Latin alphabet (i.e., from the same alpha-
bet we use for writing English). For example, the mean of our sampled population would
be denoted by the Latin letter x–, the variance is denoted by S2, and the standard devia-
tion is denoted by S.

The most important pictorial representation of a set of data that make up a sample
is called a frequency distribution. If we sampled plants in an area of interest and
recorded their biomasses in grams, we could then construct a frequency distribution
such as Figure 1 and examine the shape of our data. Biomass would go on the x-axis (on
the bottom), and numbers of individuals of a certain biomass would go on the y-axis
(the vertical axis). 

In published papers, you rarely see frequency distributions because they take up too
much space in print, and they usually provide more information than a reader needs.
Instead, ecologists and evolutionary biologists often report two kinds of summary sta-
tistics: (1) measures of central tendency (average value, middleness), and (2) measures
of dispersion (how spread or dispersed the raw data are). Examine Figure 1. How would
you characterize the “average plant” in terms of biomass? There are three common meas-
ures of central tendency: the mean, the mode, and the median. The mean, denoted by
x–, is simply the arithmetic average: sum up the total biomass and divide by the number
of individuals in the sample. 

Equation 1

If our sample consisted of the values 4, 6, 10, and 12, those values represent the little
x’s in equation 1, and N = 4 since there are four values in the sample. The average is 
(4 + 6 + 10 + 12) divided by 4. In Figure 1, the average is 4.3 grams of biomass. The
mode is the most frequently occurring value. It is the high point of the frequency dis-
tribution. In our example, 5 is the mode since this value occurs 12 times. The median
is the middle number in a data set when the samples are ordered. For example, if our
sample consisted of the values 1, 3, 4, 6, and 10, the median would be 4 because it is the
middle value. If the data set consisted of an even number of observations, then the
median is the average of the two middlemost numbers. 
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Now let’s consider the spread of the data in Figure 1. How can we characterize this
spread? One way is to record the range of values the data assume. The lowest observed
biomass was 2 grams, and the highest observed biomass was 9 grams. The range of bio-
mass for our sample then is 9 – 2, or 7 grams. The data points at the extremes really affect
the range, so it is not a very stable estimate of variability. A second method, called
average error, describes how far each data point is, on average, from the mean. It is
calculated as 

Equation 2

However, because some scores will fall above the mean, and others will fall below it,
this sum will always be 0! How can we overcome this problem? By squaring the devi-
ations from the mean, and by subtracting 1 from the total sample size, we end up a def-
inition of variance, or S2:

Equation 3

Thus, variance can be defined as (almost) the average squared deviation of scores from
the mean. This is a very useful way of describing the spread of data in a given data set.
However, all of the units have now been squared (e.g., biomass2). To get rid of the squar-
ing, we take the square root of both sides and arrive at the equation for computing
the standard deviation of a sample, or S.

Equation 4

With this background, we can now proceed to talk about the normal distribution.
This distribution is one of the most familiar in statistics. Let us first return to a statisti-
cal population, rather than a sample. For a normally distributed trait, the frequency of
distribution takes on a bell-shape that is completely symmetrical and has tails that
approach the x-axis. The shape and position of the normal curve is determined by both
the mean (µ) and the standard deviation (σ): µ sets the position of the curve along the x
axis, while σ determines the spread of the curve. Two normal curves are shown in Fig-
ure 2. They have different µ but the same σ; thus they are similar in shape but are posi-
tioned in different locations along the x-axis. 

The standard deviation determines the spread of the normal curve. Figure 3 shows
two normal curves with the same µ, 40, but different σ. Note that when σ is small,
most of the data are distributed close to the mean, and when σ is large, the curve “flat-
tens out” because the data vary more from the mean.

S
x x

N=
−
−

∑( )2

1

S
x x

N
2

2

1=
−
−

∑( )

x x
N

−( )∑

Statistical Distributions 51

20 40 60 80 100

µ = 40

� σ = 12

µ = 60

� σ = 12

0

Figure 2



A property of normal curves is that the total area under the curve is equal to 1. (This
is true of all probability models or models of frequency distributions.) Another prop-
erty is that the most of the data fall in the middle of the curve around the mean. Nor-
mal distributions are completely symmetrical about the mean, and the mean equals the
median and the mode. For normal distributions, approximately 68% of the observations
will fall between the mean and plus or minus 1 standard deviation. If we assume, for
example, that the mean length for a population of seeds is 10 mm and that S is 1.0, and
if we assume that seed length is normally distributed, then 68% of the seed length val-
ues will fall between 9 and 11 mm (i.e., the mean, 10 mm, plus or minus 1.0, which is 1
standard deviation). And approximately 95% of the observations will fall between the
mean and plus or minus 2 standard deviations. These properties make it possible to
compute the specific probability that, for example, a seed of 8 mm length will be sam-
pled from the population. 

Figure 4 shows that, for a population with a mean of 10 and a standard deviation of
1.0, this probability is 0.054. This probability was computed in Excel with the NOR-
MDIST function. The probability of sampling a seed of 10 mm length is 0.4. The cumu-
lative probability gives the probability of sampling a seed of a certain size or less. For
example, the probability of sampling a seed of at least 10 mm is 0.5. As you can see, with
the parameters given, the cumulative probability is 1 when the seed length is 13 mm.
This means that there is a 100% chance of sampling a seed of 13 mm or less, given that
the population has a mean length of 10 mm and a standard deviation of 1. 
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If we change the standard deviation to 3 mm, and keep the mean at 10 mm, the prob-
abilities will be different (Figure 5). 

Knowledge about the normal distribution is important to ecologists because many sta-
tistical procedures, such as a t test, assume that the sampled data are normally dis-
tributed. These properties are handy from a modeling perspective; in many of the exer-
cises in this book, we will “draw” samples from a normal distribution whose mean and
standard deviation are specified. 

Binomial Distribution
Some situations in ecology are binary: There are only two possible outcomes. For exam-
ple, suppose we are tracking the fates of individuals over time and are interested in the
number of deaths. During this period, there are only two outcomes: death or sur-
vival. In this situation, a binomial distribution can be used to describe the relative num-
ber of times that a particular event will occur (death) among groups of observations.
Another example may be the relative numbers of trees in flower among a series of sam-
ples of a particular size. The binomial distribution is used when a researcher is inter-
ested in the occurrence of an event, not in its magnitude. The binomial distribution
describes, for instance, the relative numbers of individuals that flower, not how well
they flower. 

The binomial distribution is specified by the number of observations, n, and the prob-
ability of occurrence, which is denoted by p. Here are some things to keep in mind when
using the binomial distribution:

• Each outcome must be classified as a “success” (the type of outcome that we’re
interested in) or as a “failure.” 

• Since we’re dealing with a count of successes, this probability distribution is
discrete. (The x-axis is the number of successes, and it cannot be a fraction).

• Each trial is independent. The probability of success (p) and the probability of
failure (1 − p) is the same for each trial. Thus, if one tree in your sample has
fruits, you don’t know anything about the next sample, other than it has a
probability p of having fruit.

The formula for calculating the probability of x successes out of n trials of a binomial
experiment, where the probability of success on an individual trial is p, is

f(x) = nCx × px × (1 – p)n–x Equation 5
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In this equation, p is the probability of success and its exponent, x, is the number of suc-
cesses. The probability of failure is 1 − p, and its exponent, n − x, is the number of fail-
ures. The term nCx means “out of n samples, let x succeed.” This gives the number of
ways of choosing x distinct items from a set of n items, and it is calculated as

Equation 6

Recall that a factorial, such as n!, is calculated by multiplying all the integers (whole
numbers) from 1 up to and including n.

For example, assume the probability of surviving is 0.1. If we have a population of 5
individuals, what is the probability that exactly 3 individuals will survive? The suc-
cess in this problem is an individual that survives. The failure is an individual that dies.
We know that p = 0.1. This also tells us that 1 − p = 0.9. Since our population consists of
5 individuals, n = 5. And we are specifically interested in knowing the probability that
3 individuals will succeed, so x = 3. First, let’s compute 5C3. It is

We can compute the binomial probability that exactly 3 of 5 individuals will survive
when p = 0.1 as

f(3) = 5C3 × (0.1)3 × (0.9)2

= (10) × (0.001) × (0.81)

= 0.0081

The probability that exactly 3 of these 5 individuals survive is 0.0081. Similarly, the proba-
bility that 0, 1, 2, 4, and 5 individuals survive could be calculated (rather easily with the
BINOMDIST function). We can graph these binomial probabilities as shown in Figure 6.

If we change our survival probability to 0.7, our binomial distribution of probabilities
will differ, as shown in Figure 7. As with the normal distribution, we could also plot
the cumulative probability that at least x number of individuals survive.
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Poisson Distribution
The Poisson distribution is similar to the binomial distribution in that the number of
events is counted. However, the events are not limited to two outcomes. For example,
ecologists may be interested in the number of birth events in a given period of time.
The Poisson distribution is a mathematical rule that assigns probabilities to the num-
ber occurrences. The French mathematician Poisson derived this distribution in 1837,
and evidently its first application was the description of the number of deaths in the
Prussian army due to horse kicking (Bortkiewicz 1898). The only thing we need to know
to specify the Poisson distribution is the mean number of occurrences, such as the mean
number of births. Contrast this to the binomial distribution, in which both the proba-
bility that an event will occur and the total number of individuals in the population
must be known. For example, in the binomial distribution all individuals are studied
to see whether they had survived or not, whereas using the Poisson distribution only
the individuals that survived are studied. 

The formula for calculating the Poisson probability is

Equation 7

where λ is the mean number of successes in a given period of time, x is the number of
successes we are interested in, and e is the natural logarithm constant (approximately
2.718). As an example, suppose the average number of offspring produced per indi-
vidual in a population is 2.1; what is the probability that an individual will have exactly
4 offspring? The probability would be calculated as

Equation 6

We could calculate the probability that exactly 0, 1, 2, 3, 5, 6, 7, … offspring were pro-
duced, given the average, with the POISSON spreadsheet function. Our Poisson dis-
tribution is shown in Figure 8.

f e( ) . .
.

4 2 1
4 3 2 1 0 0992

4 2 1
= ×

× × × =
−

f x e
x

x
( ) != × −λ λ

Statistical Distributions 55

Binomial Distribution of Survival Probability

0

0.05
0.1

0.15

0.2

0.25
0.3

0.35

0.4

0 1 2 3 4 5

Number of survivors

P
ro

b
ab

ili
ty

Figure 7



In this exercise, you’ll use a spreadsheet to explore properties of the normal, bino-
mial, and Poisson distributions. As always, save your work frequently to disk. 

ANNOTATIONS

We will start our exercise by investigating properties of the normal distribution, and
we will compare a trait (height, for example) between two different populations, each
consisting of 30 individuals. 

Enter 1 in cell A8.
Enter =1+A8 in cell A9. Copy this formula down to cell A37.

Next we will assign a height to each of the 30 individuals in population 1, drawn
from a normal distribution with a mean given in cell B4 and a standard deviation given
in cell C4. We don’t really have individuals to measure, of course, but the NORMINV
function allows us to simulate this. The NORMINV function consists of three parts,
each separated by a comma. It has the form NORMINV(probability,mean,stan-
dard_dev) where probability is a probability (from 0 to 1) corresponding to the cumu-

INSTRUCTIONS

A. Set up the spread-
sheet for normal distri-
bution.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 9.

2. Set up a linear series
from 1 to 30 in cells
A8–A37.
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lative normal distribution, mean is the arithmetic mean of the normal distribution, and
standard_dev is the standard deviation of the distribution. 

In cell B8, enter the formula =ROUND(NORMINV(RAND(),$B$4,$C$4),1).
Copy this formula down to cell B37.

The formula =NORMINV(RAND(),$B$4,$C$4) tells the spreadsheet to draw a ran-
dom cumulative probability between 0 and 1 (the RAND() portion of the formula) from
a normal distribution that has a mean given in cell B4 and a standard deviation given
in cell C4. The formula returns the inverse of this probability; it changes the cumula-
tive probability into an actual number from the distribution. Excel will return a value,
which is the height of the individual. You’ll note that this formula is embedded within
a ROUND formula, which consists of two parts that are separated by a comma. The
first part is the number that should be rounded (NORMINV(RAND(),$B$4,$C$4), and
the second part is the number of decimal places to which the number should be
rounded. Note that when you press F9, the calculate key, the spreadsheet will gener-
ate a new random number, and hence will generate a new cumulative probability and
height for individual 1 in Population 1. 

Enter the formula =ROUND(NORMINV(RAND(),$B$5,$C$5),1) in cell 8. Copy your
formula down to cell C37.
Note that the references to the mean and standard deviation are absolute cell references
(indicated by the dollar signs), so that when you copy the formula down to cell C37 the
heights will be drawn from a distribution whose mean and standard deviation are fixed
in cells B5 and C5.

The most common way to depict a population’s values is as a frequency distribution.
A frequency distribution is a plot of the raw data, in this case height, against the fre-
quency that each value appears in the population.

We will use the FREQUENCY function to generate a frequency distribution of heights
for Population 1 and Population 2. This formula is a bit tricky, so pay attention to these
instructions. The FREQUENCY function calculates how often values occur within a
range of values.

Use the FREQUENCY function to count the number of heights that fall 5 mm or lower,
within 6 and 10 mm, within 11 and 15 mm, and so on. These groupings are called “bins.”
The bins may be very small (hold only a few numbers) or very large (hold a large set
of numbers). Our bins will cluster heights in groups of 5 mm. The bin labeled 5 (cell
E9) will “hold” heights up to and including 5 mm (0, 1, 2, 3, 4, and 5 mm). The bin
labeled 10 (cell (E10) will “hold” heights from 6 to 10 mm, and so on.

The FREQUENCY returns an array of values (in our case the values will be in cells
F9–F28), it must be entered as an array formula, which is a bit different than the nor-
mal formula entries. It has the syntax FREQUENCY(data_array,bins_array), where
data_array is the set of values for which you want to count frequencies (heights), and
bins_array is the array of intervals into which you want to group the values in
data_array. You can think of a bin as a bucket in which specific numbers go. 

The FREQUENCY formula works best when you use the fx button and follow the cues
for entering a formula. Since you will be entering this formula for an array of cells,
the mechanics of entering this formula are a bit different than the typical formula entry.
Instead of selecting a single cell to enter a formula, you need to select a series of cells, enter a

3. In cell B8, enter a
NORMINV formula to
generate a random height
for an individual in popu-
lation 1. Copy your formu-
la down to cell B37.

4. In cells C8–C37, enter a
formula to generate a ran-
dom height for an individ-
ual in Population 2.

5. Save your work.

B. Construct the fre-
quency distribution.

1. In cell E9, enter the
number 5. In cell E10,
enter =5+E9. Copy this
formula down to cell E28. 

2. Use the FREQUENCY
function in cells F9–F28 to
compute frequencies of
heights for Population 1.
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formula, and then press <Control>+<Shift>+<Enter> (Windows) to enter the formula for all
of the cells you have selected.

Let’s try it to determine the frequencies of heights for Population 1. Select cells F9–F28
with your mouse, then use your fx button and select the FREQUENCY function. (If it
doesn’t show up in the list of most recently used functions, you will have to view the
list of all functions.) To define the data array, use your mouse to highlight the heights
of all 30 individuals in Population 1 (cells B8–B37). To define the bins array, select cells
E9–E28. Next, instead of clicking “OK,” press <Control>+<Shift>+<Enter> to return
your height frequencies. After you’ve obtained your results, examine the formula in cells
F9–F28. Your formula should look like this:

{ =FREQUENCY(B8:B37,E9:E28)}

The { } symbols indicate that the formula is part of an array. If for some reason you get
“stuck” in an array formula, press the Escape key and start over.

Follow steps 1 and 2. Your formula should be {=FREQUENCY(C8:C37,E9:E28)} in
cells G9–G28. 

Use the column graph option and label your axes fully. Your graph should resem-
ble Figure 10.

3. Use the FREQUENCY
function in cells G9–G28
to compute frequencies of
heights for Population 2.

4. Graph the frequencies
of Population 1 and
Population 2. 

5. Save your work.

C. Compute statistics.

1. Set up new spreadsheet
headings as shown in
Figure 11.
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Use the fx button to guide you through the formulae. Your results should be
• J8 =AVERAGE(B8:B37)
• J9 =MEDIAN(B8:B37)
• J10 =MODE(B8:B37)
• K8 =AVERAGE(C8:C37)
• K9 =MEDIAN(C8:C37)
• K10 =MODE(C8:C37)

If Excel cannot find a most commonly occurring number (i.e., if there is no mode), it
will return #N/A.

Use the fx button to guide you through the formulae. Your results should be:
• J11 =STDEV(B8:B37)
• J12 =MIN(B8:B37)
• J13 =MAX(B8:B37)
• J14 =J13-J12
• K11 =STDEV(C8:C37)
• K12 =MIN(C8:C37)
• K13 =MAX(C8:C37)
• K14 =K13-K12

Enter the formulae:
• J15 =COUNT(B8:B37)
• K15 =COUNT(C8:C37)

2. Enter formulae to com-
pute measures of central
tendency: the mean, medi-
an, and mode height for
Populations 1 and 2 in
cells J8–K10. 

3. Enter formulae in cells
J11–K14 to compute meas-
ures of dispersion: stan-
dard deviation, minimum,
maximum, and range.

4. Enter a formula in cells
J15–K15 to count the sam-
ple size of each population. 

5. Save your work, and
answer Questions 1–4 at
the end of the exercise.
Your spreadsheet should
now resemble Figure 12,
although your numbers
will be different. Each time
you press the F9 key to
generate new heights, the
statistics for each popula-
tion will be automatically
updated.

D. Set up the binomial
distribution spreadsheet. 

1. Click on Sheet 2 and set
up new headings as
shown in Figure 13.
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First, we will consider the number of survivors over a period of time in a population
that again consists of 30 individuals. There are only two outcomes for each individual
(survive or die), which makes survival probabilities an appropriate use of the binomial
distribution. We will consider the probability that 0, 1, 2, …, 30 individuals will survive
the period with a binomial distribution, given that the survival probability is 0.5 (cell
C3) and that there are 30 individuals (cell C5). 

Enter 0 in cell A9.
Enter =1+A9 in cell A10. Copy this formula down to cell A39.

In cell B9, enter the formula
=BINOMDIST(A9,$C$5,$C$3,FALSE). Copy this formula down to cell B39.

The BINOMDIST function returns the probability of success (survival) from the bino-
mial distribution, given the number of trials (the number of individuals in the popula-
tion) and the probability of success (the probability of survival). This function consists
of four parts, each separated by a comma. The first part is the number of individuals in
the population, the second part is the number of survivors in the population, the third
part is the probability of survival for the whole population, and the fourth part tells
the spreadsheet whether you want the binomial probability to be a cumulative proba-
bility (e.g, the probability that there will be up to but not more than 15 survivors), or sim-
ply the probability that a given number of individuals will survive (e.g., the probabil-
ity that 4 out of 30 individuals in the population will survive). The word “True” returns
the cumulative probability, while the word “False” returns the specific probability.

For example, the formula in cell B9 returns the binomial probability that there will be
0 survivors (cell A9) when the population consists of 30 individuals (given in cell C5)
and the average survival probability is 0.5 (given in cell C3). The FALSE part of the for-
mula indicates that the program should return the probability for the exact number of
survivors, not the cumulative probability.

In cell C9, enter the formula =BINOMDIST(A9,$C$5,$C$3,TRUE). Copy this formula
down to cell C39.

This formula is identical to the one just entered in cells B9–B39, except that the last part
of the formula is TRUE, indicating that the program should return the cumulative prob-
ability, or the probability that there will be up to a certain number of survivors. 

Use the column graph option and label your axes fully. You could also use the
Scatterplot graph option if you prefer.

2. Set up a linear series
from 0 to 30 in cells
A9–A39. 

3. In cells B9–B39, enter a
formula to calculate the
probability that the exact
number of individuals
given in cell A9 will sur-
vive. 

4. Enter a formula in cell
C9 to calculate the cumu-
lative probability that no
more than the number of
individuals given in cell
A9 will survive. 

5. Graph the probability of
survival against the num-
ber of survivors (cells
B9–B39).
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Use the column graph option and label your axes fully. Your graph should resem-
ble Figure 15.

Now we will consider the number of births over a period of time in a population that
once again consists of 30 individuals. For this exercise, we will assume that there are
between 0 and 30 births possible. Because there are several discrete numbers of births
possible, this analysis is an appropriate use of the Poisson distribution. We will con-
sider the probability that 0, 1, 2, …, 30 individuals will be born during a time period
of interest, given that the average number of offspring for the population is 20 (cell C4).

Enter 0 in cell E9.
Enter =1+E9 in cell E10. Copy this formula down to cell E39.

In cell F9, enter the formula =POISSON(E9,$C$4,FALSE). Copy this formula down
to cell F39. 

Cell F9 uses the POISSON function to give the probability that a certain number of
young will be born, given the average number of young born per period of time. This
function has three parts, each separated by a comma. This first part gives the number
of young born (e.g., 0 young, cell E9). The second part gives the expected number of
young born (cell C4). The third part, like the BINOMIAL function, indicates whether
you want the cumulative probability (e.g., the probability that up to 8 young will be
born) or the probability that a specific number of young are born (e.g., the probability
that exactly 10 young will be born). FALSE returns the exact probability, whereas TRUE
returns the cumulative probability.

In cell G9, enter the formula =POISSON(E9,$C$4,TRUE). Copy this formula down to
cell G39.

6. Graph the probability of
survival, and the cumula-
tive probability of survival,
against the number of sur-
vivors (cells B9–C39). 

7. Save your work.

E. Set up the Poisson
distribution spreadsheet.

1. Set up a linear series
from 0 to 30 in cells
E9–E39. 

2. In cell F9, enter a formu-
la to calulate the probabili-
ty that the exact number
of young given in cell E9
will be born. Copy this
formula down to cells
F10–F39.

3. In cell G9, enter a for-
mula to calulate the proba-
bility that no more than
the number of young
given in cell E9 will be
born. Copy this formula
down to cells G10–G39.
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4. Graph the number of
offspring and the Poisson
probability (exact, cells
E9–F39). Use the column
graph and label your axes
fully (Figure 16). You may
also use the Scattergraph
option if you prefer.

5. Graph the number of
offspring and the cumula-
tive Poisson probability
(cells G9–G39). Use the
column graph and label
your axes fully (Figure 17).

6. Save your work, and
answer the remaining
questions at the end of the
exercise.
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QUESTIONS

1. What parameter controls the location along the x-axis of the data in your fre-
quency distribution? Change the value in cell B4 (Population 1, try several val-
ues) and examine your distribution.

2. What parameter controls the spread of the data in your frequency distribution?
Change the value in cell C4 (Population 1, try several values) and examine your
distribution. What happens when this value is almost 0 (0.0001)?

3. One of the properties of the normal distribution is that the mean, mode, and
median are equal. Why might this not be the case in your spreadsheet? How
could you increase the chances that the mean, mode, and median would be
equal?

4. Assume that instead of heights, we are comparing the annual salaries (in thou-
sands of dollars) of 30, randomly selected individuals. Set up cell values as
shown:

Furthermore, assume that Bill Gates is part of our sample in Population 1, and
his salary is entered in cell B8. Enter 1000 in cell B8 (overwrite the formula in
that cell). Assess which measure of “middleness” is the most appropriate
descriptor of average salaries.

5. Assume you are a biologist working on a mark-recapture study of a population
of salmon, and you have tagged 20 salmon. You estimate that 50% of the
salmon will survive to the time set for recapture. What is the probability that
exactly 10 of the marked salmon are still alive when it is time to recapture?
What is the probability that up to 10 of the marked salmon are still alive?

6. How do your answers from Question 5 change if the survival estimate is 30%?

7. Set cell C3 to 0.5. Change the value in cell C5, starting with 0, and increase by
twos up to 20. How does changing cell C5 (n) affect the location and shape of
the binomial distribution?

8. How does changing cell C4 (λ) affect the location and shape of the Poisson dis-
tribution? Change the value in cell C4, from 0 to 10, in increments of 1. As λ
increases, what kind of shape does the Poisson distribution take? 
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CENTRAL LIMIT THEOREM4
Objectives

• Set up a spreadsheet model to examine the properties of the
central limit theorem.

• Develop frequency distributions and sampling distribu-
tions, and differentiate between the two.

• Develop a bootstrap analysis of the mean for various 
sample sizes.

• Evaluate the relationship between standard error and sam-
ple size, and standard deviation and sample size.

Suggested Preliminary Exercise: Statistical Distribution

INTRODUCTION
You have probably come across the term “population” in your studies of biology.
In the biological sense, the term “population” refers to a group of organisms that
occupy a defined space and that can potentially interact with one another. The
Hardy-Weinberg equilibrium principle is an example of a population-level study.
In statistics the term population has a slightly different meaning. A statistical pop-
ulation is the totality of individual observations about which inferences are made,
existing anywhere in the world, or at least within a specified sampling area limited in
space and time (Sokal and Rohlf 1995).

Suppose you want to make a statement about the average height of humans
on earth. Your statistical population would include all the individuals that cur-
rently occupy the planet earth. Usually, statistical populations are smaller than
that, and the researcher determines the size of the statistical population. For exam-
ple, if you want to make a statement about the length of dandelion stems in your
hometown, your statistical population consists of all of the dandelions currently
occurring within the boundaries of your hometown. Other examples of statistical
populations include a population of all the record cards kept in a filing system, of
trees in a county park, or motor vehicles in the state of Vermont. 

In practice, it would be very difficult to measure the heights of all the individ-
uals on earth, or even to measure all the dandelions in your hometown. So we take
a sample from the population. A sample is a subset of the population that we
can deal with and measure. The goal of sampling is to make scientific statements
about the greater population based on the information we obtain in the sample.
Quantities gathered from samples are called statistics.



“How many samples should I take?” and “How should I choose my samples?” are
very important questions that any investigator should ask before starting a scientific
study. In this exercise, we’ll consider simple random sampling. If you sample 10 dan-
delions in your hometown with the intent of making scientific statements about all of
the dandelions that occupy your town, then each and every individual in the popula-
tion must have the same chance of being selected as part of the sample. In other words,
a simple random sample is a sample selected by a process that gives every possible sam-
ple (of that size from that population) the same chance of being selected.

Let’s imagine that you use a simple random sampling scheme to sample the stem
lengths of 10 dandelions in your hometown. And let’s further imagine that the actual
average stem length of the dandelion population in your hometown is µ = 10 mm; you
are trying to estimate this parameter through sampling. You carefully measure the stem
length of each of the 10 sampled dandelions, and then calculate and record the mean
of the sample on your computer spreadsheet. The mean you have calculated is called
an estimator, usually designated as x

_
, which estimates the true population mean, µ

(which in this case is 10 mm). If you plot your raw data on a graph, your graph is
called a frequency distribution. This is a pictorial description of how frequent or com-
mon different values (in this case stem lengths) appear in the population. A frequency
distribution reveals many things about the nature of your samples, including the sam-
ple size, the mean, the shape of the distribution (normal, skewed, etc.), the range of
values, and modality of the data (Figure 1).

In the example in Figure 1, our sample of 10 dandelions had a mean value of 9.4 mm.
How do you know how close your estimator is to the true mean, µ, if you can’t actually
measure µ? The central paradox of sampling is that it is impossible to know, based on a
single sample, how well the sample represents µ. If you obtain another sample of 10 dan-
delions, and calculate a mean, you will now have two estimates of the population mean,
µ. What if they are different? How will you know which is the “best” estimator? 

Here is where the central limit theorem comes into play. If you repeat this sampling
process and obtain a set of estimators (say, for example, 10 estimators in total, each based
on a sample size of 10 dandelions), you now have a sampling distribution of the sam-
ple average (note the difference between the sampling distribution and the frequency
distribution). The sampling distribution shows the possible values that the estimator
can take and the frequency with which they occur. The standard deviation of a sampling
distribution is called the standard error. 
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The central limit theorem, one of the most important statistical concepts you will
encounter, states that in a finite population with a mean µ and variance σ2, the sam-
pling distribution of the means approaches a normal distribution with a sampling mean µ
and a sampling variance σ2/N as N (N = number of individuals in the sample) increases.
In Figure 2, 4 of our 10 samples had a mean of 10 mm, 5 samples had a mean of 11 mm,
and 1 sample had a mean of 12 mm. The central limit theorem says that this sampling
distribution will become more and more “normal” (a bell-shaped curve on a graph) as
the sample size increases. It also says that the mean of the sampling distribution is an
unbiased estimator of µ, and that the variance of the estimators is σ2/N.

In this exercise, you will set up two populations that have the same mean, µ, of 50
mm. You will try to estimate this parameter through sampling. Both populations con-
tain 500 individuals. The mean stem lengths of Population 1 follow a normal distribu-
tion. Population 2 has a somewhat funky, bimodal distribution in which individuals
have stem lengths of either 0 or 100. We will obtain samples from each population, from
which we will estimate the mean of each population.

The method by which we will sample is called the bootstrap method, a very com-
mon sampling method in statistics (Efron 1982). The bootstrap involves repeated reesti-
mation of a parameter (such as a mean) using random samples with replacement from the orig-
inal data. Because the sampling is with replacement, some items in the data set are
selected two or more times and other are not selected at all. We will do a bootstrap analy-
sis of the mean when sample sizes of 5, 10, 15, and 20 are drawn (with replacement) from
each population. When the procedure is repeated a hundred or a thousand times, we
get “pseudosamples”  that behave similarly to the underlying distribution of the data.
In turn, you can evaluate how biased your estimator is (whether your estimator gives
a good estimate of µ or not), the confidence intervals of the estimator, and the bootstrap
standard error of your estimator. All of this will become more clear as you work through
the exercise.

As always, save your work frequently to disk.
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ANNOTATION

Enter 1 in cell A7. 
Enter =A7+1 in cell A8. 
Copy this formula down to cell A506 to designate the 500 individuals. 

We will compare two populations of dandelions (actual statistical populations), each
consisting of 500 individuals. Both populations, Population 1 and Population 2, have
an actual mean stem length (µ) of 50 mm, which is designated in cell C3.

Population 1 will consist of 500 individuals that have a mean, µ, of 50 mm and a stan-
dard deviation of 10 mm. We’ll assume that Population 1 is normally distributed. Thus,
the raw data are distributed in a bell-shaped curve that is completely symmetrical and
has tails that approach but never touch the x-axis. The shape and position of the nor-
mal curve is determined by µ and σ: µ sets the position of the curve while σ determines
the spread of the curve. Figure 4 shows two normal curves. They have different means
(µ) but have the same σ, thus they are similar in shape but are positioned in different
locations along the x-axis. 

INSTRUCTIONS

A. Set up the spread-
sheet.

1. Open a new spread-
sheet and set up column
headings as shown in
Figure 3.

2. In cells A7–A506, assign
a number to each individ-
ual in the populations,
starting with 1 in cell A7
and ending with 500 in
cell A506.

3. Enter a population
mean of 50 in cell C3.

4. Enter the standard
deviation for Population 1
in cell C4.
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A property of normal curves is that the total area under the curve is equal to 1. (This
is true of all probability models or models of frequency distributions). Another prop-
erty is that the most of the data fall in the middle of the curve around the mean. For
normal distributions, approximately 68% of the observations will fall between the mean
and ±1 standard deviation. In our dandelion population, this means that 68% of the
individuals in the population will have a stem length between 40 mm and 60 mm
(which is the mean, 50 mm, ±10, which is 1 standard deviation). About 95% of the obser-
vations will fall between the mean and ±2 standard deviations. Since our dandelion
Population 1 is normally distributed, approximately 95% of the individuals will have
stem lengths between 30 mm and 70 mm (2 standard deviations, or 20 mm, from the
mean in either direction). 

We used the formula =NORMINV(RAND(),$C$3,$C$4). This formula allows us to
draw a random probability from a normal distribution whose mean is 50 and standard
deviation is 10, and convert it to a data point from the same distribution. In this way
we can assign stem lengths to each individual in Population 1 and end up with a pop-
ulation that has (approximately) the desired mean and standard deviation. 

Let’s look at the formula carefully. The NORMINV function consists of three parts, each
separated by a comma. It has the form NORMINV(probability, mean, standard_dev),
where probability corresponds to the cumulative probability from the normal distribu-
tion, mean is the arithmetic mean of the distribution, and standard_dev is the standard
deviation of the distribution. For example, the formula =NORMINV(RAND(),
$C$3,$C$4) tells Excel to draw a random cumulative probability between 0 and 1 (the
RAND() portion of the formula) from a normal distribution that has a mean given in cell
C3 and a standard deviation given in cell C4. The formula returns the inverse of this prob-
ability; it changes the cumulative probability into an actual number from the distribu-
tion. Excel will return a value, which is the stem length of the individual. 

Now we need to “fix” the stem lengths for Population 1 in cells B7–B506. (Otherwise,
Excel will generate new stem lengths for Population 1 every time the spreadsheet recal-
culates its formulae). 

Copy cells B7–B506.
Select cell B7.
Go to Edit | Paste Special | Paste Values. The NORMINV formula will be overwritten
and the values will occupy the cells.

Population 2 also has a mean stem length, µ, of 50 mm. Stem lengths in this population
are highly variable, where individuals either have a very long stem of 100 mm or no
stem at all (0 mm). 

5. In cell B7, use the
NORMINV function to
obtain a stem length for
Individual 1 in Population
1, whose mean and stan-
dard deviation are given
in cell C3 and C4. Copy
this formula down to
obtain stem lengths for
the remaining 499 indi-
viduals in Population 1.

6. Copy cells B7–B506 and
paste their values in place
of the formulae.

7. Enter 0 in cell C7, and
fill this value down to cell
C256. In cell C257, enter
100 and fill this value
down to cell C506.

8. Label cell A507 as
“Mean” and cell A509 as
“Std” as shown in Figure 5.
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We used the following formulae: 
• Cell B507 =AVERAGE(B7:B506)
• Cell B508 =STDEV(B7:B506)
• Cell C507 =AVERAGE(C7:C506)
• Cell C508 =STDEV(C7:C506)

Note that both populations have approximately the same mean, but are very different
in terms of how stem lengths are distributed in the population. 

The most common way to depict a population’s values is through a frequency distri-
bution. A frequency distribution is a plot of the raw data, which we can generate using
Excel’s FREQUENCY function. This is an array formula (see pp xxx) and is a bit tricky,
so proceed carefully.

The FREQUENCY function calculates how often values occur within a range of val-
ues, and then returns an array (or series) of numbers. For example, you will use it to
count the number of stems that fall within 0 and 9 mm, 10 and 19 mm, and all of the
other potential categories listed in Figure 6. Because FREQUENCY returns an array, it
must be entered as an array formula. The function has the syntax
FREQUENCY(data_array, bins_array), where data_array is a set of values for which
you want to count frequencies, and bins_array is a reference to intervals into which
you want to group the values. You can think of a “bin” as a bucket in which specific
numbers go. The bins may be very small (hold only a few numbers) or very large (hold
a large set of numbers). In our example, we used bins that hold 10 numbers each. For
example, a bin labeled 9 holds numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The bin labeled 19
holds numbers 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The bin labeled 89 holds num-
bers 80, 81, 82, 83, 84, 85, 86, 87, 88, and 89. Any data points greater than 89 go into a
final “default” bin, which is not technically listed as a bin.

9. Calculate the mean stem
lengths and standard devi-
ation for the two popula-
tions in cells B507–C508.

10. Save your work.

B. Construct a frequency
distribution of the raw
data.

1. Set up new column
headings as shown in
Figure 6. Enter values in
cells F7–G16.

2. Use the FREQUENCY
formula to generate the
frequencies of the various
stem lengths in Population
1. For example, in cell H7,
count the number of indi-
viduals in Population 1
whose stem lengths are
<10 mm. In cell H8, count
the number of individuals
whose stem lengths are
within 10 and 19 mm, and
so on.
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3
4
5
6
7
8
9

10
11
12
13
14
15
16

F G H I

"Bin" Stem lengths Pop 1 Pop 2

9 <10 0 250
19 <20 0 0
29 <30 6 0
39 <40 64 0
49 <50 153 0
59 <60 186 0
69 <70 79 0
79 <80 12 0
89 <90 0 0

<100 0 250

Frequencies of Values in Populations

Figure 6



The FREQUENCY function works best when you use the fx button and follow the cues
for entering a formula. Since you will be entering this formula for an array of cells,
the mechanics of entering this formula is different than the typical formula entry. Instead
of selecting a single cell to enter a formula, you need to select a series of cells, then enter
a formula, and then press <Control>+<Shift>+<Enter> (Windows) to simultaneously
enter the formula for all of the cells you have selected. (Press the <Control>, <Shift>,
and <Enter> keys in that order, making sure to hold the <Control> and <Shift> keys—
or the  key if you use a Mac—down until the <Enter> key is pressed. 

OK, let’s try it. Select cells H7–H16 (where we are building the frequency distribution
for Population 1) with your mouse, then press the fx button and select the FREQUENCY
function. Click on the button just to the right of the Data_array box (the button with
the little arrow pointing up and left; see Figure 9 on p. 11); this will allow you to indi-
cate the cells with the appropriate data by selecting them with your mouse. Select all
of the individuals in Population 1 (i.e., cells B7–B506 of your data array) and click
again on the button just to the right of the box again to return to the Frequency dia-
logue box. Then use the button next to the Bins_array box to select cells F7–F15 for your
bins. Instead of clicking OK, press <Control>+<Shift>+<Enter>, and Excel will return
your frequencies for Population 1. After you’ve obtained your results, examine the for-
mulas in cells H7–H16. Your formula should look like this:
{=FREQUENCY(B7:B506,F7:F15)}. This formula will be identical in all of the cells. The
{ } symbols indicate that the formula is an array formula. 

Your formulae should be {=FREQUENCY(C7:C506,F7:F15)} in cells I7–I16.

Based on Figure 7, it’s easy to see that both populations have a mean around 50 mm,
although their variances are quite different. 
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3. Obtain the frequencies
for Population 2 in I7–I16.

4. Construct a frequency
histogram of the two pop-
ulations. Select the data in
G6–I16.
The data in the G column
will form the x-axis, and
the data in the H and I
columns will make up the
frequencies. Make sure
you label your axes fully.

5. Save your work.

C. Obtain random sam-
ples from each popula-
tion.

1. Set up new column
headings as shown in
Figure 8, but extend the
series in row F to cell F40.

Distributions of Stem Lengths in Two Populations

0

50

100

150

200

250

300

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100

Tail lengths (mm)

F
re

q
u

en
cy

Pop 1

Pop 2

Figure 7

19

20
21

22
23

24
25

F G H I J K L M N

Individual # Pop 1 Pop 2 Pop 1 Pop 2 Pop 1 Pop 2 Pop 1 Pop 2

1

2

3
4

5

n = 5 n = 10 n = 15 n = 20

Figure 8



Remember that our goal is not to measure all 500 individuals in each population, but
to sample from each population and estimate µ with a statistic. We will now randomly
sample individuals from the population (with replacement), and estimate µ. We will
do this for sample sizes of 5, 10, 15, and 20 individuals.

The random number will select which individuals from the population will be part of
a sample. For example, if the random number is 324, then individual number 324 will
be selected as part of the sample. Two formulae can be used to generate a random num-
ber between 1 and 500: =RANDBETWEEN(1,500) and =ROUNDUP(RAND()*500,0) 

Press F9, the calculate key, several times to obtain new random numbers in cell F18.

Now we will draw a random sample from Population 1, and output the individual’s
stem length in cell G1. We’ll use the VLOOKUP formula, combined with the RAND-
BETWEEN (or ROUNDUP(RAND() formula) above, to accomplish this task. The
VLOOKUP formula searches for a value in the leftmost column of a table you specify
(in this case, the table consists of cells A7–B506; the leftmost column is column A, which
gives the individual’s number). The function finds the individuals number, then returns
a value associated with that individual from a different column in the table (in this case,
the stem length associated with the randomly drawn individual).

Enter one of the following formulae (depending on whether or not you have the RAND-
BETWEEN function) in cell G21: =VLOOKUP(RANDBETWEEN(1,500),$A$7:$B$506,2)
or =VLOOKUP((ROUNDUP(RAND()*500,0),$A$7:$B$506,2). This formula tells Excel
to generate a random number between 1 and 500 (the RANDBETWEEN or
ROUNDUP(RAND) portion of the formula), find that number in the left-hand column
in the table, and then return the value listed in the second column of the table. 

At this point, for Population 1, you have drawn a random sample of 5 individuals (in
cells G21–G25), a random sample of 10 individuals (in cells I21–I30), a random sam-
ple of 15 individuals (in cells K21–K35), and a random sample of 20 individuals (in cells
M21–M40). 

We used the formula =VLOOKUP(RANDBETWEEN(1,500),$A$7:$C$506,3). Note that
our VLOOKUP table now includes columns A through C, and returns the value asso-
ciated with the third column of data (stem lengths from Population 2). 

Your spreadsheet should now look like Figure 9 (the values in the cells will be different).
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2. In cell F18, generate a
random number between
1 and 500.

3. Enter a formula in cell
G21 to return the stem
length of a random indi-
vidual in Population 1. 

4. Copy cell G21 into cells
I21, K21, and M21.

5. Copy the formula in
G21 down to G25. Copy
the formula in I21 down
to I30. Copy the formula
in K21 down to K35.
Copy the formula in M21
down to M40.

6. Obtain samples from
Population 2 and output
stem lengths in the appro-
priate cells.



Enter =AVERAGE(G21:G40) in cell G41. Copy this formula over to cell N41. Now you
have an estimator of the mean for each population when various sample sizes (N) are
taken.

The central limit theorem says that if we repeat this process many times and construct
a graph of the frequency distribution of our sampling means—or estimates—the aver-
age of that sampling distribution will in fact be close to µ, the actual mean stem length
of the population. So far, you’ve run one “trial.” To make a sampling distribution of
the means, you’ll want to run several trials with a bootstrap analysis. We’ll do 25 tri-
als in this exercise, which should be just enough to show you the general principles of
the central limit theorem. (You can do more trials if you’d like.) 

The following steps will create a bootstrap macro:
• Open Tools | Options | Calculation and set the calculation key to manual.
• Open Tools | Macro | Record New Macro. A dialog box will appear. Type in a name

(bootstrap) and a shortcut key (<Control>+b). 
• Press F9, the calculate key, to generate a new set of random samples from both

populations.
• Select cells G41–N41, the estimators of µ for various sample sizes.
• Open Edit | Copy. Select cell G44.
• Open Edit | Find. A dialog box will appear. Leave the Find What box completely

blank. Search by columns and look in values, then select Find Next and then Close.
Your cursor should move down to cell G45 (the next blank cell in that column).
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7. Calculate the mean for
each population and each
sample size in cells
G41–N41.

8. Save your work.

D. Set up the bootstrap. 

1. Set up new column
headings as shown, but
extend the trials to 25 in
cell F69.

2. Develop a bootstrap
macro. 
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7 2 6 100 58 0 54 100

8 4 9 0 33 100 56 0

9 5 8 0 31 0 32 100

10 62 100 54 0 39 100

11 46 100 42 100

12 63 0 62 0

13 46 100 44 0

14 54 0 58 100

15 44 0 41 100

16 45 100

17 59 0

18 45 0

19 69 100

20 50 0

n = 5 n  = 10 n  = 15 n  = 20

Figure 9
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• Open Edit | Paste Special | Paste Values. Select OK.
• Open Macros | Stop Recording (or, if the Stop Recording menu is visible, press

the Stop Recording button).
• Open Tools | Options | Calculation and return your calculation to automatic.

Your bootstrap macro is finished. When you press <Control>+b 24 more times, you
will have resampled your population and computed new means for 25 different tri-
als. This is the bootstrap analysis. 

We used the following formulae:
• F74–F95 {=FREQUENCY(G45:G69,E74:E94)}
• G74–G95 {=FREQUENCY(I45:I69,E74:E94)}
• H74–H95{=FREQUENCY(K45:K69,E74:E94)}
• I74–I95 {=FREQUENCY(M45:M69,E74:E94)}

For clarity, we have graphed only the cases N = 5 and N = 20. Your own graph will look
different.

3. Save your work.

E. Construct a Sampling
Distribution of the
Means.

1. Set up column headings
as shown in Figure 11.

2. Use the FREQUENCY
function to count the fre-
quency in which certain
values (estimators) were
obtained for Population 1
for various sample sizes.

3. Construct a sampling
distribution of the means
(Figure 12) by plotting the
results from the previous
step. 
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QUESTIONS
1. Examine your graph from Part E, Step 3. How does N, the sample size, affect

the sampling distribution’s mean and variance? 

2. Repeat Part E for Population 2. Set up column headings and bins as shown in
Figure 13. Explain why different bins are necessary for this population.
Population 2 has a very strong bimodal distribution. Does the sampling distri-
bution at N = 20 also have a bimodal shape? How does the shape of the sam-
pling distribution change as sample size changes? 

3. Review the definition of the central limit theorem (given at the top of Page 67).
How close was the average of your bootstrap analyses to µ? How did sample
size affect this? Did the two populations show similar results? Why or why not?
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4. What is the relationship between the standard error of the sample means and
the sample size? What is the relationship between the standard deviation of the
raw data and the sample size? Calculate the standard deviation of samples in
row 42, and calculate the standard deviation of your 25 trials in row 70. Plot
your results for Population 1. Does the variance in the sampling distribution tell
you anything about the variance in the raw data? If your sample size is 1 and
you repeatedly estimate the mean, what will the variance of your sampling dis-
tribution be?
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INTRODUCTION
Much research in ecology involves making statistical tests of one kind or another.
We frequently want to know if two or more populations differ from one another
with respect to some parameter that they share. For example, are trees from one
forest “significantly” larger than those from another? Do older rabbits have thicker
coats than younger rabbits? Is the species diversity of the restored prairie differ-
ent from that of the degraded one? These comparisons generally involve esti-
mating the value of a parameter in each population using data obtained through
sampling. Typically, these estimates are compared using a statistical test to iden-
tify a difference or lack thereof.

Sampling and Uncertainty
Because sampling always involves some uncertainty (with sampling we are never
entirely sure that we have properly estimated the true value of the parameter
for the population), we have to consider the possibility that any difference that
we see between two estimated parameters could result from sampling flukes.
That is, the populations we sampled don’t actually differ, but we drew unrepre-
sentative samples by chance that give the incorrect appearance of a difference.
This is a Type I statistical error. The probability of committing a Type I error is
called alpha (a).

Alternatively, the populations we are interested in may actually be different, but
from some fluke in sampling we drew two samples that showed no differences.
This is a Type II error. The probability of committing a Type II error is known as
beta (b). Type II errors may occur because the actual difference between the popu-
lations (the “effect size”) is small and the variability in our samples obscures the
difference and prevents us from detecting it. We are obviously more likely to detect
a difference between populations the more precisely we have estimated the param-
eters in each of them (perhaps because we sampled each population well) or where
the difference is substantial enough to detect despite the variability in samples.

HYPOTHESIS TESTING: 
ALPHA, BETA, AND POWER5
Objectives

• Understand the concepts of statistical errors, sample vari-
ability, and effect size.

• Explore the interplay among alpha, beta, effect size, sample
variability, and the power of test.

Suggested Preliminary Exercise: Statistical Distributions



Thus, the major challenge in performing a statistical test is simple: Ensure that you
don’t commit a type I or II error and thereby confidently detect any differences that
might exist (Sokal and Rohlf, 1981). You can guard against committing a Type I error by
using an appropriately stringent α level, say, 0.05 or lower. Guarding against a Type II
error can be more problematic. A test that will detect differences if they exist, regardless
of the sample variability and the effect size, is said to be have high statistical power.
Power = 1 − β, so a low β (probability of missing an important difference) equates to a
high power of the test. Statistical power of the test is an important concept because ensur-
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Summary of Type I and Type II Errors, and Power 

Suppose we sample coat thickness of two populations of rabbits. The null hypoth-
esis (H0) is that the groups do not differ in coat thickness. We hope to gather evi-
dence to reject the null hypothesis at a given probability level (α). If H0 is in fact
true and the populations do not actually differ in coat thickness, but you reject H0
and conclude that the populations are different, you have committed a Type I
error. If H0 is false and the populations have different coat thicknesses but you fail
to reject the H0, you have committed a Type II error; your sampling lacked power
to detect actual differences. Power is the probability of rejecting H0 when it is in
fact false. 

ing that a given test has high power means that it will accomplish what you hope it will:
that is, it will detect differences should they exist. All too often we regard a lack of dif-
ference, as indicated by a nonsignificant result on a test, to reflect no real difference
between populations, when it may actually be the result of a poorly designed study (too
variable or too small a sample to detect a subtle difference that nonetheless exists). 

Choosing acceptable α and β values is worth additional consideration. Standard bio-
logical literature generally sets α to 0.05 and β at 0.2. In many cases, it may make sense
to use other values. If the goal is to detect important differences, perhaps doing so at the
risk of an increased level of false detections, then designing a test using high α and a
low β (high power) would be advisable. This might be the case, for example, in look-
ing for trends in a population of an endangered species. You want to quickly detect
any declines in the species so you can step in and do something about them, but you
are comfortable exploring some false reports of declines should they occur. On the other
hand, if wrongly detecting a difference is very costly, then you might want to use a
low α to guard against committing a Type I error. The important message is that “sta-
tistical significance” is only relative to the levels of α and β that you consider to be rea-
sonable and that you set in advance. 

The purpose of this exercise is to enable you to explore the interplay among α, β, effect
size, sample variability, and the power of test. If you clearly understand the trade-offs
among these parameters, you will greatly enhance your ability to design appropriate
sampling schemes for detecting differences, should they exist, among populations. As
always, save your work frequently to disk.

Reject H0 Fail to reject H0

H0 is true: Type I error (α) Correct decision. 
Other ideas? 

H0 is false: Correct decision. Type II error (β)
Nobel Prize!



ANNOTATION

We’ll start by exploring Type I errors in columns A, B, and C. We’ll make a statistical
comparison of two populations (columns B and C) that have identical means and vari-
ances. Enter 50 in cells B5 and B6 to indicate a mean value of the population, say, height.
Enter a standard deviation of 5 in cells C5 and C6. Thus, both populations have the
same mean (µ) and standard deviation (σ2) in height (of course, you don’t really know
these are the true means and variances of the populations; you will sample individu-
als to estimate these parameters). 

Enter the formula =ABS(B5–B6) in cell B7. In this case, the effect size is 0.

Now we will “sample” 10 individuals from population 1 by generating random meas-
urements as if they came from a population with a normal height distribution. We
can use the NORMINV function and RAND function to do this. The NORMINV func-
tion returns the inverse of the normal cumulative distribution for the specified mean
and standard deviation, and has the form NORMINV(probability,mean,standard_dev).
The B10 formula tells Excel to draw a random probability (the RAND() portion of the
formula) from a normal distribution with a mean height given in cell B5 and a stan-
dard deviation given in cell C5; Excel will convert that random probability into a value
(height) from that distribution. 
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INSTRUCTIONS

A. Set up and sample two
model populations.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 1.

Generate the α symbol by
typing an “a.” Select the
letter in the formula bar
and change the font to
symbol font.

2. Enter the values shown
in cells B5–C6.

3. In cell B7, calculate the
effect size as the differ-
ence between the means of
the two populations. Save
your work.

4. In cell B10, enter the 
formula =NORMINV
(RAND(),$B$5, $C$5).
Copy the formula down to
cell B19.

Figure 1



Obtain heights of individuals for 10 individuals drawn at random 
from Population 2. We used the formula =NORMINV(RAND(),$B$6,$C$6) in 
cells C10–C19 (following the procedure in Step 4).

In cell B21 we used the formula =AVERAGE(B10:B19).
In cell C21 we used the formula =AVERAGE(C10:C19).

Enter the formula =STDEV(B10:B19) in cell B22.
Enter the formula =STDEV(C10:C19) in cell C22.

In cell A25, you need to specify what α will be. By convention, α = 0.05 is used. Remem-
ber that α is the probability of committing a Type I error—rejecting the null hypothe-
sis when the null hypothesis is in fact true. In the next step you will generate a t-test
statistic and a probability associated with that test statistic. If the test statistic has a prob-
ability that is less than or equal to the α level you have selected, you would conclude
that the two populations are different. If the test statistic has a probability that is greater
than the α level you have selected, you would conclude that the populations are not
statistically different. You can set α to any level you like (although α > 0.15 will raise
eyebrows). For now, we will use the conventional α = 0.05, and will change α levels
later in the exercise.

Enter the formula =TTEST(B10:B19,C10:C19,2,2) in cell B25. 
Now that you have determined what kind of Type I error rate you can live with, you’re
ready to perform a t-test to compare the sample means of the two populations. The
TTEST formula returns the probability associated with a Student’s t-Test (it does not
return the value of the test statistic itself). You will use TTEST to determine whether
the two samples are likely to have come from two underlying populations that have
the same mean. The TTEST formula has the form TTEST(array1,array2,tails,type).
Array1 is the first data set (or the 10 individuals sampled from population 1), Array 2
is the second data set (or the 10 individuals sampled from population 2), tails refers to
whether you want to conduct a one- or two-tailed test (choose 2), and type is the kind
of t-test to perform (for now, choose two-sample equal variance). 

Enter the formula =IF($B$25>$A$25,0,1) in cell C25. 
Now that you have a test statistic probability, you need to compare it to the α level
you’ve chosen. If the probability of the test statistic is <0.05 (your α level), you would
conclude that the two populations are different. If the test statistic probability is >0.05
you would conclude the populations are not different (or, more correctly, the samples
failed to show differences). The IF formula returns one value if a condition you spec-
ify is true, and another value if the condition you specify is false. It has the syntax IF(log-
ical_test,value_if_true,value_if_false). A score of 1 indicates that the two popula-
tions are statistically different; a score of 0 indicates they are not statistically different.
Based on your test, what conclusions can you make about the two populations?
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5. In cells C10–C19, obtain
10 samples from popula-
tion 2.

6. In cells B21 and C21,
enter a formula to calcu-
late the mean of your sam-
ple for populations 1 and
2, respectively. 

7. In cells B22 and C22,
enter a formula to calcu-
late the standard deviation
of your sample for popula-
tion 1 and 2, respectively. 
Save your work. 

B. Conduct a t-test to
determine if samples from
populations 1 and 2 differ
in height.

1. Enter 0.05 in cell A25. 

2. In cell B25, use the
TTEST function to con-
duct a t-test on the two
population sample means. 

3. In cell C25, enter an IF
formula to return a 0 if
your t-test statistic is
greater than alpha, and a 1
if your t-test statistic is
less than alpha. 



Enter 1 in cell A29.
Enter the formula =1+A29 in cell A30. Copy this formula down to cell A128.
A value of α = 0.05 means that if you ran your t-test on samples (new samples) over and
over again, about 5 times in 100 you would conclude that the two populations are differ-
ent when in fact they are identical. We’ll prove that to ourselves by running a number of
trials in which we randomly draw 10 individuals from each population, calculate their
means, run a t-test, and determine if the two populations are statistically different or not. 

Now that you’ve run your first trial and recorded your results, you are ready to run
99 more trials.

Under Tools | Options | Calculation, select Manual Calculation.

Open the macro program and assign a shortcut key (refer to Exercise 2 for details on
building macros). In Record mode, perform the following tasks:

• Select Tools | Macro | Record New Macro. Name your macro and assign it a short-
cut key. For example, you might name your macro Type_I and assign it the short-
cut “control t”. Every keystroke you now make will be recorded as part of the
macro.

• Press F9, the calculate key, to obtain new random samples from Population 1
and Population 2.

• Use your mouse to highlight cells B25 and C25, the new t-test statistic probabil-
ity and significance result, and open Edit | Copy.

• Highlight cell B28, then go to Edit | Find. A dialog box will appear. You want to
leave the Find What box completely blank, and search by columns. Click the
Find Next button, then Close. Excel will move your cursor to the next blank cell
in column B. 

• Select Edit | Paste Special | Paste Values.
• You’re finished. Select Tools | Macro | Stop Recording. Now when you press your

shortcut key 99 times, your new results will automatically fill into the appropri-
ate cells. Run your macro until you have results from 100 trials.

Our first five results looked like Figure 2; yours will very likely look different. 
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C. Run 100 sampling trials.  

1. Set up a linear series
from 1 to 100 in cells
A29–A128. 

2. Under Trial 1 in cells
B29–C29, re-enter by hand
the results you obtained in
cells B25 and C25.

3. Switch to Manual
Calculation.

4. Write a macro to run 99
more trials and record
results in cells B30–C128.

5. Save your work.

Figure 2



Switch back to automatic calculation, and visually inspect the t-test probabilities you
obtained in your trials. Most of the results should indicate that the two populations are
not statistically different from each other. Occasionally, however—about 5 times in
100—you will conclude that the two populations are different even though they have
exactly the same mean height (µ) and standard deviation (σ2). These are Type I errors.
By a sampling fluke, you concluded the populations were different when in fact they
are not. 

We used the formula =SUM(C29:C128).

We used the formula = C131/100.
Your answer should be somewhat close to 0.05 because you established a Type I error
rate of 0.05 in cell A25. 

Now let’s switch gears and think about Type II errors, which we’ll deal with in Columns
E, F, and G. Let’s assume that the two populations really have different underlying dis-
tributions in terms of height. In cell F5, enter 45 to indicate that population 1 has an
average height (µ) of 45 mm and a standard deviation (σ2) of 5 mm (entered in cell G5).
In cell F6, enter 50 to indicate that population 2 has an average height (µ) of 50 mm and
a standard deviation (σ2) of 5 mm (entered in cell G6). The effect size is entered in cell
F7 as =ABS(F5-F6). Although the effect size may seem small, these differences in height
might be biologically meaningful, and you’d like to know this. 

Set α = 0.05 in cell E25. 

You’ll sample from these populations, calculate a t-test, determine if you conclude the
two populations are statistically different or not, and run 100 trials in total. Your spread-
sheet columns E, F, and G should look like columns A, B, and C in appearance, although
you will be sampling from different populations. In case you get stuck, the formulae
we used are given at the top of the next page:
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D. Calculate Type I error
rate.

1. Set up new headings as
shown in Figure 3:

2. In cell C131, use the
SUM function to count the
number of Type I errors
committed. 

3. In cell C132, calculate
the Type I error rate as the
number of Type 1 errors
divided by 100 trials.

4. Save your work, and
answer Question 1 at the
end of the exercise.

E. Type II errors and
power.

1. Enter values shown in
cells F5–G6 (see Figure 1).

2. Calculate the effect size
in cell F7.

3. Enter 0.05 in cell E25.

4. Obtain samples from
your population, and 
run 100 trials as you 
did earlier. You will need
to create a new macro to
keep track of results from
100 trials in cells F29–G128.

Figure 3



• F10 – F19 =NORMINV(RAND(),$F$5,$G$5)
• G10 – G19 =NORMINV(RAND(),$F$6,$G$6)
• F21 =AVERAGE(F10:F19)
• G21 =AVERAGE(G10:G19)
• F22 =STDEV(F10:F19)
• G22 =STDEV(G10:G19)
• F25 =TTEST(F10:F19,G10:G19,2,2)
• G25 =IF($F$25>$E$25,0,1)

Remember that the populations really are different biologically, and we’re trying to
determine if they are different based on our samples. The COUNTIF formula counts
the number of cells within a range that meet a given criterion. It has the syntax COUN-
TIF(range,criteria). We used the formula =COUNTIF(G29:G128,0) to count the num-
ber of times our t-test was not significant. These are the Type II errors. By a sampling
fluke, you concluded that the populations are not different when in fact they are.

Remember that a Type II error is falsely concluding that the two populations are sim-
ilar when in fact they are different. Enter the formula =G131/100 in cell G132. Is your
Type II error rate acceptable, or is it too high for your liking? 

Enter the formula =1– G132 in cell G133.
Scientists usually calculate the power of their design to detect differences assuming
that they really exist, rather than reporting the probability of a Type II error. Remem-
ber that power is simply 1− β. 

QUESTIONS

1. If you change α in cell A25 to 0.1, approximately how many Type I errors are
you likely to make if you run 100 trials again? How many Type I errors are you
likely to commit if you set α to 0.01? 

2. How does decreasing the standard deviation of the two populations affect Type
II error rates and power? Enter 1 in cells G5 and G6. Press F9, the calculate key,
20 times and examine the significance of your 20 t-tests in cells F25 and G25.
Keep track of the number of Type II errors out of 20 trials. 

3. How does increasing the standard deviation of the two populations affect Type
II error rates and power? Enter 10 in cells G5 and G6. Press F9 20 times and
keep track of the number of Type II errors out of 20 trials. 

4. How does effect size influence Type II error rates? Enter 45 in cell F5 and enter
55 in cell F6 (effect size = 10). Enter 5 in cells G5 and G6. Press the F9 key 20
times and keep track of the number of Type I and Type II errors out of 20 trials. 

5. Does changing the α level in cell E25 affect β or power? Clear your macro
results in cells F29–F128 and run 100 trials with varying α levels. Interpret your
results. 
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5. Set up headings as
shown in Figure 4. 

6. In cell G131, use the
COUNTIF formula to
count the number of tests
not showing a significant
difference. 

7. Calculate the probability
of a Type II error (β) in cell
G132. 

8. Calculate power as 1− β
in cell G133. 

9. Save your work, and
answer Questions 2–6.

Figure 4



6. How does sample size affect Type I and Type II error rates? Set cells B5–B6 and
cells F5–G6 back to their original values. Then, develop a new model with pop-
ulation sizes of 1000 individuals, and compare the Type I and Type II error rates
for populations of size 10 (currently modeled) with your new populations. 

LITERATURE CITED AND FURTHER READINGS

Johnson, D. H. 1999. The insignificance of statistical significance testing. Journal of
Wildlife Management 63(3): 763–772. 

Sokal, R. R. and F. J. Rohlf. 1981. Biometry, 2nd Edition. W. H. Freeman, New York.

Taylor, B. L. and T. Gerrodette. 1993. The uses of statistical power in conservation
biology: The vaquita and northern spotted owl. Conservation Biology 7: 489–500.
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SAMPLING SPECIES RICHNESS6
Objectives

• Simulate a population of 1000 individuals composed of 
various species.

• Calculate species richness by sampling.
• Determine how community composition affects species 

richness estimates.
• Develop a bootstrap analysis of how sample size affects

species richness estimates.

INTRODUCTION
Imagine you are a conservation biologist conducting surveys of insect species
in previously unstudied areas. Your mission is to estimate the number of species
occurring in different habitat types across a large region. The number of species
that occurs in a particular area is called its species richness, and it is just one of
many measures of biodiversity. A practice known as a rapid biodiversity assessment
is currently being used by many conservation organizations to survey the bio-
diversity of plants and animals before pristine habitats are altered and developed
(see, for example, http://www.conservation.org/RAP/Default.htm). Assume
there are 10 locations that must be sampled in a short period of time. How many
samples should you take at each site to estimate the number of insect species in
a location before moving onto the next location? Time and funding are short and
you will not be able to do a complete survey of the insect biota. 

A basic problem is that it is nearly impossible to count every single species in
a community. If funding and time were unlimited, you might conduct a complete
census and enumerate all of the species in the community. However, this is not
often the case; instead you must settle for sampling the community and estimat-
ing its species richness based on this sample of individuals. Estimating species
richness by sampling presents some major challenges. First, you are likely to miss
some species. And second, although the more you sample in a particular area
the more likely you are to find new, previously unsampled species, there is a point
of diminishing returns that must be considered in your sampling efforts.

For example, consider a community that consists of 1000 insect species, and
you sample insects by sweeping the vegetation with a net. In your first sweep,
you capture 25 species. In your second sweep, you capture 30 species, but 20 of

 



these were already captured in the first sweep. Thus, with 2 samples your total species
richness is 35 (25 new species recorded with the first sweep, and 10 new species recorded
with the second sweep). With each sweep (sample), the chances of adding a new, pre-
viously unsampled species decreases. At some point it becomes cost-effective to move

to the next location and start sampling anew. In the example shown in Figure 1, taking
15 samples will yield more or less the same species richness estimate as taking 18 or 20
samples.

What factors will determine the shape of a sampling curve such as Figure 1? One
factor is the distribution of the individuals within the community. If the community con-
sists of 100 species, but 90% of the total individuals are from species 1, most of our sam-
ples will consist of species 1, and we may have to take many samples to encounter one
of the rarer species. In contrast, if the numbers of individuals in the community are more
or less evenly distributed across 100 species, so that no single species dominates the com-
munity, you may not have to sample as much because all species are equally abundant. 

Another general problem with sampling is that you will never really know how
well your species richness estimate measured the true species richness in a community.
After all, this is what you are trying to estimate with your sampling. With advances in
computing, however, it is now possible to ask the question, “If we take a different, random
sample from a community with a known number of species, how does the species richness esti-
mate change as sample size changes?”  The difference between the actual species richness
of the community and the estimated species richness based on sampling is called bias.

One method for analyzing bias is a bootstrap analysis, which involves taking ran-
dom samples of the data (with replacement so that the same individuals can be sam-
pled more than once), calculating the parameter of interest (in this case, species rich-
ness), repeating the process for 1,000 or more trials for a given sample size, and then
estimating the mean and standard deviation of species richness from the replicate boot-
strap estimates. As discussed in Exercise 4, this process is relatively straightforward with
spreadsheets.

Since the number of species in the community in your bootstrap analysis is known
a priori (known beforehand), the bootstrap analysis gives you an indication of how sam-
ple size, as well as community composition, biases your estimate of species richness.
The purpose of this exercise is to introduce you to sampling and bootstrap methods as
they pertain to species richness. As always, save your work frequently to disk.
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ANNOTATION

We will consider a community in which there are 1000 total individuals and up to 10
different species. The species identification is given in cells A5–A14. The numbers of
individuals of each species are given in cells B5–B14. 

To begin, let’s consider a community that is evenly distributed with 100 individuals
of each species. Later in the exercise, you will be able to change the composition of
the community by altering the values in cells B5–B14. 

Enter the equation =SUM(B5:B14) in cell B16. Your result should be 1000.

INSTRUCTIONS

A. Set up the model
community.

1. Open a new spread-
sheet and set up column
headings as shown in
Figure 2.

2. Enter the values shown
in cells B5–B14.

3. In cell B16, enter a for-
mula to sum the total
number of individuals in
the community.

4. Graph the distribution
of the 1000 individuals
among the 10 species. Use
a column graph, and label
your axes fully (Figure 3).
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Tally

Species # in pop 0
1 100

2 100
3 100

4 100
5 100

6 100
7 100

8 100
9 100

10 100 <-- This number must equal 1000.

Total = 1000

Figure 2

Distribution of 1000 Individuals among 10 
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Enter 0 in cell C4.
Enter the formula =B5+C4 in cell C5 and copy this formula down to cell C14.
The formula in cell C5 gives the tally of individuals when only the first species, species
1, has been considered. Copying the formula down the column keeps a running tally
of the number of individuals in the community as more species are observed. The result
in cell C14 should be 1000, to account for all of the individuals present in the commu-
nity. This “tally” will allow you to assign a species identification to individuals in a
later step. 

Now we are ready to sample from this community (one individual at a time) and esti-
mate species richness. Since there are 10 species present (each with 100 individuals),
species richness is 10. You will try to estimate this parameter by randomly sampling
the population and computing richness.

Enter 0 in cell A28.
Enter =1+A28 in cell A29. Copy this formula down to cell A1027.
This series will represent the 1000 individuals in the community.

Now we will identify which species each individual belongs to, based on the species
identification (1–10) given in column A and the tally given in cells C4–C14. In cell
B28, enter the formula =LOOKUP(A28,$C$4:$C$14,$A$5:$A$14). The LOOKUP func-
tion looks up a value (the value in cell A28) in a vector that you specify ($C$4:$C$14),
and returns a value from a corresponding vector ($A$5:$A$14). (A vector is a single row
or column of values). In this case, it compares the value in cell A28 (which is 1) to the
values in cells C4–C14; it finds that A28 is equal to 0 (the value in $C$4), so it returns
the value in $A$5, which is 1. In other words, it assigns individual 1 to species 1.
(Note that with this formula, the value in the tally and the species assignments are
offset by one row.)

The LOOKUP function is handy for assigning species to individuals because if the
function can’t find the exact lookup value, it matches the largest value in the lookup
vector (cells C4–C14) that is less than or equal to the lookup value. For example, when
it looks for individual 449 in $C$4:$C$14, the largest value it can find that is less than
449 is 400, so it will assign this individual to species 5 (the value in $A$9, which is the
cell corresponding to $C$8).

The result is that species are assigned to individuals with the distribution you deter-
mined in cells B5–B14. Your first 100 individuals should all be species 1, the next 100
individuals should all be species 2, and so forth. To test the function, set cell B6 to
1000 and set the remaining cells in B5–B14 to 0. Remember that the final tally of indi-
viduals must equal 1000 in cell C14. All 1000 individuals should now be species 2. When
you feel you have a handle on how the LOOKUP function works, return cells B5–B14
to 100, and continue to the next step.

Enter 1 in cell C28. 
Enter =1+C28 in cell C29. Copy this formula down to cell C1027.

5. Compute a “running
tally” of individuals in
C4–C14. 

6. Save your work.

B. Sample from the com-
munity and compute
species richness.

1. Set up new spreadsheet
headings as shown in
Figure 4.

2. Set up a linear series
from 0 to 999 in cells
A28–A1027. 

3. In cell B28, use the
LOOKUP function to
assign a species to the
individual in cell A28.
Copy this formula down
to cell B1027.

4. Set up a linear series
from 1 to 1000 in cells
C28–C1027. 
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Enter the formula =ROUND(RAND()*1000,0) in cell D28. Copy this formula down to
cell D1027. 
Cell D28 represents the first individual sampled, cell D29 represents the second indi-
vidual sampled, and so on. Note that an individual can be sampled more than once if
the same random number is drawn.
The RAND() function generates a random number between 0 and 1. When the random
number is multiplied by 1000 and then rounded to 0 decimal places with the ROUND
function, the result is a randomly sampled individual from the population. (If your pro-
gram has the RANDBETWEEN function, the formula =RANDBETWEEN(1,1000) will
do the same thing.)

Enter the formula =LOOKUP(D28,$A$28:$A$1027,$B$28:$B$1027) in cell E28. Copy it
down to cell E1028. Column E returns the species of each randomly selected individ-
ual. It uses another LOOKUP function to do this. The formula in cell E28 tells Excel to
lookup the value in cell D28 (the randomly selected individual) in the vector of cells
A28–A1027 and return this individual’s species identification, given in cells B28–B1027. 

Finally we are ready to compute species richness—the total number of species—as our
sampling progresses. Cell F28 is the first sample, so species richness will be equal to 1. 

With our second sample, we need to evaluate whether species richness is 1 (i.e., we
sampled the same species in sample 2 as we did in sample 1) or 2 (i.e., we sampled a
new species in sample 2). Enter the formula =IF(COUNTIF($E$28:E28,E29)>0,
F28,F28+1) in cell F29. This is an IF formula with a COUNTIF formula nested within
it. An IF formula has 3 parts to it, each separated by a comma. The first part is called
the criterion. In this case, our criterion is COUNTIF($E$28:E28,E29)>0. The COUN-
TIF formula counts the number of times a certain value appears in a range of cells. Our
formula tells the spreadsheet to examine cell E29 and count the number of times this
value appears in the range of cells E28–E28. If this number is greater than 0 (the sec-
ond sample was also recorded in the first sample), the program carries out the second
part of the IF statement; if this number is not greater than 0, it carries out the third part
of the IF statement. Thus, our example will look at the second species sampled (cell
E29), and if this species number has appeared in the previous samples (E28–E28), the
species richness value will remain at the previous number (cell F28); otherwise the rich-
ness will be increased by 1 (cell F28+1). 

5. In cells D28–D1027, gen-
erate a random number
between 0 and 999 to des-
ignate a randomly sam-
pled individual in the
population.

6. In cell E28, enter a
LOOKUP formula to iden-
tify the species of the ran-
domly chosen individual
in cell D28. Copy this for-
mula down to cell E1028. 

7. Enter the number 1 in
cell F28. 

8. In cell F29, enter a nest-
ed IF(COUNTIF() formula
to calculate the species
richness, and copy this
formula down to cell
F1028. 

9. Graph species richness
as a function of sample
size. Use the scatter graph
option, and label your
axes fully (Figure 5).
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Your graph will look different than ours because your random samples likely differed
than ours. Keep in mind that the actual species richness of the community is 10 species.
In our example, 24 individuals needed to be sampled to arrive at this number.

Pressing F9 will generate new random numbers, and hence a new set of individuals
that are sampled. With each simulation, you will notice that your species richness
estimates change as samples accumulate. For example, a new simulation required over
40 individuals to be sampled to generate an unbiased estimate of species richness 
(Figure 6).

The fact that each sampling simulation generates new and different results suggests
the need for a bootstrap analysis. For example, if we took only 20 samples, how would
our species richness estimate change from simulation to simulation? By “bootstrap-
ping”—conducting many “replicate” sampling simulations—we can characterize the
nature (mean and standard deviation) of our sampling with respect to species richness.
We will do this for two of sample sizes (n = 20 and n = 50). We will run 1000 trials for
each sample size, recording our species richness estimate with each simulation. This
will provide useful information for deciding how many samples would be adequate
at each location you need to sample.

Enter 1 in cell G6.
Enter =1+G6 in cell G7. Copy this formula down to cell G1005.

First go to Tools | Options | Calculation and set your calculation key to Manual. Then put your
Macro function in the “Record Macro” mode and assign a name and shortcut key. This
macro provides one way to keep track of the species richness estimates when the sam-
ple size consists of 20 individuals. These estimates will be output into cells H6–H1005. 

10. Press F9, the calculate
key, a number of times to
generate new samples.

11. Save your work.

C. Set up the bootstrap.

1. Set up new column
headings as shown in
Figure 7.

2. Set up a linear series
from 1 to 1000 in cells
G6–G1005. 

3. Create a macro to record
species richness for sample
size of 20 for 1000 trials. 
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Record the following steps:
• Press F9, the calculate key, to generate a new set of random numbers, and

hence a new set of randomly selected individuals.
• Select cell F47, the species richness estimate associated with a sample size of 20. 
• Select Edit | Copy.
• Select cell H5, and then go to Edit | Find (Figure 8). Leave the Find What box

completely blank; choose By Columns in the Search box and Values in the Look In
box. Click Find Next and Close. Your cursor should move down to the next
blank cell (trial 1). 

• Go to Edit | Paste Special, and paste in Values, which is the species richness esti-
mate for that trial.

• Select Tools | Macro | Stop Recording.

Now when you press your shortcut key, the macro will automatically conduct a new
replicate sample and record the species richness values in the appropriate place. Run
the macro 1000 times to complete your bootstrap analysis. This may take a while. If
you like shortcuts, you can edit your macro’s Visual Basic code by inserting two lines
of code in the Visual Basic program, as follows:

• Open Tools | Macro | Macros.
• Click the Edit button to edit your macro called Trials. You should now see the

Visual Basic code (Figure 9).
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• Below line 4 (Keyboard Shortcut), enter a new line and type in the words For
counter = 1 to 1000 as shown in Figure 10.

• Above the last line (End Sub), enter a new line and type in the word Next.
• Exit the Visual Basic editor by clicking the close box in the upper right hand

corner of the spreadsheet. You will be returned to your spreadsheet. Now
when you press <Control>t, Excel will run 1000 trials for you.

You can record brand new macros, or edit the Visual Basic code in your existing macro.
For the sample size of 50, you would highlight cell F77 (which is the species richness
for a sample size of 50), and select cell I5 to record the results in the appropriate col-
umn. These slight adjustments can be made in the existing visual basic code. After you
are finished, switch back to Automatic Calculation.

Enter the formulae 
• H1006 =AVERAGE(H6:H1005)
• I1006 =AVERAGE(I6:I1005)

Enter the formulae
• H1007 =STDEV(H6:H1005)
• I1007 =STDEV(I6:I1005)

This step is necessary for graphing the standard deviations in the next step. Enter the
formulae

• H1008 =H1007/2
• I1008 =I1007/2

To add error bars, select the bars on the chart by clicking once on one of the bars.
Then go to Format | Selected Data Series. A dialog box will appear (Figure 11).

4. Conduct a bootstrap
analysis for a sample size
of 50, and record the
results of each bootstrap
trial in column I.

5. In cells H1006 and I1006,
enter a formula to compute
the mean species richness
from the 1000 trials. 

6. In cells H1007 and
I1007, enter a formula to
compute the standard
deviation of species rich-
ness from the 100 trials. 

7. In cells H1008 and
I1008, enter a formula to
divide the standard devia-
tions by 2. 

8. Graph the mean species
richness for the 1000 trials.
Use a column graph and
label your axes fully. Your
graph should resemble
Figure 10.

9. Add the standard devia-
tion bars to your graph. 
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If you want to show only the top half of the errors, click on the Plus display, and then
choose the Custom button. Then, in the window to the right of the + symbol, click on
the little red arrow to shrink the box, use your mouse to select cell H1008, type in a
comma, and use your mouse to highlight select cell I1008. Click again on the red arrow
to bring the dialog box up again. Press OK and your graph should be updated (Figure
12). You should notice instantly that the larger sample size has a much smaller stan-
dard deviation than the smaller sample size, and that the larger sample provides a less
biased estimate of species richness than the smaller sample. You must now consider
the trade-offs between sampling a site intensively (n = 50 or more) at the expense of
sampling a large number of sites. 

10. Save your work.
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QUESTIONS

1. Fully interpret the last graph you created, the results of the bootstrap analysis
for sample sizes of 20 and 50. Based on your results, is it worth sampling 50
individuals to ensure that your species richness estimate is unbiased?

2. How does the composition of the community affect species richness estimates?
Set up your spreadsheet as follows:

The new frequency distribution for species in this community should look like
Figure 13. Develop a new macro, and sample from this new community with
sample sizes of 20 and 50. Record your output under community 2 (columns J
and K), and compare the bootstrap analysis for community 1 and community 2.
Use graphs to explain your answer.
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3. Species richness is only one measure of biodiversity for a community, but it is
frequently used. Can you think of any shortcomings or assumptions of assigning
conservation priorities to various locations based on species richness estimates?

LITERATURE CITED AND ADDITIONAL READINGS
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GEOMETRIC AND EXPONENTIAL
POPULATION MODELS7
Objectives

• Understand the demographic processes that affect popula-
tion size, including raw birth and death rates, per capita
birth and death rates, and rates of immigration and 
emigration.

• Explore the derivations of of geometric (discrete-time) and
exponential (continuous-time) models of populations.

• Investigate the relationship between geometric and expo-
nential models.

• Set up spreadsheet models of geometric and exponential
population growth and graph the results.

INTRODUCTION
The study of population dynamics has been and continues to be an important
area of investigation in ecology. A population is a group of individual organisms
belonging to the same species living in the same area at the same time. Mem-
bers of a population are often considered to be actually or potentially inter-
breeding or exchanging genes.

The term population dynamics means change in population size (number of
individuals) or population density (number of individuals per unit area) over time.
In general, population dynamics are influenced by four fundamental demographic
processes: birth, death, immigration (individuals moving into the population),
and emigration (individuals moving out of the population).

In this exercise, we will ignore immigration and emigration so that we may con-
centrate on births and deaths. For many populations (e.g., the human population
of the earth) this is a realistic simplification. Other populations (e.g., the human
population of the United States) are more open, however, and immigration and
emigration must be considered. Fortunately, the addition of immigration and emi-
gration does not complicate the models very much.

We will begin by developing a model in discrete time. That is, we will treat time
as if it moved in steps, rather than continuously. This allows us to use difference
equations rather than differential equations, and thereby avoid the calculus. It is
also a natural way to work in spreadsheets, and is realistic for many populations
that have seasonal, synchronous reproduction. Strictly speaking, the discrete-time
model represents geometric population growth. Later in the exercise, we will
develop a continuous-time model, properly called an exponential model.

 



Many textbooks present only the continuous-time exponential model. The discrete-
time geometric model developed in this exercise behaves very much like its continu-
ous-time exponential counterpart, but there are some interesting differences, which we
will explore at the end of the exercise.

Model Development
To begin, we can write a very simple equation expressing the relationship between pop-
ulation size and the four demographic processes. Let

Nt represent the size or density of the population at some arbitrary time t (we will
ignore the distinction between population size and population density)

Nt+1 represent population size one arbitrary time-unit later
Bt represent the total number of births in the interval from time t to time t + 1
Dt represent the total number of deaths in the same time interval
It represent the total number of immigrants in the same time interval
Et represent the total number of emigrants in the same time interval

Then we can write

Nt+1 = Nt + Bt – Dt + It – Et

For simplicity, this exercise ignores immigration and emigration. Our equation becomes

Nt+1 = Nt + Bt – Dt

This equation is easy to understand but inconvenient for modeling. The problem lies
in the use of “raw” birth and death rates (Bt and Dt). We have no obvious, biologically
reasonable starting assumptions about these numbers. However, if we switch from
raw birth and death rates to per capita birth and death rates, we can do some fruitful
modeling. 

Geometric (Discrete-Time) Model of Population Growth
A per capita rate is a rate per individual; that is, the per capita birth rate is the num-
ber of births per individual in the population per unit time, and the per capita death
rate is the number of deaths per individual in the population per unit time. Per capita
birth rate is easy to understand, and seems a reasonable thing to model because repro-
duction (giving birth) is something individuals rather than whole populations do. Per
capita death rate may seem strange at first; after all, an individual can die only once.
But remember, this rate is calculated per unit time. You can think of per capita birth
and death rates as each individual’s probability of giving birth or dying in a given unit of time.

Keeping in mind that per capita rates are per individual rates, we can translate the
raw rates Bt and Dt into per capita rates, which we will represent with lower-case let-
ters (bt and dt) to distinguish them from the raw numbers. To calculate per capita rates,
we divide the raw numbers by the population size. Thus,

bt = Bt/Nt and dt = Dt/Nt

Conversely,

Bt = btNt and Dt = dtNt

Now we can rewrite our model in terms of per capita rates:

Nt+1 = Nt + btNt – dtNt

Perhaps this seems to have gotten us nowhere, but it turns out to be a very informa-
tive model if we make one further assumption. Let us assume, just to see what hap-
pens, that per capita rates of birth and death remain constant over time. In other words,
let us assume that average number of births per unit time per individual in the popu-
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lation and the average risk of dying per unit time remain unchanged over some period
of time. What will happen to population size?

Because we assume constant per capita birth and death rates, we can make one fur-
ther, minor modification to our equation by leaving off the time subscripts on b and d:

Nt+1 = Nt + bNt – dNt Equation 1

At this point, you’re probably thinking that this assumption is unrealistic—that per
capita rates of birth and death are likely to change over time for a variety of reasons.*
You are quite correct, but the model is still useful for three reasons:

• It provides a starting point for a more complex and realistic model in which
per capita rates of birth and death do change over time. (You will build such a
model in the “Logistic Population Models” exercise.)

• It is a good heuristic model—that is, it can lead to insights and learning despite
its lack of realism.

• Many populations do in fact grow as predicted by this model, under certain
conditions and for limited periods of time.

Because per capita birth and death rates do not change in response to the size (or den-
sity) of the population, this model is said to be density-independent.

We can further simplify Equation 1 by factoring Nt out of the birth and death terms:

Nt+1 = Nt + (b – d)Nt

The term (b – d) is so important in population biology that it is given its own symbol,
R. Thus R = b – d, and is called the geometric rate of increase. Substituting R for (b –
d) gives us

Nt+1 = Nt + RNt Equation 2

To further define R, we can calculate the rate of change in population size, ∆Nt, by sub-
tracting Nt from both sides of Equation 2:

∆Nt = Nt+1 – Nt = RNt

Because ∆Nt = Nt+1 – Nt, we can simply write

∆Nt = RNt Equation 3

In words, the rate of change in population size is proportional to the population size,
and the constant of proportionality is R.

We can convert this to per capita rate of change in population size if we divide both
sides by Nt:

Equation 4

In other words, the parameter R represents the (discrete-time) per capita rate of change
in the size of the population.

∆N
N Rt

t
=
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* You may also wonder why we use this complex model (Equation 1) rather than the simpler
forms of the geometric and exponential models presented in most textbooks (and devel-
oped in this exercise beginning with Equation 2). We prefer Equation 1 for three reasons:

• It emphasizes the roles of per capita birth and death rates rather than the more abstract
quantities R or r (explained later).

• It allows you to manipulate per capita birth and death rates directly and separately, and
discover that neither alone, but rather the difference between them, determines popula-
tion growth rate.

• It allows you to discover that the per capita rate of population growth (∆Nt/Nt) is a con-
stant, which you can then relate to R (and r if desired).



Moving on, we can simplify Equation 2 (Nt+1 = Nt + RNt) even further by factoring
Nt out of the terms on the right-hand side, to get

Nt+1 = (1 + R)Nt

The quantity (1 + R) is often given its own symbol, λ (lambda), and its own name: the
finite rate of increase. Substituting λ, we can write

Nt+1 = λNt Equation 5

The quantity λ can be very useful in analyzing real population data. Some additional
algebra will show us how.

If we divide both sides of Equation 5 by Nt, we get

Equation 6

In words, λ is the ratio of the population size at one time to its size one time-unit ear-
lier. We can calculate λ from population counts at successive times, even if we do not
know per capita rates of birth and death. You will use this tool to analyze human
population data in Question 10 at the end of this exercise.

In Equations 2 and 5, we showed how to calculate the size of the population one time
unit into the future. What if you wanted to know how big the population will be at some
distant future time? You could carry out the one-time-step calculations many times, until
you arrived at the desired answer, and you will do this in the spreadsheet. But there is
also a shortcut. Let us start with Equation 5:

Nt+1 = λNt

Starting at time 0, we can carry this calculation through a few times to calculate pop-
ulation sizes at time 1, time 2, and time 3. The population size at time 0 can be written
N0. Thus the populations at times 1, 2, and 3 would be

N1 = λN0

N2 = λN1 = λ(λN0)

N3 = λN2 = λ[λ(λN0)]

Do you see a pattern here? Population size at time 1 is λ1N0, at time 2 it is λ2N0, and at
time 3 it is λ3N0. In general, we can write

Nt = λtN0 Equation 7

This expression may strike you as rather abstract. One way to understand its impact
is to use Equation 7 to calculate doubling time (tdouble)—that is, the time required for
the population to double in size.* If we plug the doubling time into Equation 7, we
get

We can derive doubling time by exploiting the fact that the population at time tdouble is,
by definition, twice the population at time 0:

Substituting 2N0 for Nt double gives us 

N Ntdouble
= 2 0

N Nt
t

double
double= λ 0

N
N

t

t

+ =1 λ
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If we divide both sides by N0, we get 

Taking the logarithm of both sides gives us

ln2 = tdoublelnλ

Dividing both sides by lnλ, we get

Equation 8

What does this mean? Suppose R = 0.1 individuals/individual/year. Therefore, λ = 1
+ R = 1.1. This implies that the population increases by 10% per year, which doesn’t
sound like much. But, if you plug this value of λ into Equation 8, you’ll find that the
population doubles in about 7.27 years, which seems more impressive.

You may be wondering how a population that grows in discrete intervals of a year
can double in a non-integer number of years. It can’t, of course. This calculation really
means that the population will not quite double in 7 years, and will more than double
in 8 years.

Exponential (Continuous-Time) Model of Population Growth
Population growth can also be modeled in continuous time, which is more realistic for
populations that reproduce continuously, rather than seasonally. Continuous-time mod-
els also allow use of the calculus, which provides many powerful analytical tools. In
this exercise, we will eschew the calculus, and simply present some results.

Most textbooks begin with the continuous-time analog of Equation 3:

dN/dt = rN Equation 9

The left-hand side of Equation 9 represents the instantaneous rate of change in popu-
lation size, which is different from the rate of change over some discrete time interval,
∆Nt /Nt, that we looked at in Equation 7. Therefore, we use a lowercase r to distin-
guish the continuous-time exponential model from the discrete-time geometric model.
The symbol r is called the instantaneous rate of increase or the intrinsic rate of
increase. The parameters r and R are not equal, although they are related, as we will
show below.

As we did with the discrete-time model, we can calculate the per capita rate of pop-
ulation growth by dividing both sides of Equation 9 by N:

Equation 10

You can use the calculus to operate on Equation 10 and calculate the size of the popu-
lation at any time. We will spare you the derivation, but the resulting equation is

Nt = N0e rt Equation 11

where e is the root of the natural logarithms (e ≅ 2.71828).
You can derive the relationship between r and R as follows. Suppose we start two

populations with the same initial number of individuals, N0, and both grow at the same
rate. However, one grows in continuous time and the other grows in discrete time.
Because they grow at the same rate, at some later time, t, they will have reached the same
size, Nt. If we write the discrete-time population on the left and the continuous-time
population on the right we can derive as follows:

Nt = Nt

N0λt = N0e rt

( / )dN dt
N r=

ln
ln

2
λ = tdouble

2 = λtdouble

2 0 0N Nt= λ double
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λt = ert

ln(λt) = ln(ert)

t lnλ = rt lne

lnλ = r Equation 12

λ = er Equation 13

So we can convert back and forth between continuous-and-discrete time models.
Remember that λ = 1 + R.

Suppose we have a population growing in continuous time with some value of r,
and a population growing in discrete time with the same value of R, i.e., r = R. Which
will grow faster? As we did with the geometric model, we can derive the doubling time
for the exponential model (Gotelli 2001). We begin with Equation 11, and plug in tdouble:

Substituting 2N0 for Ntdouble, we get

Dividing both sides by N0 gives us

and taking the natural logarithm of both sides yields

Finally, we divide both sides by r, and rearrange, to get

Parallel to our earlier example, let us suppose r = 0.1 individuals/individual/year. As
before, this implies a 10% annual increase in the population, but now this increase occurs
continuously rather than in discrete time intervals. How long does it take for this pop-
ulation to double? Plugging in the value 0.1 for r yields a doubling time of 6.93 years,
somewhat faster than indicated by the geometric model.

PROCEDURES

The following exercises will set up spreadsheets and allow you to graph both the geo-
metric and exponential growth of populations. As always, save your work frequently
to disk.

t rdouble = ln 2

ln 2 = rtdouble

2 = ertdouble

2 0 0N N ert= double

N N et
rt

double
double= 0
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ANNOTATION

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in.

In cell A5, enter the number 0. 
In cell A6, enter the formula =A5+1.
Copy cell A6. Select cells A7–A25. Paste.

In cell G5, enter the number 1.25.
In cell H5, enter the number 0.50.

In cell I5, enter the formula =G5-H5.

In cell B5, enter the number 100.

In cell C5, enter the formula =$G$5*B5.
In cell D5, enter the formula =$H$5*B5.

Note that references to per capita birth rate ($G$5) and per capita death rate ($H$5) use
absolute addresses, but the references to current population size (B5) use a relative
address. This is because you will later copy these formulae down their columns, and
you want them to refer, respectively, to constants—per capita birth and death rates—
and to a variable—the population size at time t.

In cell B6, enter the formula =B5+C5-D5.

Note that this formula uses the total births and deaths you have already calculated.
This mimics the chain of biological cause and effect: per capita rates of birth and death,
in conjunction with the number of individuals in the population, determine the total
number of births and deaths, which in turn determine the size of the population at
the next time.

Select cells C5 and D5. Copy.
Select cells C6 and D6. Paste.

INSTRUCTIONS

A. Geometric (discrete-
time) model.

1. Open a new spread-
sheet and set up titles and
column headings as
shown in Figure 1.

2. Set up a linear time
series from 0 to 20 in col-
umn A.

3. Enter the values shown
for per capita birth and
death rates, b and d.

4. Enter a formula to cal-
culate R in cell I5.

5. Enter an initial popula-
tion size of 100.

6. Enter the formulae for
total births (bNt) and
deaths (dNt) into cells C5
and D5.

7. Enter the formula for
Nt+1 into cell B6.

8. Copy the formulae for
total births and deaths
into cells C6 and D6.
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t Nt Total births Total deaths �∆Nt (∆Nt)/Nt b d R

0 1.25 0.50 0.75

1

2

Constants

Figure 1



See annotation at Step 8 for the commands involved.

In cell E5, enter the formula =B6-B5.

Note that this change in population size is calculated for the coming time interval. You
could do it differently, but this way gives an interesting result, seen in the next step.

In cell F5, enter the formula =E5/B5.

Like all per capita rates, this one is calculated by dividing the change in population size
by the current population size. How does the value of (∆Nt/Nt) compare to the value
of R?

See step 8 for the commands involved.
Your model is now complete and you are ready to create graphs. 
Save your work.

Select cells A4–F24. Note that you should include column headings in your selection,
so that the legend will be labeled properly. Do not include row 25 because ∆Nt, and
∆Nt/Nt are undefined there.

Click on the Chart Wizard button or open Insert | Chart. (Details are given in the Intro-
duction, “Spreadsheet Hints and Tips,” and in Exercise 1, “Mathematical Functions and
Graphs.”) Follow the prompts in the resulting dialog boxes to set up an XY chart (Scat-
terplot) with time on the x-axis. Do not use a line chart.

Put ∆Nt/Nt on the secondary y-axis and scale that axis from 0 to 1. (Again, refer to the
Introduction and to Exercise 1; or just try clicking on things in the graph, and see
what happens.)

9. Copy the formulae for
Nt, total birth and total
deaths, down their
columns.

10. In cell E5, enter a for-
mula to calculate the
change in population size
(∆Nt) from time 0 to time 1.

11. In cell F5, enter a for-
mula for the per capita
change in population size
(∆Nt/Nt) from time 0 to
time 1.

12. Copy the formulae for
∆Nt and ∆Nt/Nt down their
columns.

13. Graph Nt, total births,
total deaths, ∆Nt, and
∆Nt/Nt against time.

14. Edit your graph for
readability. The result
should resemble Figure 2.
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Strictly speaking, the graph in Figure 2 is inaccurate, because it implies that popula-
tion size increases smoothly and continuously between time steps. Actually, popula-
tion size remains unchanged from one time (t) to the next (t + 1), and then instanta-
neously takes its new value. Thus, the graph should look like a flight of stairs that
gets steeper exponentially. However, such a graph is difficult to produce in Excel, so
we will have to settle for this one and bear this inaccuracy in mind.

Select cells B4–E24. Note that this differs from your previous graph in that you do not
include time (column A). Include column headings in your selection so that the legend
will be labeled properly.

Click on the Chart Wizard or open Insert | Chart. Follow the prompts in the resulting
dialog boxes to set up an XY chart (Scatterplot) with Nt on the x-axis. Do not use a line
chart.

See Step 2 above.

These are all literals, so just select the appropriate cells and type them in. We will set
up an exponential (continuous-time) model and a geometric (discrete-time) model side-
by-side for comparison.

15. Graph total births, total
deaths, and ∆Nt on the
vertical axis against popu-
lation size on the horizon-
tal axis.

16. Edit your graph for
readability. The result
should resemble Figure 3.

B. Exponential (continu-
ous-time) model.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 4. Enter the values
shown for r and R.
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Enter the value 0 in cell A8.
In cell A9, enter the formula =1+A8. Copy cell A9 and paste into cells A10–A28.

Enter the value 1.00 into cells B8 and C8. Later, you can change these values to see the
effect on population growth.

In cell B9, enter the formula =$B$8*EXP($C$4*A9). 
This corresponds to Equation 11,  Nt = N0e

rt. The function EXP($C$4*A9) is the spread-
sheet version of ert. Note that the reference to the initial population size (a constant)
uses an absolute cell address ($B$8), as does the reference to r ($C$4), but the reference
to time (A9) is relative (a variable).

Note that the reference to the initial population size (a constant) uses an absolute cell
address ($B$8), as does the reference to r ($C$4), but the reference to time (A9) is rela-
tive (a variable).

In cell C9, enter the formula =(1+$C$5)^A9*$C$8.
This corresponds to Equation 7: Nt = λtN0. The term (1+$C$5) calculates λ, (which is 1
+ R, remember) and the expression ̂ A9 raises λ to the power t. Note that the reference
to the initial population size uses an absolute cell address ($C$8), as does the reference
to R ($C$5), but the reference to time (A9) is relative.

Select cells B9 and C9. Copy.
Select cells B10–C28. Paste.

In cell D8, enter the formula =LN(B9/B8).
This formula calculates λ from the population sizes at times 0 and 1, as if the popula-
tion were growing in discrete time, and then converts λ to the continuous-time r by tak-
ing the natural logarithm of λ. Review Equation 12 for the derivation of this relation-
ship.

We use this roundabout method to set the stage for analyzing real population data, as
you will do in answering Question 10 at the end of this exercise. In some cases, we may
know population sizes at different times, but not per capita rates of birth and death.
Using this method allows us to determine r from population sizes, and predict popu-
lation dynamics without knowing per capita birth and death rates.

2. Set up a linear time
series from 0 to 20 in col-
umn A.

3. In cells B8 and C8, enter
initial population sizes for
the two populations.

4. In cell B9, enter a for-
mula to calculate the size
of the exponential popula-
tion at time 1.

5. In cell C9, enter a for-
mula to calculate the size
of the geometric popula-
tion at time 1.

6. Copy the formulae in
cells B9 and C9 down their
columns.

7. Enter a formula in cell
D8 to calculate r from the
population sizes in cells
B8 and B9.
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In cell E8, enter the formula =C9/C8-1.
Remember that λ = 1 + R, so R = λ – 1. The rationale for this calculation is the same as
for our calculation of r in step 7.

Do not copy the formulae into cells D28 and E28 because they become undefined there.

See “Spreadsheet Hints and Tips” and Exercise 2, “Spreadsheet Functions and Graphs,”
for detailed instructions. Your finished graph should resemble Figure 5.

QUESTIONS
1. Under the assumptions b > d and both b and d constant, how does the popula-

tion grow? How can you verify your answer?

2. How does population size change over time if b < d? Before you start plugging
values into the model, sketch what you think the graph of Nt against time will
look like.

3. How does population size change over time if b = d?

4. Which of the following determine the rate of population growth (∆Nt)?
• per capita birth rate
• per capita death rate
• the product of the two
• the ratio of the two
• the difference between the two

5. How does the rate of population growth (∆Nt) change over time?

6. How do total births, total deaths, and ∆Nt relate to population size?

7. How does per capita rate of population growth (∆Nt/Nt) relate to population
size (Nt)?

8. Enter a formula in cell
E8 to calculate R from the
population sizes in cells
C8 and C9.

9. Copy the formulae in
cells D8 and E8 down
their columns to row 27.

10. Save your work.

11. Graph population size
against time for exponen-
tial and geometric models
on the same graph. 
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8. Which grows faster, the continuous-time population or the discrete-time popu-
lation? Why?

9. How much larger than r must R be in order to produce equal population
growth rates?

10. How has the human population grown over the past 12 centuries or so?
Analyze the following data from the U.S. Census Bureau website
(http://www.census.gov):

LITERATURE CITED
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Time Estimated
Date (years elapsed population
(year C.E.) since 500 C.E.) size

500 0 190,000,000
600 1 200,000,000
700 2 207,000,000
800 3 220,000,000
900 4 226,000,000
1000 5 254,000,000
1100 6 301,000,000
1200 7 360,000,000
1300 8 360,000,000
1400 9 350,000,000
1500 10 425,000,000
1600 11 545,000,000
1700 12 600,000,000
1800 13 813,000,000
1900 14 1,550,000,000



LOGISTIC POPULATION MODELS8
Objectives

• Explore various aspects of logistic population growth mod-
els, such as per capita rates of birth and death, population
growth rate, and carrying capacity.

• Understand the concepts of density dependence and density
independence.

• Set up spreadsheet models and graphs of logistic population
growth.

• Compare the model to real populations.

Suggested Preliminary Exercise: Geometric and Exponential
Population Models

INTRODUCTION
This exercise builds on the models developed in Exercise 7, “Geometric and Expo-
nential Population Models.” If you have not already done that exercise, you
should do it first, or at least read its introduction.

As in the earlier exercise, we begin with a model of population dynamics in
discrete time, with explicit parameters for per capita rates of birth and death. We
choose the discrete-time model as the starting point for several reasons:

• It emphasizes the roles of per capita birth and death rates (b and d) rather
than the more abstract quantities r (or R) and K (explained later).

• It allows you to manipulate, directly and separately, per capita birth and
death rates and density-dependent rates of change in per capita birth and
death rates. You will discover that none of these alone, but rather the
relationship between them, determines logistic population growth and
whether the population eventually stabilizes.

• It allows you to discover that for a population to stabilize, per capita
birth and death rates must change as the population grows, and they
must become equal at some equilibrium population size.

• It drives home, in ways that algebraically simpler models cannot, the
meaning of density dependence: change in per capita birth and death
rates in response to change in population size.

 



The logistic model with explicit birth and death rates, presented first here, lies at the heart
of this particular exercise. For the sake of compatibility with a variety of textbooks, and to
provide background for other exercises in this book, we  present two other logistic mod-
els: a more commonly encountered discrete-time version incorporating carrying capac-
ity (K), and a continuous-time version. We see no need to build all three versions; which
one you do will depend on your instructor’s aims. To instructors, we strongly suggest that
the first version, with explicit per capita birth and death rates, is the best learning tool,
for the reasons given above. In our experience, students have no difficulty switching to
the R-K version for later exercises.

Model Development: Logistic Model with Explicit Birth 
and Death Rates

In Exercise 7, we developed the following geometric model of population dynamics:

Nt+1 = Nt + bNt – dNt Equation 1

where
Nt = population size at time t
Nt+1 = population size one time unit later
b = per capita birth rate
d = per capita death rate

As you discovered in the earlier exercise, this model produces geometric population
growth (the discrete-time analog of exponential growth) if b and d are held constant and
b > d. However, the assumption that per capita rates of birth and death remain constant
is unrealistic, so in this exercise you will develop a model in which these rates change.

Birth and death rates may change for many reasons, such as changes in climate con-
ditions, food supply, or populations of natural enemies (competitors, predators, para-
sites, and pathogens). To keep our model manageable, in this exercise we will consider
only one cause of changes in per capita birth and death rates: the size of the popula-
tion itself. In other words, we will assume that environmental conditions, food supply,
and so on remain constant; only the size of the population itself changes. Because per
capita rates of birth and death do change in response to population size or density, logis-
tic models are density-dependent, in contrast to geometric and exponential models,
which are density-independent. As the population grows, less food and water, fewer
nesting and hiding sites, and fewer resources in general are available to each individ-
ual, affecting both an individual’s rate of reproduction and its risk of death. Our model
will thus include intraspecific competition (competition among members of the same
species) for resources. Later exercises will develop models of interspecific (between two
species) competition and predator-prey dynamics.

We now add two new terms to our model to represent changes in per capita rates of
birth and death:

b′ = the amount by which the per capita birth rate changes in response to the
addition of one individual to the population

d′ = the amount by which the per capita death rate changes in response to the
addition of one individual to the population

We can now add these terms to our geometric model to produce a discrete-time logis-
tic model:

Nt+1 = Nt + (b + b′Nt)Nt – (d + d′Nt)Nt Equation 2

This model replaces the simple per capita birth rate b with the more complex expres-
sion (b + b′Nt), and it replaces d with (d + d′Nt). The symbols b and d now represent per
capita rates of birth and death when the population is very small. The terms (b + b′Nt)Nt
and (d + d′Nt)Nt represent total births and total deaths, respectively. Thus, our model
still represents the fundamental insight that
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Nt+1 = Nt + Births – Deaths                           Equation 3

Most textbooks that use this model use a slightly different form, in which the birth
term is written (b – b′Nt)Nt, because per capita birth rate normally decreases as popu-
lation size increases. We prefer to add b′Nt rather than subtract it, because our way forces
you to use a negative number for b′, reinforcing the idea of decreasing per capita births.
It also allows you to experiment with the model to see what happens if per capita birth
rate increases with population size.

All four parameters (b, b′ d, and d′) are assumed to remain constant, as you can tell
from the absence of time subscripts. Let’s try to visualize what happens to per capita
rates of birth and death as the population grows according to this model. When the pop-
ulation is small, there are plenty of resources for each individual, so per capita birth rate
should be high, per capita death rate should be low, and the population will grow larger.
As new individuals are added, available resources will be divided among more indi-
viduals, and each individual will get less. We would expect per capita birth rate to decline
(so b′ should be less than zero) in proportion to the number of individuals in the pop-
ulation (so we multiply b′ by Nt). We would also expect per capita death rate to increase
(so d ′ should be greater than zero), also in proportion to population size (so we multi-
ply d ′ by Nt as well).

As simple as it is, this model has proven useful in several contexts. Many popula-
tions grow as predicted by this model, and (in the form of Equation 7, below) it was one
of the origins of chaos theory. Logistic models are used in studying interspecific as
well as intraspecific competition and predator-prey relationships. These models also
inform practical decisions in the management of fisheries and game animal populations
and are used to predict the growth of the human population.

The rate of population growth is not easy to visualize from this equation, so you
will explore its behavior using the spreadsheet. However, we can see informally that
when the population is very small, it will grow almost geometrically (exponentially),
because the parameters b′ and d ′ are multiplied by a small number (Nt is small), and
thus the model reduces (almost) to a geometric model. As the population grows larger,
however, the influence of b′ and d ′ increases, and population growth slows. What will
be the endpoint of this slowing rate of growth? Will the population stabilize, will it con-
tinue to grow at an ever-decreasing rate, or will it decrease in size?

We can show formally that there is an equilibrium population size in this model.
In other words, appropriate values of b, d, b ′, and d ′ will produce a model population
that grows until it reaches a stable size. To prove that such an equilibrium exists, we
try a commonly used tactic: We will assume that the equilibrium population size exists,
and try to calculate its value. If the equilibrium does not exist, this procedure will lead
us to a logical contradiction. If the equilibrium exists, we will find its value.

Let us begin with Equation 2:

Nt+1 = Nt + (b + b′Nt)Nt – (d + d ′Nt)Nt

Assume that an equilibrium population size exists, and call it Neq. If Neq exists,
then plugging it into Equation 2 in place of Nt should produce no change in popu-
lation size. Therefore Nt+1 will also equal Neq. If we substitute Neq for Nt and Nt+1,
we get

Neq = Neq + (b + b′Neq)Neq – (d + d′ Neq)Neq

Subtracting Neq from both sides gives us

0 = (b + b′Neq)Neq – (d + d′ Neq)Neq

Adding (d + d′ Neq)Neq to both sides, we get

(d + d′ Neq)Neq = (b + b′Neq)Neq
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In words, the population is at equilibrium when total deaths equal total births (com-
pare to Equation 3 above). This seems a sensible result. Let us continue by dividing
both sides by Neq, to get

d + d′Neq = b + b ′Neq

This tells us that the population is at equilibrium when per capita rates of birth and death
are equal, which also makes sense.
Subtracting d and b′Neq from both sides gives us

d′Neq – b′Neq = b – d

Factoring Neq out of the left-hand side produces

(d′ – b′)Neq = b – d

and dividing both sides by (d′ – b′) gives us

Equation 4

Note that the numerator on the right-hand side of Equation 4 is the geometric growth
factor R, as defined in Exercise 7, “Geometric and Exponential Population Growth.”

Equation 4 gives us our equilibrium population size. The derivation shows that val-
ues of b, d, b′, and d′ exist that will produce a stable population. Be aware, however, that
it does not show that any values of these parameters will do so—that is, there also may
exist values of these parameters that will produce population growth that does not reach
equilibrium. It also shows that the equilibrium population depends on all four param-
eters, in the particular way shown in Equation 4.

Logistic Model with Explicit Carrying Capacity
Because the equilibrium defined in Equation 4 is so important in population biology,
it is given its own name—the carrying capacity. The carrying capacity is defined as the
largest population that can be supported indefinitely, given the resources available in
the environment. Most logistic models presented in textbooks represent this carrying
capacity with its own parameter, K, and build it into the model explicitly. We develop
this model below.

Most textbooks present logistic population growth in terms of a differential equation
in continuous time:

Equation 5

The discrete-time analog of this equation is

Equation 6

In Equation 6, ∆Nt represents the difference between the population size at time t + 1
and at time t. We can therefore write ∆Nt = Nt+1 – Nt and substitute that into Equation
6. This gives us

Adding Nt to both sides gives us our discrete-time model of logistic population growth;
we get

Equation 7

Because this model has fewer parameters, it is more convenient to use in studying inter-
specific competition, predator-prey relationships, and harvesting populations.
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The behavior of Equation 7 is not difficult to visualize. If we begin with a very small
population, the term (K – Nt)/K is very nearly equal to K/K, or 1. The model will then
behave like a geometric model, and the population will grow, provided R > 1. The
population will grow slowly at first, because the parameter R is also being multiplied
by a number (Nt) that is nearly equal to zero, but it will grow faster and faster, at least
for a while. At some point, however, population growth will begin to slow because the
term (K – Nt)/K is getting smaller and smaller as Nt gets larger and closer to K.

At the other extreme, imagine a population that starts out at a size very close to its
carrying capacity, K. The term (K – Nt)/K becomes nearly equal to zero, and population
growth is extremely slow. When Nt = K, the population stops growing altogether.

The actual dynamics of this model can be much more complex, as you will see when
you build the spreadsheet model and play around with its parameters. With some val-
ues of b, d, b′, and d′, or of R and K, the population can temporarily overshoot its carry-
ing capacity, oscillate around it, or become chaotic.

The two discrete-time models (expressed in Equations 2 and 7) are mathematically
equivalent. This is not obvious from the equations, and the proof is not directly relevant
to our modeling concerns, but if you’re curious you can read the proof at the end of
the exercise (pp. 121–122).

Continuous-Time Logistic Model
As we said above, most textbooks begin with the model given by Equation 5:

As stated, this tells you only the rate of change in population size, not the population
size at any time t. To derive the equation for population size requires the calculus, so
we will simply give the result (Roughgarden 1998):

Equation 8

This model behaves as described for the discrete-time version. An important differ-
ence, however, is that the continuous-time model always grows smoothly to its carry-
ing capacity and stabilizes there. The discrete-time model can display more interesting
behavior.

PROCEDURES

Your instructor may assign all of the following three parts, or only one or two. As
always, save your work frequently to disk.

ANNOTATIONS

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in.

N K
K N N e

t rt=
+ −( )[ ] −1 0 0/

dN
dt rN K N

K= −





INSTRUCTIONS

Part 1. Discrete-Time
Logistic Model with
Explicit Birth and
Death Rates

A. Set up the spreadsheet.

1. Open a new spread-
sheet and set up titles and
column headings as
shown in Figure 1.
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In cell A6, enter the number 0.
In cell A7, enter the formula =A6+1.
Copy cell A7.
Select cells A8–A26. Paste.

Be sure to enter a negative number for b’. This indicates that per capita birth rate decreases
as each new member is added to the population. A positive value of d’ indicates that per
capita death rate increases as each new member is added to the population.

In cell K6, enter the formula =I6-J6. Remember, by definition, R = b – d.
In cell K8, enter the formula =(I6-J6)/(J8-I8). This is the spreadsheet version of Equa-
tion 4 in the Introduction. It represents the largest population that can be sustained
indefinitely on the resources available.

In cell B6, enter the value 1.00.

In cell C6, enter the formula =$I$6+$I$8*B6.
In cell E6, enter the formula =$J$6+$J$8*B6.
These formulae correspond to the per capita birth and death rates, (b + b′N1) and 
(d + d′N1)N1, in Equation 2.
We calculate per capita births and deaths explicitly because it is important to under-
stand how these rates respond to changes in population size. You will graph these quan-
tities later in the exercise.

In cell D6, enter the formula =C6*B6.
In cell F6, enter the formula =E6*B6.
These formulae correspond to the total births, (b + b′Nt )Nt, and total deaths, (d + d′Nt)Nt,
in Equation 2. We calculate total births and deaths as an intermediate step in calculat-
ing Nt+1 (see next step).

In cell B7, enter the formula =B6+D6-F6.
This corresponds to Equation 3, Nt+1 = Nt + Births – Deaths.

See “Spreadsheet Hints and Tips” for instructions on copying and pasting.

2. Set up a linear time
series from 0 to 20 in col-
umn A.

3. Enter the values shown
in Figure 1 for per capita
birth and death rates, b
and d, and per capita rates
of change in b and d, b’
and d’.

4. Enter formulae to calcu-
late R and K.

5. Enter an initial popula-
tion size of 1.00.

6. Enter formulae for per
capita birth and death
rates (b and d).

7. Enter formulae for total
births and total deaths.

8. Enter a formula to cal-
culate the size of the pop-
ulation at time 1.

9. Copy the formulae in
cells C6–F6 into cells
C7–F7.
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In cell G6, enter the formula =B7-B6.
Note that we calculate ∆Nt over the coming time interval, as we did in Exercise 7, “Geo-
metric and Exponential Population Models.”

In cell H6, enter the formula =G6/B6.
This is the per capita rate of change in population size over the interval from time 0 to
time 1. Like ∆Nt, it is calculated over the coming time interval.

Note that we do not paste these formulae into cells G26 and H26. This is because ∆Nt
and ∆Nt/Nt are calculated over the coming time interval, and would therefore be unde-
fined for the last population size calculated (cell B26).

Select cells A5–B26. Note that you should include column headings in your selection,
so that the legend will be labeled properly.

Click on the Chart Wizard or open Insert | Chart. Details of the steps involved are given
in “Spreadsheet Hints and Tips” and in Exercise 2, “Mathematical Functions and
Graphs.” Follow the prompts in the dialog boxes to set up an XY chart (Scatter graph)
with time on the x-axis. Do not use a line chart.

Your graph should resemble Figure 2.

Note that you are not graphing against time. Select cells B5–C26.
Hold down the <Control> or  key and select cells E5–E26.
Make an XY chart (Scatter graph) (see previous step).

Your graph should resemble Figure 3.

10. Copy the formulae
from cells B7–F7 into cells
B8–F26.

11. Enter a formula for ∆Nt.

12. Enter a formula for
∆Nt/Nt.

13. Copy the formulae in
cells G6 and H6 into cells
G7–H25.

B. Create graphs.

1. Graph Nt against time,
and edit your graph for
readability.

2. Graph per capita birth
and death rates against Nt,
and edit your graph for
readability.
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Select cells B5–B25. Note that you should not include cell B26 in your selection.
Hold down the <Control> or  key and select cells G5–H25.
Make an XY chart, per the previous step.
Because the ranges of values taken by ∆Nt is so much larger than the range of ∆Nt/Nt,
the latter gets squashed down against the x-axis. You will fix this in the next step.

Select the curve for ∆Nt in your graph by double-clicking on the line or on one of the
data points.
In the dialog box that pops up, select the Axis tab, and then click the button for Sec-
ondary axis, as shown in Figure 4. Click on the OK button.

3. Graph ∆Nt and ∆Nt/Nt
against Nt.

4. Graph ∆Nt on a second
y-axis of the same graph.
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Set the minimum of the left-hand y-axis to zero: Double-click on the left-hand y-axis.
In the dialog box that pops up, click the tab for Scale, and enter the value 0 in the Min-
imum box. This will make no difference now, but it will prevent graphing errors later
in the exercise.

Your graph should resemble Figure 5. To label the right-hand y-axis, select the whole
chart by clicking once inside it. Then open Chart|Chart Options|Titles. Enter the label for
the right-hand y-axis in the text box for Second value (Y) axis.

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in.

In cell A6, enter the value 0. 
In cell A7, enter the formula =A6+1.
Copy the formula in cell A7 into cells A8–A26.

5. Edit your graph for
readability.

Part 2. Discrete-Time
Logistic Model with
Explicit Carrying
Capacity

C. Set up the spread-
sheet.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 6.

2. Set up a linear time
series from 0 to 20 in col-
umn A.
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In cell B6, enter the value 1.00.
In cell E6, enter the value 0.75.
In cell F6, enter the value 50.

In cell B7, enter the formula =B6+$E$6*B6*($F$6-B6)/$F$6.
This corresponds to the right-hand side of Equation 7:

Copy the formula in cell B7 into cells B8–B26.

In cell C6, enter the formula = B7-B6. In cell D6, enter the formula =C6/B6.
Note that we calculate ∆Nt and ∆Nt/Nt over the coming time interval, as we did “Geo-
metric and Exponential Population Models.”
Copy the formulae in cells C6 and D6 into cells C7–D25.
Do not copy these formulae into cells C26 and D26, because they would be undefined
for the last population size calculated.

1. Select cells A5–B26. Create an XY graph. Your graph should resemble Figure 7.

Select cells B5–D25 and make an XY graph.
Because the range of values taken by ∆Nt is so much larger than the range of ∆Nt/Nt,
the latter gets squashed down against the x-axis. You will fix this in the next step.

Select the curve for ∆Nt in your graph, by double-clicking on the line or on one of the
data points.
In the dialog box that pops up, select the Axis tab, and then click the button for Sec-
ondary axis (see Figure 4). Click on the OK button.

N RN
K N
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3. Enter the values shown
for initial population size,
R, and K.

4. Enter a formula to cal-
culate the size of the pop-
ulation at time 1.

5. Extend the population-
size calculation down its
column.

6. Enter formulae to calcu-
late ∆Nt and ∆Nt/Nt, and
copy them down their
columns.

D. Create graphs.

1. Graph Nt against time
and edit your graph for
readability.

2. Graph ∆Nt and ∆Nt/Nt
against Nt.

3. Graph ∆Nt on a second
y-axis of the same graph.
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Set the minimum of the left-hand y-axis to zero. Double-click on the left-hand y-axis.
In the dialog box that pops up, click the tab for Scale, and enter the value 0 in the Min-
imum box. This will make no difference now, but it will prevent graphing errors later
in the exercise. Your graph should resemble Figure 8.

To label the right-hand y-axis, select the whole chart by clicking once inside it. Then
open Chart|Chart Options|Titles. Enter the label for the right-hand y-axis in the text box
for Second value (Y) axis.

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in. Note that we use the differential notation dN/dt and (dN/dt)/N
instead of the difference notation ∆Nt and ∆Nt/Nt, and r in place of R.

4. Edit your graph for
readability.

Part 3. Continuous-
Time Logistic Model

E. Set up the spread-
sheet.

1. Open a new spread-
sheet and set up titles and
column headings as
shown in Figure 9.
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In cell A6, enter the value 0.
In cell A7, enter the formula =A6+1.
Copy the formula in cell A7 into cells A8–A26.

In cell B6, enter the value 1.00.
In cell E6, enter the value 0.5. Note the use of lowercase r, to distinguish the continu-
ous-time model from the discrete-time version.
In cell F6, enter the value 50.

In cell B7, enter the formula =$F$6/(1+(($F$6-$B$6)/$B$6)*EXP(-1*$E$6*A7)).
This corresponds to Equation 8:

Copy the formula in cell B7 into cells B8–B26.

In cell C6, enter the formula =$E$6*B6*($F$6-B6)/$F$6.
This corresponds to Equation 5:

In cell D6, enter the formula =C6/B6.
Copy the formulae in cells C6 and D6 into cells C7–D26. In this case, we do copy these
formulae into cells C26 and D26, because we are calculating them instantaneously from
the current Nt. This is an important difference between this model and the two previ-
ous discrete-time logistic models. If we had used the same difference method to cal-
culate these rates of change as we used before, we would get different values. 

Select cells A5–B26. Make an XY graph and edit for readability. Your graph should
resemble Figure 10.

dN
dt rN K N

K= −





N K
K N N e

t rt=
+ −( )[ ] −1 0 0/

2. Set up a linear time
series from 0 to 20 in col-
umn A.

3. Enter the values shown
for initial population size,
r, and K.

4. Enter a formula to cal-
culate the size of the pop-
ulation at time 1.

5. Extend the population-
size calculation down its
column.

6. Enter formulae to calcu-
late dN/dt and (dN/dt)/N
and copy them down their
columns. (Hint: Refer to
Equation 5.)

F. Create graphs.

1. Graph Nt against time
and edit your graph for
readability.
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Select cells B5–D26 and make an XY graph.
Because the ranges of values taken by dN/dt is so much larger than the range of
(dN/dt)/N, the latter gets squashed down against the x-axis. You will fix this in the
next step.

Select the curve for dN/dt in your graph by double-clicking on the line or on one of
the data points.
In the dialog box that pops up, select the Axis tab, and then click the button for Sec-
ondary axis (see Figure 4). Then click on the OK button.

Set the minimum of the left-hand y-axis to zero. Double-click on the left-hand y-axis.
In the dialog box that pops up, click the tab for Scale, and enter the value 0 in the Min-
imum box. Your graph should resemble Figure 11.

This will make no difference now but will prevent graphing errors later in the exercise.

To label the right-hand y-axis, select the whole chart by clicking once inside it. Then
open Chart|Chart Options|Titles. Enter the label for the right-hand y-axis in the text box
for Second value (Y) axis.

Proof That the Two Discrete-Time Models Are Equivalent
The following proof* demonstrates that the two discrete-time models (Equation 2 and
Equation 7) are in fact equivalent. Begin with Equation 7:

Equation 7

Rewrite the term in parentheses:

Because K/K = 1, we can write
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2. Graph dN/dt and
(dN/dt)/N against Nt.

3. Graph dN/dt on a sec-
ond y-axis of the same
graph.

4. Edit your graph for
readability.
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We showed early in the exercise that K = (b – d)/d′ – b′), so we can substitute

Rearranging gives us

Because R = b – d by definition, we can substitute

and carry out the multiplication across the parentheses:

Canceling terms gives us

Factoring out Nt, we get

Carrying out the multiplication inside the square brackets, we get

Rearranging terms gives us

Multiplying through by Nt gives us Equation 2:

Equation 2

Unfortunately, the graph does not indicate which axis relates to which curve. You must
look at the values in the spreadsheet to see that the left-hand y-axis relates to dN/dt/N
because that ratio takes values from 0.74 to 0 (see column D). Likewise, the right-hand
axis relates to dN/dt because that difference takes values from 9.33 to 0 (see column C).

QUESTIONS

1. How does the behavior of the logistic model differ from that of the geometric
and exponential models in the previous exercise?

2. Why does the population stabilize at the carrying capacity?

3. How do ∆Nt and ∆Nt/Nt, or dN/dt and (dN/dt)/N, change as the population
grows? How does the behavior of these quantities differ from the geometric and
exponential models?

*Thanks to Shannon Cleary, a student in Charles Welden’s Community and Population
Ecology class at Southern Oregon University, for deriving this proof.
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4. What is the y-intercept of the ∆Nt/Nt line in the graph of ∆Nt/Nt against Nt?
What is the x-intercept? If you used the continuous-time version, ask the same
questions about the (dN/dt)/N line. Answering this question will lead you to a
powerful tool for analyzing real populations for density-dependence, and for
estimating R (or r) and K.

5. What happens if the population overshoots its carrying capacity? This might
happen, for example, if resources decreased dramatically from one year to the
next, causing the carrying capacity to decrease. If population were at its old car-
rying capacity, it would suddenly find itself above its new carrying capacity.
What would happen?

6. Is the carrying capacity a stable equilibrium or an unstable equilibrium? If an equi-
librium is stable, the system (the population, in this case) will tend to return to
equilibrium after a disturbance. If an equilibrium is unstable, the system will
show no tendency to return to equilibrium after disturbance.

7. We have assumed so far that as the population grows, per capita births decrease
and per capita deaths increase. However, that need not be the case. Per capita
births may increase as the population grows if, for example, mates become easi-
er to find. Per capita deaths may decrease if, for example, a bigger herd is safer
from predators.

What happens if per capita birth rate increases with increasing Nt, or if per
capita death rate decreases with increasing Nt?

8. What happens if the per capita birth rate and per capita death rate change
equally (so that the difference between them remains constant) as the popula-
tion grows?

9. What happens if the difference between per capita birth and death rates increas-
es as the population grows?

10. So far, we have kept the population growth rate relatively slow, and population
size has changed smoothly and predictably. What happens if the population
grows more rapidly?

11. Has the human population grown exponentially or logistically since 1963? Can
you estimate r and K for the human population? Estimating K is especially
important because it amounts to a prediction of the size of our population when
(and if) it stabilizes. Estimating r will allow you to predict when the population
may stabilize.

LITERATURE CITED
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INTERSPECIFIC COMPETITION AND
COMPETITIVE EXCLUSION9
Objectives

• Program the Lotka-Volterra model of interspecific competi-
tion in a spreadsheet.

• Understand the competitive exclusion principle and how it
relates to the model.

• Use the model to explore competitive exclusion and coexis-
tence.

• Determine under what conditions two competing species
can coexist, in terms of their competition coefficients, carry-
ing capacities, and intrinsic rates of increase.

Suggested Preliminary Exercise: Logistic Population Models

INTRODUCTION
Our previous models of population dynamics considered only one population.
As informative as those models were, it should be obvious that real populations
do not exist in isolation, but share habitats with populations of other species. In
many cases, coexisting species will interact by interspecific competition, preda-
tion, parasitism, mutualism, or other ecological interactions. More realistic mod-
els must take such interactions into account. In the 1920s, Vito Volterra and Alfred
Lotka (1932) independently developed models of interspecific competition (com-
petition between two species), and investigated the conditions that would per-
mit competing species to coexist indefinitely. In this exercise, you will build a dis-
crete-time version of their continuous-time models.

An important ecological generalization, the competitive exclusion principle,
has grown out of the Lotka-Volterra model and from other sources. This princi-
ple states that two species cannot coexist unless their niches are sufficiently different that
each limits its own population growth more than it limits that of the other. In other words,
if there is too much niche overlap, one species will competitively exclude the other.
In reality, whether two species coexist depends not only on their competitive inter-
actions with each other, but also on their interactions with the abiotic environment
and with other species not included in this simple model. Nevertheless, as with
other models in this book, the competitive exclusion principle has proven fruit-
ful in stimulating research and understanding ecological interactions in the natu-
ral world.

 



Model Development
To review, the geometric model of population growth, Nt+1 = Nt + RNt, includes no effect
of competition. The population increases by RNt in every time interval, without any
limitations such as might be imposed by finite resources.

The logistic model of population growth includes intraspecific competition (com-
petition between individuals of the same species). To keep things (relatively) simple, we
will develop our model of interspecific competition beginning with this form of the logis-
tic model:

Equation 1

where K is the carrying capacity, or largest sustainable population. The value of K is set
by available resources and by each individual’s resource demand. This version of the
logistic model has intraspecific competition built into it in the term (K – Nt)/K. This term
reduces the population growth rate in response to the addition of each new member
of the population, representing the reduction in per capita birth rate, and increase in
per capita death rate, caused by competition for limited resources. You can review Exer-
cise 8, “Logistic Population Models,” for more information about this model.

The Lotka-Volterra model of interspecific competition builds on the logistic model of
a single population. It begins with a separate logistic model of the population of each
of the two competing species.

Population 1: 

Population 2:

Note the use of subscripts 1 and 2 to denote which species’ population is being mod-
eled. Each population has its own rate of increase R and carrying capacity K, and these
may differ between the two species.

Next we build interspecific competition into each of these equations. In the model of
population 1 above, we assume that each new member of population 1 reduces resources
available to each member of population 1, and thus reduces population growth rate. In
the two-species model, new members of population 2 will also reduce resources available
to members of population 1—this is, after all, the meaning of interspecific competiton.

The simplest way to model this would be to modify the (K1 – N1,t)/K term into 
(K1 – N1,t – N2,t)/K1. However, this assumes that each additional member of population
2 will affect population 1 exactly as much as an additional member of population 1. That
is not necessarily the case, so we multiply N2,t in this term by a competition coefficient,
α12 to express how much effect each additional member of population 2 has on popu-
lation 1, relative to the effect of a new member of population 1. We modify the model
for population 2 in a parallel way. The resulting Lotka-Volterra model of two-species
competition is:

Population 1: Equation 2

Population 2: Equation 3

Note the subscripts on the competition coefficients: α 12 expresses the effect of one mem-
ber of population 2 on the growth rate of population 1; α 21 expresses the effect of one
member of population 1 on the growth rate of population 2.
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In broad terms, the question Lotka and Volterra asked was, What will happen to the
population dynamics of these two populations, given various values of the model
parameters? Are there parameter values that will produce a winner and a loser,—one
population that persists while the other goes extinct? This would be competitive exclu-
sion. Will other values result in coexistence, in which both competing populations per-
sist indefinitely? You will look for answers to these questions both analytically (alge-
braically) and graphically (using the spreadsheet).

Equilibrium Solutions
One approach to answering the questions posed above is to look for equilibrium solu-
tions to Equations 2 and 3. If population 1 is at equilibrium, then N1,t+1 = N1,t and we
can substitute N1,t for N1,t+1:

Subtracting N1, t from both sides of the equation gives us

In words, this equation says the population stops growing when it is at equilibrium,
which should come as no surprise. This equation is satisfied if N1,t = 0 or if R1 = 0, but
these solutions are trivial.

The equation is also satisfied by the more interesting case of 

K1 – N1,t – α12N2,t = 0

If we add N1,t to both sides and rearrange the terms, we get

N1,t = K1 – α12N2,t Equation 4

Notice that this equation is in the general form of a linear equation, y = a + bx, and is
therefore a straight line. We call this line a zero net growth isocline, or ZNGI, because
anywhere along it, population 1 has zero net growth. In other words, this is an equi-
librium solution for population 1.

Just as x and y in the general linear equation y = a + bx can be used as coordinates
for graphing, so we can use N1,t and N2,t as coordinates to graph Equation 4. We can
graph this isocline by finding any two points along it and connecting them with a straight
line. Two convenient points are where N2,t = 0 and where N1,t = 0.

If N2,t = 0, then we solve for N1,t. Equation 4 becomes

N1,t = K1 – α120

which reduces to

N1,t = K1

In words, if there are no members of population 2 in the habitat, population 1 will sta-
bilize at its own carrying capacity, K1. This seems a reasonable solution.

If we set N1,t = 0, and then solve for N2,t. Equation 4 becomes

0 = K1 – α12N2,t

and adding a12N2,t to both sides gives us

α12N2,t = K1

Dividing both sides by α12 gives us

N2,t = K1/ α12
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In words, if there are K1/α12 members of population 2 in the habitat, there will be no
resources left over for population 1, and its numbers will go to zero.

We can find a ZNGI and two points on it for population 2 in the same manner.

N2,t = K2 – α21N1,t

If N1,t = 0, then N2,t = K2

If N2,t = 0, then N1,t = K2/α21

We can draw these isoclines on a linear graph of the two populations as shown in Fig-
ure 1. If we plot N1 on the horizontal axis and N2 on the vertical, then the solution points
found become the intercepts of the isoclines on the axes.

We can graph the populations of the two species at any time by a point on a graph.
If the point falls below and/or to the left of a species’ isocline, that population will
continue to increase. If the point falls above and/or to the right of a species’ isocline,
that population will decrease. In the case of the point shown in Figure 1, population 1
will increase and population 2 will decrease. As time passes, the point will move down-
ward (population 2 decreases) and to the right (population 1 increases), and the point
describing the two populations will trace some trajectory across the graph.

Notice that time does not appear on either axis of this graph. Figure 1 is called a phase
diagram, and the space bounded by its axes is called phase space. You will plot the
trajectory of two changing populations through the phase space and from that deter-
mine whether one species excludes the other, or if they coexist. The isoclines need not
be arranged as shown in Figure 1; their arrangement will depend on the values of K1,
K2, α12, and α21.

PROCEDURES

The questions Lotka and Volterra asked, and which you will answer in this exercise,
are: What values of these parameters will cause population 1 to exclude population 2,
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and vice versa? What parameter values will allow the two populations to coexist indef-
initely? What do these outcomes, and their associated parameter values, mean in eco-
logical terms?

As always, save your work frequently to disk.

ANNOTATION

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in.
You must leave cells B10 and C10 empty for your graphs to come out properly.
The values in cells B5 through C8 are the coordinates of the endpoints of the ZNGIs for
the two species. How we got these values will be explained in subsequent steps.

See the exercise “Spreadsheet Hints and Tips” for details.

These are in cells F4 through F9. Do not enter anything in cells B5 through C8 yet.

These are ZNGI endpoints where each population is itself at zero. Cells B5 through
C8 hold coordinates for the endpoints of the two ZNGIs. You must lay out these end-
point cells as shown for your graphs to work properly.

In cell B7, enter the formula =F5.
In cell C5, enter the formula =F8.
These are ZNGI endpoints where the competing population is at zero. When you
change carrying capacities later in the exercise, your changes will automatically be car-
ried over to the ZNGI endpoints.

In cell B6, enter the formula =F8/F9. This corresponds to N1,t = K2/α21.
In cell C8, enter the formula =F5/F6. This corresponds to N2,t = K1/α12.

INSTRUCTIONS

A. Set up the spreadsheet.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 2.

2. Set up a linear time
series from 0 to 50 in cells
A11 through A61.

3. Enter the values shown
for the parameters.

4. Enter zeros in cells B5,
C6, C7, and B8.

5. In cells B7 and C5, enter
formulae to echo the car-
rying capacities of popula-
tions 1 and 2, respectively.

6. Enter formulae to calcu-
late the other ZNGI end-
points.
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In cell B11, enter the value 100. In cell C11, enter the value 50. You will change these
values later.

In cell B12, enter the formula =B11+$F$4*B11*($F$5-B11-$F$6*C11)/$F$5. This corre-
sponds to Equation 2:

In cell C12, enter the formula =C11+$F$7*C11*($F$8-C11-$F$9*B11)/$F$8. This corre-
sponds to Equation 3:

Be sure to use absolute and relative addresses as shown.

See “Spreadsheet Hints and Tips” for details on copying and pasting.

Use an XY graph (scatterplot). Include only cells A11 through C51 in the block of data
to graph. Leave out the ZNGI endpoints (cells B5 through C8).
Use the second Chart Wizard dialog box to name your series so that they will be labeled
properly in the legend.

In the dialog box (Figure 3), click the Series tab. Select Series1 and type “Pop 1” in the
box to the right. Then select Series 2 and type “Pop 2” in the box. Your finished graph
should resemble Figure 4.
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7. Enter initial population
sizes (N1,0 and N2,0).

8. Enter formulae to calcu-
late populations sizes at
times t = 0 through t = 50.

9. Copy and paste the for-
mulae in cells B12 and C12
down their columns
through row 51.

B. Create graphs.

1. Graph N1 and N2 (verti-
cal axis) against time (hor-
izontal axis).
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Include cells B5 through C61 in the block to graph—in other words, this time include
the ZNGI endpoints, but leave out “Time” (column A). Use an XY graph  (scatterplot).
Your graph should resemble Figure 5.

Unfortunately, the program does not label the ZNGI endpoints for you. You will have
to identify each endpoint by its coordinates in the spreadsheet. In Figure 5, the top-
left endpoint is (0, K1/α12); the lower-left endpoint is (0, K2); the bottom-right endpoint
is (K2/α21, 0); and the bottom-left endpoint is (K1, 0).

2. Graph N2 (vertical axis)
against N1 (horizontal axis).
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QUESTIONS

1. What parameter values will cause species 1 to exclude species 2 from the habi-
tat? What do these values mean in ecological terms?

2. What parameter values will reverse this outcome? What do these values mean
in ecological terms?

3. What parameter values will allow the two species to coexist indefinitely and
stably? What do these values mean in ecological terms?

4. Are there parameter values under which the outcome depends on initial popu-
lation sizes or rates of population growth? What do these values mean in eco-
logical terms?

LITERATURE CITED
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PREDATOR-PREY DYNAMICS10
Objectives

• Set up a spreadsheet model of interacting predator and prey
populations.

• Modify the model to include an explicit carrying capacity
for the prey population, independent of the effect of preda-
tion.

• Explore the effects of different prey reproductive rates on
the dynamics of both models.

• Explore the effects of different predator attack rates and
reproductive efficiencies on the dynamics of both models.

• Evaluate the stability of these models.
• Evaluate these models in comparison to real predator and

prey populations.

Suggested Preliminary Exercises:  Geometric and Exponential
Population Models; Logistic Population Models

INTRODUCTION

In this exercise, you will set up a spreadsheet model of interacting predator and
prey populations. You will begin with the classic Lotka-Volterra predator-prey
model (Rosenzweig and MacArthur 1963), which treats each population as if it
were growing exponentially. After exploring the predictions of this model, you
will modify it to include refuges for the prey and see how this changes the behav-
ior of the model.

Next, you will modify the model of the prey population to include an explicit
carrying capacity. This reflects the idea that the prey population may be limited
by available resources in addition to any limitation by the effects of predation.

Finally, you may modify the predator model to include an explicit carrying
capacity. This would represent some limitation on the predator population other
than the availability of prey. Such limitation might arise from other required
resources or from direct interference among predators.

Model Development
This exercise departs somewhat from the format of others in this book, because
we want to follow the progression of increasingly complex and realistic models
outlined above. You will build the simplest model first, make some graphs, and

 



answer some questions about the model and its ecological meaning. Then you will
return to the spreadsheet to modify the model, reexamine the same questions, and
repeat this process a third time.

In the models that follow, we will use the symbols explained in Table 1.

First Model: A Classical Lotka-Volterra Predator-Prey Model
To begin, we will build a discrete-time version of the continuous-time model devel-
oped by Alfred Lotka and Vito Volterra. In this model, neither prey population nor
predator population has an explicit carrying capacity. Be aware, however, that either
or both may have an implicit carrying capacity imposed by the interaction between the
two populations.

To model the prey population, we begin with a basic geometric model for the prey
population

Vt+1 = Vt + RVt

and subtract the number of prey individuals killed by predators in the interval from t
to t + 1. This number killed will depend on the number of predators: the more preda-
tors, the more prey they will kill. It will also depend on the number of prey available:
the more prey, the more successful the predators. Finally, it will depend on the attack
rate: the ability of a predator to find and consume prey. The number of prey killed in
one time interval will be the product of these, or using the symbols given above, aCtVt.
The equation for the prey population thus becomes

Vt+1 = Vt + RVt – aCtVt Equation 1

In words, the prey population grows according to its per capita growth rate minus
losses to predators. Losses are determined by attack rate, predator population, and prey
population.

To model the predator population, we also begin with an exponential model, in
concept. However, there is a wrinkle in this model, because we cannot assume a con-
stant per capita rate of population growth. There is no simple R for the predator popu-
lation because its growth rate will depend on how many prey are caught. As in the prey
model, the number of prey caught will be aCtVt. The growth of the predator population
will depend on this number, and on the efficiency with which predators convert con-
sumed prey into predator offspring. We will represent this conversion efficiency with
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TABLE 1 Symbols used in predator-prey models

Symbol Name Description

Ct Predator population Think “Consumer”
Vt Prey population Think “Victim”
R Prey population growth Per capita growth rate of prey 

population
Kc Predator carrying capacity Maximum sustainable predator 

population
Kv Prey carrying capacity Maximum sustainable prey 

population
q Predator starvation rate Per capita rate of mortality of 

predators due to starvation
a Attack rate The ability of a predator to find 

and consume prey
f Conversion efficiency The efficiency with which a 

predator converts consumed 
prey into predator offspring



the parameter f, so the per capita population growth of predators will be afVtCt. We
should reduce this predator population growth by some quantity to represent the star-
vation rate of predators who fail to consume prey. This will be the product of the per
capita starvation rate times the predator population: qCt. Taking all this into account, we
can write an equation for the predator population:

Ct+1 = Ct + afVtCt – qCt Equation 2

In words, the predator population grows according to the attack rate, conversion effi-
ciency, and prey population, minus losses to starvation. Note that the product afVt acts
as the predator’s R.

Having created these models, we can ask several questions about the interaction they
portray, such as

• Under what conditions (i.e., parameter values) will the predator population
drive the prey to extinction?

• Under what conditions will the predator population die off, leaving the prey
population to expand unhindered?

• Under what conditions will predator and prey populations both persist indefi-
nitely? What will be their population dynamics while they coexist? In other
words, will one or both populations stabilize, or will they continue to change
over time?

Equilibrium Solutions
As we did in the Interspecific Competition exercise, we will begin to answer these ques-
tions by seeking equilibrium solutions to Equations 1 and 2. For the prey population,
we want to find values of predator and prey population sizes at which the prey pop-
ulation remains stable. In other words, we want to solve for ∆Vt = 0.

Beginning with Equation 1

Vt+1 = Vt + RVt – aCtVt

we subtract Vt from both sides, and get

Vt+1 – Vt = RVt – aCtVt

Because Vt+1 – Vt = ∆Vt we can substitute into the equation and get

∆Vt = RVt – aCtVt

We are looking for a solution when ∆Vt = 0, so we substitute again:

0 = RVt – aCtVt

Adding aCtVt to both sides gives us

aCtVt = RVt

Dividing both sides by Vt, we get

aCt = R

Dividing both sides by a gives us our solution:

Ct = R/a Equation 3

In words, the prey population reaches equilibrium when the predator population equals
the prey’s per capita growth rate divided by the predator’s attack rate. Note that this
is a constant. Strangely, the equilibrium size of the prey population is not determined
by this solution, which says, in effect, that the prey population can be stable at any size
as long as the predator population is at the specified size.

For the predator population, we follow the same strategy, and solve for ∆C = 0. Begin-
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ning with Equation 2,

Ct+1 = Ct + afVtCt – qCt

we subtract Ct from both sides, and get

Ct+1 – Ct = afVtCt – qCt

Because Ct+1 – Ct = ∆Ct, we can substitute into the equation and get

∆Ct = afVtCt – qCt

We are looking for a solution when ∆Ct = 0, so we substitute again:

0 = afVtCt – qCt

Adding qCt to both sides gives us
qCt = afVtCt

Dividing both sides by Ct, we get

q = afVt

Dividing both sides by af gives us our solution:

q/af = Vt Equation 4

In words, the predator population reaches equilibrium when the prey population equals
the predator’s starvation rate over the product of attack rate times conversion efficiency.
Note that this is also a constant, and like the solution for the prey population, it does
not specify the equilibrium size of the predator population, only the size of the prey
population at which the predators are at equilibrium.

As we did in the model of interspecific competition, we can plot the population sizes
of the two interacting populations on the two axes of a graph (Figure 1). The equilib-
rium solutions (Equations 3 and 4) then become straight-line zero net growth isoclines
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Figure 1 Graph of prey and predator zero net growth isoclines (ZNGIs), according to the
Lotka-Volterra model of predator-prey dynamics. The horizontal line is the ZNGI for the
prey population, and horizontal arrows show areas of population increase or decrease for
the prey population. The vertical line is the ZNGI for the predator population, and vertical
arrows show areas of increase or decrease for the predator population.



(ZNGIs), as they did in the interspecific competition model. On this graph, the ZNGI
for the prey population is a horizontal line at Ct = R/a (the solid line in Figure 1), below
which the prey population increases, and above which it decreases (solid arrows). The
ZNGI for the predator population is a vertical line at Vt = q/af (dashed line), to the left
of which the predator population decreases, and to the right of which it increases (dashed
arrows). Where the two lines cross—at the point [(q/af), (R/a)]—the two populations
are at equilibrium. As in the Interspecific Competition exercise, the two populations are
represented by a point on this phase diagram, and that point will trace out a trajectory
through phase space as the populations change in size.

As discussed in most ecology texts, the continuous-time Lotka-Volterra model pre-
dicts that the point representing the two populations will cycle endlessly around the
point where the two ZNGIs cross. The discrete-time model, however, behaves rather
differently, as you will discover.

PROCEDURES

We will use the spreadsheet to explore the behavior of the model developed so far before
we introduce the models with explicit prey and predator carrying capacities. 

As always, save your work frequently to disk.

ANNOTATION

Enter only the text items for now. These are all literals, so just select the appropriate
cells and type them in. Note that cells B12 through C13 must be empty.

Enter the value 0 in cell A14.
Enter the formula =A14+1 in cell A15. Copy this formula down to cell A114.

INSTRUCTIONS

Part 1. Discrete-Time
Version of the Lotka-
Volterra Model

A. Set up the spreadsheet.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 2.

2. Set up a linear series
from 0 to 100 in column A
(cells A14–A114).
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Type the values shown into cells F7, H7, H8, and H9.
Cells F8 and H10 remain empty for now.

Enter the value 1000 into cell B14.
Enter the value 20 into cell C14.
Leave cells B12 through C13 empty.

This will force the spreadsheet to plot the ZNGIs on the graph, as shown in Figure 1.

In cell B7, enter the formula =MAX(B14:B114).
In cell C7, enter the formula =$F$7/$H$9. This corresponds to R/a, the equilibrium
value of the prey population (see Equation 3).

Cells B7 and C7 are the coordinates of the right-hand end of the prey ZNGI. Of course,
this line extends infinitely to the right, but we cut it off even with the maximum actual
value of the prey population so that we can graph our results.

In cell B8, enter the value 0. Copy the formula from cell C7 into cell C8.
Cells B8 and C8 are the coordinates of the point where the prey ZNGI intersects the
predator (vertical) axis.

In cells B9 and C9, enter the value 0.
Cells B9 and C9 are the coordinates of the origin of the graph. This is a trick to get us
from the prey ZNGI to the predator ZNGI without drawing extraneous lines on the
graph.

In cell B10 enter the formula =$H$7/($H$9*$H$8). This corresponds to q/af, the equi-
librium value of the predator population (see Equation 4). 
In cell C10, enter the value 0.
Cells B10 and C10 are the coordinates of the point where the predator ZNGI inter-
sects the prey (horizontal) axis.

Copy the formula from cell B10 into cell B11.
In cell C11, enter the formula =MAX(C14:C114).
Cells B11 and C11 are the coordinates of the upper end of the predator ZNGI. Like the
prey ZNGI, this line is infinitely long, but we truncate it at the maximum predator pop-
ulation for convenience.

In cell B15, enter the formula =IF(B14+$F$7*B14-$H$9*C14*B14>0, 
B14+$F$7*B14-$H$9*C14*B14,0).

B14+$F$7*B14-$H$9*C14*B14 corresponds to Equation 1,

Vt+1 = Vt + RVt – aCtVt

However, if you simply use Equation 1, it is likely to produce negative population sizes,
which make no sense biologically. We use the IF() function here to prevent this popu-
lation from going negative. The formula says, “Calculate the prey population accord-
ing to Equation 1, and if the result is greater than zero, use it. If the result is zero or less,
use zero.”

You can simplify the task of entering this formula if you type it in through the “>0,”
copy the part between the left parenthesis and the “>“ sign, and paste it after the comma.
Then type in the second comma, followed by a zero, and close the parentheses.

3. Enter the values shown
for the parameters R, q, f,
and a.

4. Enter the initial popula-
tion sizes (V0 and C0).

5. Enter formulae and val-
ues into cells B7 through
C11 to define the prey and
predator ZNGIs.

6. Enter a formula to cal-
culate the size of the prey
population at time 1.
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In cell C15, enter the formula =IF(C14+$H$8*$H$9*B14*C14$H$7*C14>0,
C14+$H$8*$H$9*B14*C14-$H$7*C14,0).
C14+$H$8*$H$9*B14*C14-$H$7*C14 corresponds to Equation 2, 

Ct+1 + afVtCt – qCt

Here again, we use the IF() function to prevent the population from going negative.
You can use the same shortcut to enter this formula as in the previous step.

Select cells B15 through C15. Copy.
Select cells B16 through C114. Paste.

Select cells A14 through C114. Follow the usual procedure to make an XY graph.
In the second Chart Wizard dialog box, click on the Series tab, and use the boxes to name
Series 1 “Prey” and Series 2 “Predator.”

After you’ve finished the graph, double-click on a data point in the line for the preda-
tor population. This line will lie almost on top of the x-axis, so it may take several
tries to select the data series rather than the axis. In the Format Data Series dialog box,
click on the Axis tab, and select Secondary Axis. This will cause the predator population
to be plotted on a separate y-axis, with a different scale from that of the prey popula-
tion. Your graph should resemble Figure 3.

See Exercise 8, “Logistic Population Models,” for details on creating a second y-axis.

Select cells B7 through C114 and make an XY graph.

In the third Chart Wizard dialog box, click the Legend tab and click in the Show Legend
checkbox, to prevent the legend from being shown (the check mark in the box should
disappear). Your graph should resemble Figure 4.

7. Enter a formula to cal-
culate the size of the pred-
ator population at time 1.

8. Copy the formulae from
cells B16 and C16 down
their columns.

9. Save your work.

B. Create graphs.

1. Graph prey and preda-
tor populations against
time. Edit your graph for
readability. 

Be aware that the predator
population is plotted on a
different scale (the right-
hand y-axis) than the prey
population (the left-hand
y-axis). This is necessary
because the two cover
such different ranges.

2. Graph predator popula-
tion (y-axis) against prey
population (x-axis), as in
the standard presentation
of the Lotka-Volterra
model. Edit your graph
for readability.
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You should see that the trajectory spirals in a counterclockwise direction.
Your graph will show the two ZNGIs, but unfortunately will not label their endpoints.

The graph will also not indicate which direction (clockwise or counterclockwise) the
population trajectory moves. You can figure this out by locating the point (V0, C0), which
is the first point on the trajectory.

QUESTIONS

1. Does a larger prey population growth rate (R) increase or decrease the stability
of the predator-prey interaction?

2. What happens if the predators starve more quickly? Less quickly?

3. What happens if the predator is more efficient at converting prey into off-
spring? Less efficient?

4. What happens if the predator is better at finding prey? Worse?

5. Is the behavior of the model sensitive to starting populations? Begin with popu-
lations near the point where the isoclines cross, and move slowly farther out.

6. What is the ultimate outcome of the predator-prey interaction, regardless of
parameter values? How does this compare to real predator and prey popula-
tions? What factors not included in the model may explain the differences
between model predictions and reality?

Modifying the Model to Include Prey Refuges
In the model so far, predators are capable of hunting down every single prey individ-
ual. In reality, it is often the case that some prey individuals can escape predation by
hiding in refuges, such as burrows, crevices in rocks or coral reefs, etc. Thus, there
will always be at least a few prey individuals surviving. These survivors, of course,
could potentially breed and replenish the prey population. Does the presence of prey
refuges alter the outcome of the model?
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ANNOTATION

If you wish to retain your existing model, save it under a separate file name before mak-
ing changes, or copy your spreadsheet to a new worksheet and make changes on the
copy.

Edit the formula in cell B15 by changing the zeros to tens.
The new formula should read =IF(B14+$F$7*B14-$H$9*B14*C14>10,B14+$F$7*B14-
$H$9*B14*C14,10).
This formula says to calculate the size of the prey population at time 1 based on its size
at time 0 and losses to predation. If that size is greater than 10, use it; otherwise, make
the prey population 10.
The biological interpretation is that at least 10 prey individuals survive in refuges,
regardless of the number or effectiveness of predators.

Copy the formula in cell B15 into cells B16 through B114.

Repeat steps 2 and 3, using some number other than 10.

You do not need to make any new graphs or edit your existing ones. Your changes will
be automatically reflected in your existing graphs.

QUESTIONS

7. Reinvestigate questions 1–6 on the preceding page, but based on your model
with prey refuges.

Modifying the Model to Include a Prey Carrying Capacity
The classical continuous-time Lotka-Volterra predator-prey model predicts that prey
and predator populations will cycle endlessly around their equilibrium values. Some
real predator-prey systems, such as the snowshoe hare and Canada lynx, display cycles
that resemble these, but others do not. Even in cases of cyclic population dynamics,
ecologists seriously question whether the Lotka-Volterra model, with all its simplify-
ing assumptions, accurately reflects reality. A recent model of the hare-lynx cycle (King
and Schaffer 2001) includes 17 parameters and variables.

One obvious omission from the Lotka-Volterra model is any limitation on the prey
population other than losses to predation. Surely, prey individuals require resources
such as food and water, which could potentially limit the size of their population even
in the absence of predators. Perhaps including a prey carrying capacity in the model
would reduce its tendency to cycle, or in the case of the discrete-time model, its tendency
toward increasing population fluctuations and eventual extinctions. In other words, if
there were a cap on the size of the prey population, that number might also limit the
predator population, which in turn might prevent the predators from hunting the prey
to extinction and then starving.

INSTRUCTIONS

Part 2. Predator-Prey
Model with Prey
Refuges

A. Set up the spread-
sheet.

1. Return the parameters
to their original values
(see Figure 2).

2. Modify your existing
formula for the prey pop-
ulation at time 1 to include
prey refuges.

3. Copy the modified for-
mula down its column.

4. Try other values for the
number of survivors.

B. Create graphs.
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We can modify our prey population equation, Equation 1, to include a carrying capac-
ity in the same way we modified our geometric population equation in Exercise 5,
“Logistic Population Models.” If we let Kv represent the prey carrying capacity (in the
absence of predators), we can write

Equation 5

If the predator population (Ct) is zero, then losses to predation (aCtVt) will be zero, and
the prey population will stabilize at Kv. If predators are present, losses to predation will
reduce the prey population to some value less than Kv. We will leave the predator equa-
tion unchanged for now.

Equilibrium Solution. Because we have not changed the predator equation, its equilib-
rium solution remains unchanged. However, our change in the prey equation means we
must solve the new equation for its equilibrium (ZNGI). We find this by setting ∆Vt = 0. 

There’s no easy way to express this equilibrium solution in words, but we can deduce
some things about it. First, the equation is in the standard form of a straight line 
(y = a + bx), with a slope of –R/(aKv). Second, if we plug in Vt = 0, we find the y-intercept
(C-intercept) to be R/a, just as in the classical Lotka-Volterra model. Third, if we plug in
Ct = 0, we find the x-intercept (V-intercept) to be Kv (see below). This makes sense, because
we would expect the prey population to go to Kv if there were no predators present.
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ANNOTATION

To retain your existing model, save it under a separate file name before making changes,
or copy your spreadsheet to a new worksheet and make changes on the copy.

Edit the text in cell A2 to reflect the change to a logistically-growing prey population.
In cell E8, enter the label “Kv”.
In cell F8, enter the value 2000.

Your graphs will look very odd while you are making these changes. Ignore them for
now—the errors will disappear after you complete the changes to your spreadsheet.
In cell B7, enter the formula =$F$8.
In cell C7, enter the value 0.
Cells B7 and C7 are the coordinates of the point where the prey ZNGI crosses the
prey axis, (Kv,0). Leave cells B8 through C11 unchanged.

In cell B15, enter the formula =IF(B14+$F$7*B14*($F$8-B14)/$F$8-$H$9*B14*C14>0,
B14+$F$7*B14*($F$8-B14)/$F$8-$H$9*B14*C14,0).
B14+$F$7*B14*($F$8-B14)/$F$8-$H$9*B14*C14 corresponds to the equation

which is our logistic model of the prey population. Again, we use the IF() function to
prevent the population from going negative.
Note that we removed the refuges from the prey population by changing the >10
back to >0. We do this so we can see the effects of a prey carrying capacity without
clouding the issue with refuges.

Select cell B15. Copy. Select cells B16 through B115. Paste.
Your spreadsheet should resemble Figure 5.
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INSTRUCTIONS

Part 3. Predator-Prey
Model with Prey
Carrying Capacity

A. Set up the spread-
sheet.

1. Return the parameters
to their original values.

2. Modify your existing
spreadsheet headings to
include a prey carrying
capacity.

3. Enter formulae and val-
ues into cells B7 through
C11 to define the prey and
predator ZNGIs.

4. Modify the formula for
the prey population at
time 1 to include the prey
carrying capacity.

5. Copy the modified for-
mula down its column.
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You do not need to make any new graphs. Your existing graphs will automatically
reflect the changes in your spreadsheet. Edit the graph titles to distinguish them from
graphs of the classical Lotka-Volterra model. Your graphs should now resemble Fig-
ures 6 and 7.

QUESTIONS

8. Reinvestigate questions 1–6 but based on your model with a carrying capacity
for the prey population.
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Modifying the Model to Include Carrying Capacities for 
Prey and Predator
It is quite conceivable that the predator population may have a carrying capacity
imposed by environmental constraints other than prey availability. Factors imposing
such a limitation might include mutual interference between predators (fighting over
prey or hunting territories) or limited availability of other essential resources, such as
water, burrow sites, or something else. If prey are superabundant (i.e., supply exceeds
demand and no predators starve), then the predator population (Ct) will increase to its
carrying capacity (Kc), but not beyond it.

We can include a predator carrying capacity in the same way we included a prey car-
rying capacity. We will modify the predator equation as follows: 

Will the introduction of a predator carrying capacity change the behavior of the model?
Try predicting the result before exploring it with the spreadsheet.

Equilibrium Solution. As before, we will have to re-derive our equilibrium solution
for this modified equation. Letting ∆Ct = 0, we get

In words, “Gadzooks!” But it turns out this produces a predator ZNGI that crosses the
x-axis (V-axis) at the same point as before, V = q/af (plug in 0 = Ct and solve). However,
instead of a straight vertical line, it gives us a curve that leans over to the right, as you
will see in the spreadsheet graph. The ZNGI equation makes no sense at Ct = Kc, because
the denominator of the term on the left becomes undefined, and then negative.
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ANNOTATION

If you wish to retain your existing model, save it under a separate file name before mak-
ing changes, or copy your spreadsheet to a new worksheet and make changes on the
copy.

Enter the values given into cells H7, H8, and H9, respectively.

Edit the text in cell A3 to reflect the change to a logistically growing predator 
population.
In cell G10, enter the label “Kc”.
In cell H10, enter the value 100.

Enter the given values into cells B14 and C14, respectively.

Your graphs will look very odd while you are making these changes. Ignore them for
now—the errors will disappear after you have completed all the changes to your
spreadsheet.

Leave cells B8 through C10 unchanged. Delete the contents of cells B11 and C11.

In cell C15, enter the formula =IF(C14+$H$8*$H$9*B14*C14*($H$10-C14)/$H$10-
$H$7*C14>0,C14+$H$8*$H$9*B14*C14*($H$10-C14)/$H$10-$H$7*C14,0).
This corresponds to Equation 6:

Again, we use the IF() function to prevent the population from going negative.

Select cell C15. Copy.
Select cells C16 through B114. Paste.

We need to do this because this ZNGI is not a straight line, so we must calculate many
points along it, and connect them with a line.

We will use the formula we derived above to express the predator ZNGI as a function
of prey population size:

We must use a little spreadsheet trickery to make this come out right on the graph.
Indeed, even with our trickery, the ZNGI may look a little strange with some para-
meter values.
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INSTRUCTIONS

Part 4. Predator-Prey
Model with Carrying
Capacities for Prey and
Predator

A. Set up the spread-
sheet.

1. Change your parame-
ters to these values:
q = 0.25, f = 0.20, a = 0.005

2. Modify your existing
spreadsheet headings to
include a predator carry-
ing capacity.

3. Change the initial popu-
lation sizes to V0 = 100, 
C0 = 10.

4. Enter formulae and val-
ues into cells B8 through
C12 to define the prey and
predator ZNGIs.

5. Modify the formula for
the predator population at
time 1 to include the pred-
ator carrying capacity.

6. Copy the modified for-
mula down its column.

7. Set up a new data series
in column D to graph the
predator ZNGI.



In cell B13 enter the formula =$H$7/($H$9*$H$8). This is equal to q/(af).
Leave cell C13 empty. In cell D13, enter the value 0.

In cell D14, enter the formula =IF($H$10-($H$7*$H$10)/($H$9*$H$8*B14)>0,$H$10-
($H$7*$H$10)/($H$9*$H$8*B14),0).
Use the same shortcut as before to enter this formula.

This formula requires a little explanation. It is the spreadsheet version of the equation
for the predator ZNGI (derived above), rewritten as a function of Vt, so that we can
plot it on the graph of predator population versus prey population. The derivation is: 

Copy the formula from cell D14 into cells D15 through D114. Your spreadsheet should
look like Figure 8.

It is possible to edit your existing graph, but that is difficult and prone to error, so it’s
easier just to start over.

Select cells B7 through D114 and make an XY graph.
Select the predator ZNGI by double-clicking on any data point along it. In the Format
Data Series dialog box, click the Patterns tab and choose None for marker style. This will
cause the predator ZNGI to be plotted as a line with no data markers, like the prey ZNGI.
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B. Create graphs.

1. Make a new graph of
predator population ver-
sus prey population,
including the new ZNGIs.
Edit your graph for read-
ability. It should resemble
Figure 9.
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QUESTIONS

9. Reinvestigate questions 1–6 but based on your model with carrying capacities
for both prey and predator populations.

10. Attempt to summarize the implications of all the models developed in this exer-
cise.

LITERATURE CITED
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2. Do not change your
graph of population sizes
versus time.
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INTRODUCTION
People have long known that larger islands, and islands closer to a mainland,
support a greater number of species than smaller or more distant islands. Most
ecology textbooks give examples of such species-area and species-distance rela-
tionships, not only for islands in the strict sense, but also for habitat islands
such as mountaintops and lakes. Few books explicitly state the mathematical rela-
tionship between number of species and area or distance, but most show them as
straight lines on log-log plots. This should indicate to you that the underlying
relationships are power functions. (See Exercise 1, “Mathematical Functions and
Graphs,” for definitions and examples of power functions and other kinds of func-
tions.) On linear axes, both relationships are curves, hence the term “species-area
curve” and what could be called the “species-distance curve.”

Having observed and quantified these relationships, ecologists proposed sev-
eral hypotheses to explain them. One of the best-known hypotheses is the equi-
librium theory of island biogeography developed by Robert MacArthur and
Edward O. Wilson.

The MacArthur-Wilson Model of Island Biogeography
MacArthur and Wilson (1967) modeled species richness (the number of species
present) on an island as the result of two processes: immigration and extinction.
In their model, species immigrate to an island randomly from a mainland pool.
The rate at which new species arrive at the island is determined by three factors:

ISLAND BIOGEOGRAPHY11
Objectives

• Explore the relationships of immigration and extinction
rates and species richness to island area and distance from
the mainland.

• Observe the accumulation of species on an island, and the
approach of immigration and extinction rates and species
richness values to equilibrium.

• Find equilibrium values of immigration and extinction rates
and species richness, both graphically and algebraically.

• Understand species-area curves and the underlying mathe-
matical relationships implied.

• Explore the interaction effects of area and distance.



• The distance of the island from the mainland
• The number of species remaining in the mainland pool that have not already

established themselves on the island
• The probability that a given species will disperse from the mainland to the island

The rate at which species on the island go extinct is also determined by three different
factors: 

• The area of the island
• The number of species present on the island
• The probability that a given species on the island will go extinct

In the simplest version of the model, all species have equal probability of reaching the
island and of going extinct once there. The model ignores interactions such as compe-
tition, predation, or mutualism between species on the island.

We will develop a spreadsheet model incorporating these ideas. Let us begin with
immigration. It seems reasonable to suppose that the farther an island lies from the main-
land, the lower the rate of immigration—in other words, immigration is inversely related
to distance. Since immigrants are drawn from a finite pool, as more species establish
themselves on the island, fewer species will remain in the pool that have not already
established themselves on the island. Based on these considerations, we can write a sim-
ple equation for the rate of immigration to an island. Let

I = immigration rate (Note: This is overall immigration rate of species to the
island, which is different from the probability that any one species will make
that journey)

P = total number of species in the mainland pool
S = species richness of the island
D = distance of the island from the mainland
c = colonization probability, or the probability that a given species will make it to

the island; here it is assumed to be equal for all species
f = a scaling factor for distance

Note that (P – S) is the number of species in the mainland pool that have not already
reached the island. Now we can write an equation for immigration:

Equation 1

We must determine a values for c and f from actual data. Based on the work of
MacArthur and Wilson, we can begin with reasonable values of c = 0.10 and f = 0.01.
Note that Equation 1 is a power function, in which the variable D is raised to a constant
power, –1.

Turning our attention to extinction, we can write a simple equation for that as well.
Let

E = extinction rate
S = species richness of the island
A = area of the island
q = extinction probability for a given species (assumed to be equal for all species)
m = a power scaling factor for area

Now we can write an equation for extinction:

Equation 2

Values of q and m must be determined from actual data, and based on work by
MacArthur and Wilson, we can begin with a reasonable values of q = 0.20 and m = 0.25.

E
qS

Am=

I c P S
fD= −( )
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Note that Equation 2 is also a power function, in which the variable A is raised to a con-
stant power, m.

If you consider Equation 1, you can see that as species accumulate on an island
(i.e., as S increases), the immigration rate, I, will decrease. Inspection of Equation 2
shows that as S increases, the extinction rate, E, will increase. At some value of S, immi-
gration and extinction will become equal (i.e., I = E), and species richness will come to
an equilibrium. This is an equilibrium because every new species immigrating to the
island is balanced by one already-established species going extinct, and vice versa.

This is an important point of the model: Equilibrium species richness is determined by a
balance between immigration and extinction. Note that this is a statement about the model,
not about species richness on real islands, which is certainly affected by other factors
in addition to immigration and extinction. However, like other simple models, this
one has proven fruitful in stimulating thinking and research.

A second important point of the model is that the equilibrium in species richness is
a dynamic equilibrium. At equilibrium, immigration and extinction rates are equal,
but neither is zero. The rate of immigration or extinction at equilibrium species rich-
ness is called the turnover rate.

According to the model, then, the particular species inhabiting an island continue
to change, or turn over, indefinitely—even after species richness has reached equilib-
rium. That is, species continue to go extinct and are replaced by an equal number of
immigrating species. A biologist revisiting the same island at different times would,
according to the model, find different sets of species present, but (at least roughly) the
same total number of species.

This prediction of continuing turnover is an important feature of MacArthur and Wil-
son’s model. This model is often used in conservation biology to predict the number of
species that would be expected to persist or go extinct in nature reserves (which are often
habitat islands). However, it is not useful in planning for protecting specific species,
because of this prediction of continuing turnover.

PROCEDURES

This exercise is presented in four parts. In each part you will develop a spreadsheet
model and make graphs. Between parts, we return to a little mathematical exposition
to lay the groundwork for modeling.

First you will build a spreadsheet version of the MacArthur-Wilson model of island
biogeography. Using Equations 1 and 2, you will graphically estimate the species rich-
ness of an island. In the second part, you explore how the island’s area and distance
from the mainland affect its species richness. In the third part, you will examine the time-
course of species accumulation on an island. In the fourth part, we derive equilibrium
solutions for species richness and turnover rate.

As always, save your work frequently to disk.

ANNOTATION

Enter the text items and values shown for “Parameters” and “Scaling factors.” These
are all literals, so just select the appropriate cells and type them in.

INSTRUCTIONS

A. The MacArthur-
Wilson island biogeog-
raphy model.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 1.
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In cell A14 enter the value 0.
In cell A15 enter the formula =A14+0.1.
Copy the formula from cell A15 into cells A16–A24.
This series represents different fractions of the mainland pool present on the island,
from 0% to 10% and so on to 100%.

In cell B14 enter the formula =A14*$C$6. This formula is based on the fraction of the
mainland pool in cell A14 and the total number of species in the mainland pool. 

In cell C14 enter the formula =$C$9*($C$6-B14)/($G$6*$C$8). This corresponds to Equa-
tion 1:

In cell D14 enter the formula =$C$10*B14/$C$7^$G$7. This corresponds to Equation 2:

Select cells B14–D14. Copy.
Select cells B15–D24. Paste.
Save your work!

Select cells B14–D24 and make an XY graph. Edit your graph for readability. It should
resemble the graph in Figure 2.

You should see that smaller or more distant islands have fewer species than larger or
closer ones. We will examine these relationships more rigorously in the next part of the
exercise.
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I c P S
fD= −( )

2. Set up a series: 0.0, 0.1,
0.2, . . . , 0.9, 1.0 in cells
A14–A24.

3. In cell B14 enter a for-
mula to calculate the actu-
al number of species pres-
ent on an island.

4. In cell C14 enter a for-
mula to calculate the rate
of immigration to an
island already colonized
by the number of species
in cell B14.

5. In cell D14 enter a for-
mula to calculate the rate
of extinction on an island
already colonized by the
number of species in cell
B14.

6. Copy the formulae in
cells B14–D14 down their
columns to row 24.

7. Graph immigration and
extinction rates against
species richness.

8. Try changing the
parameter values in cells
C6–C10, one at a time, and
observe how equilibrium
species richnesss changes.
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Effects of Island Area and Distance from the  Mainland
In Step 8 of the preceding section of the exercise, you experimented with different
parameter values to see the effects on species richness. In this section, we will examine
the effects of an island’s area and its distance from the mainland somewhat more rig-
orously.

To quantify these effects, let us compare three islands of the same area, but at three
distances from the mainland: 0.5, 1.0, and 2.0 times some distance that you specify (in
cell C8 of your spreadsheet). Looking at Equation 1, which models the immigration rate,
you can see that it includes distance but not area. Accordingly, we will compute immi-
gration rates on these three islands, and estimate the effects on species richness.

We will also compare three islands at the same distance from the mainland, but
having three different areas: 0.1, 1.0, and 10.0 times the area that you specified in cell C7
of your spreadsheet. Looking at Equation 2, which models extinction rate, you can see
that it includes area but not distance. Accordingly, we will compute extinction rates on
these three islands and estimate the effects on species richness.

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

INSTRUCTIONS

B. The effects of dis-
tance and area on the
MacArthur-Wilson
model. 

1. Add the column head-
ings shown in Figure 3 to
cells I12–P13 of the
spreadsheet you set up in
Part A (see Figure 1).
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Copy cells A14–A24 into cells I14–I24.
This series represents different fractions of the mainland pool present on the island,
from 0% to 10% and so on to 100%.

In cell J14, enter the formula = I14*$C$6. Copy this formula into cells J15–J24.

In cell L14, enter the formula =($C$6-$J14)*$C$9/($C$8*$G$6). This corresponds to
Equation 1:

Note the use of an absolute column address for cell $J14.
Copy this formula into cells L14–L24.

Copy the formula from cell L14 into cell K14, and edit it to multiply distance (cell C8)
by 0.5.
The new formula should read =($C$6-$J14)*$C$9/($C$8*0.5*$G$6).
Copy the formula from cell K14 into cells K15–K24.

Copy the formula from cell K14 into cell M14, and edit it to multiply distance (cell C8)
by 2.0.
The new formula should read =($C$6-$J14)*$C$9/($C$8*2.0*$G$6).
Copy the formula from cell M14 into cells M15–M24.

In cell O14, enter the formula =$J14*$C$10/$C$7^$G$7. This corresponds to Equation 2:

Again, note the use of an absolute column address for cell $J14.
Copy the formula from cell O14 into cells O15–O24.

Copy the formula from cell O14 into cell N14, and edit it to multiply area by 0.1.
The new formula should read =$J14*$C$10/($C$7*0.1)^$G$7.
Copy the formula from cell N14 into cells N15–N24.

Copy the formula from cell N14 into cell P14, and edit it to multiply area by 10.0.
The new formula should read =$J14*$C$10/($C$7*10.0)^$G$7.
Copy the formula from cell P14 into cells P15–P24. 
Save your work!

E
qS

Am=

I c P S
fD= −( )

2. Set up a series: 0.0, 0.1,
0.2, … , 0.9, 1.0 in cells
I14–I24.

3. In column J, calculate
the actual numbers of
species present on islands,
based on the fraction of
the mainland pool in cell
I14 and the total number
of species in the mainland
pool.

4. In column L, calculate
immigration rates to
islands at the distance
specified in cell C8, using
the species richnesses cal-
culated in column J.

5. In column K, calculate
immigration rates to
islands at half the distance
specified in cell C8, using
the species richnesses cal-
culated in column J.

6. In column M, calculate
immigration rates to
islands at 2.0 times the
distance specified in cell
C8, using the species rich-
nesses calculated in col-
umn J.

7. In column O, calculate
extinction rates for islands
of the area specified in cell
C7, using the species rich-
nesses calculated in col-
umn J.

8. In column N, calculate
extinction rates for islands
of 0.1 times the area speci-
fied in cell C7, with the
species richnesses calculat-
ed in column J.

9. In column P, calculate
extinction rates for islands
of 10.0 times the area spec-
ified in cell C7, with the
species richnesses calculat-
ed in column J.
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Select cells J13–M24.
Hold down the control key or  while selecting cells O13–O24.
Make an XY graph. Edit your graph for readability. It should resemble the one in Fig-
ure 4.

Select cells J13–J24.
Hold down the control key or  and select cells L13–L24.
Hold down the control key or  and select cells N13–P24.
Make an XY graph. Edit your graph for readability. It should resemble the one in Fig-
ure 5.

10. Graph immigration
rates for near, medium-
distance, and far islands
along with the extinction
rate for a medium-sized
island against species rich-
ness.

11. Graph extinction rates
for small, medium-sized,
and large islands, and the
immigration rate for a
medium-distance island,
against species richness.
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Select cells J13–P24, and make an XY graph. This will allow you to compare species
richness and turnover rates on islands of three different sizes, at three different dis-
tances from the mainland. However, your graph might be rather cluttered and hard
to read.

The Time-Course of Species Accumulation on an Island
The graphical analyses above answer a variety of questions about species richness on
islands at equilibrium. However, they tell us nothing about how species richness
changes over time as it approaches equilibrium. To find out about that, we must model
the time-course of species accumulation.

We can follow the accumulation of species over time using a discrete-time model. The
number of species present on an island at time t + 1 will be the number present at time t
plus the number of new species that immigrated in the interval from time t to t + 1, minus
the number of species that went extinct in the interval from t to t + 1. In symbols,

St+1 = St + It – Et

Substituting the right-hand side of Equation 1 for It and the right-hand side of Equa-
tion 2 for Et, we derive

Equation 3

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

In cell A28 enter the value 0.
In cell A29 enter the formula =A28+1.
Copy the formula from cell A29 into cells A30–A78.

Enter the value 0 in cell B28.

S S
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D
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A
t t

t t
m+ = + − −1

( )

*12. As an OPTIONAL exer-
cise, graph three immigra-
tion rates and three extinc-
tion rates on a single
graph. 

INSTRUCTIONS

C. Model the time-
course of species accu-
mulation.

1. Add the column head-
ings shown in Figure 6 to
cells A26 and A27 though
D27 of the spreadsheet
you created in Part A (see
Figure 1).

2. Set up a linear time
series from 0 to 50 in cells
A28–A78.

3. Begin with an uninhab-
ited island.
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Copy the formula from cell C14 into cell C28. This corresponds to Equation 1.

Copy the formula from cell D14 into cell D28. This corresponds to Equation 2.

In cell B29 enter the formula =B28+C28-D28.
This corresponds to Equation 3:

The formula calculates the number of species on the island as the number already there
plus the number immigrating to the island, minus the number going extinct, in the pre-
ceding time interval.

Save your work!

Select cells A27–D78 and make an XY graph.
After you have made your graph, double-click on any data point in the species rich-
ness curve. In the Format Data Series dialog box, click on the Axis tab, and choose Sec-
ondary axis. Plot species richness on the secondary y-axis.

To label the second y-axis, open Chart|Chart Options|Titles.
Edit your graph for readability. Your graph should resemble the one in Figure 7. 
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4. Enter a formula to cal-
culate the number of
species immigrating to the
island in the interval from
time 0 to time 1.

5. Enter a formula to cal-
culate the number of
species going extinct on
the island from time 0 to
time 1.

6. Enter a formula to cal-
culate the number of
species present on the
island at time 1.

7. Copy the formulae in
cells C28 and D28 into
cells C29 and D29.

8. Copy the formulae in
cells B29–D29 into cells
B30–D78.

9. Graph species richness,
immigration rate, and
extinction rate against
time.
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Equilibrium Solutions
So far, you have estimated equilibrium species richness using graphs. In the next sec-
tion, we will calculate these quantities algebraically. We have two reasons for doing so.

First, calculations give us more precise results than estimating from a graph. Second,
these calculations will allow us to close the loop, metaphorically, with the original moti-
vation for MacArthur and Wilson’s model. As we said at the beginning of this exercise,
among the original observations from which this model sprang were the relationships
of species richness to island area and distance from the mainland–the species-area curve.
But nothing we have done so far explicitly shows a species-area curve. By finding
equilibrium solutions, we can develop these curves, and briefly indicate how they have
been used to test the model and to guide conservation decisions.

As we explained in the first section of this excercise, the MacArthur-Wilson model
tells us that species accumulate by immigration and are removed by extinction, and that
species richness reaches equilibrium when these two processes balance. Algebraically,
we can find the equilibrium species richness of an island by solving for Seq when I = E.
So, let’s do a little algrebra.

Let I = E

Substituting from Equations 1 and 2 above, we can derive the equation for Seq:

Amc(P – Seq) = fDqSeq

AmcP – AmcSeq = fDqSeq

AmcP = fDqSeq + AmcSeq

AmcP = Seq(fDq + Amc)

Equation 4

Equation 4 isn’t very pretty, but you can use it in your spreadsheet model to see how equi-
librium species richness relates to island area, to colonization and extinction probabilities,
and to the richness of the mainland species pool. In particular, we will see how the model
predicts species-area curves for islands at different distances from the mainland.

ANNOTATION

In cell G11 enter the formula =C7^G7*C9*C6/(G6*C8*C10+C7^G7*C9). This corre-
sponds to Equation 4:

In cell G12 enter the formula =C9*(C6-G11)/(G6*C8).
In cell G13 enter the formula =C10*G11/C7^G7.
These are the rates of immigration and extinction, respectively, on an island already
colonized by the number of species in cell B14 (Equations 1 and 2). Use the values in
these cells to verify your graphical estimates in the previous parts of this exercise.

A cP
fDq A c

S
m

m+
= eq

A cP
fDq A c

S
m

m+
= eq

c P S
fD

qS

Am

( )−
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INSTRUCTIONS

D. Calculate species
equilibrium.

1. Enter a spreadsheet for-
mula for equilibrium
species richness into cell
G11.

2. Enter the spreadsheet
equivalents of Equations 1
and 2 into cells G12 and
G13.
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We will use this part of the spreadsheet to calculate species area curves for islands at
different distances from the mainland.

Enter the values10 and 50 into cells R14 and R15, respectively.
In cell R16, enter the formula =R14*10. Copy this formula into cells R17–R24.

In cell T14 enter the formula =$R14^$G$7*$C$9*$C$6/($G$6*$C$8*$C$10+$R14^$G$7*
$C$9), which again corresponds to Equation 4. Copy this formula into cells T15–T24.
Note that the address $R14 has an absolute column reference but a relative row refer-
ence.

Copy the formula from cell T14 into cell S14. Edit the formula to multiply distance by 0.1.
The edited formula should read =$R14^$G$7*$C$9*$C$6/($G$6*0.1*$C$8*$C$10+
$R14^$G$7*$C$9).
Copy the edited formula from cell S14 into cells S15–S24.

Copy the formula from cell S14 into cell U14. Edit the formula to multiply distance by 10.
The edited formula should read =$R14^$G$7*$C$9*$C$6/($G$6*10*$C$8*$C$10+
$R14^$G$7*$C$9).
Copy the edited formula from cell U14 into cells U15–U24.

Select cells R13 though U24, and create an XY graph. Edit your graph for readability;
It should resemble Figure 9.  The three species-area curves will rise very quickly, almost
following the vertical axis on the left, and then abruptly level out.

3. Enter the row and col-
umn labels shown in
Figure 8 into cells
R11–X13.

4. To represent a wide
range of island areas, set
up a series 10, 50, 100, 500,
1000 … , 500,000, 1,000,000
in cells R14–R24.

5. In column T, calculate
the equilibrium species
richnesses of islands at the
distance specified in cell
C8, with the areas given in
column R.

6. In column S, calculate
the equilibrium species
richnesses of islands at 0.1
times the distance speci-
fied in cell C8, with the
areas given in column R.

7. In column U, calculate
the equilibrium species
richnesses of islands at 10
times the distance speci-
fied in cell C8, with the
areas given in column R.

8. Graph equilibrium
species richness against
island area for islands at
near, medium, and far dis-
tances from the mainland.
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As in Figure 10, the species-area curves should become almost straight lines on the log-
log plot.

9. Change both vertical
and horizontal axes to log-
arithmic scales.
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QUESTIONS

1. How can you estimate the equilibrium species richness of an island from Figure 2?

2. Is the equilibrium of species richness stable or unstable?

3. Is the equilibrium of species richness static or dynamic?

4. How does greater distance from the mainland affect species richness on an
island?

5. How does greater distance from the mainland affect the turnover rate on an
island?

6. How does larger area affect species richness on an island?

7. How does larger area affect the turnover rate on an island?

8. (OPTIONAL) How do area and distance from the mainland interact to determine
species richness and turnover rate on an island?

9. How do species accumulate on an island over time? That is, does species rich-
ness increase linearly, exponentially, logarithmically, or otherwise?

10. What does Figure 7 tell us about the changing state of species equilibrium?

11. How is species richness related to island area?

12. How do the species-area curves differ for islands at different distances from the
mainland?
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LIFE TABLES, 
SURVIVORSHIP CURVES, 
AND POPULATION GROWTH12
Objectives

• Discover how patterns of survivorship relate to the classic
three types of survivorship curves.

• Learn how patterns of survivorship relate to life expectancy.
• Explore how patterns of survivorship and fecundity affect

rate of population growth.

Suggested Preliminary Exercise: Geometric and Exponential
Population Models

INTRODUCTION
A life table is a record of survival and reproductive rates in a population, broken
out by age, size, or developmental stage (e.g., egg, hatchling, juvenile, adult). Ecol-
ogists and demographers (scientists who study human population dynamics)
have found life tables useful in understanding patterns and causes of mortality,
predicting the future growth or decline of populations, and managing popula-
tions of endangered species. 

Predicting the growth and decline of human populations is one very important
application of life tables. As you might expect, whether the population of a coun-
try or region increases or decreases depends in part on how many children each
person has and the age at which people die. But it may surprise you to learn that
population growth or decline also depends on the age at which they have their
children. A major part of this exercise will explore the effects of changing pat-
terns of survival and reproduction on population dynamics.

Another use of life tables is in species conservation efforts, such as in the case
of the loggerhead sea turtle of the southeastern United States (Crouse et al., 1987).
We explore this case in greater depth in Exercise 14, “Stage-Structured Matrix Mod-
els,” but generally speaking, the loggerhead population is declining and mortal-
ity among loggerhead eggs and hatchlings is very high. These facts led conserva-
tion biologists to advocate the protection of nesting beaches. When these measures
proved ineffective in halting the population decline, compiling and analyzing a
life table for loggerheads indicated that reducing mortality of older turtles would
have a greater probability of reversing the population decline. Therefore, man-
agement efforts shifted to persuading fishermen to install turtle exclusion devices
on their nets to prevent older turtles from drowning.

 



Life tables come in two varieties: cohort and static. A cohort life table follows the sur-
vival and reproduction of all members of a cohort from birth to death. A cohort is the
set of all individuals born, hatched, or recruited into a population during a defined time
interval. Cohorts are frequently defined on an annual basis (e.g., all individuals born
in 1978), but other time intervals can be used as well.

A static life table records the number of living individuals of each age in a popula-
tion and their reproductive output. The two varieties have distinct advantages and
disadvantages, some of which we discuss below.

Life tables (whether cohort or static) that classify individuals by age are called age-
based life tables. Such life tables treat age the same way we normally do: that is, indi-
viduals that have lived less than one full year are assigned age zero; those that have
lived one year or more but less than two years are assigned age one; and so on. Life
tables represent age by the letter x, and use x as a subscript to refer to survivorship,
fecundity, and so on, for each age.

Size-based and stage-based life tables classify individuals by size or developmen-
tal stage, rather than by age. Size-based and stage-based tables are often more useful
or more practical for studying organisms that are difficult to classify by age, or whose
ecological roles depend more on size or stage than on age. Such analyses are more com-
plex, however, and we will leave them for a later exercise.

Cohort Life Tables
To build a cohort life table for, let’s say, humans born in the United States during the
year 1900, we would record how many individuals were born during the year 1900,
and how many survived to the beginning of 1901, 1902, etc., until there were no more
survivors. This record is called the survivorship schedule. Unfortunately, different text-
books use different notations for the number of survivors in each age; some write this
as Sx, some ax, and some nx. We will use Sx here.

We must also record the fecundity schedule—the number of offspring born to indi-
viduals of each age. The total number of offpsring is usually divided by the number of
individuals in the age, giving the average number of offspring per individual, or per
capita fecundity. Again, different texts use different notations for the fecundity sched-
ule, including bx (the symbol we will use) or mx.

1

Many life tables count only females and their female offspring; for animals with
two sexes and equal numbers of males and females of each age, the resulting numbers
are the same as if males and females were both counted. For most plants, hermaphro-
ditic animals, and many other organisms, distinctions between the sexes are nonexist-
ent or more complex, and life table calculations may have to be adjusted.

Static Life Tables
A static life table is similar to a cohort life table but introduces a few complications. For
many organisms, especially mobile animals with long life spans, it can be difficult or
impossible to follow all the members of a cohort throughout their lives. In such cases,
population biologists often count how many individuals of each age are alive at a given
time. That is, they count how many members of the population are currently in the 0–1-
year-old class, the 1–2-year-old class, etc. 

These counts can be used as if they were counts of survivors in a cohort, and all the
calculations described below for a cohort life table can be performed using them. In
doing this, however, the researcher must bear in mind that she or he is assuming that
age-specific survivorship and fertility rates have remained constant since the oldest
members of the population were born. This is usually not the case and can lead to some
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1 Some demographers use the term fecundity to be the physiological maximum number of
eggs produced per female per year, and the term fertility to be the number of offspring pro-
duced per female per year. In this book, we will assume that the two are equivalent unless
noted otherwise.



strange results, such as negative mortality rates. These are often resolved by averaging
across several ages, or by making additional assumptions. We will avoid these compli-
cations by focusing this exercise on cohort life tables.

Quantities in a Life Table
Survivorship and fecundity schedules are the raw data of any life table. From them we
can calculate a variety of other quantities, including age-specific rates of survival, mor-
tality, fecundity, survivorship curves, life expectancy, generation time, net reproduc-
tive rate, and intrinsic rate of increase. Which of these quantities you calculate will
depend on your goals in constructing the life table. Rather than presenting all the quan-
tities that may appear in a life table, we will present two applications of life tables, using
the quantities needed in each case. First you will build life tables that illustrate the three
classic survivorship curves. These curves are a powerful visual tool for understand-
ing the patterns of survivorship and mortality in populations.Then you will use a life
table to predict the future growth or decline of a population. This kind of analysis is
frequently used in studies of human populations, in management of fish and game,
and in attempts to rescue endangered species.

Survivorship Curves
Ecology textbooks frequently present the three classic survivorship curves, called type
I, type II, and type III (Figure 1). To understand survivorship curves you can use sur-
vivorship schedules (Sx) to calculate and graph standardized survivorship (lx), age-
specific survivorship (gx), and life expectancy (ex).

Standardized Survival Schedule (lx). Because we want to compare cohorts of dif-
ferent initial sizes, we standardize all cohorts to their initial size at time zero, S0. We do
this by dividing each Sx by S0. This proportion of original numbers surviving to the
beginning of each interval is denoted lx, and calculated as 

Equation 1

We can also think of lx as the probability that an individual survives from birth to the
beginning of age x. Because we begin with all the individuals born during the year (or
other interval), lx always begins at a value of one (i.e., S0/S0), and can only decrease with
time. At the last age, k, Sk is zero.

l
S
Sx

x=
0
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Figure 1 Hypothetical survivorship curves. Note that the y-axis has a logarithmic
scale. Type 1 organisms have high surviorship throughout life until old age sets in,
and then survivorship declines dramatically to 0. Humans are type 1 organisms.
Type III organisms, in contrast, have very low survivorship early in life, and few
individuals live to old age.



Age-Specific Survivorship (gx). Standardized survivorship, lx, gives us the proba-
bility of an individual surviving from birth to the beginning of age x. But what if we
want to know the probability that an individual who has already survived to age x will
survive to age x + 1? We calculate this age-specific survivorship as gx = lx+1/lx, or equiv-
alently,

Equation 2

Life Expectancy (ex). You may have heard another demographic statistic, life
expectancy, mentioned in discussions of human populations. Life expectancy is how
much longer an individual of a given age can be expected to live beyond its present
age. Life expectancy is calculated in three steps. First, we compute the proportion of
survivors at the mid-point of each time interval (Lx—note the capital L here) by aver-
aging lx and lx+1; that is,

Equation 3

Second, we sum all the Lx values from the age of interest (n) up to the oldest age, k:

Equation 4

Finally, we calculate life expectancy as

Equation 5

(note the lowercase lx).
Life expectancy is age-specific—it is the expected number of time-intervals remain-

ing to members of a given age. The statistic most often quoted (usually without quali-
fication) is the life expectancy at birth (e0). As you will see, the implications of e0 depend
greatly on the survivorship schedule.

Population Growth or Decline
We frequently want to know whether a population can be expected to grow, shrink,
or remain stable, given its current age-specific rates of survival and fecundity. We can
determine this by computing the net reproductive rate (R0). To predict long-term
changes in population size, we must use this net reproductive rate to estimate the intrin-
sic rate of increase (r).

Net Reproductive Rate (R0) We calculate net reproductive rate (R0) by multiplying
the standardized survivorship of each age (lx) by its fecundity (bx), and summing these
products:

Equation 6

The net reproductive rate is the lifetime reproductive potential of the average female,
adjusted for survival. Assuming survival and fertility schedules remain constant over
time, if R0 > 1, then the population will grow exponentially. If R0 < 1, the population
will shrink exponentially, and if R0 = 1, the population size will not change over time.
You may be tempted to conclude the R0 = r, the intrinsic rate of increase of the expo-
nential model. However, this is not quite correct, because r measures population change
in absolute units of time (e.g., years) whereas R0 measures population change in terms
of generation time. To convert R0 into r, we must first calculate generation time (G), and
then adjust R0.
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Generation Time. Generation time is calculated as

Equation 7

For organisms that live only one year, the numerator and denominator will be equal,
and generation time will equal one year. For all longer-lived organisms, generation time
will be greater than one year, but exactly how much greater will depend on the sur-
vival and fertility schedules. A long-lived species that reproduces at an early age may
have a shorter generation time than a shorter-lived one that delays reproduction.

Intrinsic Rate of Increase. We can use our knowledge of exponential population
growth and our value of R0 to estimate the intrinsic rate of increase (r) (Gotelli 2001).
Recall from Exercise 7, “Geometric and Exponential Population Models,” that the size
of an exponentially growing population at some arbitrary time t is Nt = N0ert, where e
is the base of the natural logarithms and r is the intrinsic rate of increase. If we consider
the growth of such a population from time zero through one generation time, G, it is

NG = N0e
rG

Dividing both sides by N0 gives us

We can think of NG /N0 as roughly equivalent to R0; both are estimates of the rate of
population growth over the period of one generation. 

Substituting R0 into the equation gives us

R0 ≈ erG

Taking the natural logarithm of both sides gives us

ln (R0) ≈ rG

and dividing through by G gives us an estimate of r:

Equation 8

Euler’s Correction to r. The value of r as estimated above is usually a good approx-
imation (within 10%), and it will suffice for most purposes. Some applications, how-
ever, may require a more precise value. To improve this estimate, you must solve the
Euler equation:

Equation 9

The only way to solve this equation is by trial and error. We already know the values of
lxbx, and e (it is the base of the natural logarithms, e ≈ 2.7183), so we can plug in various
guesses for r until Equation 9 comes up 1.0. That will tell us the corrected value of r.
Fortunately, a spreadsheet is an ideal medium for such trial and error solution-hunting.

Finally, we can use our estimate of r (uncorrected or corrected) to predict the size of the
population in the future. In this exercise, you will adjust survivorship and fecundity sched-
ules and observe the effects on population growth or decline. This kind of analysis is done
for human populations to predict the effects of changes in medical care and birth control
programs. If we assume that all age groups are roughly equivalent in size, a similar analy-
sis can be done for endangered species to determine what intervention may be most effec-
tive in promoting population growth. The same analysis can be applied to pest species
to determine what intervention may be most effective in reducing population size.
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PROCEDURES

Our purpose here is to show how survivorship curves are generated and what they
mean. You will use survivorship schedules to calculate and graph lx, gx, and ex, result-
ing in survivorship curves of type I, II, or III. In the final section of the exercise you will
see how this information can be used to predict population rise and decline.

As always, save your work frequently to disk.

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

In cell A4 enter the value zero.
In cell A5 enter the formula =A4+1. Copy the formula in cell A5 into cells A6–A15.

These are the raw data of three survivorship schedules—one for each survivorship
curve. Each number is the number of surviving individuals from a cohort at each age.

In cell E4 enter the formula =B4/$B$4. Copy this formula into cells E5–E15.
This corresponds to Equation 1:

Note the use of a relative cell address in the numerator and an absolute cell address in
the denominator. The formula in cell F4 should be =C4/$C$4, and the formula in cell
G4 should be =D4/$D$4. Copy cells F4–G4 down to F15–G15.

In cell H4 enter the formula =B5/B4. Copy this formula into cells H5–H14. Do not
copy it into cell H15, because the formula would attempt to divide by zero and thus
generate an error. Copy cells H4–H14 into cells I4–J14.

l
S
Sx

x=
0

INSTRUCTIONS

A. Generate survivor-
ship curves.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 2.

2. Set up a linear series
from 0 to 11 in column A.

3. Enter the values shown
in Figure 2 for cells
B4–D15.

4. Enter formulae to calcu-
late the standardized sur-
vivorship, lx, for each sur-
vivorship schedule.

5. Enter formulae to calcu-
late age-specific survivor-
ship, gx, for each survivor-
ship schedule.
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Life Tables and Survivorship Curves

Survivorship curves

Age (x )
S x :

Type I
S x :

Type II
S x :

Type III
l x :

Type I
l x :

Type II
l x :

Type III
g x :

Type I
g x :

Type II
g x :

Type III

0 1000 2048 10000

1 990 1024 100

2 970 512 30

3 940 256 20

4 900 128 18

5 850 64 17

6 750 32 16

7 500 16 15

8 200 8 14

9 40 4 13

10 1 2 12

11 0 0 0

Figure 2



This corresponds to Equation 2:

Note that all cell addresses are relative.

These are all literals, so just select the appropriate cells and type them in.

Select cells A4–A15. Copy.
Select cell A19. Paste.

In cell B19 enter the formula =E4. Copy this formula into cells C19 and D19. Copy cells
B19–D19 into cells B20–D30.
Doing it this way, rather than copying and pasting the values, will automatically update
this part of the spreadsheet if you change any of the Sx values in cells B4–D15.

In cell E19 enter the formula =(B19+B20)/2. Copy this formula into cells F19 and G19.
Copy cells E19–G19 into cells E30–G30.
This corresponds to Equation 3:

In cell H19 enter the formula =SUM(E19:E$30)/B19. Copy the formula from cell H19
into cells I19 and J19.
Copy cells H19–J19 into cells H20–J29.

The portion SUM(E19:E$30) corresponds to Equation 4:

The entire formula corresponds to Equation 5:
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6. Enter titles and column
headings in cells A17–J18
as shown in Figure 3.

7. Copy the values of age
from cells A4–A15 into
cells A19–A30.

8. Echo the values of lx
from cells E4–G15 in cells
B19–D30.

9. Enter formulae to calcu-
late the number of sur-
vivors at the midpoint of
each age, Lx.

10. Enter formulae to cal-
culate life expectancy, ex,
for each age.
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30

A B C D E F G H I J
Age-specific life expectancy

Age (x )
l x :

Type I
l x :

Type II
l x :

Type III
l x : � l x : l x : e x : e x : e x :

0 1.0000 1.0000 1.0000

1 0.9900 0.5000 0.0100

2 0.9700 0.2500 0.0030

3 0.9400 0.1250 0.0020

4 0.9000 0.0625 0.0018

5 0.8500 0.0313 0.0017

6 0.7500 0.0156 0.0016

7 0.5000 0.0078 0.0015

8 0.2000 0.0039 0.0014

9 0.0400 0.0020 0.0013

10 0.0010 0.0010 0.0012

11 0.0000 0.0000 0.0000

Type I Type II Type III Type I Type II Type III

Figure 3



Do not copy the formula into row 30, because lx there is zero, and so Equation 5 would
be undefined.

Select cells A3–A15. Select cells E3–G15 and create an XY graph. Edit your graph for
readability. It should resemble Figure 4.

Double-click on the y-axis and choose the Number tab in the resulting dialog box. Set
the number of decimal places to 3. Choose the Scale tab. Check the box for Logarithmic
Scale. Set the Major unit to 10, and set Value (X) axis Crosses at to 0.0001. Your graph
should resemble Figure 5.

11. Your spreadsheet is
complete. Save your work.

12. Graph standardized
survivorship, lx, against
age.

13. Change the y-axis to a
logarithmic scale.
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Figure 5 Survivorship curves are always plotted with a logarithmic y-
axis. Can you see why?



Select cells A3–A14 and cells H3–J14. Make an XY graph. Your graph should resemble
Figure 6.

Select cells A18–A29 and cells H18–J29. Do not include row 30 in either block. Make
an XY graph. Your graph should resemble Figure 7.

We will use fewer ages here to simplify the manipulations that you will do later.

14. Graph age-specific sur-
vival gx, against age.

15. Graph life expectancy,
ex, against age.

B. Population growth
and decline.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 8. Set up a linear
series of ages from 0 to 4
in column A. Enter the
values shown for Sx.
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In cell C4 enter the formula =B4/$B$4. Copy this formula into cells C5–C8. Do not copy
into cell C9.
Again, this corresponds to Equation 1. Note the use of a relative cell address in the
numerator, and an absolute cell address in the denominator.

Enter the value 0.00 into cells D4, D5, D7, and D8, Enter the value 4.00 into cell D6.

In cell E4 enter the formula =C4*D4. Copy this formula into cells E5–E8.

In cell E9 enter the formula =SUM(E4:E8).
This corresponds to Equation 6:

In cell B10 enter the formula =E9.
We do this because you will soon change the values of Sx and bx, and this layout will
make it easier to compare the effects of different survival and fertility schedules on pop-
ulation growth or decline.

In cell F4 enter the formula =E4*A4.
This is an intermediate step in calculating generation time, G.
Copy the formula from cell F4 into cells F5–F8.

In cell F9 enter the formula =SUM(F4:F8).
This is another intermediate step in calculating generation time, G.

In cell B11 enter the formula =F9/E9.
This corresponds to Equation 7:

R l bx x
x
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2. Enter a formula to cal-
culate standardized sur-
vival, lx.

3. Enter the values shown
for age-specific fertility, bx.

4. Enter a formula to cal-
culate the product of stan-
dardized survival times
age-specific fertility, lxbx.

5. Enter a formula to cal-
culate net reproductive
rate, R0.

6. Echo the value of R0 in
cell B10.

7. Enter a formula to cal-
culate the product lxbxx.

8. Enter a formula to cal-
culate the sum of the
products lxbxx.

9. Enter a formula to cal-
culate generation time, G.
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A B C D E F G
Cohort Life Table: Fertility, Survival, and Population Growth

Age (x ) S x l x b x (l x )(b x ) (x )(l x )(b x ) (e ^-rx )(l x )(b x )

0 1000 1.0000 0.00000 0.0000 0.0000 0.0000

1 900 0.9000 0.00000 0.0000 0.0000 0.0000

2 250 0.2500 4.00000 1.0000 2.0000 1.0000

3 10 0.0100 0.00000 0.0000 0.0000 0.0000

4 0 0.0000 0.00000 0.0000 0.0000 0.0000

Total 1.0000 2.0000 1.0000
R 0 1.00000

G 2.00000

r est. 0.00000

r adj. 0.00000

Should be 1 1.00000

Figure 8



In cell B12 enter the formula =LN(B10)/B11.
This corresponds to Equation 8:

Follow the procedures in Steps 12 and 13 of Section A. Your graph should resemble 
Figure 9. 

Start by entering the estimated value of r from cell B12. You will see how to use this
guess below.

In cell G4 enter the formula =EXP(-$B$13*A4)*E4.
This is an intermediate step in applying Euler’s correction to the estimate of r calcu-
lated in Step 11 of Section B. Note that the formula uses your guess for the value of r.

In cell G9 enter the formula =SUM(G4:G8).
This corresponds to the right side of Equation 9:

If your guess for r is correct, this formula will yield a value of 1.0.

In cell B14 enter the formula =G9.
Again, this is simply a convenient layout for comparing the effects of changing Sx and bx.
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10. Enter a formula to esti-
mate the intrinsic rate of
increase, r.

11. Your spreadsheet is
complete. Save your work.

12. Create a survivorship
curve from your Sx values.

C. Euler’s correction
(Optional)

1. (*Optional) Enter a
guess for the correct
value of r into cell B13.

2. Enter a formula to cal-
culate e−rxlxbx.

3. Enter a formula to com-
pute Euler’s equation.

4. In cell B14, echo the re-
sult of the formula in cell
G9.
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QUESTIONS

1. Why do we plot survivorship curves on a semi-log graph?

2. What do the shapes of the survivorship curves tell us about patterns of survival
and mortality? Compare each curve to the corresponding graph of age-specific
survivorship.

3. How can we interpret the graph of life expectancies?

4. Use the Sx values for real populations provided in the Appendix at the end of
this exercise to compare survivorship curves between animal species. You may
also wish to visit the U.S. Census Bureau’s web site (http://www.census.gov/),
from which you can download survivorship data for human populations in
most of the countries of the world.

5. What effect does changing the fecundity schedule have on R0, G, and r?

6. What effect does changing the survival schedule have on R0, G, and r?
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Appendix: SAMPLE SURVIVORSHIP SCHEDULES FROM 
NATURAL POPULATIONS OF ANIMALS

In all cases, assume Sx for the next age after the oldest in the table is 0.
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Table A. Survivorship schedule for Dall Mountain Sheep (Ovis dalli dalli).

Age (years) Sx Age (years) Sx

0 1000 7 640
1 801 8 571
2 789 9 439
3 776 10 252
4 764 11 96
5 734 12 6
6 688 13 3

Data from Deevey (1947). Numbers have been standardized to S0 = 1000.

Table B. Survivorship schedule for the Song Thrush.

Age (years) Sx Age (years) Sx

0 1000 5 3 0
1 444 6 1 7
2 259 7 6 
3 123 8 3 
4 5 1

Data from Deevey (1947). Numbers have been standardized to S0 = 1000.

Table C. Survivorship and fertility schedules for the barnacle 
Balanus glandula.

Age (years) Sx Age (years) Sx

0 1000 7 640
1 801 8 571
2 789 9 439
3 776 10 252
4 764 11 96
5 734 12 6
6 688 13 3

Data are from Connell (1970). Values of S4 and S6 have been interpolated and rounded
to the next integer.



AGE-STRUCTURED MATRIX MODELS13
Objectives

• Set up a model of population growth with age structure.
• Determine the stable age distribution of the population.
• Estimate the finite rate of increase from Leslie matrix calcu-

lations.
• Construct and interpret the age distribution graphs.

Suggested Preliminary Exercises: Geometric and Exponential
Population Models;  Life Tables and Survivorship Curves

INTRODUCTION
You’ve probably seen the geometric growth formula many times by now (Exer-
cise 7). It has the form

Nt+1 = Nt + (b – d)Nt

where b is the per capita birth rate and d is the per capita death rate for a popu-
lation that is growing in discrete time. The term (b – d) is so important in popu-
lation biology that it is given its own symbol, R. It is called the intrinsic (or geo-
metric) rate of natural increase, and represents the per capita rate of change in
the size of the population. Substituting R for b – d gives

Nt+1 = Nt + RNt

We can factor Nt out of the terms on the right-hand side, to get

Nt+1 = (1 + R)Nt

The quantity (1 + R) is called the finite rate of increase, λ. Thus we can write

Nt+1 = λNt Equation 1

where N is the number of individuals present in the population, and t is a time
interval of interest. Equation 1 says that the size of a population at time t + 1 is
equal to the size of the population at time t multiplied by a constant, λ. When 
λ = 1, the population will remain constant in size over time. When λ < 1, the pop-
ulation declines geometrically, and when λ > 1, the population increases geo-
metrically. 

Although geometric growth models have been used to describe population
growth, like all models they come with a set of assumptions. What are the assump-



tions of the geometric growth model? The equations describe a population in which
there is no genetic structure, no age structure, and no sex structure to the population
(Gotelli 2001), and all individuals are reproductively active when the population cen-
sus is taken. The model also assumes that resources are virtually unlimited and that
growth is unaffected by the size of the population. Can you think of an organism whose
life history meets these assumptions? Many natural populations violate at least one of
these assumptions because the populations have structure: They are composed of
individuals whose birth and death rates differ depending on age, sex, or genetic make-
up. All else being equal, a population of 100 individuals that is composed of 35 prere-
productive-age individuals, 10 reproductive-age individuals, and 55 postreproduc-
tive-age individuals will have a different growth rate than a population where all 100
individuals are of reproductive age. In this exercise, you will develop a matrix model
to explore the growth of populations that have age structure. This approach will enable
you to estimate λ in Equation 1 for structured populations.

Model Notation
Let us begin our exercise with some notation often used when modeling populations
that are structured (Caswell 2001; Gotelli 2001). For modeling purposes, we divide indi-
viduals into groups by either their age or their age class. Although age is a continuous
variable when individuals are born throughout the year, by convention individuals
are grouped or categorized into discrete time intervals. That is, the age class of 3-year-
olds consists of individuals that just had their third birthday, plus individuals that are
3.5 years old, 3.8 years old, and so on. In age-structured models, all individuals within
a particular age group (e.g., 3-year-olds) are assumed to be equal with respect to their
birth and death rates. The age of individuals is given by the letter x, followed by a num-
ber within parentheses. Thus, newborns are x(0) and 3-year-olds are x(3).

In contrast, the age class of an individual is given by the letter i, followed by a sub-
script number. A newborn enters the first age class upon birth (i1), and enters the sec-
ond age class upon its first birthday (i2). Caswell (2001) illustrates the relationship
between age and age class as:

Thus, whether we are dealing with age classes or ages, individuals are grouped into
discrete classes that are of equal duration for modeling purposes. In this exercise, we
will model age classes rather than ages. A typical life cycle of a population with age-
class structure is:

The age classes themselves are represented by circles. In this example, we are con-
sidering a population with just four age classes. The horizontal arrows between the
circles represent survival probabilities, Pi—the probability that an individual in age class
i will survive to age class i + 1. Note that the fourth age class has no arrow leading to a
fifth age class, indicating that the probability of surviving to the fifth age class is 0. The
curved arrows at the top of the diagram represent births. These arrows all lead to age
class 1 because newborns, by definition, enter the first age class upon birth. Because

F4F3F2

1 2 3 4

P1 P2 P3
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“birth” arrows emerge from age classes 2, 3, and 4 in the above example, the diagram
indicates that all three of these age classes are capable of reproduction. Note that indi-
viduals in age class 1 do not reproduce. If only individuals of age class 4 reproduced,
our diagram would have to be modified:

The Leslie Matrix
The major goal of the matrix model is to compute λ, the finite rate of increase in Equa-
tion 1, for a population with age structure. In our matrix model, we can compute the
time-specific growth rate as λt. The value of λt can be computed as 

λt = Nt+1/Nt or Equation 2

This time-specific growth rate is not necessarily the same λ in Equation 1. (We will dis-
cuss this important point later.) To determine Nt and Nt+1, we need to count individu-
als at some standardized time period over time. We will make two assumptions in
our computations. First, we will assume that the time step between Nt and Nt+1 is one
year, and that age classes are defined by yearly intervals. This should be easy to grasp,
since humans typically measure time in years and celebrate birthdays annually. (If we
were interested in a different time step—say, six months—then our age classes would
also have to be 6-month intervals.) Second, we will assume for this exercise that our
population censuses are completed once a year, immediately after individuals breed (a
postbreeding census). The number of individuals in the population in a census at time
t + 1 will depend on how many individuals of each age class were in the population
at time t, as well as the birth and survival probabilities for each age class.

Let us start by examining the survival probability, designated by the letter P. P is
the probability that an individual in age class i will survive to age class i + 1. The
small letter l gives the number of individuals in the population at a given time:

This equation is similar to the g(x) calculations in the life table exercise. For example,
let’s assume the probability that individuals in age class 1 survive to age class 2 is P1
= 0.3. This means 30% of the individuals in age class 1 will survive to be censused as
age class 2 individuals. By definition, the remaining 70% of the individuals will die. If
we consider survival alone, we can compute the number of individuals of age class 2
at time t + 1 as the number of individuals of age class 1 at time t multiplied by P1. If we
denote the number of individuals in class i at time t as ni(t), we can write the more gen-
eral equation as

ni+1(t + 1) = Pini(t) Equation 3

This equation works for calculating the number of individuals at time t + 1 for each age
class in the population except for the first, because individuals in the first age class arise
only through birth. Accordingly, let’s now consider birth rates.

There are many ways to describe the occurrence of births in a population. Here, we
will assume a simple birth-pulse model, in which individuals give birth the moment
they enter a new age class. When populations are structured, the birth rate is called the
fecundity, or the average number of offspring born per unit time to an individual female
of a particular age. If you have completed the exercise on life tables, you might recall

P l i
l ii = −

( )
( )1

λt
t

t

N
N= +1

1 2 3 4
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that fecundity is labeled as b(x), where b is for birth. Individuals that are of prerepro-
ductive or postreproductive age have fecundities of 0. Individuals of reproductive age
typically have fecundities > 0.

Figure 1 is a hypothetical diagram of a population with four age classes that are cen-
sused at three time periods: time t – 1, time t, and time t + 1. In Figure 1, all individuals
“graduate” to the next age class on their birthday, and since all individuals have roughly
the same birthday, all individuals counted in the census are “fresh”; that is, the newborns
were just born, individuals in age class 2 just entered age class 2, and so forth. With a
postbreeding census, Figure 1 shows that the number of individuals in the first age class
at time t depends on the number of breeding adults in the previous time step.

If we knew how many adults actually bred in the previous time step, we could com-
pute fecundity, or the average number of offspring born per unit time per individual
(Gotelli: 2001). However, the number of adults is not simply N2 and N3 and N4 counted
in the previous time step’s census; these individuals must survive a long period of time
(almost a full year until the birth pulse) before they have another opportunity to breed.
Thus, we need to discount the fecundity, b(i), by the probability that an adult will
actually survive from the time of the census to the  birth pulse (Pi), (Gotelli 2001). These
adjusted estimates, which are used in matrix models, are called fertilities and are des-
ignated by the letter F.

Fi = b(i)Pi Equation 4

The adjustments are necessary to account for “lags” between the census time and the
timing of births. Stating it another way, Fi indicates the number of young that are
produced per female of age i in year t, given the appropriate adjustments. Be aware
that various authors use the terms fertility and fecundity differently; we have followed
the notation used by Caswell (2001) and Gotelli (2001). The total number of individu-
als counted in age class 1 in year t + 1 is simply the fertility rate of each age class,
multiplied by the number of individuals in that age class at time t. When these prod-
ucts are summed together, they yield the total number of individuals in age class 1 in
year t + 1. Generally speaking,

Once we know the fertility and survivorship coefficients for each age class, we can cal-
culate the number of individuals in each age at time t + 1, given the number of indi-
viduals in each class at time t:

n1(t + 1) = F1n1(t) + F2n2(t) + F3n3(t) + F4n4(t)
n2(t + 1) = P1n1(t)
n3(t + 1) = P2n2(t)
n4(t + 1) = P3n3(t)

n t F n ti i
i

k

1
1

1( ) ( )+ =
=
∑
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Census:      Census:  Census:
time t – 1 time t time t + 1

N1
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N3

N4
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N3

N4

N1

N2

N3

N4

Fi = b(i)Pi
Fi = b(i)Pi

Figure 1 In this population, age classes 2, 3, and 4 can reproduce, as represented
by the dashed arrows that lead to age class 1 in the next step. Births occur in a birth
pulse (indicated by the filled circle and vertical line) and individuals are censused
immediately after young are born. (After Akçakaya et al. 1997.)



How can we incorporate the equations in Equation 4 into a model to compute the
constant, λ, from Equation 1? Leslie (1945) developed a matrix method for predicting
the size and structure of next year’s population for populations with age structure. A
matrix is a rectangular array of numbers; matrices are designated by uppercase, bold
letters. Leslie matrices, named for the biologist P. H. Leslie, have the form shown in
Figure 2.

Since our population has only four age classes, the Leslie matrix in Figure 2 is a
four row by four column matrix. If our population had five age classes, the Leslie matrix
would be a five row by five column matrix. The fertility rates of age classes 1 through
4 are given in the top row. Most matrix models consider only the female segment of the
population, and define fertilities in terms of female offspring. The survival probabili-
ties, Pi, are given in the subdiagonal; P1 through P3 are survival probabilities from one
age class to the next. For example, P1 is the probability of individuals surviving from
age class 1 to age class 2. All other entries in the Leslie matrix are 0. The composition
of our population can be expressed as a column vector, n(t), which is a matrix that con-
sists of a single column. Our column vector will consist of the number of individuals in
age classes 1, 2, 3, and 4:

When the Leslie matrix, A, is multiplied by the population vector, n(t), the result is
another population vector (which also consists of one column); this vector is called the
resultant vector and provides information on how many individuals are in age classes
1, 2, 3, and 4 in year t + 1. The multiplication works as follows:

The first entry in the resultant vector is obtained by multiplying each element in the
first row of the A matrix by the corresponding element in the n vector, and then sum-
ming the products together. In other words, the first entry in the resultant vector equals
the total of several operations: multiply the first entry in the first row of the A matrix
by the first entry in n vector, multiply the second entry in the first row of the A matrix
by the second entry in the n vector, and so on until you reach the end of the first row
of the A matrix, then add all the products. In the example above, a 4 × 4 matrix on the
left is multiplied by a column vector (center). The resultant vector is the vector on the
right-hand side of the equation. 

Rearranging the matrices so that the resultant vector is on the left, we can compute
the population size at time t + 1 by multiplying the Leslie matrix by the population vec-
tor at time t.
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Figure 2 The specific form of a Leslie matrix,
based on a population with four age classes. The
letters used to designate a mathematical matrix are
conventionally uppercase, boldface, and not italic.
The rows and columns of the matrix are enclosed
in large brackets. See P. H. Leslie’s original paper
(Leslie 1945) for the classic discussion.



Equation 4

For example, assume that you have been following a population that consists of 45 indi-
viduals in age class 1, 18 individuals in age class 2, 11 individuals in age class 3, 
and 4 individuals in age class 4. The initial vector of abundances is written

Assume that the Leslie matrix for this population is 

Following Equation 4, the number of individuals of age classes 1, 2, 3, and 4 at time 
t + 1 would be computed as

The time-specific growth rate, λt, can be computed as the total population at time t +
1 divided by the total population at time t. For the above example, 

λt = (39.3 + 36 + 9 + 2.75)/(45 + 18 + 11 + 4) = 87.05/78 = 1.116

As we mentioned earlier, λt is not necessarily equal to λ in Equation 1.The Leslie
matrix not only allows you to calculate λt (by summing the total number of individu-
als in the population at time t + 1 and dividing this number by the total individuals in
the population at time t), but also to evaluate how the composition of the population
changes over time. If you multiply the Leslie matrix by the new vector of abundances,
you will project population size for yet another year. Continued multiplication of a vec-
tor of abundance by the Leslie matrix eventually produces a population with a stable
age distribution, where the proportion of individuals in each age class remains con-
stant over time, and a stable (unchanging) time-specific growth rate, λt. When the λt’s
converge to a constant value, this constant is an estimate of λ in Equation 1. Note that
this λ has no subscript associated with it. Technically, λ is called the asymptotic growth
rate when the population converges to a stable age distribution. At this point, if the
population is growing or declining, all age classes grow or decline at the same rate. In
this exercise you’ll set up a Leslie matrix model for a population with age structure.
The goal is to project the population size and structure into the future, and examine
properties of a stable age distribution. As always, save your work frequently to disk.
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ANNOTATION

Remember that the Leslie matrix has a specific form. Fertility rates are entered in the
top row. Survival rates are entered on the subdiagonal, and all other values in the Leslie
matrix are 0. 

The initial population vector, n, gives the number of individuals in the first, second,
third, and fourth age classes. Thus our population will initially consist of 45 individ-
uals in age class 1, 18 individuals in age class 2, 11 individuals in age class 3, and 4 indi-
viduals in age class 4. 

We will track the numbers of individuals in each age class over 25 years. 
Enter 0 in cell A12.
Enter =1+A12 in cell A13.
Copy your formula down to cell A37.

Enter the following formulae:
• B12 =G5
• C12 =G6
• D12 =G7
• E12 =G8

Enter the formula =SUM(B12:E12). Your result should be 78. 

Enter the formula =F13/F12. Your result will not be interpretable until you compute
the population size at time 1. You can generate the λ symbol by typing in the letter l,
highlighting this letter in the formula bar, and then changing its font to the symbol
font.

INSTRUCTIONS

A. Set up the spread-
sheet.

1. Set up new column
headings as shown in
Figure 3.

2. Enter values in the
Leslie matrix in cells
B5–E8 as shown. 

3. Enter values in the ini-
tial population vector in
cells G5–G8 as shown. 

4. Set up a linear series
from 0 to 25 in cells
A12–A37.

5. Enter formulae in cells
B12–E12 to link to values
in the initial vector of
abundances (G5–G8).

6. Sum the total number of
individuals at time 0 in
cell F12.

7. Compute λt for time 0 in
cell G12.

8. Save your work.

1
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n
1 2 3 4
0 1 1.5 1.2 45

A = 0.8 0 0 0 18
0 0.5 0 0 11
0 0 0.25 0 4

Time 1 2 3 4 Total pop �λ t

Age class 

Figure 3



Now we are ready to project the population sizes into the future. Remember, we want
to multiply the Leslie matrix by our initial set of abundances to generate a resultant
vector (which gives the abundances of the different age classes in the next time step).
Recall how matrices are multiplied to generate the resultant vector:

See if you can follow how to calculate the resultant vector, and enter a formula for its
calculation in the appropriate cell—it’s pretty easy to get the hang of it. The cells in the
Leslie matrix should be absolute references, while the cells in the vector of abundances
should be relative references. We entered the following formulae:

• B13 =$B$5*B12+$C$5*C12+$D$5*D12+$E$5*E12
• C13 =$B$6*B12+$C$6*C12+$D$6*D12+$E$6*E12
• D13 =$B$7*B12+$C$7*C12+$D$7*D12+$E$7*E12
• E13 =$B$8*B12+$C$8*C12+$D$8*D12+$E$8*E12

This will complete your population projection over 25 years. 
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B. Project population
size over time.

1. In cells B13–E13, enter
formulae to calculate the
number of individuals in
each age class in year 1. In
your formulae, use the ini-
tial vector of abundances
listed in row 12 instead of
column G. 

2. Copy the formula in cell
F12 into cell F13.

3. Copy the formula in cell
G12 into cell G13. Your
spreadsheet should now
resemble Figure 4.

4. Select cells B13–G13,
and copy their formulae
into cells B14–G37.  Save
your work.

C. Create graphs.

1. Graph the number of
individuals in each age
class over time, as well as
the total number of indi-
viduals over time. Use the
scatter graph option, and
label your axes clearly.
Your graph should resem-
ble Figure 5.
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Projection of Population Size for Age-Structured 
Populations
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It’s often useful to examine the logarithms of the number of individuals instead of
the raw data. This takes the bending nature out of a geometrically growing or declin-
ing population (see Exercise 1). To adjust the scale of the y-axis, double click on the val-
ues in the y-axis. A dialog box (Figure 6) will appear:

Toward the bottom of the screen is a box labeled Logarithmic scale. Click on that box,
and then click the OK button, and your scale will be automatically adjusted. It’s some-
times easier to interpret your population projections with a log scale.

2. Generate a new graph
of the same data, but use a
log scale for the y-axis. 

3. Save your work.
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Figure 6

Projection of Population Size for Age-Structured 
Populations: Semi-Log Scale
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QUESTIONS

1. Examine your first graph (Figure 5). What is the nature of the population
growth? Is the population increasing, stable, or declining? How does λt change
with time?

2. Examine your semi-log graph (Figure 7) and your spreadsheet projections (col-
umn G). At what point in the 25-year projection does λt not change (or change
very little) from year to year? When the λt’s do not change over time, they are
an estimate of λ, the asymptotic growth rate, or an estimate of λ in Equation 1
in the Introduction. What is λ for your population, and how does this affect
population growth? If you change entries in your Leslie matrix, how does λ
change? 

3. Return your Leslie matrix parameters to their original values. What is the com-
position of the population (the proportion of individuals in age class 1, age
class 2, age class 3, and age class 4) when the population has reached a stable
distribution? Set up headings as shown:

In cell H12, enter a formula to calculate the proportion of the total population in
year 25 that consists of individuals in age class 1. Enter formulae to compute
the proportions of the remaining age classes in cells I12–K12. Cells H12–K12
should sum to 1 and give the stable age distribution. 

4. How does the initial population vector affect λt, λ and the stable age distribu-
tion? How does it affect λt and the age distribution prior to stabilization?
Change the initial vector of abundances so that the population consists of 75
individuals in age class 1, and 1 individual in each of the remaining age classes.
Graph and interpret your results. Do your results have any management impli-
cations?

5. What are the assumptions of the age-structured matrix model you have built? 

6. Assume that the population consists of individuals that can exist past age 
class 4. Suppose that these individuals have identical fertility functions (F) as
the fourth age class and have a probability of surviving from year t to year t + 1
with a probability of 0.25. Draw the life cycle diagram, and adjust your Leslie
matrix to incorporate these older individuals. How does this change affect the
stable age distribution and λ at the stable age distribution? 
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STAGE-STRUCTURED 
MATRIX MODELS14
Objectives

• Set up a model of population growth with stage structure.
• Determine the stable stage distribution of the population.
• Estimate the finite rate of increase from Lefkovitch matrix

calculations.
• Construct and interpret the stage distribution graphs.

Suggested Preliminary Exercise: Geometric and Exponential
Population Models; Life Tables and Survivorship Curves

INTRODUCTION
Recall from Exercise 7 that the geometric model describes a population growing
in discrete time. That is, the model treats time as if it moved in steps rather than
flowing continuously. This kind of model is realistic for many populations that
have seasonal, synchronous reproduction. For example, insectivorous songbirds
in North America typically breed during the spring and summer months, when
their major food sources peak in abundance. The geometric growth model has
the form

Nt+1 = Nt + (R)Nt

where R is the per capita change in population size, or intrinsic (or geometric)
rate of natural increase. You might recall that R is equal to b – d for discretely grow-
ing populations, or the difference in the per capita birth and death rates. We can
factor Nt out of the terms on the right-hand side, to get

Nt+1 = (1 + R)Nt

The quantity (1 + R) is called the finite rate of increase, λ, and so we can write

Nt+1 = λNt Equation 1

where N is the number of individuals present in the population, and t is a time
interval of interest. Equation 1 says that the size of a population at time t + 1 equals
the size of the population at time t multiplied by a constant, λ. When λ = 1, the
population will remain constant in size over time. When λ < 1, the population
declines geometrically, and when λ > 1, the population increases geometrically. 

 



Equation 1 predicts change in numbers in a population over time, given the numbers
of individuals currently in the population and λ. Simplistically speaking, the models
assume that all individuals in the population make equal contributions to population
change, regardless of their size, age, stage, genetic make-up, or sex. Many natural pop-
ulations violate at least one of these assumptions because the populations are struc-
tured—they are composed of individuals whose birth and death rates differ depending
on age, size, sex, stage, or genetic make-up. For example, small fish in a population
differ in mortality rates from large fish, and larval insects differ in birth rates from adult
insects.

Differences among individuals in a population are a cornerstone of ecology and evo-
lutionary biology, and can greatly affect the population’s finite rate of increase (λ). In
this exercise, you will develop a matrix model to explore the growth of populations that
have size or stage structure. This approach will enable you to estimate λ in Equation 1
for size- or stage-structured populations.

If you have completed the Life Tables exercise, you learned that age structure is often
a critical variable in determining the size of a population over time. In fact, a primary
goal of life table analysis and Leslie matrix modeling is to estimate the population’s
growth rate, λ, when the population has age structure. For many organisms, however,
age is not an accurate predictor of birth or death rates. For example, a small sugar maple
in a northeastern forest can be 50 years old and yet have low levels of reproduction. In
this species, size is a better predictor of birth rate than age. In other species, birth and
death rates are a function of the stage in the life cycle of an organism. For instance, death
rates in some insect species may be higher in the larval stages than in the adult stage.
Such organisms are best modeled with size- or stage-structured matrix models.

Model Notation
We begin our exercise with some notation often used when modeling structured pop-
ulations (Caswell 2001; Gotelli 2001). For modeling purposes, the first decision is whether
to develop a stage-structured or a size-structured model for the organism of interest.
This in turn depends on whether size or life-history stage is a better state variable.

The second step is to assign individuals in the population to either stage or size
classes. It is fairly straightforward to categorize individuals with stage structure, such
as insects—simply place them in the appropriate stage, such as larva, pupa, or adult.
Size, however, is a continuous variable because is not an either/or situation, but can take
on a range of values. In our sugar maple example, size classes might consist of seedlings,
small-sized individuals, medium-sized individuals, and large-sized individuals. The
number of size classes you select for your model would depend on how “different”
groups are in terms of reproduction and survival. If medium- and large-sized individ-
uals have the same reproductive and survival rates, we might choose to lump them into
a single class.

Note that the projection interval (the amount of time that elapses between time t and
time t + 1) and the stage durations can be different. For instance, the larval stage may
typically last 4 months, and the pupa stage might typically last only 2 months, and the
projection interval may also be different. This is quite different from the age-based matrix
model, in which the interval of the different classes, as well as the projection interval
from time step to time step, must be equal. 

A typical life cycle model for a species with stage or size structure is shown in Fig-
ure 1. The horizontal arrows  between each stage (circles) represent survival proba-
bilities, or the probability that an individual in stage/size class i will survive and move
into stage/size class i + 1, designated by the letter P followed by two different sub-
scripts.*

The curved arrows at the bottoms of the diagrams in Figure 1 represent the proba-
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*Caswell 2001 calls these “graduation probabilities,” designated by the letter G.



bility of individuals surviving and remaining in their class from time t to time t + 1, des-
ignated by the letter P followed by two identical subscripts. For instance, the loop at the
bottom of the small juvenile class represents the probability that a small juvenile in time
t will be alive and counted as a small juvenile in time t + 1. The loop at the bottom of the
adult class represents the probability that an adult counted in time t will be alive and
counted as an adult in time t + 1. These self-loops are absent from age-based matrix mod-
els because individuals must move from one class to the next (you can’t have two twen-
tieth birthdays).

The curved arrows at the top of the diagrams represent births, designated by the
letter F followed by two different subscripts. The arrows all lead to the first class because
newborns, by definition, enter the first class upon birth.

Note that for both P and F, the subscripts have a definite pattern: the first subscript
is the class from which individuals move, and the second subscripts indicate the class
to which individuals move (Gotelli 2001). 

Matrix Models
Now let’s move on and discuss the computations of P, F, and λ for a population with
stage structure. The major goal of the matrix model is to compute λ, the finite rate of
increase, for a population with stage structure (Equation 1). In our matrix model, we
can compute the time-specific growth rate, lt, by rearranging terms in Equation 1:

Equation 2λt
t

t

N
N= +1
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Figure 1 (A) A theoretical life history model for an organism with a  stage- or
size-structured life history. Classes are represented by circles. The arrows between
the stages are called transitions, indicating the probability P of transitioning from
one class to the next (horizontal arrows) or of remaining in the same class (lower
curved arrows). The curved arrows at the top, labeled F, represent births. (B) Model
of an organism with five specific size/stage structures (in this case, a combination
of the two), as labeled. Two classes (subadults and adults) are capable of reproduc-
tion, so arrows associated with birth emerge from both classes returning to new-
borns (hatchlings). If only adult individuals reproduced, there would be a single
arrow from adult to newborn.



This time-specific growth rate is not necessarily the same λ in Equation 1, but in our
spreadsheet model we will compute it in order to arrive at λ (no subscript) in Equation
1. (We will discuss this important point later).

To determine Nt and Nt+1, we need to count individuals at some standardized time
period over time. We’ll assume for this exercise that our population censuses are com-
pleted immediately after individuals breed (a postbreeding census). The number of
individuals in the population in a census at time t + 1 will depend on how many indi-
viduals of each size class were in the population at time t, as well as the movements of
individuals into new classes (by birth or transition) or out of the system (by mortality).
Thus, in size- or stage-structured models, an individual in any class may move to the
next class (i.e., grow larger), remain in their current class, or exit the system (i.e., die).

The survival probability, Pi,i+1, is the probability that an individual in size class i will
survive and move into size class i + 1. In our example, let’s assume that small juveniles
survive and become large juveniles with a probability of Psj,lj = 0.3. This means that 30%
of the small juveniles in one time step will survive to be censused as large juveniles in
the next time step. The remaining 70% of the individuals either die or remain small juve-
niles. Pi,i, is the probability that an individual in size class i will survive to be counted
in the next time step, but will remain in size class i. Thus, an individual in size class i
may survive and grow to size class i + 1 with probability Pi,i+1, or may survive and remain
the size class i with probability Pi,i (Caswell 2001).

In order to keep track of how many individuals are present in a given class at a given
time, we must consider both kinds of survival probabilities to account for those indi-
viduals that graduated into the class, plus those individuals that remained in the class
(i.e., did not graduate). For example, we can compute the number of individuals in the
large juvenile size class at time t + 1 as the number of small juveniles at time t multiplied
by Psj,lj (this gives the number of small juveniles in year t that graduated to become large
juveniles in year t + 1), plus the number of large juveniles at time t multiplied by Plj,lj
(this gives the number of large juveniles in year t that remained in the large juvenile class
in year t + 1). More generally speaking, the number of individuals in class i in year t +
1 will be

ni(t + 1) = [Pi,ini(t)] + [Pi–1,i,ni–1(t)] Equation 3

Equation 3 works for calculating the number of individuals at time t + 1 for each size
class in the population except for the first, because individuals in the first stage class
at time t + 1 will include those individuals in class 1 that remain in class 1 in the next
time step, plus any new individuals that arise through birth. Accordingly, let’s now
consider birth rates.

There are many ways to describe the births in a population. Here we will assume a
simple birth-pulse model, in which individuals give birth as soon as they enter a new
stage class. On this day, not only do births occur, but transitions from one size class to
another also occur. When populations are structured, the birth rate is often called the
fecundity, or the average number of offspring born per unit time to an individual female
of a particular age (Gotelli 2001). If you have completed the exercise on life tables, you
might recall that fecundity is labeled as b(x), where b is for birth. Individuals that are of
pre- or postreproductive age have fecundities of 0. Individuals of reproductive age typ-
ically have fecundities greater than 0. 

To illustrate the concept of birth pulse and postbreeding census, consider a hypo-
thetical diagram for a sea turtle (Caretta caretta) population with five stage classes that
are censused at three time periods: t – 1, t, and t + 1 as shown in Figure 2. Since all indi-
viduals are born during the birth pulse, they have the same birthday. The birthday is
also the “graduation day” for those individuals that move from one size class to the next.
With a postbreeding census, the diagram shows that the number of individuals in the
first size class (hatchlings, h) at time t depends on the number of subadults and adults
in the previous time step, t – 1.

If we knew how many breeders were producing those hatchlings, we could compute
fecundity as the number of offspring produced per individual per year (Gotelli 2001).
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However, the number of breeders is not simply Nsa and Na counted in time step t – 1;
these individuals must survive a long period of time (almost a full year) until the birth
pulse in time step t – 1 occurs. In other words, not all of the subadults and adults counted
in year t – 1 will survive to the birth pulse and produce offspring that will be counted
as hatchlings in year t. Thus, we need to discount the fecundity, b(i), by the probability
that an individual will actually survive from the time they were censused to the time
they breed (Gotelli 2001). These adjusted estimates are used in matrix models and are
commonly called fertilities (often defined as realized reproduction), designated by the
letter F. (Be aware that various authors use the terms fertility and fecundity in differ-
ent ways.) The adjustment is necessary to account for “lags” between the census and
the timing of births. 

These adjustments are a bit trickier for stage-based than for age-based models because
both kinds of survival probabilities (Pi,i+1 and Pi,i) come into play. For example, suppose
we want to compute the fertility rate of subadults, Fsa that were censused in year t. We
need to ask, “How many offspring are produced, on average, per subadult censused
in year t?” To answer this question, we need to know how many subadults were counted
during the census for year t, how many of those individuals survived to the birth pulse
in the same time step, and the total number of young produced by those individuals.
Keeping in mind that the graduation day is the same day as the birth pulse, the young
produced by the breeding individuals comes from two sources: (1) those subadults that
survived to the birth pulse and reproduced at the rate of subadults (bi × Pi,i), and (2)
those subadults that survived to the birth pulse and graduated to adulthood and repro-
duced as adults (bi+1 × Pi,i+1). Accordingly, we can compute the fertility rate as

Fi = (bi × Pi,i) + (bi+i × Pi,i+1) Equation 4

Thus, Fi indicates the number of young that are produced per female of stage i in year
t, given the appropriate adjustments (Caswell 2001). The total number of individuals
counted in stage 1 (newborns or hatchlings) in year t + 1 is simply the fertility rate of
each age class, multiplied by the number of individuals in that size class at time t,
plus any individuals that remained in the first size class from one time step to the next.
Generally speaking, 

Equation 5

Once we know the fertility and survivorship coefficients for each age class, we can cal-
culate the number of individuals in each age at time t + 1, given the number of indi-
viduals in each class at time t (Gotelli 2001):

n t P n t F n ti i
i
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1 1 1 1
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=
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Census:   Census: Census:
time t – 1 time t time t +1

n h

n sj
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n sa

n a

n h
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n a
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n sj

n lj

n sa

n a

Figure 2 In this population, subadults (sa) and adults (a) can reproduce, repre-
sented by the dashed arrows that lead to the first class in the next time step. Births
occur in a birth pulse (indicated by the filled circle and vertical line) and individu-
als are censused postbreeding (i.e., immediately after the young are born). (After
Akçakaya et al. 1997.)



nh(t + 1) = Ph,hnh(t) + Fsj,hnsj(t) + Flj,hnlj(t) + Fsa,hnsa(t) + Fa,hna(t)

nsj(t + 1) = Psj,sjnsj(t) + Ph,sjnh(t)

nlj(t + 1) = Plj,ljnlj(t) + Psj,ljnsj(t) Equation 6

nsa(t + 1) = Psa,sansa(t) + Plj,sanlj(t)

na(t + 1) = Pa,ana(t) + Psa,ansa(t)

Equation 6 can be converted into a matrix form. A matrix is a rectangular array of num-
bers and symbols, designated by a bold-faced letter. Matrices that describe populations
with stage or size structure are often called Lefkovitch matrices, after biologist L. P.
Lefkovitch (1965).

Since our population has only five classes, the matrix, denoted by the letter L, is a five-
row × five-column matrix. The fertility rates are given in the top row. The survival prob-
abilities, Pi,i+1, are given in the subdiagonal, which represent the survival from one class
to the next. For example, Psj,lj is the probability of small juveniles will become large
juveniles in year t + 1. The survival probabilities, Pi,i, are given in the diagonal, which
represent the probability that an individual in a given class will survive, but will remain
in the same class in year t + 1. The upper left entry in the L matrix gives the probabil-
ity that a hatchling will remain a hatchling. If hatchlings could reproduce, we would
add Fh,h to Ph,h for this matrix entry. Note that the Pi,i + Pi,i+1,gives the total rate of sur-
vival for individuals in a particular stage.

Vectors and Matrix Multiplication
The composition of our population can be expressed as a column vector, n(t), which
is a matrix that consists of a single column. Our column vector will consist of the num-
ber of individuals in the newborn, small juvenile, large juvenile, subadult, and adult
classes. When the Leftkovitch matrix, L, is multiplied by the population vector, n(t),
the result is another population vector (which also consists of 1 column); this vector is
called the resultant vector and provides information on how many individuals are in
each size class in year t + 1. 

Multiplying each element in first row of the L matrix by the corresponding element
in the n vector, and then repeating the process for the remaining elements in the first
row and summing the products together generate the first entry in the resultant vector.
In other words, the first entry in the first row of the L matrix is multiplied by the first
entry in n vector, plus the second entry in the first row of the L matrix by the second
entry in the n vector, and so on. In the example below, a 4 × 4 matrix on the left is mul-
tiplied by column vector (center). The resultant vector is on the right-hand side of the
equation (note that summing the components would compress this vector to a single
column).  

Equation 7
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Rearranging the matrices so that the resultant vector is on the left, we can compute the
population size at time t + 1 by multiplying the Leftkovitch matrix by the population
vector at time t:

Equation 8

For example, assume that you have been following a population that consists of 45
newborns, 18 small juveniles, 56 large juveniles, 10 subadults, and 8 adults. The ini-
tial vector of abundances is written

Assume that the Leftkovitch matrix for this population is

The number of newborns, small juveniles, large juveniles, subadults, and adults in year
t + 1 (rounded) would be computed as

Upon inspection, you will see that the Lefkovitch matrix computes population num-
bers in year t + 1 in the manner of Equation 6. For this population, the time-specific
growth rate is

The Lefkovitch matrix not only allows you to calculate λt (by summing the total num-
ber of individuals in the population at time t + 1 and dividing this number by the total
individuals in the population at time t), but also lets you evaluate how the composi-
tion of the population changes from one time step to the next. If you continued pro-
jecting the population dynamics into the future, you would be able to ascertain how the
population “behaves” if the present conditions (P’s and F’s) were to be maintained indef-
initely (Caswell 2001). Continued multiplication of a vector of abundance by the
Lefkovitch matrix eventually produces a population with a stable size or stable stage
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distribution, where the proportion of individuals in each stage remains constant over
time, and there is a stable (unchanging) finite rate of increase, λt. When the λt’s converge
to a constant value, this constant is an estimate of λ in Equation 1, and is called the
asymptotic growth rate. At this point, if the population is growing or declining, all stage
classes grow or decline at the same rate, even if the numbers of individuals in each class
are different. You will see how this happens as you work through the exercise. 

PROCEDURES

In this exercise, you will develop a stage-based model for sea turtles (Caretta caretta).
In this population, the size stages are hatchlings (h), small juveniles (sj), large juveniles
(lj), subadults (sa), adults (a). Turtles are counted every year in a postbreeding census,
where the numbers of individuals in each stage class are tallied.

As always, save your work frequently to disk.

ANNOTATION

These are the matrix values derived by Crowder et al.1994. For example, the value
in cell B5 is the probability that a hatchling in year t will become a small juvenile in
year t + 1.

INSTRUCTIONS

A. Set up the model pop-
ulation.

1. Open a new spreadsheet
and enter column head-
ings as shown in Figure 3.

2. Enter the values shown
in cells B4–F8. Write your
interpretation of what
each cell value means in
the chart.
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1
2
3
4
5
6
7
8

A B C D E F G H
Stage-Structured Matrix Models Initial

Five-stage matrix model of the loggerhead sea turtle population 

F (h ) F (sj ) F (lj ) F (sa ) F (a ) vector

0 0 0 4.665 61.896 2000

0.675 0.703 0 0 0 500

0 0.047 0.657 0 0 300

0 0 0.019 0.682 0 300

0 0 0 0.061 0.8091 1

Figure 3

B4:

C4:

D4:

E4:

F4:

B5:

C5:

C6:

D6:

D7:

E7:

E8:

F8:



These values make up the initial population vector, or how many individuals of each
stage are currently in the population. 

Enter 0 in cell A11. 
Enter the formula =A11+1 in cell A12. Copy this formula down to cell A111 to simulate
100 years of population growth.
(You can generate the λ symbol by typing in the letter l, then select this letter in the for-
mula bar and change its font to Symbol.)

Enter the formula =H4 in cell B11 to indicate that at year 0, the population consists of
2000 hatchlings. Enter a similar formula in cells C11–F11 to link the initial population
vector with the proper stages.

• Cell C11 =H5
• Cell D11 =H6
• Cell E11 =H7
• Cell F11 =H8

Enter the formula =SUM(B11:F11) in cell G11.

Enter the formula = G12/G11 in cell H11.
Remember that λt can be computed as Nt+1/Nt. Your result will not make sense until
you compute the total population size for year 1.

We will use matrix multiplication to project the population size and structure at year
1. Multiply your matrix of fecundities and survival values by your initial vector of abun-
dances (given in year 0, row 11). The result will be the number of individuals in the
next generation that are hatchlings, small juveniles, large juveniles, subadults, and
adults. Recall how matrices are multiplied: The L matrix is located on the left, and is
multiplied by the initial vector of abundances (v). The result is a new vector of abun-
dances for the year t + 1. Refer to Equations 7 and 8. (Equation 7  is a 4 × 4 matrix;
you will carry out the multiplication for a 5 × 5 matrix.)

Enter the formula =$B$4*B11+$C$4*C11+$D$4*D11+$E$4*E11+$F$4*F11 in cell B12.
Make sure you refer to the initial abundances listed in row 11 in your formula, rather
than the initial abundances listed in column H. 

We used the following formulae:
• Cell C12 =$B$5*B11+$C$5*C11+$D$5*D11+$E$5*E11+$F$5*F11
• Cell D12 =$B$6*B11+$C$6*C11+$D$6*D11+$E$6*E11+$F$6*F11
• Cell E12 =$B$7*B11+$C$7*C11+$D$7*D11+$E$7*E11+$F$7*F11
• Cell F12 =$B$8*B11+$C$8*C11+$D$8*D11+$E$8*E11+$F$8*F11

3. Enter the values shown
in cells H4–H8.

4. Set up new column
headings as shown in
Figure 4 and set up a lin-
ear series in column A that
will track abundances of
individuals for 100 years.

5. Link the initial vector
abundances to the appro-
priate cells in B11–F11.

6. In cell G11, use the
SUM function to obtain
the total population size
for year 0.

7. In cell H11, enter a for-
mula to compute λt.

8. Save your work.

B. Project the popula-
tion sizes over time.

1. Enter a formula in cell
B12 to obtain the number
of hatchlings in year 1. 

2. Enter formulae in cells
C12–F12 to obtain the
number of small juveniles,
large juveniles, subadults,
and adults in year 1. 
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0

1

Figure 4



Enter the formula =SUM(B12:F12) in cell G12.

Copy cell H11 into H12. When λt = 1, the population remained constant in size. When
λt < 1, the population declined, and when λt >1, the population increased in numbers. 

This will complete a 100-year simulation of stage-structured population growth. Click
on a few random cells and make sure you can interpret the formulae and how they
work.

Use the line graph option and label your axes fully. Your graph should resemble Fig-
ure 5.

To adjust the scale of the y-axis, double click on the values in the y-axis. You’ll see the
dialog box in Figure 6 on the facing page. Click on the Logarithmic scale box in the lower
part of the dialog box. Your scale will be automatically adjusted. 

3. In cell G12, use the
SUM function to sum the
individuals in the different
stages.

4. In cell H12, calculate
the time-specific growth
rate, λt.

5. Select cells B12–H12,
and copy the formulae
down to cells B111–H111.

6. Save your work.

C. Create graphs.

1. Graph your population
abundances for all stages
over time.

2. Copy the graph in
Figure 5. Change the y-
axis to a log scale.
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Your graph should resemble Figure 7. It is sometimes easier to interpret your popula-
tion projections with a log scale.

3. Save your work.
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QUESTIONS
1. What are the assumptions of the model you have built? 

2. At what point in the 100-year simulation does λt not change (or change very lit-
tle) from year to year? This constant is an estimate of the asymptotic growth
rate, λ, from Equation 1. What value is λ? Given this value of λ, how would
you describe population growth of the sea turtle population? 

3. What is the composition of the population (proportion of individuals that are
hatchlings, small juveniles, large juveniles, subadults, and adults) when the
population has reached a stable distribution? Set up the headings shown below.
In the cell below the Hatchlings cell (cell I11) enter a formula to calculate the
proportion of the total population in year 100 that consists of hatchlings
(assuming λt has stabilized by year 100). Enter formulae to compute the propor-
tions of the remaining stage classes in cells below the other stage-class head-
ings. The five proportions calculated should sum to 1, and give the stable stage
distribution.

4. How does the initial population vector affect λ and the stable age distribution?
How does it affect λt and the stage distribution prior to stabilization? Change
the initial vector of abundances so that the population consists of 75 hatchlings,
and 1 individual in each of the remaining stage classes. Graph and interpret
your results. Do your results have any management implications?

5. One of the threats to the loggerhead sea turtle is accidental capture and drown-
ing in shrimp trawls. One way to prevent this occurrence is to install escape
hatches in shrimp trawl nets. These “turtle exclusion devices” (TEDS) can dras-
tically reduce the mortality of larger turtles. The following matrix shows what
might happen to the stage matrix if TEDS were widely installed in existing
trawl nets:

If the initial abundance is 100,000 turtles, distributed among stages at 30,000 hatch-
lings, 50,000 small juveniles, 18,000 large juveniles, and 2,000 subadults, and 1
adult, how does the use of TEDS influence population dynamics? Provide a graph
and discuss your answer in terms of population size, structure, and growth.
Discuss how the use of TEDS affects the F and P parameters in the Lefkovitch
matrix.

6. Another important source of mortality for most marine turtles occurs in the
very beginning of their lives, between the time the eggs are laid in a nest in the
beach, and the time they hatch and are able to reach a safe distance into the sea.
Most turtle conservation efforts in the past have concentrated on enhancing egg
survival by protecting nests on beaches or removing eggs to protected hatch-
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Hatchlings Small juvs Large juvs Subadults Adults

Proportion of individuals in class

0 0 0 5 448 69 39
675 703 0 0 0
0 047 767 0 0
0 0 022 765 0
0 0 0 0 068 876
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eries. If TEDS are not used, how much must fertilities increase in order to pro-
duce the population dynamics that would have been achieved with TEDS?

*7. (Advanced) Add stochasticity to the model by letting the Pi’s, and Fi’s vary sto-
chastically with each time step. 
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REPRODUCTIVE VALUE: 
MATRIX APPROACH15
Objectives

• Develop a Leslie matrix population growth model.
• Calculate reproductive values from the matrix model with

the “inoculate” method.
• Calculate reproductive values from the matrix model with

the “transpose vector” method.
• Evaluate how life history strategy affects reproductive 

values.

Suggested Preliminary Exercise: Age-Structured Matrix Models

INTRODUCTION
A basic premise in ecology and evolution is that not all individuals are created
equal. In ecology, some individuals in a population are more “valuable” than oth-
ers in terms of the number of offspring they are expected to produce over their
remaining lifespan. Take, for example, a hypothetical population that consists of
newborns, reproductively active 1-year-olds, reproductively active 2-year-olds,
and postreproductive 3-year-olds. Which individuals are likely to produce the
greatest number of offspring in the future? 

If our population consisted solely of postreproductive individuals, it would
go extinct because they are too old to reproduce. Clearly, this age class is not the
most valuable in terms of future offspring production. Newborns may be valuable
to the population in terms of future offspring because, although they cannot repro-
duce right now, they have their entire reproductive life ahead of them. However,
they must survive to a reproductive age, and their value right now may be low if
their chances of making it to a reproductive age in the future are slim. The 1-
year-olds are valuable because they have already “made it” to the age of repro-
duction and are producing young. They may even be more valuable than the 2-
year-olds because 2-year-olds are in their final year of breeding. But they may be
less valuable than 2-year-olds if they have a slim chance of surviving to a second
year and/or if they produce fewer offspring than the 2-year-olds.

Biologists are often interested in knowing the value of the different individuals
from a practical standpoint because this information can suggest which individu-
als should be harvested, killed, transplanted, and so forth from a conservation or
wildlife management perspective. For example, assuming the numbers of indi-



viduals in each age or stage class were equal, if you were trying to eliminate or control
a pest species, you would attempt to kill individuals with the highest value because those
individuals affect future population size more than any other age group. Conversely, if
you were trying to save a threatened species by introducing it into a new area, you would
want to “inoculate” the area with individuals of the highest value because those indi-
viduals will allow more rapid establishment of a population than other individuals. 

An individual’s potential for contributing offspring to future generations is called
its reproductive value. R. A. Fisher introduced the concept of reproductive value in
1930, and defined it as the number of future offspring expected to be produced by an
individual of age x over its remaining life span, adjusted by the growth rate of the pop-
ulation. Why the adjustment? To Fisher, the expected number of future offspring was-
n’t quite the same thing as the “value” of those offspring. Fisher treated offspring like
money. If the economy is growing, a dollar received today is worth more than a dol-
lar received next week, because that same dollar will be “diluted” by all the extra money
around next week, and even more so in the following year. Similarly, if the popula-
tion size is changing, the value of future individuals depends on whether the popula-
tion is increasing, decreasing, or remaining constant over time. The value of each off-
spring produced by individuals in the future is diluted when the population is
increasing (i.e., when the finite rate of increase, λ, is greater than 1), and the value of
each offspring is increased when the population is decreasing (λ < 1). When the pop-
ulation remains constant over time (λ = 1), no adjustments are needed. (Refer to the
next exercise, “Reproductive Value: Life Table Approach,” for more details.) To make
these adjustments, we divide the expected number of future offspring by the amount
the population will have grown or declined when those offspring are produced. The
discrete-time version of Fisher’s formula to compute vi, the reproductive value of an
individual of age i, is

Equation 1

This equation is not so daunting as it might at first appear. Recall that Fj is the fertility
of an individual in age class j, and Ph is the probability that an individual in age class
h will survive to age class h + 1. The Σ symbol indicates that we are summing values
starting with the current age class of our individual (i) and going up to the oldest age
class (s). Thus, if we are calculating the reproductive value of an individual in age class
2 (i = 2), and this species has four age classes (s = 4), there will be only three values of
j to consider in the summation (j = 2, j = 3, and j = 4). Using these values for i, s, and j,
we can expand Equation 1 as follows: 

The Π symbol is a shorthand for repeated multiplication in the same way that the Σ
symbol is a shorthand for repeated addition. For example,
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Note that in the first product of our expanded expression for v2 (when j = 2), h goes
from 2 to 1—a step backwards. In this case, we just consider the product to be equal
to 1. We can now complete our expansion of Equation 1 for v2:

Translating this equation into English, the reproductive value of an individual in age
class 2 is its fertility at age class 2 adjusted for one year’s population change (F2λ

–1) plus
its fertility at age class 3 adjusted for the probability that it will survive age class 2
and for two years’ population change (P2F3λ

–2) plus its fertility at age class 4 adjusted
for the probability that it will survive age classes 2 and 3 and for three years’ popula-
tion change (P2P3F4λ

–3). 
As Caswell (2001) states, “The amount of future reproduction, the probability of sur-

viving to realize it, and the time required for the offspring to be produced all enter into
the reproductive value of a given age or stage class. Typical reproductive values are low
at birth, increase to a peak near the age of first reproduction, and then decline.” Individ-
uals that are postreproductive have a reproductive value of 0 since their contribution to
future population growth is 0. Newborns also might have low reproductive value because
they may have several years of living (and hence mortality risk) before they can start
producing offspring. In this exercise, you will calculate reproductive value with matrix
calculations. We will begin with a brief review of the major Leslie matrix calculations, and
then discuss the reproductive value computations.

Leslie Matrix Calculations
You might recall that an age-based (Leslie) matrix has the form

Equation 2

The matrix shown is a 4 × 4 square, which indicates that there are four age classes under
consideration. The fertility rates of age classes 1 through 4 are given in the top row. The
survival probabilities, P, are given in the subdiagonal; P1 through P3 are survival prob-
abilities from one age class to the next. For example, P1 is the probability of individu-
als surviving from age class 1 to age class 2. All other entries in the Leslie matrix are 0.

The composition of our population can be expressed as a column vector, n(t), which
is a matrix that consists of a single column. Our column vector will consist of the num-
ber of individuals in age classes 1, 2, 3, and 4. When the Leslie matrix, A, is multiplied
by the population vector, n(t), the result is another population vector (which also con-
sists of one column); this vector is called the resultant vector and provides information
on how many individuals are in age classes 1, 2, 3, and 4 in year t + 1. The new result-
ant vector is then multiplied by the Leslie matrix to generate the vector of abundances
in the next time step. When this process is repeated over time, eventually the popula-
tion reaches a stable age distribution, in which the proportion of individuals in each age
class remains constant over time.

Equation 3

There are two ways to examine reproductive value with matrices. One way is what
we call the inoculate method (Case 2000). In this method, assume that a number of indi-
viduals can be introduced into a completely empty habitat. Should you introduce (inoc-
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ulate) the habitat with individuals from age class 1, 2, 3, or 4? This approach answers
the question “Which age class will  produce the largest population size after the population
has reached a stable distribution?” The answer is the age class with the highest reproduc-
tive value. For example, suppose a population has a Leslie matrix with fertilities and
survival probabilities as shown in Figure 1. If the habitat was inoculated with 200 indi-
viduals from age class 1, the vector of abundances would be 200 individuals from age
class 1 and 0 individuals for age classes 2, 3, and 4. 

We then determine the long-term (asymptotic) λ by running the matrix model until
the population has reached a stable distribution. We could repeat the process with a dif-
ferent inoculate, say 200 individuals in age class 2, and 0 individuals in age classes 1, 3,
and 4. Although the asymptotic λ will be the same, we can compare the overall size of
the population to determine the reproductive value of each age class. The age class
“seed” with the highest reproductive value will generate the largest population size. We
used this method to generate a hypothetical example in Figure 2, where numbers of indi-
viduals were tracked over 10 years for different kinds of inoculates. Age class 1 has the
highest reproductive value, followed closely by age class 2.

The inoculate method demonstrates clearly the concept of reproductive value, but it is
not usually used to calculate reproductive value. A faster way to calculate reproductive
value involves transposing the Leslie matrix vector and then calculating the proportion
of the population that consists of age classes 1, 2, 3, and 4 when the population has
reached a stable distribution. This method generates reproductive values very quickly.
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Think back once again to your Leslie matrix exercise and how you computed the sta-
ble age distribution. You ran your model until λt stabilized over time, and computed the
proportion of the population that consisted of each age class. These proportions can be
written as a vector, w. This vector is called a right eigenvector of the matrix A. For exam-
ple, the w vector for a population that consists of four age classes might be 

which indicates that when the population growth rate (λt) has stabilized, 70% of the
total population consists of individuals from age class 1, 20% of the total population
consists of individuals from age class 2, 5% of the total population consists of individ-
uals from age class 3, and 5% consists of individuals from age class 4. Thus, the right
eigenvector (w) of the matrix A reveals the stable-age distribution of the population.

In contrast to the right eigenvector, the left eigenvector (v) of the matrix A reveals
the reproductive value for each class in the matrix model (Caswell 2001). The simplest
way to compute v for the A matrix is to transpose the A matrix (we call the transposed
matrix AT), run the model until the population reaches a stable distribution, and then
record the proportions of individuals that make up each class as you did with your orig-
inal Leslie matrix model. Transposing a matrix simply means switching the columns
and rows around—make the rows columns and the columns rows, as in Figure 3. 

When λt has stabilized for the transposed matrix, AT, the right eigenvector of AT gives
the reproductive values for each class. This same vector is called the left eigenvector
for the original matrix, A. (Yes, it is confusing!) A left eigenvector, v, for a hypothetical
population with four age classes is written as a row vector:

Note that the values sum to 1. This vector gives, in order, the reproductive values of
age classes 1, 2, 3, and 4. In this hypothetical population, individuals in age class 4 have
the greatest reproductive value, followed by individuals in age class 3. The first two
age classes have very small reproductive values. Frequently, the reproductive value is
standardized so that the first stage or age class has a reproductive value of 1. We can
standardize the v vector above by dividing each entry by the reproductive value of the
first age class. Our standardized vector would look like this:

In this example, an individual in age class 4 is 70 times more “valuable” to the popula-
tion in terms of (adjusted) future offspring production than an individual in age class 1. 
Let’s now go back and consider how Fisher’s computation of reproductive value (Equa-
tion 1) was derived. Recall that Equation 1 computes vi, the reproductive value of an
individual currently in age class i:

v = 
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Since our computations for reproductive value assume that λt has stabilized, multi-
plying v, the vector with reproductive values of each age class, by the original Leslie
matrix, A,

Expression 1a

is the same thing as multiplying v by λ:

Expression 1b

To multiply a matrix or vector by a single value, simply multiply each element of the
matrix or vector by that value. Thus, Expression 1b is equal to the vector (λv1  λv2  λv3
λv4). Let’s assume that reproductive values are standardized such that the reproduc-
tive value of age class 1 is 1 (v1 = 1). Since Expression 1a is equal to Expression 1b, we
can write

Expression 1c

Expression 1d

Expression 1e

Expression 1f

Now let’s solve for v1 in terms of only F’s, P’s and λ to see how these four equations
are equivalent to Equation 1. Starting with Expression 1f (and recalling that 1/λ =
λ–1), we can compute v4 as

Expression 1g

Now let’s plug Expression 1g back into Expression 1e:

Expression 1h

Now let’s plug Expression 1h back into Expression 1d:

Expression 1i

Note that Expression 1i is the expansion of Equation 1 that we worked out earlier for
i = 2 and s = 4. Finally, substituting Expression 1i into Expression 1c gives:
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which is the expansion of Equation 1 when i = 1 and s = 4:

PROCEDURES

In this exercise, you’ll learn how to calculate the reproductive value of different indi-
viduals in a population. You will then be able to alter the Leslie matrix to reflect dif-
ferent life history schedules, and determine how such changes affect the reproductive
value of different age classes. As always, save your work frequently to disk.

ANNOTATION

Describe each cell’s entry in the space below:
D5 _____________________________________________________
E5 _____________________________________________________
B6 _____________________________________________________
C7 _____________________________________________________
D8 _____________________________________________________

Enter the value 0 in cell A12. 
In cell A13, enter =A12+1.
Copy your formula down to cell A62.
This will track the growth of our age-structured population for 50 years. 
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INSTRUCTIONS

A. Set up a Leslie
matrix.

1. Open a new spreadsheet
and set up headings as
shown in Figure 4.

2. Complete the entries in
the Leslie matrix in cells
B5–E8. 

3. Enter the vector of
abundances shown in cells
G5–G8. 

4. Set up a linear series
from 0 to 50 in cells
A12–A62. 
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Enter the formulae
• B12 =G5
• C12 =G6
• D12 =G7
• E12 =G8

Enter the formula =SUM(B12:E12).

Enter the following formulae:
• B13 =$B$5*B12+$C$5*C12+$D$5*D12+$E$5*E12
• C13 =$B$6*B12+$C$6*C12+$D$6*D12+$E$6*E12
• D13 =$B$7*B12+$C$7*C12+$D$7*D12+$E$7*E12
• E13 =$B$8*B12+$C$8*C12+$D$8*D12+$E$8*E12

Enter the formula =F13/F12.

This completes your 50-year projection. Your spreadsheet should look like the one in
Figure 5.

Use a semi-log graph and the line graph option, and label your axes fully. The result-
ing graph should resemble Figure 6. (You may wish to not use a semi-log graph because
the spreadsheeet will generate a message, “zero values cannot be plotted correctly on
log charts.” This message will appear frequently if you choose to use a semi-log graph
where some entries are 0.)

Now we are ready to compute the reproductive values using a matrix approach. There
are two ways to generate reproductive values from matrices, the “inoculation” approach
and the “transpose vector” approach. We’ll start with the inoculation approach. To get
an idea of what reproductive value means, we’ll inoculate our population with 200 indi-
viduals from age class 1 (the other age classes will have 0 individuals), and then record

5. Enter formulae in cells
B12–E12 that link abun-
dance at time 0 to the ini-
tial vector of abundances. 

6. Calculate the total pop-
ulation size in Year 0 in
cell F12. Copy your for-
mula down one row.

7. Enter formulae in cells
B13–E13 to project popula-
tion growth for Year 1. 

8. Calculate lambda, λ, as
Nt+1/Nt in cell G12. Copy
this formula down to cell
G13.

9. Select cells B13:G13, and
copy their formulae down
to row 62.

10. Graph population
growth over time (graph
the first 10 years).

11. Save your work.

B. Calculate the repro-
ductive value: Inoculate
method.
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the total population size over 50 years of time in cells I12–I62 (Figure 7). We’ll also record
final population size at year 50 in cell J5. We’ll repeat the process for inoculate of the
remaining age classes. For example, for age class 2, our inoculate will consist of 200 indi-
viduals of age class 2 (the other age classes will have 0 individuals). We’ll record the total
population size over 50 years of growth in cells J12–J62. We’ll record the final popula-
tion size at Year 50 in cell J6. The process will be repeated for age classes 3 and 4.

First we’ll inoculate our population with 200 individuals from age class 1. Your pro-
jections should be automatically updated. If not, make sure that your Calculation set-
ting is set to automatic (Tools | Options | Calculation). 

Use the Paste Special option and paste the values. 
By copying the total population size with an inoculate of age class 0, we can determine
how “fast” the population grows relative to other kinds of inoculates. 

Cell F62 gives the total population size at Year 50 when our inoculate consists of 200
individuals from age class 1. 

Your finished spreadsheet should look like Figure 8.

1. Set up new headings as
shown in Figure 7.

2. Set cell G5 to 200, and
the other vector elements
in cells G6–G8 to 0. 

3. Copy cells F12 to F62
into cells I12 and down.

4. Select cell F62; copy and
paste its value into cell J5.

5. Repeat steps 2-4 for the
remaining age class inocu-
lates and enter results into
appropriate cells. 
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Use the line graph option and label your axes. Your graph should resemble Figure 9.

Interpret your graph. Which age class inoculate generated the largest population size
after 10 years? 

Now we can compute reproductive values. As mentioned in the Introduction, repro-
ductive values can be scaled so that the reproductive value of the first age class is 1.
The formula =J5/$J$5 does this scaling. We set cell K5 = 1, then the reproductive val-
ues indicate the value of each age class compared to age class 1 (Figure 10).

6. Graph population
growth from year 0 to year
10 for each of the inocu-
lates.

7. Enter the formula
=J5/$J$5 in cell K5; copy
your formula down to cell
K8. Interpret your results.

8. Save your work.
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The second method for computing reproductive values using a matrix approach is
the transpose vector approach. It is perhaps quicker than the first approach, and is
the method commonly used to compute reproductive values with matrices (Caswell
2001). 

The first step is to transpose your Leslie matrix by inverting the rows and columns. For
example, if your Leslie matrix has the form

then the transposed matrix is

Select cells A3–G12 and open Edit | Copy. Select cell N3 and paste the cells. 
Modify the heading in row 3 to read “Transposed Leslie Matrix.”

The TRANSPOSE formula is an array formula because it is entered into a block of cells
rather than a single cell. You may want to review the mechanics of working with an
array formula, described on pages 10–11.

Select cells O5–R8 with your mouse. Use the fx key to select the TRANSPOSE func-
tion. The dialog box will ask you to define an array that you wish to transpose. Use
your mouse to highlight cells B5–E8, or enter this by hand. Instead of clicking OK, press
<Control><Shift><Enter> (or  <Enter>) and the function will return your transposed
matrix.

Once you’ve obtained your results, examine the formulae in cells O5–R8. This formula
should read {=TRANSPOSE(B5:E8)}. (Remember that the { } symbols indicate the for-
mula is part of an array. If for some reason you get “stuck” in an array formula, press
the <Escape> key and start over.) Your spreadsheet should now look like Figure 11.

1 6 0 8 0 0
1 5 0 0 5 0
0 25 0 0 0 25

0 0 0 0

. .

. .
. .



















1 6 1 5 0 25 0
0 8 0 0 0
0 0 5 0 0
0 0 0 25 0

. . .

.
.
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C. Calculate the repro-
ductive value: Transpose
vector method.

1. Modify the spreadsheet
from section A. 

2. Set up a linear series
from 0 to 50 in cells
N12–N62. 

3. Select cells O5–R8, and
use the TRANSPOSE
function to transpose the
original Leslie matrix
(cells B5–E8).
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In cell T12 enter the equation =S13/S12 to compute λ.

Enter the formulae
• O13 =$O$5*O12+$P$5*P12+$Q$5*Q12+$R$5*R12
• P13 =$O$6*O12+$P$6*P12+$Q$6*Q12+$R$6*R12
• Q13 =$O$7*O12+$P$7*P12+$Q$7*Q12+$R$7*R12
• R13 =$O$8*O12+$P$8*P12+$Q$8*Q12+$R$8*R12

At this point, your population projection should show the same λ values as before. If
λ is not the same value, you made a mistake somewhere. 

Enter the formula =O62/$S$62 in cell L5. The result should be the unstandardized repro-
ductive value for individuals in age class 1. 

Enter the formulae
• L6 =P62/$S$62
• L7 =Q62/$S$62
• L8 =R62/$S$62

The results are your reproductive values.

Once again we need to standardize so that the reproductive value for the first age class
is equal to 1. By dividing each value by the value in the first age class, you will set age
class 1 to a value of 1, so that the reproductive values of the remaining age classes indi-
cate the reproductive value of a particular class compared to age class 1. We used the
following formula:

• M5 =L5/$L$5
• M6 =L6/$L$5
• M7 =L7/$L$5
• M8 =L8/$L$5

Your results should match the values obtained with the inoculate method, and your
spreadsheet should resemble Figure 12.

Use the column graph option and label your axes fully. Your graph should resemble
Figure 13.

4. Compute λ in cell T12.

5. Enter formulae to proj-
ect the population over
time in cells O13–R13, as
you did in Part A. 

6. Copy cells O13–T13
down to row 62 to com-
plete the projection.

7. Calculate the proportion
of individuals in age class
1 after 50 years of popula-
tion growth in cell L5.

8. Compute the reproduc-
tive values for the other
age classes in cells L6–L8.

9. Compute the standard-
ized reproductive values
in cells M5–M8.

10. Save your work.

D. Create graphs.

1. Graph the reproductive
values for the various age
classes.
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QUESTIONS

1. Interpret the graph from the inoculate method. In what way does the graph
show the reproductive values for the various age classes?

2. Interpret the reproductive values from your models from the standpoint of con-
servation of a game species whose populations are harvested and maintained at
a high level, versus a pest species whose populations you would like to reduce
or eliminate, versus a threatened species that is being reintroduced to an area.
For each situation, which actions would you recommend based on your knowl-
edge of reproductive values (e.g., which age class should be harvested; which
age class should be reintroduced?) Does it matter how abundant each age class
is when the population stabilizes?

3. Change the Leslie matrix to reflect a population with a Type I survival curve.
Compare the reproductive value of the different age classes with a Type I sur-
vival schedule versus the original schedule (which was a Type II curve). Use the
transpose method to assess reproductive value because your results will auto-
matically be calculated. 

4. Change the Leslie matrix to reflect a population with a Type III survival curve.
Compare the reproductive value of the different age classes with a Type I and
Type II schedule. Use the transpose method to assess reproductive value
because your results will automatically be calculated.

5. Find the life history schedule of an organism of interest to you and enter Leslie
matrix parameters to the best of your knowledge. How do small changes in dif-
ferent matrix elements affect reproductive value? How might the environment
in which your organism resides help shape its life history?
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REPRODUCTIVE VALUE: 
LIFE TABLE APPROACH16
Objectives

• Perform standard life table calculations on a hypothetical
data set.

• Compute the stable age distribution and reproductive val-
ues for individuals of age x from life table data.

• Evaluate how life history strategy affects reproductive values.

Suggested Preliminary Exercise: Life Tables and Survivorship
Curves; Reproductive Value: Matrix Approach

INTRODUCTION
As we discussed in the previous exercise, the idea that different individuals have
different “value” in terms of their contribution to future generations is called their
reproductive value (Fisher 1930). As Caswell (2001) states, “The amount of future
reproduction, the probability of surviving to realize it, and the time required for
the offspring to be produced all enter into the reproductive value of an age-class.” 

The reproductive value of an individual of age x is designated at Vx, and is the
number of offspring that an individual is expected to produce over its remaining
life span (after adjusting for the growth rate of the population). Biologists are often
interested in knowing the “value” of the different individuals from a practical
standpoint because knowing something about the reproductive value can suggest
which individuals should be harvested, killed, transplanted, etc. from a conser-
vation or management perspective

The reproductive value of different ages is strongly tied to an organism’s life
history. Typically, reproductive value is low at birth, increases to a peak near the
age of first reproduction, and then declines (Caswell 2001). In this exercise, you
will calculate reproductive value of individuals of various ages from life table cal-
culations. We will start with a brief review of the major calculations in the life table,
and then move on to the calculations and explanations of reproductive value. We
will then modify the life history schedule of organisms to compare how repro-
ductive value changes under different life history scenarios.

Life Table Calculations
A typical life table is shown in Figure 1. If we were to build a cohort life table for
a population born during the year 1900, we would record how many individu-
als were born during the year 1900, and how many survived to the beginning of
1901, 1902, etc., until there were no more survivors. This record is called the sur-

 



vivorship schedule, or Sx. We would also record the fecundity schedule: the number
of offspring born to members of each age class. The total number of offspring is usu-
ally divided by the number of individuals in the age class, giving the average number
of offspring per individual, which is represented by bx. The survivorship and fecun-
dity schedules are the raw data of a life table. From these data, age-specific rates of sur-
vival, life expectancy, generation time, and net reproductive rate can be calculated.

You might recall that lx is the proportion of original numbers surviving to the begin-
ning of each interval, and is calculated as 

Equation 1

We can also think of lx as the probability that an individual survives from birth to the
beginning of age-class x. Column E in Figure 1 is simply lx multiplied by bx, and Col-
umn F is simply lx times bx times x (the age class). The sum of Column E generates R0,
the net reproductive rate, which can be written mathematically as

Equation 2

The net reproductive rate is the lifetime reproductive potential of the average female,
adjusted for mortality. Assuming mortality and fertility schedules remain constant over
time, if R0 > 1, then the population will grow exponentially. If R0 < 1, the population
will shrink exponentially, and if R0 = 1, the population size will not change over time.
You might recall from the life table exercise that R0 measures population change in terms
of generation time. To convert R0 into an intrinsic rate of increase (r) or finite rate of
increase (λ), we must first calculate generation time, and then adjust R0 accordingly.

R l bx x
x

k

0
0

=
=
∑

l
S
Sx

x=
0
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Cohort Life Table: Fecundity Schedule and Population Growth

Age class (x ) S x b x l x (l x )(b x ) (l x )(b x )(x ) (e ^-rx )(l x )(b x )

0 3751 0.00 1.0000 0.0000 0.0000 0.0000

1 357 10.51 0.0952 1.0003 1.0003 1.0002

2 159 0.00 0.0424 0.0000 0.0000 0.0000

3 59 0.00 0.0157 0.0000 0.0000 0.0000

4 57 0.00 0.0152 0.0000 0.0000 0.0000

5 53 0.00 0.0141 0.0000 0.0000 0.0000

6 29 0.00 0.0077 0.0000 0.0000 0.0000

7 19 0.00 0.0051 0.0000 0.0000 0.0000

8 17 0.00 0.0045 0.0000 0.0000 0.0000

9 13 0.00 0.0035 0.0000 0.0000 0.0000

10 7 0.00 0.0019 0.0000 0.0000 0.0000

11 0 0.0000 0.0000 0.0000 0.0000

Total 1.0003 1.0003 1.0002

R 0 1.0003

G 1.0000

r est. 0.0003

r Euler 0.0001

Should be 1 1.0002

Figure 1 A cohort of 3751 individuals tracked over time. The number alive at the
beginning of each year is given in Column B, and the average number of offspring
per female is given in Column C. Columns D through G are calculated from infor-
mation in columns A through C. 



Generation time is calculated as the sum of Column F divided by the sum of Column
E, or

Equation 3

With G and R0 calculated, we can estimate r, the intrinsic rate of increase, as

Equation 4

We need to know r in order to calculate the reproductive value of each age class. How-
ever, Equation 4 provides only an estimate of r. To obtain a more precise estimate of r,
we need to solve for r in the following equation:

Equation 5

This is called the Euler equation, named after the Swiss mathematician Leonhard Euler
(Gotelli 2001). In the life table exercise, you solved the Euler equation by plugging num-
bers in until the equation was solved. In this exercise, you will use the Solver option
in Excel to solve the Euler equation. You might remember that when r = 0, the popu-
lation remains constant in numbers over time; when r < 0, the population declines expo-
nentially, and when r > 0 the population increases exponentially. When a population
has a stable age structure, it means that all age classes increase or decrease at a con-
stant rate of r, even if the numbers of individuals in each age class differ. 

With an estimate of r for our population, we are ready to calculate the reproductive
value for individuals of age x (Fisher 1930), which can be calculated from a life table as

Equation 6

where y = x + 1 is the first age class subsequent to age class x, and Ω is the final age
class into the future. Equation 6 can be written out in full as

This equation assumes that the next reproductive bout for individuals of age x will
occur at age x + 1, i.e., individuals of age x have already reproduced as x year olds. In
order for us to understand how Equation 6 was derived, its useful to recall that the
reproductive value of an individual of age x is the expected number of offspring that
this individual will produce over the rest of its life, adjusted by population growth.
Let’s start by computing the expected number of offspring that an individual of age x
will produce over the rest of its life. If we let any age class beyond age x be denoted
with the letter y, the total number of future offspring can be calculated as:

Expression 6.1

This term can be written out in full as
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Thus, for each age class following age class x, compute the probability that an indi-
vidual of age class x will survive to a given future class as Pr = ly/lx and multiply by
the corresponding birth rate, by. It should be fairly straightforward why ly/lx and bx must
be computed to calculate the expected number of offspring that an individual of age x
will produce in the future: in order to produce future offspring in year x + 3 (for exam-
ple), you must survive from age x to age x + 3 to realize the reproduction.

But this expected number of future offspring isn’t quite the same thing as the “value”
of those offspring. Ronald A. Fisher (1930) got the idea of treating offspring like money.
If the economy is growing, a dollar received today is worth more to me than a dollar
received next week, because that same dollar will be “diluted” by all the extra money
around next week, and even more so in the following year. Similarly, if the population
size is different when the future offspring are produced, their values depend on whether
the population is increasing or decreasing: the value of each offspring produced by indi-
viduals in the future is “diluted” when the population is increasing, and the value of
each offspring is “concentrated” when the population is decreasing. 

So Fisher discounted the value of the offspring produced at later ages by the amount
by which the population will have grown by the time they are produced. Since the pop-
ulation is growing at the rate r, by the time our x-year-old individual reaches age y, the
population will have grown by a factor

er(y–x)

Thus, to compute the value of future offspring, we need to “adjust” the number of
future offspring by dividing by the factor by which the population will have grown.
We can compute the “adjusted” number of expected future offspring for an individual
of age x as

Expression 6.2

Expression 6.2 can be written out in full as

If we graph er(y-x) for various levels of r, we can visualize the denominator of Expres-
sion 6.2 and see how the adjustment works. This is shown in Figure 2.
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Adjustments on Future Offspring for Individual of Age 2 as a 
Function of r
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Figure 2 For an individual of age 2, the graph shows how offspring produced in
the future are adjusted under various levels of r. When r > 1, the adjustment, er(y-x),
is positive and increases as ever more distant age classes are considered. This
makes the denominator of Expression 6.2 large, which decreases the value of future
offspring. When r < 0, the population is decreasing and the adjustment is below 1.
This makes the denominator of Expression 6.2 small, which increases the value of
future offspring. When r = 0, no adjustment is made.



We have now arrived at the number of future offspring expected to be produced by
an individual of age x, adjusted by population growth (i.e., the reproductive value for
an individual of age x). From here, we can arrive back at Fisher’s computation of repro-
ductive value (Equation 6) with a few simple mathematical steps. It might be helpful
to recall certain mathematical principles before we proceed:

• If n is a positive integer, then a–n is 1/an.
• For any number a, and any integers m and n, am × an = am+n.

• Any term expressed as can be written as 

Now let’s proceed with Expression 6.2 and work our way towards Fisher’s formula for
computing reproductive value (Equation 6). With the mathematical principles in mind,
we can rewrite Expression 6.2 as 

Expression 6.3

which can be written out in full as

We can then pull two common terms out of the denominator, lx and e-rx and re-write
Expression 6.3 as

Expression 6.4

which is the same thing as:

Expression 6.5

Expression 6.5 can be written out in full as:

Finally, we can move the term ery from the denominator to the numerator (in Expres-
sion 6.5) and arrive at Fisher’s equation (Equation 6):

Equation 6

Hopefully, Equation 6 will now make some sense to you. Equation 6 is specifically for
populations in which there is a birth pulse and in which individuals are censused
immediately after the breeding season (individuals of age x have already given birth).
If individuals of age x have not yet given birth, the summation would begin with y =
x in Equation 6, rather than y = x + 1. In this case, reproductive value can be parti-
tioned into current (imminent) reproduction, as well as future reproduction (Williams
1966). Although the equation might look a bit cumbersome, we’ll walk you step by
step through the calculations so that you can see exactly how the values are computed.
Reproductive value can also be computed with a matrix approach (see the previous
exercise). The critical pieces of information from a life table are r, the intrinsic rate of
growth, lx, or the survivorship schedule, and bx, the fecundity schedule. If we know
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these values for each age (with ages denoted by x), we can identify the reproductive
value for each age. 

In addition to reproductive value, we will also calculate the stable age distribution of
the population. The stable age distribution gives the proportion of the population that
consists of 0, 1, 2, 3, and 4 year olds, given that the population has reached an equilib-
rium growth rate. In other words, no matter what r is for the population, each age group
will increase or decrease by a constant amount. For example, if the stable population is
made up of 55% 0-year olds, 22% 1-year olds, 33% 2-year olds, and 0% 3-year olds, the
stable age distribution is 0.55, 0.22, 0.33, and 0, respectively. These proportions are cal-
culated from the following equation (Mertz 1970):

Equation 7

where cx is the proportion of the population that consists of individuals of age class x
when the population has stabilized. 

PROCEDURES

In this exercise, you’ll learn how to calculate reproductive value for individuals in a
population, as well as the stable age distribution. In setting up this model, we have fol-
lowed the life table computations Gotelli (2001) used to compute reproductive value.
As a result, some steps in the computation have not been explained in the introductory
material here, but the final results do indeed reflect the reproductive values from Equa-
tion 6. 

After the model is completed, you will be able to change the life history schedule of
the population to evaluate how life history schedules affect reproductive value. As
always, save your work frequently to disk. 

ANNOTATION

c
e l

e l
x

rx
x

rx
x

x

k=
−

−
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0

INSTRUCTIONS

A. Set up the life table
spreadsheet.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 3.
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A B C D E F G
Reproductive Value: Life Table Approach

x (age) S x b x l x g x l x *b x l x *b x *x

0 500 0

1 400 2

2 200 3

3 50 1

4 0 0
R 0 =

R 0 =

G =

r (estimate) =

Euler equation = 

Euler r (adj) = 
λ =

Outputs

Cohort life table

Figure 3



We will start with 500 newborns (cell B4) and follow their numbers over time. Sx gives
the number of individuals that are counted at the beginning of each age class. The fecun-
dity schedule, bx, gives the average number of female offspring per female per year for
each age class.

Refer back to the “Life Tables and Survivorship Curves” exercise if you cannot remem-
ber the formulae. We used the following formulae:

• D4 =B4/$B$4
• E4 =D5/D4
• F4 =D4*C4
• G4 =F4*A4

Select cells A3–B8. Use the scattergraph option and label your axes fully. Your graph
should resemble Figure 4.

Enter the formula =SUM(F4:F8) in cells F9 and C12. 
R0 is the net reproductive rate. It reveals the mean number of offspring produced per
female over her lifetime (Gotelli 2001). R0 can be calculated by multiplying lx × bx for
each age class, and then summing up the values over age classes; this corresponds to
Equation 2.

Enter the formula =SUM(G4:G8)/C12 in cell C13.
G is the generation time. It reveals the average age of the parents of all the offspring
produced by a single cohort (Caughley 1977). G can be calculated by multiplying lx ×
bx × x for each age class, and then summing up the values over age classes. This sum
is then divided by (or adjusted for) R0. This correspondes to Equation 3.

Enter the formula =LN(C12)/C13 in cell C14.
This corresponds to Equation 4.

2. Enter the values shown
in cells B4–C8 as shown.

3. Enter formulae in cells
D4–G4 to compute the
standard life table data,
and copy your formulae
down to row 8. 

4. Graph the survivorship
curve.

5. Save your work.

B. Compute life table
outputs.

1. Enter a formula in cell
F9 and C12 to compute R0.

2. In cell C13, enter a for-
mula to compute G.

3. In cell C14, enter a for-
mula to estimate r.
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Enter 0.72 in cell C16.
You might remember that r can be more precisely estimated by using the Euler equa-
tion (Gotelli 2001). The exact solution for r can be found by solving for r in the Euler
equation:

Equation 5

You should have reached  r = 0.72 as an estimate. Knowing that r is approximately 0.72,
you can plug various values of r (a bit higher or lower) until the equation is solved (as
you did in the “Life Tables” exercise), or you can use the Solver spreadsheet tool to
solve the problem for you. For now, you’ve entered 0.72 into cell C16. The Solver will
change this value to the precise estimate in the next couple of steps.

Enter the formula =SUM(EXP(-C16*A4)*F4,EXP(-C16*A5)*F5,EXP(-C16*A6)*F6,EXP
(-C16*A7)*F7,EXP(-C16*A8)*F8) in cell C15.
In Excel, the EXP function is used to raise e to a given power. You’ll see that your
Euler equation does not add up to 1 as it should (it adds up to 1.07), which means r
needs a bit of adjusting. 

Your spreadsheet should now look like Figure 5.

Go to Tools | Solver and select Solver. If Solver does not appear in the menu, go to Tools
| Add-ins and select the Solver add-in. (Your computing administrator may need to help
you with the installation.) The dialog box in Figure 6 will appear. 

1
0

= −

=
∑ e l brx

x x
x

k

4. Manually enter the esti-
mated value of r in cell
C16.

5. Enter a formula in cell
C15 to calculate the right-
hand side of the Euler
equation, using the r value
in cell C16. 

C. Use the Solver func-
tion to adjust the value
of r.

1. Access Solver.
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x (age) S x b x l x g x l x *b x l x *b x *x

0 500 0 1 0.8 0 0

1 400 2 0.8 0.5 1.6 1.6

2 200 3 0.4 0.25 1.2 2.4

3 50 1 0.1 0 0.1 0.3

4 0 0 0 0 0
R 0 = 2.9 4.3

R 0 = 2.9

G = 1.4827586

r (estimate) = 0.7180607

Euler equation = 1.0746494

Euler r (adj) = 0.72

λ =

Outputs

Horizontal (cohort) life table

Figure 5



Enter $C$15 in the Set Target Cell box
Set the target cell equal to a Value of 1.
Enter $C$16 in the By Changing Cells box.

You should get a value of r = 0.776, and you’ll see that cell C15 is very close to 1.

Enter the formula =EXP(C16) in cell C17. 
Lambda is the finite rate of increase. It can be calculated from r as λ = er.

The stable age distribution gives the proportion of the population that consists of 0, 1,
2, 3, and 4 year olds, given that the population has reached an equilibrium growth rate.
For example, if the stable population is made up of 50% 0-year olds, 22% 1-year olds,
33% 2-year olds, and 0% 3-year olds, the stable age distribution is 0.50, 0.22, 0.33, and
0, respectively. These proportions are calculated from Equation 7, the Mertz equation:

Equation 7c
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2. Use the Solver function
to set cell C15 (the Euler
equation) to 1 by changing
cell C16.

3. Press Solve to return the
precise estimate of r in cell
C16.

4. Calculate λ, the finite
rate of increase, in cell
C17. 

5. Save your work.

D. Calculate the stable
age distribution.

1. Set up new spreadsheet
headings as shown in
Figure 7.

Reproductive Value: Life Table Approach 223

Figure 6

2
3
4
5
6
7
8
9

H I J K L M

l x e -rx c x e rx /l x e -rx l x b x
Σe -ry l y b y v x

Reproductive value distributionStable age distribution

Figure 7



Enter the formula =D4*EXP(-$C$16*A4) in cell H4 to calculate the numerator of the
Mertz equation for age class 0. Copy this formula down to cell H8 to obtain this value
for the remaining age classes.

Enter the formula =SUM(H4:H8) in cell H9.

Enter the formula =H4/$H$9 in cell I4 and copy down the column. 
The results of this formula give, for each age class, the proportionate makeup of the
population when the population has reached a stable distribution.

Enter the formula =SUM(I4:I8) in cell I9.
This is to double-check your results. The values should sum to 1. 

Your spreadsheet should now resemble Figure 8.

Use the column graph option, and label your axes fully. Your graph should resemble
Figure 9.

2. In cells H4–H8, enter a
formula in cell H4 to cal-
culate the numerator of
the Mertz equation for
each age class.

3. In cell H9, sum cells
H4–H8 to obtain the
denominator of the Mertz
equation. 

4. Calculate cx for age class
0 in cell I4. Copy this for-
mula down for the
remaining ages.

5. Sum the cx values in cell
I9. 

6. Save your work.

7. Graph the stable age
distribution for the popu-
lation.
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x (age) S x b x l x g x l x *b x l x *b x *x l x e -rx c x

0 500 0 1 0.8 0 0 1.000 0.684

1 400 2 0.8 0.5 1.6 1.6 0.368 0.252

2 200 3 0.4 0.25 1.2 2.4 0.085 0.058

3 50 1 0.1 0 0.1 0.3 0.010 0.007

4 0 0 0 0 0 0.000 0.000
R 0 = 2.9 4.3 1.463 1.000

Stable age distributionHorizontal (cohort) life table

Figure 8
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Remember that reproductive value can be computed by Fisher’s equation (Equation 6):

Equation 6

Enter the formula =EXP($C$16*A4)/D4 in cell J4. Copy your formula down to cell J8.

Enter the formula =EXP(-$C$16*A4)*F4 in cell K4. Copy your formula down to cell K8.
This calculation is an intermediate step that will be helpful for future calculations 

Enter the formula =SUM(K4:$K$7) in cell L4. Copy this formula down to cell L7. Now
that we have e-rxlxbx for each age class, we are able to sum these values over age classes
into the future. Note that we include the individual of age x as well as individuals of
any age class in the future (denoted by the letter y) in the computations. We have added
this step to facilitate the computations in the next step.

Enter the formula =J4*L5 in cell M4. Copy your formula down to cell M7.
Finally, we can compute vx, the reproductive value, for each age class. The formula
=J4*L5 offsets the formula by one row, so that the reproductive value is computed as
erx/lx times the sum of e-rylyby for any age classes into the future. The result gives the
expected number of offspring to be produced by an individual of age x over its remain-
ing life span, adjusted by the population growth rate, r.

Your spreadsheet should now resemble Figure 10.
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8. Save your work. Review
your results and computa-
tions and make sure you
understand the spread-
sheet thus far.

E. Calculate the repro-
ductive value distribu-
tion.

1. In cells J4–J8, enter a
formula to compute the
left-hand side of Fisher’s
equation (erx/lx).

2. In cells K4–K8 enter an
equation to calculate 
e-rxlxbx.

3. In cells L4–L7, enter a
formula in cell L4 to calcu-
late the right-hand side of
the reproductive value
equation,

4. In cells M4–M7, enter a
formula to calculate vx.

5. Save your work.

e l bry
y y

x

−∑
Ω
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QUESTIONS

1. Interpret your model results fully. Which age class has the highest reproductive
value, which age class has the lowest reproductive value? Interpret your results
in terms of r, and the birth and survivorship data from the life table.

2. Interpret the reproductive values from your models from the standpoint of con-
servation of a game species whose populations are harvested and maintained at a
high level, versus a pest species whose populations you would like to control,
versus a threatened species that is being reintroduced to an area. Based on your
knowledge of reproductive value, does your decision also depend on the propor-
tion of the population that occurs in the various age classes? Why or why not?

3. The model currently computes reproductive value for a population that is
increasing. Adjust the birth rates values in cells C5–C7 in various ways to gen-
erate different values of r, (keep the Sx column the same). For each of your
model runs, interpret how the birth schedule, and r, affect reproductive values.
For each run, remember to use the Solver again to generate a correct r.

4. Change the life history parameters in the life table (cells B4–C8) to generate a
different life history schedule (a Type III survival curve). Set up new life table
entries as follows:

This life history schedule represents a Type III survival curve in which repro-
duction occurs once and then organisms die (semelparous or annual). For such
a life history, which individuals have the highest reproductive value? You will
need to use the Solver again to obtain a correct r in cell C16 so that your repro-
ductive value calculations are correct. 

5. Compare this life history with a species with a Type I survival curve, in which
reproduction is delayed but occurs over different age classes. Set up new life
table entries as follows:

For such a life history, which individuals have the highest reproductive value?
You will need to use the Solver again to obtain a correct r in cell C16 so that
your reproductive value calculations are correct.
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DEMOGRAPHIC STOCHASTICITY17
Objectives

• Evaluate effects of stochastic processes in small versus large
populations.

• Develop a macro to simulate several trials.
• Compute standard statistics, such as means, variances, coef-

ficients of variation.

Suggested Preliminary Exercise: Geometric and Exponential
Population Models; Statistical Distributions

INTRODUCTION
In a seminal book in conservation biology, Mark Shaffer (1987) wrote, “Given an
expanding human population with rising economic expectations, competition for
the use of the world’s remaining resources will be intense. Conservationists will
often face the problem of determining just how little habitat a species can have
and yet survive. At the same time, biologists are increasingly coming to recog-
nize that extinction may often be the result of chance events and that the likeli-
hood of extinction may increase dramatically as population size diminishes.”

Just how does chance play a role in the ability of a species to persist or go extinct,
and how can we characterize the “risk of extinction” due to chance? This very ques-
tion was asked by D. Saltz (1996), who was interested in determining how many
Persian fallow deer (Dama dama mesopotamica), a critically endangered species,
should be introduced into an area in western Asia as part of a species reintroduc-
tion program. 

Stochasticity means random variation. In population biology, stochasticity refers
to the random changes that influence the growth rate of a population (Akçakaya
et al. 1997). Such variation is pervasive in the ecology of natural populations and
operates at many levels. If you have completed the exercise on genetic drift, you
know that chance plays a role in changing the allele frequencies in a population.
Unpredictable changes in weather, food supply, and populations of competitors,
predators, and parasites act on the population as a whole and may contribute to
chance extinction. A third kind of chance event operates on individuals. This uncer-
tainty is called “demographic stochasticity,” and in this exercise you will learn how
demographic stochasticity can cause unpredictable population fluctuations and
can lead to extinction. 

 



Demographic stochasticity is the variation in average survivorship and reproduc-
tion that occurs because a population is made up of an integer number of individuals.
For example, we might determine that a population has a birth rate b of 0.4 individuals
per individual per year and a survival rate s of 0.6 individuals per individual per year.
This indicates that, on average, individuals in the population produce 0.4 offspring
per year and 0.6 individuals survive to the next year. But of course, an individual can-
not partially die and there is no such thing as 0.4 of an offspring. The population has a
growth rate, but individuals either live or die, and they reproduce an integer number of
offspring. This interplay between the finite characteristics that describe individuals
and the global characteristics that describe the collection of individuals in the popula-
tion is the realm of demographic stochasticity. 

Let’s begin our explorations with a very brief review of modeling births and deaths
in a population, and then discuss how demographic stochasticity can affect the popu-
lation’s growth over time. We will let

Nt represent the size of the population at some arbitrary time t
Nt+1 represent population size one time-unit later
Bt represent the total number of births in the interval from time t to time t + 1
Dt represent the total number of deaths in the same time interval

We are assuming here, as we did in Exercise 7 on population growth, that the popula-
tion is “closed” to immigration and emigration; thus we can write

Nt+1 = Nt + Bt – Dt Equation 1

If we assume that B (total births) and D (total deaths) are governed by the per capita
birth and death rates, we can substitute bNt for Bt and dNt for Dt, and rewrite our equa-
tion as

Nt+1 = Nt + bNt – dNt Equation 2

Thus, if we know what the per capita birth and death rates (b and d) are at time step t,
we can compute the total number of births and deaths (B and D) in Equation 1, and cal-
culate the population size in the next time step, t + 1.

How does demographic stochasticity affect B and D, even if b, d, and Nt are known?
Consider a population of 10 individuals, with b = 0.4 and d = 0.4 as described previously.
The survival rate, s, equals 1 – d, so s = 0.6. If there were no demographic stochasticity
in this population, the total number of births would be

B = bN = 0.4 × 10 = 4

and the total number of deaths would be 

D = dN = 0.4 × 10 = 4

The total number of survivors would be:

s = (1 – d)N = 0.6 × 10 = 6

However, if we follow the fates of individuals in the population and determine whether
each individual lives or produces offspring, we may not end up with B and D as com-
puted because partial death and reproduction is generally not possible. We can evalu-
ate this problem by modeling the fates of individuals, utilizing the per capita birth rate,
b, and the per capita survival rate, s, in a process that determines whether an individ-
ual will live or die, and whether it will reproduce or not. This is often done with a
random-number generator, where a random number between 0 and 1 is drawn from
a uniform distribution. To determine whether an individual dies or survives, we can
compare the random number to s and let all individuals with a random number less
than s survive. To determine whether an individual reproduces offspring, we can com-
pare a different random number to b and let all individuals with a random number less
than b reproduce. This is quite easy to do on a spreadsheet such as the one shown in
Figure 1.
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With b = 0.4 and d = 0.4, the population of 10 individuals in Figure 1 should theoret-
ically remain at 10 individuals, since r = 0. (Remember that r = b – d.) However, in this
instance, the population declined from time step 1 (10 individuals) to time step 2 (7 indi-
viduals). Occasionally, by chance, the total number of births will be 0 and the total num-
ber of survivors will be 0, in which case the population has gone extinct due to demo-
graphic stochasticity.

We can characterize the nature of demographic stochasticity under various popula-
tion sizes, birth rates, and death (or survival) rates by simulating the fates of individu-
als as we have just done in Figure 1, and then recording the outcome (such as 5 total sur-
vivors and 2 total births). For instance, suppose that the probability of survival is 0.6,
and we repeat the experiment in Figure 1 100 different times, recording only the total
number of survivors for each trial. We will do this for two populations, the first of which
consists of 10 individuals and the second of which consists of 25 individuals. Figure 2
shows the results of one such experiment. For population 1, 27 of the trials resulted in
6 survivors (the expected result), but the remaining trials deviated from this result. For
population 2, 17 trials resulted in 15 survivors (60% of 25 individuals), but the remain-
ing trials deviated from this expected result.

Which population shows a greater scatter, or more variation, in the trial results? If
you have completed Exercise 3, “Statistical Distributions,” you know that the standard
deviation (S) is commonly used to measure the amount of variation from the mean in
a data set. The standard deviation is calculated as 

Equation 3

where (x – x–)2 represents the square of the difference between each data point (x) and
the mean (x–), and N is the total number of data points. In Figure 2, the standard devi-
ation for population 1 turns out to be about 1.6, and the standard deviation for popu-

S
x x
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−
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1
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Demographic Stochasticity

Survival rate = s = 0.6 Death rate = d = 0.4

Birth rate = b = 0.4

Individual Random # Survive? Random # Reproduce?

1 0.38 1 0.11 1

2 0.91 0 0.86 0

3 0.16 1 0.56 0

4 0.78 0 0.78 0

5 0.98 0 0.62 0

6 0.59 1 0.44 0

7 0.23 1 0.89 0

8 0.61 0 0.28 1

9 0.48 1 0.44 0

10 0.61 0 0.94 0

5 2

POPULATION 1

Figure 1 In this population, s = 0.6 and we expect the total number of survivors to
be 6, but we see that only 5 individuals actually survived. And although b = 0.4 and
we expect B to be 4, only 2 individuals produced offspring. This variation or depar-
ture from the population birth and death rates is demographic stochasticity.



lation 2 is about 2.3, so by this measure, population 2 shows more variation than pop-
ulation 1. But let’s think about this for a moment. Note that for each trial, population
1 had only 11 possible outcomes (0–10 survivors), almost all of which occurred, but
population 2 had 26 possible outcomes (0–25 survivors), only half of which occurred.
In fact, a general property of data sets is that the mean and standard deviation tend to
change together—the lower the mean, the lower the standard deviation, and the higher
the mean, the higher the standard deviation. Population 2 has a higher mean than pop-
ulation 1, so the difference in their standard deviations might not be as significant as
it at first appears. To compare populations whose means are quite different, we “adjust”
the standard deviations by dividing each one by its corresponding mean to get the coef-
ficient of variation (CV): 

Equation 4

The coefficient of variation is the ratio of the standard deviation to the mean, and it pro-
vides a relative measure of data dispersion compared to the mean. The CV has no units.
It may be reported as a simple decimal value or it may be reported as a percentage by
multiplying by 100. In the example presented in Figure 2, the CV for population 1 is
about 0.27, and the CV for population 2 is about 0.15, so by this measure (which takes
into account that we expect less data scatter when the mean is small than when it is
large), population 1 showed more variation than population 2. 

Demographic stochasticity has important biological implications. Shaffer (1987) has
demonstrated that the chance of extinction through demographic stochasticity increases
dramatically as population size diminishes. Mating systems (Legendre et al. 1999) and age
structure (Saltz 1996) have also been shown to be affected by demographic stochasticity.

PROCEDURES

In this exercise, you will set up a spreadsheet model to investigate the effects of demo-
graphic stochasticity on two populations. Population 1 is a small population (10 indi-
viduals), while population 2 is large (100 individuals). The values of b and d remain fixed
throughout the exercise. After the exercise is completed, Questions 1 and 2 will ask
you to change the values of b and d to explore how their relative differences, and absolute
values, affect demographic stochasticity.

As always, save your work frequently to disk.

CV = S
x
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ANNOTATION

Enter 0.6 in cell C2.
Enter 0.2 in cell C3.
Here the survival rate, s, is 0.6 individuals/individual/year) and the per capita birth
rate, b, 0.2 individuals/individual/year). Remember that the death rate, d, is 1 – s, so
d = 0.4. These values will remain fixed for the purposes of this exercise. You will vary
them to answer the questions at the end of the exercise.

Enter 1 in cell A7.
Enter the formula =A7+1 in cell A8. Copy this formula down to cell A16.
These numbers designate the 10 individuals that make up population 1.

Enter =RAND() in cells B7–B16
This formula generates a random number between 0 and 1. Note that the spreadsheet
generates new random numbers each time the calculate shortcut key, F9, is pressed.

Enter the formula =IF(B7<$C$2,1,0) in cell C7. Copy this formula down to cell C16.
Whether an individual survives or dies is based on the population survival rate in
cell C2 and the random number associated with each individual in cells B7–B16. In cell
C7, if the random number in cell B7 is less than the survival rate in cell C2, the indi-
vidual receives a score of 1 (survives); otherwise it receives a score of 0 (dies). Copy this
formula down for the remaining nine individuals in population 1.

Enter =RAND() in cells D7–D16. 

INSTRUCTIONS

A. Calculate birth and
survival rates for popu-
lation 1.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 3.
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Figure 3

2. In cells C2 and C3,
enter the values shown
for s and b.

3. In cells A7–A16, set up
a linear series from 1 to 10.

4. In cells B7–B16, use the
RAND function to assign
a random number
between 0 and 1 to each
individual in population 1.

5. In cells C7–C16 enter an
IF formula to determine
whether each individual
survives (1) or dies (0).

6. Enter a random number
in cells D7–D16. 



Enter the formula =IF(D7<$C$3,1,0) in cell E7. Copy this formula down to cell E16.
In this exercise, you will assume that individuals that reproduce have just one offspring.
Whether an individual reproduces is based on the birth rate given in cell C3 and the
random numbers in column D; the formula is analogous to the one in Step 5.

Enter the formula =SUM(C7:C16) in cell C17.
Enter the formula =SUM(E7:E16) in cell E17.
You can also use the “Autosum” button on your toolbar, which looks like a sigma (Σ).
Based on the survival and birth rates entered in cells C2 and C3, how many total sur-
vivors and total births do you expect for population 1?

How did your total survivors and total births change with the new set of random num-
bers? The difference between your results and the population’s birth and survival rates
is an example of demographic stochasticity. Although the rates are “fixed” in cells C2
and C3, the numbers of survivors and births vary due to chance and because individ-
uals cannot reproduce 0.2 individuals, nor can they partially die. What is the likelihood
of obtaining the same results again? Characterize the nature of demographic stochas-
ticity based on your two “trials.”

By conducting a great number of trials, you can determine how likely a certain outcome
is by calculating the means and variances of the survivors and births produced in pop-
ulation 1 and characterize the nature of demographic stochasticity more effectively. 

Enter the number 1 in cell A21. 
In cell A22, enter =1+A21. Copy this formula down to cell A170.

You can either push F9, the calculate key, 150 more times and manually enter how many
individuals survived and reproduced in each trial (keeping track of your results in
the appropriate cell labeled “trial”), or you can write a macro to do this for you.

From the menu, select Tools | Options | Calculations. Select Manual Calculation. (In Macin-
tosh programs, the sequence is Tools and then Preferences.) From this point on you will
need to press F9 when you want the spreadsheet to recalculate numbers generated by
your macro. Then open the Macro function to the Record mode and assign a shortcut
key (see Exercise 2 for details). Enter the following steps in your macro:

• Press F9 to obtain a new set of random numbers, and hence a new set of total
survivors and total births.

• Select cell C17, then open Edit | Copy.
• Select cell B20, the column labeled “Total Survivors.” 

7. In cells E7–E16, enter an
IF formula to determine
whether each individual
reproduces (1) or not (0),
based on the birth rate
given in cell C3.

8. In cells C17 and E17,
use the SUM function to
tabulate the total number
of survivors and births,
respectively.

9. Press the F9 key to gen-
erate a new set of random
numbers, and hence a new
total number of survivors
and total number of births
in population 1.

10. Save your work.

B. Write a macro to sim-
ulate 150 trials.

1. Set up new column
headings as shown in
Figure 4, but extend the
trial numbers to 150 (cell
A170).

2. Repeat your “experi-
ment” 150 times.
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• Open Edit | Find. The dialog box in Figure 5 will appear. Leave the Find What box
empty, searching by columns and formulas, and then select Find Next and Close.

• Open Edit | Paste Special | Paste Values. Click OK.
• Select cell E17.
• Open Edit | Copy.
• Select cell C20, the column labeled “Total Births.”
• Open Edit | Find. Leave the Find What box empty, searching by columns and for-

mulas. Select Find Next and Close.
• Open Edit | Paste Special | Paste Values. Click OK.

The macro is finished;  stop recording (Tools | Macro | Stop Recording). Now when press
your shortcut key 150 times; each trial will run automatically.

From the menu, select Tools | Options | Calculations. Select Automatic Calculation.

Population 2 is larger, consisting of 100 individuals. In this section, we will repeat the
steps you’ve just completed for the larger population.

Enter 1 in cell F7.
Enter =1+F7 in cell F8. Copy your formula down to cell F106.

You should generate numbers and outcomes in cells G7–J106. 

3. Switch back to
Automatic Calculation.
Save your work

C. Calculate birth and
survival rates for popu-
lation 2.

1. Enter the column head-
ings shown in Figure 6.

2. Set up a linear series
from 1 to 100 in cells
F7–F106.

3. Repeat the steps in Part
A to fill in survival and
birth outcomes for popula-
tion 2, and sum the total
survivors and total births.
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Count the total number of survivors and total number of births for population 2, and
record the results of each “simulation” as we did for population 1. 

Follow the instructions in Section B. Make sure your macro for population 2 has a dif-
ferent name and shortcut key from the ones you used in population 1. Press your new
macro 150 times to run 150 trials.

From the menu, select Tools | Options | Calculations. Select Automatic Calculation.

These are the headings for a frequency histogram for population 1, which consists of
10 individuals. For any trial, the number of survivors could be between 0 and 10, and
the total number of births could be between 0 and 10.

Enter the formula =COUNTIF($B$21:$B$170,A177) in cell B177. Copy the formula
down to cell B187.
This formula examines the range of numbers in cells $B$21:$B$170 and counts the num-
ber of times 0 (listed in cell A177) appears. Fill this formula down to obtain frequency
counts for the number of trials in which 1, 2, 3 … 10 survivors were recorded. Double-
check your results upon completion; the sum of the numbers generated by the cells
with the COUNTIF formula should be 150 because there were 150 trials. 

4. Enter column headings
as shown in Figure 7. 

5. Record a macro to track
the total survivors and
total births and run 150
trials with population 2.

6. Switch back to
Automatic Calculation.
Save your work.

D. Construct a frequency
histogram of results.

1. Set up column headings
as shown in Figure 8.

2. In cells B177–B187, enter
a COUNTIF formula to
count the number of trials
in which there were 0 sur-
vivors, 1 survivor, etc.
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Enter the formula =COUNTIF($C$21:$C$170,C177) in cell D177. Copy the formula
down to cell D187.

Your histogram should resemble Figure 9.

Adapt the preceding steps (1–4) to the values for population 2. Remember that popu-
lation 2 consists of 100 individuals, so the total number of survivors or births in any
trial can range between 0 and 100. Interpret your results.

Review Exercise 3, “Statistical Distributions,” if you are unsure about the use of means
and standard deviations.

Enter the formula =AVERAGE(B21:B170) in cell B171.
Enter the formula =STDEV(B21:B170) in cell B172.

Select cells B171–B172 and copy them over to cells E171–E172. The resulting formulae
should be:

• C171 =AVERAGE(C21:C170)
• D171 =AVERAGE(D21:D170)
• E171 =AVERAGE(E21:E170)
• C172 =STDEV(C21:C170)
• D172 =STDEV(D21:D170)
• E172 =STDEV(E21:E170)

3. In cells D177–D187,
enter a COUNTIF formula
to count the number indi-
viduals that reproduced a
single offspring in the var-
ious trials.

4. Construct a frequency
histogram of the number of
survivors and the number
of breeders for population 1.

5. Construct a frequency
histogram for population 2.

E. Compute means and
standard deviations.

1. In cells B171 and B172,
enter AVERAGE and
STDEV formulae, respec-
tively,  to calculate the
mean and standard devia-
tion of the number of sur-
vivors in population 1.

2. In cells C171–E172,
enter AVERAGE and
STDEV formulae  to cal-
culate the mean and stan-
dard deviation of the
number of breeders in
population 1, and the
number of breeders in
population 1 and the num-
ber of survivors and
breeders in population 2.
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Which population appears to exhibit greater stochasticity (i.e., greater variation in the
number of births and survivors)? Pay attention to the standard deviations, which meas-
ure dispersion of variation in results. Now reflect on the mean values you computed
in the previous two steps. Is it useful to compare the variation in two populations that
have such different mean values? Why or why not?

The coefficient of variation, or CV, is calculated as  standard deviation divided by the
mean, which is then multiplied by 100. We perform this caculation for both the num-
ber of survivors and the number of breeders. Analysis of the CV will allow you to
directly compare populations 1 and 2 by adjusting for their means.

Enter the formula =(B172/B171)*100 in cell B173 to compute the CV for the number of
survivors in population 1.
Enter the formula =(C172/C171)*100 in cell C173 to compute the CV for the number
of breeders in population 1. 

Enter the formula =( D172/D171)*100 in cell D173 to compute the CV for the number
of survivors in population 2.
Enter the formula =(E172/E171)*100 in cell E173 to compute the CV for the number of
breeders in population 2. 

Your graph should resemble Figure 10.

You should see that the smaller population, population 1, has a much higher CV in both
number of survivors and number of births than population 2. This reflects a greater
amount of unpredictable variation (demographic stochasticity) in small populations.

QUESTIONS

1. Focus on population 1 (the small population), cells C17 and E17 (the total sur-
vivors and total births). Press F9 20 times and record the number of times the
population goes extinct (number of survivors and number of births = 0) Then
compute the extinction risk, P(extinction), as the number of times the popula-
tion went extinct divided by 20 trials. (Your result is likely to be 0). Enter differ-
ing values of s and b in cells C2 and C3 (except 0). What levels of s and b are
likely to produce higher extinction rates due to demographic stochasticity? 

3. Examine the histograms
you made for each popu-
lation in Section D and
answer the questions at
right.

F. Calculate and graph
coefficients of variation.

1. In cells B173 and C173,
compute the CVs for pop-
ulation 1.

2. In cells D173 and E173,
compute the CVs for pop-
ulation 2.

3. Create a graph to com-
pare the CVs, a standard-
ized measure of variation,
for the two populations.
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2. Compare the stochasticity in the larger population, population 2, under differ-
ent survival and birth rates, while keeping r constant (remember that r = b – d).
In the first scenario, let the population have a high birth rate (b = 0.9) and low
survival rate (s = 0.1). In the second scenario, let the population have a low
birth rate (b = 0.1) and a high survival (s = 0.9). Note that in both cases, r = 0.
Set up spreadsheet headings as shown, and modify the survival and birth rates
in cells C2 and C3. For each scenario, develop a macro in which the number of
survivors and births are recorded in 100 trials. For each trial, compute ∆N as the
change in population size (number of births minus number of deaths). (You can
generate the delta symbol, ∆, by typing in a capital D and then changing the
font to “Symbol.”) Then compare the coefficient of variation in ∆N over 100 tri-
als when the population size is 100. How do the absolute birth and death rates
affect stochasticity when population size is relatively large?

3. Variation is pervasive in nature. For example, birth rates and death rates are
rarely constant over time. How do you think demographic stochasticity differs
from a more commonly noted type of variation, environmental stochasticity?
With environmental stochasticity, b, s, and d vary with some randomness as
opposed to remaining fixed (cells C2, E2, C3). Can you think of ways in which
you might add an element of environmental stochasticity to your model?

*4. (Advanced) In your model, you’ve discovered that demographic stochasticity is
different between populations consisting of 10 and 100 individuals. As popula-
tion size increases, in what fashion do the effects of demographic stochasticity
decrease? (For example, does it decrease linearly as population size increases, or
is there some threshold at which increasing population size has little effect on
stochastic processes?) Develop your model more fully to answer this question
(you may want to copy your entire model onto a new sheet for this question, so
that you do not alter your original model).

*5. (Advanced) Examine the Visual Basic for Applications code that was used to
write your macro. See if you can follow through the code and match the action
of your keystrokes outlined in step 2 of Section B to the code. It should look
something like this:
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MACROS

Sub trial()
‘
‘ trial Macro
‘ Macro recorded 8/31/99 by Authorized User
‘
‘ Keyboard Shortcut: Ctrl+t
‘
Application.Goto Reference:=”R21C2:R21C3”
Selection.Insert Shift:=xlDown
Application.Goto Reference:=”R17C3:R17C4”
Calculate
Selection.Copy
Application.Goto Reference:=”R21C2:R21C3”
Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone,
SkipBlanks:= _
False, Transpose:=False

End Sub

2

3

L M N O P Q R

Trial # survivors # births ∆N # survivors # births ∆N

High birth and low survival (b = 0.9, s = 0.1) Low birth and high survival (b = 0.1, s = 0 .9)



*6. (Advanced) The binomial distribution could have been used to estimate the
various probabilities that x number of survivors and x number of breeders
would have occurred in the 150 trials (see Exercise 3, “Statistical
Distributions”). Use the BINOMDIST function to obtain survivorship probabil-
ities for Population 1, and compare your trial results with those predicted by
the binomial distribution. Does the binomial distribution also reflect greater
“stochasticity” when sample sizes are small?
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KEY FACTOR ANALYSIS
In collaboration with David Bonter

18
Objectives

• Simulate a population that has nonoverlapping generations.
• Use the beta distribution.
• Calculate the stage-specific mortality, Kx, for each stage in

the life cycles.
• Conduct a key stage analysis of the various stages in the life

cycle.

Suggested Preliminary Exercise: Life Tables, Survivorship
Curves, and Population Growth

INTRODUCTION
Let’s assume you’ve been tracking the population dynamics of an annual plant
through its life cycle. You tediously count the number of seeds the plant sets, then
count the number of seedlings to estimate the germination rate, then count the
number of vegetative rosettes, the number of flowering adults, then the number
of fruiting adults. Thus you have tracked the fates of individuals in one stage and
counted how many individuals survived to the next stage. If this was an endan-
gered plant, you might want to know the stage of the life cycle in which the high-
est mortality occurs. For example, you might find out that the total mortality
across the life cycle is strongly influenced by the failure of seeds to germinate, or
by the failure of flowering plants to produce fruit. With such information, you
can potentially target your efforts to reducing mortality at that particular stage.

The attempt to identify factors responsible for population change and to assess
the magnitude of their effects is called key factor analysis. This analysis was devel-
oped by Morris (1959) to study spruce budworm outbreaks in forests in eastern
Canada. Key factor analysis is specifically for organisms with discrete (nonover-
lapping) generations, in which a single age class is present at any given time. The
analysis, for example, could be applied to an insect population that moves from
egg to larval to pupae to adult stages. The method also assumes that a series of
different mortality factors operate on the population sequentially. For example, if
two parasites and one disease kill larval insects, key factor analysis assumes that
parasite A acts first to kill a sample, then parasite B kills a portion, then disease C
acts to kill some of the remaining individuals (Krebs 1999: 511).

 



Modeling Key Factors
To set up a spreadsheet model of key factor analysis, we will let 

• Nx denote the number of individuals alive at any given stage. 
• Nx+1 denote the number of individuals at the next stage.
• bx denote the per capita birth rate of reproducing adults. 
• k denote the stage-specific mortality, or “killing power.”
• K denote the total generational mortality, or the sum of all the k’s.

The main idea behind key factor analysis is that by comparing Nx in one stage to Nx
in the previous stage, we can identify which stage has the largest mortality. We can also
add up the k’s to calculate K, the total mortality across generations. The k factors indi-
cate the importance of a particular stage to the total generational mortality, and the k
factor that most strongly affects generational mortality, K, is called the key factor.

The steps in a key factor analysis (Varley and Gradwell 1960) include:
1. Computing the observed fecundity, which is the per capita birth rate times the

number of females in the population
2. Computing the population size for each stage, or Nx in a life table
3. Computing the absolute losses of individuals from one stage to the next. For

stage x, the losses are computed as 

Nx – Nx+1

4. Converting the absolute losses of individuals from one stage to the next into
proportional losses. This is accomplished by taking the log of Nx. Age- or stage-
specific mortality, then, is calculated as 

log(Nx) – log(Nx+1)

5. Defining age-specific mortality, kx, as 

kx = log(Nx) – log(Nx+1) Equation 1

6. Computing total generational loss, K, as

K = k0 + k1 + k2 + k3 + … + kx. Equation 2

This analysis is done over several generations, where each generation consists of a com-
plete life cycle and where the life cycles from one generation to the next do not overlap
with each other. Each generation that is studied is a “replicate” of the key factor analy-
sis, and these replicates are important because they let you know if a certain factor is nor-
mally a key factor, or if it is a key factor in some conditions or years but not in others. 

As an example, suppose that k’s and K were computed for an insect population for
10 generations. Figure 1 shows that K, the total generational mortality, fluctuates from
generation to generation. The stage-specific mortalities (small ks) are also plotted for
each year and reveal the losses that occur within a stage for a single generation. The
little k that most closely mimics K over time is the key factor. In this case, graphed in Fig-
ure 1, the pupal stage is the key stage. Note that a pattern could not be detected if only
a single generation were studied. Which k factor is most closely tied to K can be hard
to discern, especially if the k factors have similar values. In this case, the key factor can
be identified by plotting the k factor against K for every single k; Figure 2 does this for
egg-stage mortality vs. total mortality.

Problems with Key Factor Analysis
You probably know by now that populations change over time through birth, death, immi-
gration, and emigration. In fact, the equation for population growth given in Exercise 7, 

Nt+1 = Nt + B + I – D – E

is the basis for many exercises in this book. But because key factor analysis focuses on
losses to a population, only death and emigration are properly represented by k fac-
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tors. The analysis also does not specifically identify factors that are responsible for pop-
ulation change, only the stages that are correlated with total generational mortality. The
analysis gives no indication of what might be causing such mortality, only the stage in
which it occurs. For this reason, the analysis may be more properly named key stage
analysis. Additionally, the assumptions of key factor analysis are often violated, and
many ecologists have criticized the use of traditional key factor analysis (e.g., Royama
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Figure 1 The total generational mortality, K, for each year is the sum of all the stage-specif-
ic mortalities for that year. The stage-specific mortalities (k1–k5) are also plotted for each
year, and reveal the losses that occur within a stage for a given year. The k that most closely
mimics K over time is the key factor. In this case, the pupae stage is the key stage. Note that
a pattern could not be detected if only a single generation was studied.

Figure 2 The relationship between k for the egg stage and total generational mortality, K,
for 10 years. The slope of the regression equation is +0.0968. Similar graphs can be con-
structed for the other stages, and the slopes can then be compared. Were we to construct
similar graphs for K and each of the other four k’s in Figure 1, the k factor that generates the
highest slope with K would be the key factor. 
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1996). However, the traditional analysis is often used as the first step in the analysis
of census data from natural populations, and several new methods have been devel-
oped that improve on the method presented here (e.g., Brown et al. 1993; Sibly and
Smith 1998).

The Beta Distribution
In this exercise, we will use the beta distribution to assign probabilities that an indi-
vidual will move from one stage to the next. This distribution is not used in other exer-
cises, and we will describe it only briefly here. All probabilities range between 0 and
1, and the beta distribution (rather than the normal distribution, which can take on val-
ues greater than 1 and less than 0) is much more appropriate for modeling probabili-
ties. The exact shape and scale of the beta distribution is controlled by two parameters,
called α and β. Because you are (by now) very familiar with the normal distribution,
we will take some parameters from a normal distribution that you are familiar with
(µ and σ2), and convert them into parameters from the beta distribution, α and β. For
example, if survivorship is known to have a mean, x- , of 0.6, and a standard deviation,
S, of 0.1, this corresponds to α = 13.8 and β = 9.2. A beta distribution with these param-
eters will show that most probabilities are 0.6, but there is substantial variation from
sample to sample. The values of α and β can be calculated as follows, where the sam-
ple mean and standard deviation, x- and S2, estimate µ and σ2:

In this way, we can include variation in survival probabilities with an appropriate
distribution (the beta distribution). However, you can intuitively visualize the proba-
bilities based on your experience from working with normal distributions. (Thanks to
Jeff Buzas at the University of Vermont, who provided these conversions). Figure 3
shows how the conversion works for a mean survival = 0.6 and a standard deviation
= 0.1. These parameters translate into a beta distribution whose α = 13.8 and β = 9.2. If
we changed α and β in Figure 3, the distribution would take on a new shape. 
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Random Survival Probabilities for Mean Survival = 0.6 and 
Std = 0.1 Converted to Survival Probabilities from the 

Beta Distribution
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Figure 3 The x-axis gives the survival probability for a single sample. The cumulative
probabilities are given on the y-axis. Look at the x-axis and note where the cumulative sur-
vival probabilities change very little. You should see that they change very little for proba-
bilities P < 0.4 and P > 0.8. In between these values, the cumulative survival probabilities
increase dramatically, suggesting that most of the data points in this distribution fall
between 0.5 and 0.7. At P = 0.6, the cumulative probability equals 0.5, suggesting that half 
of the observations in the data set fall above 0.6 and half fall below 0.6, as expected.



PROCEDURES

In this exercise, you’ll model a hypothetical insect population that moves through sev-
eral stages in its life cycle. We’ll assume the population is large and that we can track
the total number of individuals alive at each stage. We’ll assign probabilities that
individuals move from one stage to the next, and then calculate the k factors and
identify the key mortality factor. You’ll assign probabilities that individuals move from
one stage to the next with the beta distribution, and then calculate the k factors and
identify the key mortality factor.

As always, save your work frequently to disk.

ANNOTATION

Enter the values shown in Figure 4 in cells B5–G6.
We’ll consider an insect with nonoverlapping generations and whose life cycle consists
of a series of mortality factors that operate in a linear sequence with no interaction.
Eggs are laid by adults and hatch with some probability, then move to the larvae stage,
and pupate to become adults. The probability of moving from one stage to the next is
defined by a probability between 0 and 1. Some adults are capable of moving away
from the study area population (emigration). The probability of remaining in the pop-
ulation and not emigrating is given in the column labeled “Adult fidelity.” 

We’ll add an element of stochasticity to our model by establishing means and variances
for each parameter, and then “drawing” a random number from these distributions. In
previous exercises, you may have used the NORMINV function to draw a random prob-
ability from a normal distribution with a given mean and standard deviation. The spread-
sheet then converts this probability into a data point. This function won’t work for sur-
vival probabilities, though, because our survival probabilities can only take on values
between 0 and 1. For survival probabilities, the distribution we must draw at random
from a beta distribution. The parameters in the beta distribution are α and β (made by
typing “a” or “b” in on your keypad and then changing the font to the Symbol font).

Although α and β are not the same thing as means and standard deviations, we can
enter these formula based on the conversion equations

In cell C8, enter the formula =C5-1+((C5*(1-C5)^2)/C6^2) . Copy the formula across
to cell G8.
In cell C7 enter the formula =(C8*C5)/(1-C5). Copy the formula across to cell G7. 
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INSTRUCTIONS

A. Set up the model pop-
ulation.

1. Open a new spreadsheet
and set up headings as
shown in Figure 4.

2. Enter parameter esti-
mates (means and stan-
dard deviations) in cells
B5–G6.

3. Draw random values
from a beta distribution
for survival probability at
each stage.

4. In cells C8–G8 enter a
formula for the β parame-
ter of a beta distribution.
In cells C7–G7, enter a for-
mula that will calculate
the α parameter.
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Beta distribution  =

Beta distribution  =

Population variables

Figure 4



Now α and β are mathematical functions of the means and standard deviations spec-
ified in rows 5 and 6. As a result, we can draw random probabilities between 0 and 1
that have the means and standard deviations we specify.

In cell B11 enter the formula =NORMINV(RAND(),$B$5,$B$6). Copy this formula
over to cell K11. 
Here we do use the NORMINV function. The NORMINV function returns the inverse
of the normal cumulative distribution, given a mean and standard deviation. It has the
syntax NORMINV(probability,mean,standard_dev). The B11 formula draws a ran-
dom probability from a distribution whose mean is given in cell B5 and whose stan-
dard deviation is given in cell B6. The spreadsheet then converts this probability into
an actual data point from the distribution, which is the number of eggs laid in year 1.
Note that when you press F9, the calculate key, the spreadsheet will generate a new
random number, which means that a new random number is drawn from the distri-
bution and hence a new average fecundity computed. 

In cell B12 enter the formula =BETAINV(RAND(),$C$7,$C$8) . Copy the formula over
to cell K12.
The B12 formula gives the probability that eggs will hatch. Since this is a probability
whose values must fall between 0 and 1, we use the beta distribution (instead of the
normal distribution). The BETAINV formula functions like the NORMINV formula,
except that the distribution is a beta distribution instead of a normal distribution. The
formula in cell B12 tells the spreadsheet to draw a random cumulative probability from
the beta distribution whose parameters are α (cell C7) and β (cell C8). (Remember, you
entered formulae to compute α and β based on the means and standard deviations
entered in rows 5 and 6.) The spreadsheet converts the cumulative probability into a
data point, which is the probability that eggs will hatch in year 1. Press F9 to generate
a new estimate. 

5. Your spreadsheet
should now resemble
Figure 5. Save your work!

B. Determine model
inputs for Years 1-10.

1. Set up new headings as
shown in Figure 6, but
extend years to year 10 in
cell K10.

2. In cells B11–K11, enter a
formula to give the mean
number of eggs laid in
year 1. 

3. In cells B12–K12, enter a
formula to give the proba-
bility that eggs will hatch.
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We used the following formulae:
• Cell B13 =BETAINV(RAND(),$D$7,$D$8)
• Cell B14 =BETAINV(RAND(),$E$7,$E$8)
• Cell B15 =BETAINV(RAND(),$F$7,$F$8)
• Cell B16 =BETAINV(RAND(),$G$7,$G$8)

Your spreadsheet should now resemble Figure 7, although your numbers will proba-
bly be different due to the random sampling from the normal and beta distributions.

In cell B19 enter the formula  =$H$5*B11.
The actual number of eggs laid is the average fecundity × the number of females.

In cell B20 enter the formula =B12*B19.

The number of eggs hatched is a function of hatching probability calculated in cell B12. 

We used the following formulae:
• Cell B21 =B20*B13
• Cell B22 =B21*B14
• Cell B23 =B22*B15
• Cell B24 =B23*B16

4. Enter formulae in cells
B13–B16 to determine ran-
dom probabilities, drawn
from the beta distribution.
Copy your formulae
across to column K.

5. Double-check results.

6. Save your work.

C. Calculate model out-
puts and project growth
for 10 years.

1. Set up new spreadsheet
headings as shown in
Figure 8, but extend your
years to year 10.

2. In cell B19, enter a for-
mula to calculate the actu-
al number of eggs laid in
year 1.

3. In cell B20, enter a formu-
la to calculate the number
of eggs hatched in year 1.

4. In cells B21–B24, enter
formulae to compute num-
bers of individuals in vari-
ous stages. Copy each for-
mula across to column K
to complete 10-year simu-
lation.
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Now we can estimate the the stage-specific mortalities—the k factors (“little k’s”)—for
each stage in the life cycle.

In cell B28 enter the formula =LOG(B19)-LOG(B20). 

As shown in Equation 1, age-specific mortality is calculated by subtracting each log
of the population size from the previous one:

kx = log(Nx) – log(Nx+1)

Thus, the formula in cell B28 gives the k value or the mortality due to the number of
eggs that failed to hatch.

We used the following formulae:
• Cell B29 =LOG(B20)-LOG(B21)
• Cell B30 =LOG(B21)-LOG(B22)
• Cell B31 =LOG(B22)-LOG(B23)
• Cell B32 =LOG(B23)-LOG(B24)

Cell B32 does not give a mortality value per se, because it reflects the loss of individu-
als due to emigration rather than death. However, emigration has the same effect on
the population as mortality in that emigrants will not contribute to the next generation.

In cell B27 enter the formula =SUM(B28:B32).

Copy the formula in cell B27 across columns to column K.

Use the line graph option and label your axes fully. Your graph should resemble Fig-
ure 10.

D. Set up the k factor
analysis.

1. Set up new headings as
shown in Figure 9, but
extend your years to year
10.

2. In cell B28, enter a for-
mula to calculate the mor-
tality due to number of
eggs that failed to hatch.

3. In cells B29–B32, enter
formulae to compute k for
the remaining stages.

4. In cell B27, sum the k
values for year 1 to gener-
ate the K value.

5. Compute the k and K
values for years 1–10. Save
your work.

E. Create graphs.

1. Graph K and the k’s as a
function of time. Which k
factor appears to “track” K
the most?
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Add trendlines by selecting the chart; then go to the Chart menu, select Add Trendline,
and add a Linear trendline. Then click on Options | Display equation on chart. Your graph
should look something like Figure 11.

Compare the slopes of K versus k for each stage. The k value that has the greatest
slope is the key factor. 

2. Press F9, the calculate
key, to simulate new con-
ditions over time. Does
your key factor appear to
change?

3. For each k, construct a
scatter graph that plots k
against K. Add trendlines
(slope) for each graph.
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Because the k factor appears to change from trial to trial, it would be useful to con-
duct 100 trials, tracking the slopes of each k versus K regression equation, and then
computing the average slope for the 100 trials. This will give you a better indication
of which k factor has the greatest regression slope with K. There are many ways you
could do this. A suggested way follows.

In cell B36 enter the equation =SLOPE(B28:K28,B27:K27). Your answer should match
the slope displayed on your graph that is analogous to Figure 11.

• Cell C36 =SLOPE(B29:K29,B27:K27
• Cell D36 =SLOPE(B30:K30,B27:K27
• Cell E36 =SLOPE(B31:K31,B27:K27
• Cell F36 =SLOPE(B32:K32,B27:K27

Open the record macro function (see Exercise 2). Assign a shortcut key, then record the
following steps:

• Press F9, the calculate key, to generate new data, and hence new slopes.
• Select cells B36–F36. Open Edit | Copy.
• Select cell B35.
• Open Edit | Find. Leave the Find What box blank and search by columns. Select

Find Next, then Close. Your cursor should move down to cell B37.
• Open Edit | Paste Special and paste in the values.

Open Tools | Macro | Stop Recording. Now when your press your shortcut key 99 more
times, your results (the slopes of each k versus K) will be recorded for each trial.

In cell A137 type “Average.”
In cell B137 enter the equation =AVERAGE(B37:B136).
Copy this equation over to cell F137.

4. Press F9 to generate
new data. Does the key fac-
tor appear to change?

5. Answer questions 1 and
2 at the end of the exer-
cise. 

F. Conduct 100 trials.

1. Set up column headings
as shown in Figure 12.

2. In cell B36, use the
SLOPE function to com-
pute the slope of the regres-
sion between k1 and K.

3. In cells C36–F36, com-
pute the slopes of other k
regressions.

4. Set up a linear series
from 1 to 100 in cells
A37–A136.

5. Write a macro to track k
versus K regression slopes
and run it  for 100 trials.
Save your work!

6. Compute the average
slope with the AVERAGE
function to determine
which k has the largest
slope with K. This is the
key stage.
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QUESTIONS

1. Fully interpret the k factors in your figures. Which factor appears to by the key
factor in your model?

2. Press F9 to generate new sets of data, and inspect your plot of k’s and K over
generations. Does your key factor change with new simulations?

3. Compute the average of the regression slope estimates from your 100 trials.
Which k factor has the highest regression coefficient when regressed against K?

4. Based on the original population variables, and assuming our hypothetical
insect population is endangered, did the key factor analysis assist you in devel-
oping management recommendations? If so, how?

5. Change the parameter values in cells B5–H6 so that the standard deviation of
all parameters is 0.001 (little variation over generations). Clear your macro
results (cells B37–F135) and run your macro again. When the parameters do not
vary from generation to generation, which stage is the key factor? 

6. Change the parameter values in cells B5–H6 so that all survival probabilities
equal 0.7. Increase one of the standard deviations (e.g., cell D6) to 0.1. Clear
your macro results (cells B37–F135) and run your macro again. When the
parameters are equal but one stage is variable, which stage is the key factor?
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SENSITIVITY AND 
ELASTICITY ANALYSES19
Objectives

• Using the stage-based matrix model for a sea turtle popula-
tion, conduct a sensitivity analysis of model parameters to
determine the absolute contribution of each demographic
parameter to population growth rate.

• Conduct an elasticity analysis on model parameters to
determine the relative contribution of each demographic
parameter to population growth rate.

• Interpret the meaning of the sensitivity and elasticity analy-
ses from a conservation and management perspective.

Prerequisite Exercise: Stage-Structured Matrix Models
Suggested Preliminary Exercises: Reproductive Value Exercises

INTRODUCTION
Let’s imagine that you are a biologist working for an international conservation
organization, and that your task is to suggest the best ways to manage the pop-
ulation of an endangered marine reptile, the sea turtle Caretta caretta. You have
already constructed a stage-based matrix model (Exercise 14) for the popula-
tion, and you want to manage it so that population growth, λ, increases. You know
that the sea turtle has a complex life cycle, and that individuals can be classified
into 1 of 5 classes: hatchlings (h), small juveniles (sj), large juveniles (lj), subadults
(sa), and adults (a). Individuals in each class have a specific probability of sur-
viving; they can either: (1) survive and remain in the same class, denoted by the
letter P followed by two identical subscripts (i.e., the probability that a small juve-
nile remains a small juvenile in the next year is Psj,sj); (2) survive and move into
the next group, denoted by the letter P followed by two different subscripts (the
probability that a small juvenile will become a large juvenile in the next year is
Psj,lj); or (3) die, thus exiting the population. Only subadults and adults can breed,
and the letter Fi denotes their fertilities. In this population, turtles are counted
every year with a postbreeding census. The matrix for this population (Crowder
et al. 1994) has the following form:

 



Given the above L matrix, the population reaches a stable stage distribution with all
stage classes declining by 5% per year, or λ = 0.95. Your task is to suggest the best ways
to manage the turtle population to increase the long-term asymptotic λ, and hence
increase the population size. But λ can be increased in a variety of ways! Should you
focus your efforts on increasing adult fertility? Should you focus your efforts on increas-
ing the probability that hatchlings in year t will become small juveniles in year t + 1? Or
should you focus on increasing survivorship of adults? Finances and resources are
limited, so it is not likely that you can do all these things at once. 

In this exercise, you will extend the stage-based model you developed for Caretta
caretta to conduct a sensitivity and/or elasticity analysis of each model parameter. These
analyses will tell you how λ, population size, and the stable distribution might change
as we alter the values of Fi and Pi in the L matrix.

Sensitivity Analyses

Sensitivity analysis reveals how very small changes in each Fi and Pi will affect λ when
the other elements in the L matrix are held constant. These analyses are important from
several perspectives. From a conservation and management perspective, sensitivity
analysis can help you identify the life-history stage that will contribute the most to pop-
ulation growth of a species. From an evolutionary perspective, such an analysis can
help identify the life-history attribute that contributes most to an organism’s fitness. 

Conducting sensitivity analysis requires some basic knowledge of matrix algebra.
While we will not delve into matrix formulations in detail here (see Caswell 2001), we
will very briefly overview the concepts associated with sensitivity analysis. In the stage-
based matrix models you developed earlier, you projected population size from time t
to time t + 1 by multiplying the L matrix by a vector of abundance, n, at time t. (Remem-
ber that uppercase boldface letters indicate a matrix, and lowercase boldface letters indi-
cate a vector.) The result was a vector of abundances, n, at time t + 1:

n(t + 1) = L × n(t) Equation 1

After attaining the new vector of abundances, you repeated the process for the next time
step and attained yet another vector of abundances. When the process was repeated
over many time steps, eventually the system reached a stable stage distribution, where
λt remained constant from one time step to the next. This stabilized λt is called the long-
term or asymptotic population growth rate, λ. In the sea turtle exercise, the population
stabilized within 100 years. If λ > 1, the numbers of individuals in the population increase
geometrically; if λ < 1, the numbers of individuals in the population decline geometri-
cally; and when λ = 1, the numbers of individuals in the population remain constant in
numbers over time. Since λ = 0.95 for the sea turtle population, number of individuals
in the population decreases geometrically at 5% per time step. Graphically, the point in
time in which the population reaches a stable stage distribution is the point where the
population growth lines for each class become parallel (Figure 1). When λt has stabilized,
the population can be described in terms of the proportion of each stage in the total
population. When the population stabilizes, these proportions remain constant regard-
less of the value of λ.

Thus, given a matrix, L, you can determine the stable stage distribution of individu-
als among the different classes, and the value of λ at this point. The value of λ when
the population has stabilized is called an eigenvalue of the matrix. An eigenvalue is a
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number (numbers in matrix algebra are called scalars) that, when multiplied by a vec-
tor of abundances, yields the same result as the L matrix multiplied by the same vector
of abundances. For example, if λ is 1.15, the numbers of individuals in each class will
increase by 15% from time step t to time step t + 1. If λ instead is 0.97, the numbers of
individuals in each class will decrease by 3% from time step t to time step t + 1. 

In order to conduct a sensitivity analysis on the parameters in the L matrix, we need
to determine the stable-stage distribution of the population. For sea turtles, this was
23.9% hatchlings, 64.8% small juveniles, 10.3% large juveniles, 0.7% subadults, and 0.3%
adults. We can convert these percentages into the proportions 0.239, 0.648, 0.103, 0.007,
and 0.003. This vector of proportions is called a right eigenvector of the L matrix. The
right eigenvector is represented by the symbol w. The w vector for the sea turtle popu-
lation can be written as a column vector, where the first entry gives the proportion of
the stabilized population that consists of hatchlings, and the last entry gives the pro-
portion of the stabilized population that consists of adults:

Note that the values sum to 1.
The final piece of information needed for compute sensitivities for the values of Fi

and Pi in the L matrix is the left eigenvector, represented by the symbol v. The left eigen-
vector of the L matrix reveals the reproductive value for each class in the model. If you
have completed the exercises on reproductive value, you know that reproductive value
computes the “worth” of individuals of different classes (age, stage, or size) in terms of
future offspring it is destined to contribute to the next generation, adjusted for the growth
rate of the population (Fisher 1930). As Caswell (2001) states, “The amount of future
reproduction, the probability of surviving to realize it, and the time required for the off-
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Figure 1 The stage distribution of a population becomes stable when changes in
numbers over time for each growth stage are parallel, regardless of the value of λ.
At this point the proportion of each stage in the population remains the same into
the future.



spring to be produced all enter into the reproductive value of a given age or stage
class. Typical reproductive values are low at birth, increase to a peak near the age of first
reproduction, and then decline.” Individuals that are postreproductive have a value of
0, since their contribution to future population growth is 0. Sea turtle newborns also may
have low reproductive value because they probably have several years of living (and
hence mortality risk) before they can start producing offspring

We need to compute the reproductive values for each class in order to conduct a sen-
sitivity analysis of the Fi’s and Pi’s for the sea turtle population. The simplest way to
compute v for the L matrix is to transpose the L matrix, called L′, then run the model
until the population reaches a stable distribution, and then record the proportions of
individuals that make up each class as with the w vector. Transposing a matrix simply
means switching the columns and rows around: Make the rows columns and the
columns rows, as shown in Figure 2.

When λ is computed for the transposed matrix L′, the right eigenvector of L′ gives
the reproductive values for each class. This same vector is called the left eigenvector for
the original matrix, L. (Yes, it is confusing!) The v vector for the sea turtle population is
written as a row vector:

v = [.002 .003 .013 .207 .776]

This vector gives, in order, the reproductive values of hatchlings, small juveniles, large
juveniles, subadults, and adults. In this population, adults have the greatest repro-
ductive value, followed by subadults. Large juveniles, small juveniles, and hatchlings
have very small reproductive values. Oftentimes the reproductive value is standard-
ized so that the first stage or age class has a reproductive value of 1. We can standard-
ize the v vector above by dividing each entry by 0.002 (the reproductive value of hatch-
lings) to generate standardized reproductive values. Our standardized vector would
look like this:

Thus, an adult individual is 434.4 times more “valuable” to the population in terms of
future, adjusted offspring production than a single hatchling. 

Computing Sensitivities
Now we are ready to explore how the sensitivities of each Pi and Fi in the L matrix are
computed. Remember that sensitivity analyses reveal how very small changes in each
Fi and Pi will affect λ when the other elements in the L matrix are held constant. The
steps for conducting a sensitivity analysis include: (1) running the projection model
until the population reaches a stable distribution, (2) calculating the stable stage struc-
ture of the population, which is given by the vector w, and (3) calculating the repro-
ductive values for the different size classes, which is given by the vector v. The sensi-
tivity, sij, of an element in the L matrix, aij, is given by

Equation 2s
v w
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where vi is the ith element of the reproductive value vector, wj is the jth element of the
stable stage vector, and <w,v> is the product of the w and v vectors, which is a single
number (a scalar). Thus, the sensitivity of λ to changes in aij is proportional to the prod-
uct of the ith element of the reproductive value vector and the jth element of the sta-
ble stage vector (Caswell 2001). You’ll see how these calculations are made as you work
through the exercise. We can also write Equation 2 as a partial derivative, because all
but one of the variables of which λ is a function are being held constant:

Equation 3

How are the sij’s to be interpreted? A sensitivity analysis, for example, on the Pa,a and
Fsa might yield values of 0.1499 and 0.2287, respectively. These values answer the ques-
tion, “If we change Paa by a small amount in the L matrix and hold the remaining matrix
entries constant, what is the corresponding change in λ?” The sensitivity of the Paa
matrix entry means, for example, that a small unit change in Paa results in a change in
λ by a factor of 0.1499. In other words, sensitivity is represented as a slope.

The most sensitive matrix elements produce the largest slopes, or the largest changes
in the asymptotic growth rate λ. In our example above, where sensitivities were 0.1499
for the Paa entry and 0.2287 for the Fsa entry, small changes in adult survival will not have
as large an effect as changes in subadult fertility in terms of increasing growth, so you
would recommend management efforts that aim to increase subadult fertility values. 

Elasticity Analysis
One challenge in interpreting sensitivities is that demographic variables are meas-
ured in different units. Survival rates are probabilities and they can only take values
between 0 and 1. Fertility, on the other hand, has no such restrictions. Therefore, the
sensitivity of λ to changes in survival rates may be difficult to compare with the sen-
sitivities of fertility rates. This is where elasticities come into play. Elasticity analysis
estimates the effect of a proportional change in the vital rates on population growth. The
elasticity of a matrix element, eij, is the product of the sensitivity of a matrix element
(sij) and the matrix element itself (aij), divided by λ. In essence, elasticities are propor-
tional sensitivities, scaled so that they are dimensionless:

Equation 4

Thus, you can directly compare elasticities among all life history variables. An elastic-
ity analysis, for example, on the parameters hatchling survival and adult fecundity
might yield values of 0.047 and 0.538, respectively. This means that a 1% increase in
hatchling survival will cause 0.047 % increase in λ, while a 1% increase in adult fecun-
dity will cause a 0.538% increase in λ. In this situation, you would recommend man-
agement efforts that aim to increase adult fecundity values.

PROCEDURES

The goal of this exercise is to introduce you to matrix methods of computing sensitiv-
ities and elasticities for the vital population parameters, P and F, for a population with
stage structure. As always, save your work frequently to disk.
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ANNOTATION

Your spreadsheet headings should resemble Figure 3.

The stable stage distribution vector, w, is simply the proportion of individuals in the
population that is made up of the different stage classes.

The first entry, cell X5, is the proportion of the population that is made up of hatchlings
(given that the population has reached a stable distribution). The second entry, cell X6,
is the proportion of the population that is made up of small juveniles. Cells X7 and X8
will contain the proportions of large juveniles and subadults, and the last entry, cell X9,
will contain the proportions of adults. 

Enter the formula =B111/$G$111 in cell X5.
In Exercise 14, you calculated the number of individuals in each class when the popu-
lation has stabilized (remains constant over time).You might recall that the popula-
tion stabilized at λ = 0.95, and that the stable population consists of 16.22 hatchlings,
44.05 small juveniles, 7.03 large juveniles, 0.50 subadults, and 0.21 adults. To calculate
the w vector, we need to present these numbers in terms of proportions of the total pop-
ulation size. Rather than entering these values by hand, the above formula references
the proportion of hatchlings listed in the last year of the projection. 

INSTRUCTIONS

A. Set up the spread-
sheet.

1. Open the stage-based
matrix model you created
in Exercise 14 and save it
under a new name. Retitle
cell A1 to “Sensitivity and
Elasticity Analysis.”

2. Enter the values shown
in cells B4–F8. (You may
have changed these values
in your previous exercise).

B. Calculate w, the 
stable-stage vector.

1. Set up new column
headings as shown in
Figure 4.

2. In cell X5, calculate the
proportion of total popula-
tion in year 100 that con-
sists of hatchlings. 
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Small juveniles: 0.675 0.703 0 0 0 500

Large juveniles: 0 0.047 0.657 0 0 300

Subadults: 0 0 0.019 0.682 0 300

Adults: 0 0 0 0.061 0.8091 1

Year Hatchlings Small juvs Large juvs Subadults Adults Total  t
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We entered the formulae
• X6 =C111/$G$111
• X7 =D111/$G$111
• X8 =E111/$G$111
• X9 =F111/$G$111

These equations assume the population has stabilized by year 100.

The v vector gives the reproductive values for members in different stages of the pop-
ulation. The easiest way to do this is to transpose your original population matrix, then
run the same type of analysis you ran to determine the w vector. Transposing a matrix
simply means you interchange the rows and columns. 

The TRANSPOSE function in Excel is an array function. The mechanics of entering an
array formula are a bit different than the typical (single cell) formula entry. Instead of
selecting a single cell to enter a formula, you need to select a series of cells, then enter
a formula, then press <Control>+<Shift>+<Enter> (Windows machines) to enter the
formula for all of the cells you have selected. This function works best when you use
the fx key and follow the cues for entering a formula.

Select cells K4–O8 with your mouse, then use your fx key to select Transpose. A dialog
box will appear asking you to define an array that you wish to transpose. Use your
mouse to highlight cells B4–F8, or enter this by hand. Instead of clicking OK, press <Con-
trol>+<Shift>+<Enter>, and the spreadsheet will return your transposed matrix. After
you’ve obtained your results, examine the formulae in cells K4–O8. Your formula should
look like this: {=TRANSPOSE(B4:F8)}. The { } symbols indicate that the formula is part
of an array. If for some reason you get “stuck” in an array formula, press the Escape
key and start over.

3. In cells X6-X9, compute
the proportions in the
remaining classes.

4. Save your work. Your
spreadsheet should now
resemble Figure 5.

C. Calculate v, the repro-
ductive value vector.

1. Set up new column
headings as shown in
Figure 6. Enter only the
headings for now.

2. Use the TRANSPOSE
function to transpose the
original matrix, given in
cells B4–F8, into cells
K4–O8. Your spreadsheet
should resemble Figure 7.

Sensitivity and Elasticity Analyses 259

3
4
5
6
7
8
9

X
Stable stage distribution

vector, w

0.239

0.648

0.103

0.007

0.003

Figure 5

1
2
3
4
5
6
7
8
9
10

I J K L M N O P

F (h )

F (sj )

F (lj )

F (sa )

F (a )

Year Hatchlings Small juvs Large juvs Subadults Adults Total  lt

Reproductive value:  transposed matrix

Figure 6



Enter 0 in cell I11.
Enter =1+I11 in cell I12. Copy this formula down to cell I111.

You’ll need to stick with the same initial population vector of abundances you used
earlier in the exercise. We used the following formulae:

• J11 =H4
• K11 =H5
• L11 =H6
• M11 =H7
• N11 =H8

Enter the formula =SUM(J11:N11) in cell O11.

Enter the formula =O12/O11 in cell P11.

We used the following formulae:
• J12 =$K$4*J11+$L$4*K11+$M$4*L11+$N$4*M11+$O$4*N11
• K12 =$K$5*J11+$L$5*K11+$M$5*L11+$N$5*M11+$O$5*N11
• L12 =$K$6*J11+$L$6*K11+$M$6*L11+$N$6*M11+$O$6*N11
• M12 =$K$7*J11+$L$7*K11+$M$7*L11+$N$7*M11+$O$7*N11
• N12 =$K$8*J11+$L$8*K11+$M$8*L11+$N$8*M11+$O$8*N11
• O12 =SUM(J12:N12)
• P12 =O13/O12

You should see that λt stabilizes at the same value it did for your original projections.

3. Set up a linear series
from 0 to 100 in cells
I11–I111.

4. Link the starting num-
ber of individuals of each
class in year 0 to the origi-
nal vector of abundances
in cells H4–H8. 

5. In cell O11, compute the
total number of individu-
als in year 0. 

6. In cell P11, enter a for-
mula to compute λt for
year 0.

7. Project the population
over time as you did in
your turtle matrix model,
using the values from the
transposed matrix for your
calculations. 

8. Compute λt for Year 1.
Copy cells J12–P12 down
to row 111 to complete the
projection.

9. Set up new column
headings as shown in
Figure 8.
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Enter the formula =J111/$O$111 in cell S5.
As you did in computing the w vector, enter formula in these cells to reference the pro-
portions listed in the last year of the projection. Thus, cell S5 gives the proportion of
“hatchlings” in Year 100.

We entered the following formulae:
• T5 =K111/$O$111
• U5 =L111/$O$111
• V5 =M111/$O$111
• W5 =N111/$O$111

Cells S5–W5 should sum to 1.

Enter the formula =S5/$S$5 in cell S6. Copy this formula across to cell W6.
Reproductive values are often standardized such that the reproductive value of the first
class (hatchlings) is 1. To standardize the reproductive values, divide each value by the
value obtained for hatchlings. Your spreadsheet should now resemble Figure 9.

Now that you have calculated the w and v vectors, you are ready to perform a sensi-
tivity analysis. 

10. In cell S5 enter a for-
mula to compute the
reproductive value of the
hatchling stage.

11. In cells T5–W5, enter
formulae to compute the
reproductive value of the
remaining stages.

12. Double-check your
work.

13. In cells S6–W6, calcu-
late the standardized repro-
ductive value for each stage
class.

14. Save your work.

D. Calculate sensitivi-
ties of matrix parame-
ters.

1. Set up new column
headings as shown in
Figure 10. Enter only the
headings (literals) for now.
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2. In cell S8, use the
MMULT (matrix multipli-
cation) function to multi-
ply the v vector by the w
vector.

3. In cell S12–W12, enter
formulae to compute the
sensitivity of fertility rates
for each stage over time.

4. Copy cells S12–W12
down to cells S16–W16.
Save your work.

E. Calculate elasticities
of matrix parameters.

1. In cell S21–W21, enter
formulae to calculate the
elasticity values for fertili-
ty at each stage for year 0.

2. Copy the formulae over
the remaining years of the
analysis.

3. Save your work.

F. Create graphs.

1. Graph the elasticity val-
ues for fertility of the vari-
ous stage classes.
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Enter the formula =MMULT(S5:W5,X5:X9) in cell S8.
The MMULT function returns the matrix product of two arrays. The result is an array
with the same number of rows as array 1 and the same number of columns as array 2.
In our case, it ends up being a single digit (since our v vector consists of one row and
our w vector consists of one column). This value is the denominator <w,v> of the for-
mula for calculating sensitivity values (Equation 3). This single-digit result is called a
scalar; for purposes of the spreadsheet, we will call this value X.

Now you are ready to calculate the numerator of the sensitivities, and compute the sen-
sitivity values for each entry in your matrix. Note that sensitivities are computed for
all matrix entries, even those that are 0 in the original L matrix. For example, you will
compute the sensitivity of subadult fertility (Fsa,h) even though subadults cannot repro-
duce. This sensitivity value will allow you to answer, “If I could make subadults repro-
duce, it would increase λ at this rate. You may wish to shade the L matrix entries that
have original cell entries that are equal to 0 a different color (as shown in Step 1). 

Sensitivity of a population growth rate to changes in the aij element is simply the ith
entry of v times the jth entry of w, divided by X. For example, to calculate the sensi-
tivity of fertility rate of subadults (row 1, column 4), we would multiply the first ele-
ment in the v vector by the fourth element in the w vector, and then divide that num-
ber by X. The formula in cell V12 would be =(X8*S5)/S8. Enter formula in the remainder
of the sensitivity matrix. Below are the formulae we used (note that we used absolute
references for some cell addresses).

• S12 =($X$5*S5)/$S$8
• T12 =($X$6*S5)/$S$8
• U12 =($X$7*S5)/$S$8
• V12 =($X$8*S5)/$S$8
• W12 =($X$9*S5)/$S$8

Adjust your formulae in the formula bar to reference the appropriate cells in the v
and w vectors. For example, in row 13, replace the reference to cell 56 with T5. In row
14, replace the reference to cell S7 with V5, etc. This completes the sensitivity analysis. 

Enter the formula =(B4*S12)/$H$110 in cell S21. Copy this formula across to cell W21.
The elasticity of aij is the sensitivity of aij times the value of aij in the original matrix,
divided by λ when λt has stabilized. For example, the elasticity calculation of fecundi-
ties of the subadults would be =(E4*V12)/$H$110. If the original matrix element was
a 0 (such as the fecundities of the hatchling stage), the elasticity should be 0. 

Copy the formulae in cells S21–W21 down to cells S25–W25. This will complete the
elasticity analysis. The sum of the elasticities should add to be 1, since each elasticity
value measures the proportional contribution of each element to λ (yours might be off
by a bit due to rounding error). 

Use a column graph and label your axes fully. Your graph should resemble Figure 11.



You will have to manually select bars within the graph and color-code them to reflect
within-stage survival (Pi,i) or survival to the next stage (Pi,i+1). Your graph should resem-
ble Figure 12.

2. Graph the elasticity val-
ues for the survival val-
ues, Pi,i and Pi,i+1 for each
stage class.

3. Save your work.
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QUESTIONS

1. Fully interpret the meaning of your sensitivity analysis. What management rec-
ommendations can you make for sea turtle conservation given your analysis?

2. Fully interpret the meaning of your elasticity analysis. What management rec-
ommendations can you make for sea turtle conservation given your elasticity
analysis? Would your recommendations be different if you simply examined
the sensitivies, and ignored elasticities? Which do you think is more appropri-
ate for guiding management decisions?

3. As with all models in ecology and evolution, elasticity and sensitivity analyses
have their assumptions (and weaknesses). Let’s say you make some recommen-
dations for sea turtle conservation based on the matrix parameters provided in
the exercise. What kinds of assumptions are implicit in the model parameters?
(What do you need to know about how the data were collected and the envi-
ronmental and biological conditions in which the data were collected?)
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METAPOPULATION DYNAMICS20
Objectives

• Determine how extinction and colonization parameters
influence metapopulation dynamics.

• Determine how the number of patches in a system affects
the probability of local extinction and probability of regional
extinction.

• Compare “propagule rain” versus “internal colonization”
metapopulation dynamics.

• Evaluate how the “rescue effect” affects metapopulation
dynamics.

INTRODUCTION
Can you think of any species where the entire population is situated within one
patch, where all individuals potentially interact with each other? You will prob-
ably be hard pressed to come up with more than a few examples. Most species
have distributions that are discontinuous at some spatial scale. In some species,
subdivided populations may be linked to each other when individuals disperse
from one location to another. For example, butterflies may progress from egg to
larvae to pupa to adult on one patch, then disperse to other patches in search of
mates, linking the population on one patch to a population on another. This “pop-
ulation of populations” is often called a metapopulation, and in this exercise we
will explore the dynamics of such interacting systems. 

Metapopulation theory was first formalized by Richard Levins in 1969 (Levins
1969, 1970). In Levins’ model, a metapopulation exists in a network of habitat
patches, some occupied and some unoccupied by subpopulations of individuals.
The dynamics of metapopulations can be explored by examining patch occupancy
patterns over time. In the left-hand side of Figure 1, the 100 squares represent 100
patches in a metapopulation at time t. The right-hand side of the figure shows
the pattern of patch occupancy at time t + 1. 

In the traditional metapopulation model (Levins 1970), each subpopulation has
a finite lifetime and each subpopulation has the same probability of extinction. Addi-
tionally, all unoccupied patches have the same probability of being colonized. At
equilibrium, the proportion of patches that are occupied remains constant, although
the pattern of occupancy continually shifts as some subpopulations suffer extinction

 



followed by recolonization. This is sometimes referred to as the “winking” nature of
metapopulations, as newly colonized patches “wink in” and extirpated patches “wink
out.” Thus, the classic metapopulation model (sensu Levins 1970) is a “presence-absence”
model that examines whether a population is present or absent on a given patch over time,
how presence and absence changes over time, and how the entire metapopulation system
can persist. In other words, metapopulation models explain and predict the distribution
of occupied and unoccupied habitat patches, factors that affect dispersal between patches,
and the persistence of the greater metapopulation (Hanski and Gilpin 1997).

Metapopulation Dynamics: Colonization and Extinction
Let’s begin our exploration of metapopulation dynamics by defining extinction and
colonization mathematically. Patches that are currently occupied in the system have a
probability of going extinct, pe, and a probability of persistence, 1 – pe. Patches that are
currently empty in the system have a probability of being recolonized, pi, and a prob-
ability of remaining vacant, 1 – pi. Since both pe and pi are probabilities, their values
range between 0 and 1.

Metapopulation dynamics focus on the occupancy patterns of patches over time. We
can think about the fate of a given patch over the course of time, and additionally we
can consider the fate of the entire metapopulation over the course of time. For a given
patch, the probability that a patch will persist for n years in a row is simply the proba-
bility of persistence, raised to the number of years in consideration (Gotelli 2001). 

Pn = (1 – pe)
n Equation 1

For example, if a patch has a probability of persistence = 0.8, and we are interested in
computing the probability of that patch remaining occupied for 3 consecutive years, P3
= 0.83 = 0.512. In other words, if we had 100 occupied patches in a metapopulation,
approximately 51.2% of the patches would persist over a 3-year period; 48.8% would
likely go extinct within that time period. 

If we want to consider the fate of the entire metapopulation over time, we need to
know the extinction probabilities of each patch, and the number of patches in the sys-
tem. Given this information, we could compute the probability that all patches would
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Patches at time t + 1Patches at time t

Figure 1 At time t, occupied habitat patches are represented with filled
circles; empty squares represent currently unoccupied patches. At time t +
1, some of the patches that were occupied in time t are vacant (open cir-
cles), some patches that were vacant at time t are now occupied (gray cir-
cles), and some patches maintain their “occupancy status” from time t to
time t + 1 (filled circles).



go extinct simultaneously, leading to extinction of the entire metapopulation. Assum-
ing that all patches have the same probability of extinction, the probability that the entire
metapopulation will go extinct is simply the pe raised to the number of patches in the
system. Thus, when pe = 0.5 and there are 6 patches in the system, the probability that
all 6 patches will go extinct simultaneously is 0.56 = 0.0156. Thus there is about a 1.5%
chance that the system will go extinct. Similarly, we can compute the probability of
metapopulation persistence as the probability of persistence raised to the power of the
number of patches in the system.

Px = 1 – (pe)
x Equation 2

Now that we know a little bit about extinction and colonization of patches, let’s focus
on the dynamics of a metapopulation system, or how patch occupancy patterns change
over time. The basic metapopulation model has the form

Equation 3

where f is the fraction of patches occupied in the system. For example, if our system
contained 25 patches, and 5 of them are occupied, f = 5/25 = 0.2. By definition, 20/25
patches are vacant. Equation 3 simply states that the (instantaneous) change in the frac-
tion of patches that are occupied depends on the rates of immigration (I) to empty sites
and the rates of extinction (E) of occupied sites (Gotelli 2001). If you have completed
the exercise on exponential growth, this equation has a form that might be familiar to
you, but instead of births and deaths (B and D in the exponential growth model), we
are now concerned with I and E. Two critical pieces of information determine I, the rate
at which empty patches are recolonized: the number of patches that are currently empty
and available for recolonization, and pi, the probability that an empty patch will actu-
ally be recolonized. If f is the fraction of patches that are occupied, then 1 – f is the frac-
tion of patches that are currently empty, and we can compute I as

I = pi(1 – f)

Now let’s focus on E, the rate at which currently occupied patches go extinct. E
depends on the number of patches that are currently occupied and available for extinc-
tion, as well as pe, the probability that an occupied patch will go extinct. If f is the frac-
tion of patches that are currently occupied, we can compute E as

E = pe f

Substituting the above two values for I and E into Equation 3, we now have a general
model of metapopulation dynamics:

Equation 4

This model is called a propagule rain model or an island-mainland model, because
the colonization rate does not depend on patch occupancy patterns—it is assumed that
colonists are available to populate an empty patch and that these colonists can origi-
nate from either currently occupied patches or from patches outside the metapopula-
tion system. At equilibrium, the fraction of patches remains constant over time, although
patches continually “wink in” and “wink out” of existence. How do we solve for this
equilibrium?

To solve for the equilibrium fraction of patches, set the left-hand side of Equation 4
to 0 (which indicates that the system is not changing, and the fraction of patches is there-
fore constant) and solve for f:

0 = pi – pi f – pe f

Equation 5f
p

p p
i

i e
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As with all models, the metapopulation model has several assumptions, the most
important being that all patches are created equal: pe and pi are constant over time and
apply to patches regardless of their population size, habitat quality, or other factors.
Additionally, this basic model assumes that the explicit location of any patch in relation
to other patches is not an important factor in pe or pi (Gotelli 2001).

Clearly, some of these assumptions are violated in natural populations, where pe and
pi are not independent of f, the fraction of patches in the metapopulation that are occu-
pied. For example, colonization of an empty patch may be more likely when f is high
than when f is low. When f is high, potentially more colonists are available to recolonize
a vacant site. When f is low, colonists arise from only a few patches and may not be
able to colonize empty patches efficiently. This kind of metapopulation model is often
called an internal colonization model because colonization rates depend on current sta-
tus (f) of the metapopulation system.

Similarly, extinction of a patch may depend on the fraction of patches occupied in the
metapopulation system. When f is high, there are many potential colonists available to
keep a patch from going extinct; when f is low, there are fewer potential colonists, and
risk of extinction increases. This kind of metapopulation model is often called a rescue
effect model because extinction rates depend on the current status (f) of the metapop-
ulation system. Graphically, the “adjusted” colonization and extinction rates may be
proportionally related to the fraction of patches occupied (Figure 2), although the exact
relationship between rates and fraction of patches can take a variety of forms.

PROCEDURES

The metapopulation concept has become an important paradigm in conservation biol-
ogy in recent years, and it is worth exploring some of its assumptions and predic-
tions. In this exercise, you will develop a spreadsheet model of metapopulation dynam-
ics. We will expand the model and explore the internal colonization and rescue effect
models in the Questions section. As always, save your work frequently to disk.
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Figure 2 The colonization rate rises as a greater fraction of habitat patches
are occupied (the internal coloniation model), whereas extinction rates are
higher when fewer habitat patches are occupied (the rescue effect model).
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ANNOTATION

Enter the value 25 in cell E4. (The term metapopulation implies that there must be at least
2 habitat patches in the system. To begin, we will consider a system in which there are
25 patches.)

Enter the value 10 in cell E5.

Enter 0.3 in cell E6. Remember that pe is the probability of local extinction—that is, the
probability that any currently occupied patch in the system will go extinct. The value
pe = 0.3 means that any occupied patch has a 30% probability of going extinct. (This cell
has been shaded to indicate that its value can be manipulated in the spreadsheet.)

The probability that any occupied patch will persist (i.e., not go extinct)  is 1 – E6.
Thus you can enter the formula =1-E6 in cell E7. 

This is simply E7 raised to the tenth power. For a population to persist 10 years in a
row, we multiply the probability of persistence by itself for the number of years we are
interested in projecting to the future. Recall that you entered the the value 10 in cell E5;
thus the formula in cell E8 can be =E7^E5, where the ^ symbol indicates the power to
which the value in cell E7 is raised.

Enter 0.9 in cell E9. This is the colonization parameter, pi—the probability that an unoc-
cupied site will become colonized through immigration to that site. (This cell has
been shaded to indicate that its value can be manipulated in the spreadsheet.)

INSTRUCTIONS

A. Set up the model.

1. Open a new spreadsheet
file and fill in column and
row headings as shown in
Figure 3.

2. Set up a scenario in
which there are 25 habitat
patches.

3. Consider what will hap-
pen to our metapopulation
in the next 10 years. 

4. In cell E6, set pe equal to
0.3.

5. In cell E7, enter a formu-
la to caculcate the proba-
bility that any given occu-
pied patch will persist.

6. In cell E8, enter a for-
mula to calculate the prob-
ability that a patch will be
occupied for 10 straight
years. 

7. In cell E9, set pi equal to
0.9.
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Introduction to Metapopulation Dynamics

Model parameters:
x = number of patches in system 25
n = number of years under consideration 10
p e = probability of local extinction 0.3
1 - p e = probability of local persistence
p n = probability of continued local persistence
p i = probability of local colonization 0.9
P x = probability of regional extinction
1 - P x = probability of regional persistence

f = equilibrium number of patches occupied

Figure 3



Since you know the probability that each patch will go extinct, and you know how
many patches there are in the system, the probability that all of the patches will simul-
taneously go extinct is simply the probability of local extinction raised to the number
of patches in the system. Enter =E6^E4 in cell E10.

The probably of persistence is simply 1 – E10; thus enter =1-E10 in cell E11.

Enter the formula =E9/(E9+E6). This corresponds to Equation 5,  f = pi/(pi + pe).
Review your work to this point and interpret your results before proceeding.

Now we are ready to simulate how metapopulations work. You should make sure that
your calculation key is set to “Automatic” at this time. Go to Tools | Options | Calcula-
tion and select the Automatic button.

We’ll start with a hypothetical system that consists of 25 patches, where each cell in
A14–E18 represents a patch. The first block of cells in the figure below indicates the
pattern of patch occupancy in Year 0. The second block of cells (A22–E26) indicates the
patch occupancy pattern in Year 1.

Cells A14–E18 will represent the initial patch occupancy of the 25 patches in the
metapopulation system (Year 0). Cell A14 is the upper-left patch in the system; cell C16
is the middle patch in the system, and so on. We let 0 indicate that the patch is currently
unoccupied and 1 indicate that the patch is occupied.

8. In cells E10 and E11,
enter formulae to calculate
the probability of regional
extinction and the proba-
bility of regional persist-
ence, respectively.

9. In cell E12, enter a for-
mula to calculate f, the
equibrium fraction of
patches occupied. 

10. Save your work.

B. Simulate the
metapopulation dynam-
ics from Year 0 to Year 1. 

1. Set up new column
headings as shown in
Figure 4.

2. Enter 0s and 1s as
shown in cells A14–E18.

270 Exercise 20

13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

A B C D E

0 1 1 1 1
1 0 0 1 1
0 0 1 1 1
0 1 0 0 0
0 1 1 0 0

f = 0.52

f =

Initial patch occupancy, year 0

Landscape occupancy, year 1

Figure 4



To format the cells, select cells A14–E18 with your mouse, then select Format | Condi-
tional Formatting. The dialog box similar to Figure 5 will appear. Follow the prompts to
format your cells. For Condition 1, set the cell value to equal to 1, then click on the
Format button, select the Patterns tab, and format the pattern of the cell to be shaded one
color. Click OK. Then select the Add >> button to add a new Condition and format
cells that are equal to 0 as a different color. When you are finished, click OK and con-
tinue to the next step.

We used the formula =ROUND(SUM(A14:E18)/25,2). This formula nests two func-
tions, SUM and ROUND. Remember that the formula within parentheses will be com-
puted first. Thus the spreadsheet first sums the number of patches occupied and divides
this number by the total number of patches in the system (25). The result is then
rounded to 2 decimal places with the ROUND function. 

The upper-left patch (A14) in our initial (Year 0) landscape is currently unoccupied.
Thus we need a formula that tells the spreadsheet to evaluate whether cell A14 is 0
(unoccupied) or 1 (occupied). If it’s 0, then let the patch be colonized according to the
colonization probability in cell $E$9. If it’s 1, then let it go extinct according to the extinc-
tion probability in cell $E$6. We entered the following formula in cell A22: 

=IF(A14=0,IF(RAND()<$E$9,1,0),IF(RAND()<$E$6,0,1))

There are three IF formulae here, nested within each other; boldface type has been
applied in a way that separates the three formulae. Let’s walk through them carefully.
Remember that the IF formula returns one value if a condition you specify is TRUE,
and another value if the condition you specify is FALSE. 

The overall structure of the formula in cell A20 tells the spreadshet to examine cell A14.
If A14 is 0, then carry out the second IF statement (in light type); otherwise, carry out
the third IF statement. Since cell A14 is 0 (unoccupied in year 0), the spreadsheet will
carry out the second IF statement.

The second IF statement, IF(RAND()<$E$9,1,0), tells the program to draw a random
number between 0 and 1 (the RAND() portion of the formula). If this random number
is less than the colonization rate given in cell $E$9, then let the patch be colonized
(i.e., assign it the value 1); otherwise, keep it uncolonized by assigning it the value 0.

3. Format cells A14–E18 so
that occupied patches are
a different color than the
unoccupied patches.

4. In cell E19, enter a for-
mula to calculate the frac-
tion of patches that are
occupied, f.

5. In cell A22, enter a for-
mula to simulate the fate
of the upper-left patch
(cell A14) in year 1, given
its current status and
extinction and coloniza-
tion probabilities. Copy
this formula across the 25
patch landscapes (cells
A22–E26). 
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If cell A14 had been occupied (=1), the spreadsheet would have computed the third
IF statement, IF(RAND()<$E$6,0,1). This portion of the formula tells the spreadsheet
to draw a random number between 0 and 1. If this random number is less than the
extinction rate given in cell $E$6, then let the patch go extinct (assign it the value of
0); otherwise, let it persist by assigning the cell the value 1.

Copy this formula across the landscape to see how patch occupancy changed from year
0 to year 1. 

See Step 3 and Figure 5.

We entered the formula =ROUND(SUM(A22:E26)/25,2). Your spreadsheet should now
look something like Figure 6, although your landscape occupancy pattern for year 1
will likely differ from ours due the nature of the random number function in deter-
mining patch occupancy. 

In Figure 6, Patch A14 was empty in year 0, but was colonized in year 1 (cell A22). Patch
B14 was occupied in year 0 and remained occupied in year 1. Patch C14 was occupied
in year 0 but went extinct in year 1. 

Each time you press F9 the spreadsheet generates a new set of random numbers, which
in turn affects whether patches become colonized or go extinct. When you press F9,
you should see under various scenarios how the fraction of patches in the landscape
changes from year 0 to year 1. You should also see the “winking” nature of metapop-
ulations: Patches “wink in” when they become colonized and “wink out” as they go
extinct. Given a configuration of occupied patches in year 1, our next step is to deter-
mine what the occupancy pattern will be in year 2 and into the future. We will do this
in the next step.

6. Conditionally format cells
A22–E26 to add shading. 

7. In cell E27, enter a for-
mula to calculate the frac-
tion of patches occupied in
Year 1. 

8. Press F9, the Calculate
key, several times to simu-
late changes in patch
occupancy from Year 0 to
Year 1. 

9. Save your work.
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Now we’ll track “winking” over time, and determine the fraction of patches that remain
occupied over time. When the fraction occupied no longer changes across generations,
but the pattern of occupancy continually shifts, the metapopulation has reached an equi-
librium state. 

We will now let the pattern of patch occupancy in year 1 be labeled year t. We want to
predict what will happen in year t + 1—that is to say, in year 2. To continue simulat-
ing the metapopulation dynamics over time, the occupancy pattern in year 2 will
then be pasted into year t, and year 3 will be year t + 1. After year 3 is calculated, year
3 will become year t, and year 4 will become year t + 1 (and so on). You can ignore the
cells labeled “Landscape Occupancy, year 0” (cells A14–E18) and “year 1” (cells
A22–E26) from this point forward.

We entered the formula =ROUND(SUM(A30:E34)/25,2).

To predict the pattern of occupancy for year t + 1, we need to write a formula based
on the occupancy patterns in year t. We used the formula =IF(A30=0,IF(RAND()
<$E$9,1,0),IF(RAND()<$E$6,0,1)).

Enter the formula =ROUND(SUM(A38:E42)/25,2).

C. Simulate metapopula-
tion dynamics over time.

1. Set up new column
headings as shown in
Figure 7.

2. Copy cells A22–E26, and
then go to Edit | Paste
Special | Paste Values into
cells A30–E34. Do not
copy and paste the formu-
lae. 

3. In cell E35, enter a for-
mula to calculate the frac-
tion of patches that are
occupied in year t.

4. In cell A38, enter a for-
mula to determine the fate
of the upper-left patch in
the system (cell A30) for
year t + 1 (refer to the for-
mula entered in cell A22).
Copy this formula across
the landscape.

5. Calculate the fraction of
patches that are occupied
in cell E43. 
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This designates the occupancy rate in the initial landscape.

Under Tools | Options | Calculation, set your caculation key to Manual. Then record a macro
to track f across years (see Excercise 2, “Spreadsheet Functions and Macros”). Once
your macro is in the “Record” mode, do the following:

• Press F9, the calculate key, to determine the pattern of occupancy for Year t + 1
(cells A38–A42). 

• Select cell E43, the new proportion of the landscape occupied, and select Edit | Copy.
• Select cell H4, then go to Edit | Find. Leave Find What completely blank, searching

by columns, and select Find Next and then Close (Figure 9).

• Select Edit | Paste Special, and paste in the values, which are the proportion of
the landscape that is occupied for that year.

• Use your mouse to highlight cells A38–E42 and select Edit | Copy.
• Now select cell A30, then select Edit | Paste Special and paste in the values. This

is your new metapopulation configuration for the following year.
• Select Tools | Macro | Stop Recording.

6. Set up new column
headings as shown in
Figure 8.

7. Enter =E35 in cell H4.

8. Write a macro to simu-
late patch occupancy over
10 years.
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Now when you press the shortcut key you assigned, the macro automatically deter-
mines the proportion of patches that are occupied and enters this value into the appro-
priate generation. Run your macro until you have tracked your metapopulation over
10 years.

Your graph should resemble Figure 10, although the exact fraction of patches will vary
due to the random number function used to determine the fate of a given patch.

Choose any (reasonable) values you’d like. Run your macro again for 10 years to sim-
ulate the new conditions. Remember that as long as the calculation is set to manual,
you will always have to press the F9 key to complete any calculations.

In your explorations, don’t forget that you’ll have to “reset” the cells labeled “Land-
scape occupancy, year t” (cells A30–E34) to reflect the initial conditions you desire. You
will also want to clear the simulation results in cells H5–H14 before you run your
new macro.

QUESTIONS

1. Compute f, the equilibrium number of patches occupied in the metapopulation
system. (Refer to Equation 5.) Examine the graph of the metapopulation simula-
tion. Has the population reached an equilibrium value, where the number of
patches stays constant over time although the occupancy of each patch changes
over time? Why or why not? Extend years in column G to 100. Run your macro
until 100 simulations are completed. Is the system in equilibrium by year 100?
Why or why not?

9. Save your work.

D. Create graphs.

1. Graph the fraction of
patches occupied over
time. Use the line graph
option and label your axes
fully. Save your work.

E. Explore the model. 

1. Explore your model by
changing the probability
of extinction and the prob-
ability of colonization.
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2. How does number of patches in a metapopulation system affect the probability
of regional persistence (Px) under a fixed level of local colonization but various
scenarios of local extinction? Enter model parameters as shown. To address this
question, change cells E4 and E6 according to the table below (cells J8–N15),
then record the value in cell E11 in the appropriate cell. 

Set up column headings as shown, and record 1 – Px (the probability of regional
persistence) in the appropriate cell. We have filled in the 1 – Px values for Pe = 0
and Pe = 0.2 as an example. Fill in the remaining cells. Then select cells K10–N15
and graph your results using the line graph option. Interpret your graph.

3. How does f, the equilibrium fraction of patches occupied, change as function of
pe and pi? Set up spreadsheet columns as shown:

276 Exercise 20

3

4
5
6
7
8
9
10
11

A B C D E
Model parameters:

x = number of patches in system 1
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For each combination of pi and pe, enter f in the appropriate cell. For example, in
cell L21 enter f (computed in cell E12) when pi = 0.2 and pe = 0.2. Graph and
interpret your results. Use the line graph option and select the data series in
columns option. 

4. Set cell E6 to 1, and cell E9 to 0.9. This will make the probability of extinction,
pe, equal to 1, and the probability of colonization, pi, equal to 0.9. Clear your old
macro results and run a new simulation. Why has the population persisted,
considering that all patches are doomed to extinction? 

5. Set cell E6 to 0.3, and enter 1s and 0s in cells A30–E34 such that f = 0.6. Assume
that pi is now a function of the number of patches occupied (instead of the
propagule rain model in question 4). As more patches are occupied, the colo-
nization rate increases because a greater number of colonists will likely locate
an empty patch. Write an equation in cell E9 to modify the model into an inter-
nal colonization model and re-run your simulation. How do your results differ
from those of question 4?

6. Return cell E9 to 0.6 (propagule rain model), and enter 1s and 0s in cells
A30–E34 such that f = 0.6. Assume now that pe is now a function of the number
of patches occupied. As more patches are occupied, the extinction rate decreases
because more colonists are available to “rescue” the patch from extinction. The
fewer patches that are occupied, the more likely a patch will go extinct because
colonists are less available to “rescue” a patch from extinction. This metapopu-
lation model is called the rescue effect model (Gotelli 2001), where the extinction
rate depends on how many patches are currently occupied. Write an equation in
cell E6 to modify your model into a rescue effect model, and re-run your simu-
lation. How do your results compare to questions 4 (propagule rain model) and
5 (internal colonization model)? 

7. *Advanced. How does number of patches in the system affect the “stochastic”
behavior of a metapopulation? Set up a new system in which the number of
patches is 10,000 (100 × 100 cells), and compare the two models.
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SOURCE-SINK DYNAMICS21
Objectives

• Set up a population model of two subpopulations that inter-
act through dispersal.

• Determine how birth, death, and dispersal between source
and sink habitat affect population persistence.

• Determine how the initial distribution of individuals among
source and sink habitat affects population dynamics. 

• Examine the conditions in which a source-sink system is in
equilibrium.

Prerequisite Exercise: Geometric and Exponential Population
Models

INTRODUCTION
If you could spend your life anywhere in the world, where would it be? A Hawaii-
an island? The Peruvian Andes? The French Riviera? Midtown Manhattan? A vil-
lage in Bosnia? The rain forest of Madagascar? The Gobi Desert? New Zealand’s
South Island? In thinking about your choice, it becomes obvious that all habitat
patches are not created equal.

For any given species, some habitats are superior to others for individual sur-
vival and reproduction. The fact that patch quality is heterogeneous (mixed) and
that individuals of a population occupy different kinds of patches is an impor-
tant consideration in predicting the population dynamics of a species. Source-sink
theory addresses the issue of such heterogeneity. Sources are areas or locations
where local reproductive success is greater than local mortality (Pulliam 1988).
Alas, not all patches are optimal, and some individuals of a population may be
forced to occupy poorer quality patches that lead to low birth rates and high death
rates. These areas or locations are called sinks, because the populations occupy-
ing them will spiral “down the drain” to extinction unless they receive immigrants
from other locations—usually a source.

Why would individuals disperse from a high-quality source habitat to a low-
quality sink habitat? Because resources are limited, not all individuals can obtain
breeding sites in the source. Individuals unable to find a breeding site in the source
emigrate to the sink because, from a fitness perspective, even a poor-quality breed-
ing site may be better than none at all (Pulliam 1988). 

If we want to project the size of a population in which some individuals reside
in source habitats and others reside in sink habitats, we need to consider the pop-

 



ulation dynamics of each source and sink subpopulation, and then consider how the
distribution of individuals in sources and sinks influences the dynamics of the greater
source-sink system. How can such a population be modeled? If you have completed
Exercise 7, “Geometric and Exponential Population Models,” you may recall that the
most basic way to describe population growth is through the equation

Nt+1 = Nt + Bt – Dt + It – Et Equation 1

where 
Nt represents the size or density of the population at some arbitrary time t
Nt+1 represents the population size one arbitrary time unit later
Bt represents the total number of births in the interval from time t to time t+1
Dt represents the total number of deaths in the same time interval
It represents the total number of immigrants in the same time interval
Et represents the total number of emigrants in the same time interval

Birth, death, immigration, and emigration are the four “biggies” in population dynam-
ics. In concert, they determine whether a population will grow or decline over time,
and are often called the BIDE factors. If you have completed the exercise “Geometric
and Exponential Population Models”, you modeled a population in which dispersal
was neglible, and hence I and E were set to 0. However, in source-sink dynamics, the
movement of individuals from one population to another must be considered, and
changes in numbers over time must therefore include the movements of individuals
into the population (immigration, I) and the movement of individuals out of the pop-
ulation (emigration, E). To make population projections of a source-sink system, we
need to know the numbers of individuals in each habitat type, as well as the BIDE
factors for each habitat type. Thus, two equations are needed: one for the source pop-
ulation, and one for the sink. We will consider these equations for a population that
grows in discrete time, rather than for a continuously growing population.

To begin, let’s think about a single habitat, say, the source. What controls the total
number of births (B), immigrants (I), deaths (D), and emigrants (E) in the source habi-
tat? If we switch from total numbers to per capita rates, we can do some fruitful model-
ing. A per capita rate is a per individual rate; the per capita birth rate is the number of
births per individual in the population per unit time, and the per capita death rate is the
number of deaths per individual in the population per unit time. Similarly, per capita
immigration and emigration rates are the number of immigrants and emigrants per indi-
vidual per unit time.

Per capita birth rate and immigration are easy to understand; they are the number of
new individuals per individual that enter the population through birth or immigration.
Per capita death and emigration rates may seem strange at first because they reflect
the number of deaths or emigration events per individual per unit time, and usually
these things happen to individuals only once. But you can think of these rates as each
individual’s risk of dying in a given unit of time, or the chance of exiting the population
through dispersal in a given unit of time. 

Keeping in mind that per capita rates are per individual rates, we can translate raw
numbers (Bt, It, Dt, and Et) into per capita rates, which we will represent with lower-
case letters (bt, it, dt , and et) to distinguish them from raw numbers. All we have to do
is divide the raw numbers by Nt, the population size at time t:

and Bt = btNt

and It = itNt

and Dt = dtNtd
D
Nt

t

t
=
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I
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and Et = etNt

Because we assume constant per capita rates, we can make one further, minor modifi-
cation to our equation by leaving off the time subscripts on b, i, d, and e. Thus,

Nt+1 = Nt + bNt + iNt – dNt – eNt Equation 2

We can further simplify this model by factoring Nt out of the birth, immigration, death,
and emigration terms:

Nt+1 = Nt + (b + i – d – e)Nt Equation 3

The term (b + i – d – e) is so important in population biology that it is given its own sym-
bol, R and is called the geometric rate of natural increase. Thus*

R = b + i – d – e

Substituting R into Equation 3 gives us

Nt+1 = Nt + RNt Equation 4

We can calculate the change in population size, ∆Nt, by subtracting Nt from both sides
of this equation:

Nt+1 – Nt = RNt

Because ∆Nt = Nt+1 – Nt, or the difference in population size over time, we can substi-
tute and write

∆Nt = RNt Equation 5

In words, the rate of change in population size is proportional to the population size,
and the constant of proportionality is R. We can convert this to per capita rate of change
in population size if we divide both sides by Nt:

∆Nt/Nt = R Equation 6

In words, the parameter R represents the per capita rate of change in the size of the
population. If you’d like to determine how R will affect population size from one
time step to the next, you can start with Equation 4, and then factor Nt out of the
terms on the right side to get

Nt+1 = (1 + R)Nt Equation 7

The quantity (1 + R) is often given its own symbol, λ, or the finite rate of increase,
and so we can write

Nt+1 = λNt Equation 8

When λ = 1, the population size remains constant (unchanged) over time; when λ > 1,
the population increases geometrically; and when λ < 1, the population declines geo-
metrically. 

Now let’s return to the topic of sources and sinks. Without dispersal, a source can
be defined as a subpopulation where λ > 1. This occurs only when b > d. A sink can be
defined as a subpopulation where λ < 1, which occurs when d > b. With dispersal (immi-
gration and emigration), a source or sink subpopulation is in dynamic equilibrium
(not changing) when B + I – D – E = 0. Thus, because births are greater than deaths in a
source population, to maintain an equilibrium number of individuals, the source must
export individuals to other locations (b > d and e > i). In contrast, for a sink to be in equi-
librium, it must import individuals because deaths outnumber births (d > b and i > e). 

e
E
Nt

t

t
=
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*In Exercise 7, R was defined simply as b – d because in that exercise i and e were assumed
to be 0.



How is the equilibrium size of the greater population (source and sink) determined?
If there are many habitats, the population reaches equilibrium when the total surplus in
all the source habitats equals the total deficit in all the sink habitats. Some basic take-
home points from Pulliam’s (1988) source-sink model are:

• At equilibrium, the number of individuals in the overall, greater population is
not changing.

• Each source and sink subpopulation can be characterized by its “strength,”
depending on its intrinsic rate of growth and the number of individuals pres-
ent. Within-subpopulation dynamics (b, i, d, e) are important in determining the
overall equilibrium population size, since the numbers of individuals on each
patch and their growth rates are implicit in the model.

• The source-sink status of a subpopulation may have little to do with the size
(number of individuals) within the subpopulation. Sinks can support a vast
number of individuals and sources can be numerically very small. However,
sources must have enough individuals with a high enough per capita produc-
tion to support sink populations.

PROCEDURES
In this exercise you will develop a simple source-sink model in which dispersal occurs
from the source to the sink when the source reaches its carrying capacity. We will con-
sider only the female portion of the population and assume that there are plenty of males
available for reproductive purposes. Once the model is constructed, you will be able to
explore how the different BIDE parameters, population sizes, and carrying capacities
influence the source-sink system. As always, save your work frequently to disk.

ANNOTATION

In our source-sink model, we will assume that the source has a carrying capacity (see
Exercise 8, “Logistic Population Models”) because not all individuals can occupy prime
habitat. In the source, the birth, death, and immigration rates are constants that can
be modified. The emigration rate, e, is not a constant but is calculated as the per capita
number of individuals that leave the source after the carrying capacity has been reached.
We will assume that the sink has no carrying capacity and that “poor quality” habitat
is plentiful. The immigration rate into the sink, i, is not a constant but is calculated as
the per capita number of individuals that disperse from the source to the sink habitat. 

INSTRUCTIONS

A. Set up the basic
spreadsheet.

1. Open a new spreadsheet
and set up headings as
shown in Figure 1.

2. Enter the starting num-
ber of individuals, N0; car-
rying capacity, K; and
BIDE rates for the source
and sink habitat as shown
in Figure 1.
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Enter 0 in cell A15.
Enter =1+A15 in cell A16. Copy this formula down to cell A35.

Enter =C5 in cell B15.

Remember that the numbers of births, deaths, and immigrants in the source depends
on the per capita rates given in cells C7–C9, as well as the number of individuals cur-
rently in the population, Nt. Enter the following formulae:

• C15 =B15*$C$7
• D15 =B15*$C$8
• E15 =B15*$C$9

Enter the formula =IF(B15+C15-D15+E15>$C$6,B15+C15-D15+E15-$C$6,0). This
formula is long, but is really a simple IF formula with three parts, each part separated
by a comma.
The first part is the criterion; our criterion is B15+C15-D15+E15>$C$6, which tells the
spreadsheet to evaluate whether Nt + B – D + I is greater than the source’s carrying
capacity (which is given in cell $C$6). If this criterion is TRUE, the program carries out
the second part of the formula. If this criterion is FALSE, it carries out the third part
of the formula.
Thus, if the number of individuals in the source is below carrying capacity (i.e., the cri-
terion is FALSE), the number of emigrants from the source will be 0, and the spread-
sheet will return the number 0 in cell F15. If the number of individuals in the source is
above K (the criterion is TRUE), the number of emigrants from the source is computed
as B15+C15-D15+E15-$C$6.

We entered the formula =B15+C15-D15+E15-F15.

Enter the formula =C15-D15+E15-F15. The formula =G15-B15 gives the same result.
(Remember that you can generate the delta symbol, ∆, by typing in a capital D, select-
ing it, and changing its font to Symbol.)

Enter the formula =H15/B15.

Enter the formula =1+I15. Note that λ can also be computed as Nt+1/Nt. You can gen-
erate the λ symbol by typing in the letter l, then selecting this letter on the formula bar,
and changing its font to the symbol font. Interpret your results before proceeding.

B. Project population
size in a source over time.

1. Set up new spreadsheet
headings as shown in
Figure 2.

2. Set up a linear series
from 0 to 20 in cells
A15–A35.

3. In cell B15, link the
starting number of indi-
viduals in the source pop-
ulation to cell C5.

4. In cells C15–E15, enter
formulae to compute B, D,
and I (the total numbers of
births, deaths, and immi-
grants) in the source pop-
ulation.

5. In cell F15, use an IF
function to compute the
total number of emigrants
from the source as the
number of individuals in
excess of the source’s car-
rying capacity.

6. In cell G15, compute the
total number of individu-
als in the source as N0 + B
+ I – D – E.

7. In cell H15, enter a for-
mula to compute ∆N.

8. In cell I15, compute R as
∆N/N to generate the per
capita rate of population
change. 

9. In cell J15, compute λ as
R + 1.
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Enter the formula =B15+C15+E15-D15-F15. You could also simply enter =G15.

Enter the formula =$F$5 in cell K15.

Enter the following formulae:
• L15 =K15*$F$6
• M15 =K15*$F$7

Enter the formula =F15.

We entered the following formulae:
• O15 =K15+L15-M15+N15
• P15 =O15-K15 or L15-M15+N15
• Q15 =P15/K15
• R15 =K16/K15 or =Q15+1

10. In cell B16, enter a 
formula to compute N in
year 1. 

11. Select cell B16 and
copy its formula down to
row 35. Select cells
C15–J15 and copy their
formulae down to year 20,
row 35.

12. Save your work. The
first portion of your
spreadsheet should now
look like Figure 3.

C. Project population
size in the sink over
time.

1. Set up new spreadsheet
headings as shown in
Figure 4.

2. In cell K15, link the
starting number of indi-
viduals in the source pop-
ulation to cell F5.

3. Enter formulae in cells
L15–M15 to compute the
total births and deaths in
the sink.

4. In cell N15, enter a for-
mula to link emigants
from the source to immi-
grants into the sink.

5. In cells O15–R15, enter
formulae to compute the
total population size of the
sink; ∆N; R; and λ.
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0 10.0 5.0 2.0 1.0 0.0 14.0 4.0 0.40 1.40

1 14.0 7.0 2.8 1.4 0.0 19.6 5.6 0.40 1.40

2 19.6 9.8 3.9 2.0 2.4 25.0 5.4 0.28 1.28

3 25.0 12.5 5.0 2.5 10.0 25.0 0.0 0.00 1.00

4 25.0 12.5 5.0 2.5 10.0 25.0 0.0 0.00 1.00

5 25.0 12.5 5.0 2.5 10.0 25.0 0.0 0.00 1.00
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We entered the formula =IF(K15+L15-M15+N15<0,0,K15+L15-M15+N15). This IF for-
mula is used to keep the population from falling below 0 and generating negative pop-
ulation sizes. The formula simply says that if the total population in the sink is less than
0, return the number 0; otherwise, return the total population size of the sink.

Enter the formula =G15+O15. 

Enter the formula =S16/S15. 

6. Enter an IF formula in
cell K16 to compute the
population size in year 1.

7. Select cell K16 and cells
L15–R15, and copy their
formulae down to year 20
(row 35).

8. Your sink projections
should now look some-
thing like those in Figure
5. Save your work.

D. Project and graph
population sizes for the
source-sink system.

1. Set up new headings as
shown in Figure 6

2. In cell S15, compute the
total population size as the
sum of the source individ-
uals and sink individuals. 

3. In cell T15, enter a for-
mula to compute λ for the
entire source-sink system. 

4. Copy cells S15–T15
down to year 20 (row 35).
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Select cells G15–G35, then press the Control key or the  key and select cells O15–O35.
Use the 100% Stacked Column option, and label your axes fully.

QUESTIONS

1. Keeping the parameters as you set them at the beginning of the exercise, and
examining the graphs created in the last step, answer the following questions:

• At what year does the source reach an equilibrium state?
• At what year does the sink reach an equilibrium state?
• How does the proportion of the total population in source and sink habitats

change over time? Why do the proportions change?

2. Extend your population projections to 100 years. Copy the formula in row 35
down to row 115. Update your graphs to include the 100-year projection, and
answer the questions in question 1 again.

5. Graph the numbers of
individuals in the source,
sink, and total population
over time. Your graph
should resemble Figure 7.

6. Graph the proportion of
the total population in
source and sink habitat
over time. Your graph
should resemble Figure 8.
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3. The definition of a sink is that it is incapable of sustaining itself over time with-
out the influx of individuals from source habitats. What happens if the source
population is extirpated? Set cell C5 to 0, and interpret your model results.

4. With your model programmed, you can change various parameters and watch
how the parameters effect the population over time.

• What happens to the greater population if you increase the starting number of
individuals in the source? Increase the value of cell C5 from 10 to 100 in incre-
ments of 10. Interpret λ for the source, sink, and greater population.

• What happens to the greater population if you increase the starting number of
individuals in the sink? Increase the value of cell F5 from 100 to 1000 in incre-
ments of 100. Interpret λ for the source, sink, and greater population over time.
What is the equilibrium population size?

• What if you increase survival rate (i.e., lower the death rate, cell C8) in the
source habitat?

• How does carrying capacity, K, affect overall population growth? What hap-
pens when you increase or decrease this factor in the source?

5. Field biologists seldom have the opportunity to estimate the birth and survival
rates for many organisms. Instead of basing habitat quality on these parame-
ters, quality is often associated with density (number of individuals per unit
area). Modify your model to show that density may be a misleading indicator
of habitat quality. 

6. In Pulliam’s 1988 model, b (cell C7) changes and is a function of number of
breeding sites/total breeders. Thus, if the number of total breeders is large, b,
the per capita birth rate, is low. And if the number of total breeders is less than
total sites available in source, b is maximum. How can this be incorporated into
your model, and how does this change affect your model results?

LITERATURE CITED

Pulliam, H. R. 1988. Sources, sinks, and population regulation. American
Naturalist 132: 652–661.
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NICHE BREADTH AND 
RESOURCE PARTIONING22
Objectives

• Compute niche breadth for two organisms coexisting in a
community.

• Compute niche overlap for the two coexisting organisms.
• Use the Solver function to evaluate how breadth and over-

lap between the two species can be maximized and mini-
mized.

Suggested Preliminary Exercise: Interspecific Competition

INTRODUCTION
A community is an assemblage of different species that coexist in time and space
(Gotelli 2001). Community dynamics can occur at any spatial scale. That is, we
can study the interaction of different species within a community on our front
lawn, inside the gut of a deer, in a pond after a rainstorm, or in a temperate rain
forest.

Given that resources are not infinite within any ecosystem, a fundamental ques-
tion in ecology is, How many species can occur together within a given commu-
nity? The competitive exclusion principle states that if two species compete for
critical resources in an environment, one of two outcomes results. Either both
species coexist, or one species outcompetes the other and drives the other species
to extinction (at least in that community). Coexistence can occur only if the species
niches are different enough to limit competition between them. Thus, ecologists
interested in community dynamics often ask, How do the different species parti-
tion the resources in this community? To answer this question, we need to know
how organisms utilize their environment. One way to do this is to measure the
niche parameters for one species and then compare it to the niche parameters of
another. 

As a hypothetical example, consider two species that occur together in a com-
munity. Both species consume a food resource that varies in size, such as seeds.
Suppose both species 1 and species 2 consume a wide variety of seed sizes, but eat
similar kinds of seed sizes. A graph of their resource consumption might look like
Figure 1. Since both species eat a variety of seed sizes, intraspecific competition may
not be that significant because individuals may not have to compete directly
with members of their own species for a certain size of seed. However, the over-
lap in curves between species 1 and 2 suggests that interspecific competition may

 



be significant. The competitive exclusion principle suggests that such competition
may lead to the local extinction of one species.

Alternatively, assume that species 1 and species 2 consume different seed sizes,
with a graph of seed consumption as shown in Figure 2. In this situation, intraspecific
competition may be significant because each species specializes on only a small range
of seed sizes in their diets. However, since the species do not overlap in their con-
sumption of seeds of a certain size, interspecific competition is likely to be low, and the
two species may coexist.

How can we determine quantitatively the degree to which two species can compete
for a similar resource? We will consider two measures: niche breadth and niche over-
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Figure 1 The two species whose foraging habits are charted here are competing
for the same food resource and would not be able to coexist comfortably.
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Figure 2 Individuals of the two species in this graph would face greater competi-
tion from members of their own species than from members of the second species.



lap. Niche breadth is a parameter that attempts to measure how specialized or unspe-
cialized a species is within a given environment. A specialist that feeds on only one or
two food sources will have a much smaller niche breadth than a generalist that feeds on
many kinds of food items. Niche breadth is measured by observing how individuals
in the community make use of  the same set of resources. Food, for example, is a resource
that can be measured by identifying the kind of food taken or the size of food taken.
Habitat is also a resource whose use can be measured for niche analysis. 

There are many ways to quantify niche breadth (Krebs 1999). One common meas-
ure is the Levins measure (1968), which measures how uniformly resources are being
utilized by each species. The equation is

Equation 1

where B is the Levins measure of niche breadth and pi is the proportion of individu-
als found using resource i. To derive measures of niche breadth for a species, an ecol-
ogist typically counts the number of resource items used by a set of individuals of that
species.

Suppose we observed two species of lizards and quantified the food intake of 1000
individuals in both species. One species, the whiptail lizard (Cnemidophorus tigris), has
a diet that consists of 20% grasshoppers, 30% termites, 20% insect larvae, 20% beetles,
5% vertebrates, and 5% roaches (data drastically modified from Pianka 1986). The sec-
ond species, the side-blotched lizard (Uta stansburiana) has a diet that consists of 10%
ants, 20% grasshoppers, 25% beetles, 15% termites, 10% insect larvae, 10% arthropods,
and 10% spiders. The niche breadth for the whiptail lizard would be

and the niche breadth for the side-blotched lizard would be 

Often, these measures are standardized on a scale of 0 to 1 by using the formula 

Equation 2

where BA is the standardized niche breadth, and n is the total number of food items for
the species of interest (in the whiptail example, six food types were observed in total,
so n = 6). 

In contrast to niche breadth, the parameter niche overlap measures the degree to
which two different species overlap in their use of a particular resource. Estimating niche
overlap is a way to answer the question, How do the different species partition the
resources in the community? It might be obvious that some species do not overlap at all
in their use of resources. For example, a hummingbird and an owl are very unlikely to
compete for the same food resources, so measures of niche overlap seem trivial when
it comes to food. However, estimating niche overlap and resource partitioning is often
of interest when a number of species use resources in similar ways. Such a group of
species is called a guild. Seed-eating finches on the Galápagos Islands are an example
of a guild.

If species overlap in niches to a great extent, they may influence each other’s popu-
lation growth through interspecific competition. As with niche breadth, niche overlap
can be measured in a variety of ways (Krebs 1999). One measure, developed by
MacArthur and Levins (1967), is calculated as

Equation 3M
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where Mjk is the MacArthur and Levins niche overlap measure of species k on species j
(keep track of the notation used), pij is the proportion that resource i is of the total
resource that species j utilizes, and pik is the proportion that resource i is of the total
resources that species k utilizes. Both summations are over the index i. Note that when
we calculate niche overlap this way, the effect of species j on species k can be different
from the effect of species k on species j. This formula was originally developed to esti-
mate α and β coefficients in the Lotka-Volterra interspecific competition model (Exer-
cise 10). However, most ecologists now agree that overlap measures are not appropri-
ate for competition coefficients (Krebs 1999). A similar, but symmetrical, measure of
overlap was developed by Pianka (1986), and is calculated as

Equation 4

where Ojk is Pianka’s measure of overlap between species j and species k, pij is the
proportion that resource i is of the total resources used by species j, and pik is the pro-
portion that resource i is of the total resources used by species k. This measure ranges
from 0 (no resources used in common) to 1 (complete overlap). 

In our lizard example, we can plug in the numbers and calculate M to determine the
extent to which whiptail lizards are overlapped by side-blotched lizards, and the extent
to which side-blotched lizards are overlapped by whiptail lizards. We can compute
Pianka’s measure of overlap, O, as well. The results give us some indication of how food
resources are partitioned between the two species in the community. Keep in mind that
these measures suggest a potential for competition between species, which in turn may
affect the diversity of species present at a site, but they do not provide direct evidence
that the presence of one species can influence the population dynamics of the second.

PROCEDURES

In this exercise, you’ll set up a spreadsheet to calculate both niche breadth and niche
overlap of two hypothetical species. A primary goal is to be able to determine, in Ques-
tions 3 and 4, how diets must change in order to either maximize or minimize niche
breadth and niche overlap.

As always, save your work frequently to disk.

ANNOTATION

We’ll focus on two species and assume that we can record how many times we observe
foraging attacks on 10 major food resources, listed in cells A6–A15. Glancing at the raw
data, which species do you think has a broader niche breadth?

O
p p

p p
jk

ij ik

ij ik

= ∑
∑ 2 2

INSTRUCTIONS

A. Set up the model
community.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 3

2. For each species, fill in
the numbers of foraging
attacks shown in Figure 1
for resources 1 through 10.
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Enter the formula =SUM(B6:B15) in cell B16. 
Enter the formula =SUM(F6:F15) in cell F16.

Enter the formula =(B6^2) in cell C6. Copy this formula down to cell C15.
The columns labeled #2, p, and p2 are simply steps that you need to compute in order
to estimate niche breadth and overlap at a later point in time. The ^ symbol indicates
that the value in cell B6 is to be raised to a power (in this case, the power of 2). 

Enter the formula  =B6/$B$16 in cell D6. Copy this formula down to cell D15.

Enter the formula =D6^2 in cell E6. Copy this formula down to cell E15.

Enter the following formulae:
• Cell C16 =SUM(C6:C15)
• Cell D16 =SUM(D6:D15). This result should be 1.
• Cell E16 =SUM(E6:E15)

Enter  the following formulae:
• Cell G6 =(F6^2)
• Cell H6 =F6/$F$16
• Cell I6 =H6^2.

Copy these formulae down to row 15. 

3. Use the SUM function
in cell B16 and F16 to
count the total number of
foraging attacks observed
for species 1 and 2, respec-
tively.

4. In cells C6–C15, enter a
formula that squares the
number of foraging
attacks on prey item 1 for
species 1.

5. In cells D6–D15, calcu-
late the proportion (p) of
the total number of attacks
for each resource type.

6. In cells E6–E15, square
the values in column D.

7. Sum your column val-
ues in cells C16–E16.

8. Calculate #2, p, and p2

for species 2. 
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Enter the formula =D6*H6 in cell J6.

Enter the formula =SUM(J6:J15) in cell J16.

Your spreadsheet should now resemble Figure 4.

With the basic calculations in place, you are now ready to calculate n, B, BA, M12, M21,
and O . Take a moment to review the equations presented in the Introduction to this
exercise. 

Enter the formula =COUNTIF(B6:B15,”>0”) in cell B18.
Enter the formula =COUNTIF(F6:F15,”>0”) in cell G18.
These formulae count the number of entries in cells B6–B15 and F6–F15 that are greater
than 0, hence providing information on n.

Enter the formula =1/E16 in cell B19.
Enter the formula =1/I16 in cell G19.

Enter the formula =(B19-1)/(B18-1) in cell B20.
Enter the formula =(G19-1)/(G18-1) in cell G20.

Enter the formula =J16/E16 in cell B21.
Enter the formula =J16/I16 in cell G21.

Enter the formula =J16/SQRT(E16*I16) in cells B22 and G22.

9. In cell J6, multiply p
(species 1) by p (species 2),
and copy your formula
down to cell J15. 

10. Sum cells J6–J15 in cell
J16.

11. Save your work.

B. Calculate niche sta-
tistics.

1. In cells B18 and G18,
enter formulae to calculate
n for each species.

2. In cells B19 and G19,
enter formulae to calculate
B for each species.

3. In cells B20 and G20,
enter formulae to calculate
BA for each species.

4. In cells B21 and E21,
enter formulae to calculate
M12 and M21, respectively.

5. In cells B22 and G22,
enter a formula to calcu-
late O.

6. Save your work.
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Use the column graph option and label your axes fully. Your graph should resemble
Figure 5.

Using Solver

Questions 3 and 4 ask you to use the function SOLVER to mathematically optimize spe-
cific niche parameters. To access Solver, go to Tools | Solver and select Solver. (If Solver
does not appear in the menu, go to Tools | Add-ins and select the Solver add-in. Your com-
puting administrator may need to help you with the installation.) The dialog box in
Figure 6 (see Question 3) will appear. In general, Solver works through the following
steps:

• In the Set Target Cell box, enter a cell reference or name for the target cell. The
target cell must contain a formula.

• To have the value of the target cell be as large as possible, click Max. To have
the value of the target cell be as small as possible, click Min. To have the target
cell be a certain value, click Value of, then type the value in the box.

• In the By Changing Cells box, enter a name or reference for each adjustable cell,
separating nonadjacent references with commas. The adjustable cells must be
related directly or indirectly to the target cell.

• In the Subject to the Constraints box, enter any constraints you want to apply. For
instance, we will constrain the number of foraging attacks and the total observa-
tions. Table 1 lists of the operators that can be used in writing constraints.

• When you click Solve, Solver will run through several different scenarios with
varying combinations of parameters, evaluating each combination given the
constraints you identify. When the Solver finds a solution, a dialog box will

C. Create graphs.

1. Graph the overlap sta-
tistics for the two species.

2. Save your work.
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TABLE 1. Operators Used as Constraints in Solver

Operator Meaning

<= Less than or equal to
>= Greater than or equal to
= Equal to
int Integer (applies only to adjustable cells)
bin Binary (applies only to adjustable cells)



appear, asking you whether you want to keep the solution or to restore the
original values. 

• To keep the solution values on the worksheet, click Keep Solver Solution in the
Solver Results dialog box. To restore the original data, click Restore Original
Values.

QUESTIONS

1. Fully interpret your results from cells B18–B22 and cells G18–G22. What general
conclusions can you draw about how the two species coexist in the community?

2. In counting the number of resource “hits” for each species and using this infor-
mation to calculate niche breadth and overlap, what assumptions are you mak-
ing about the availability of different resources in the environment? 

3. Under what conditions would niche breadth, B, for species 1 be maximized?
Under what conditions would niche breadth for species 1 be minimized? 

To answer this question, you could plug in some numbers for resource utiliza-
tion, varying your scenarios from conditions in which a single item is utilized
versus all 10 resources utilized equally versus all 10 resources utilized unequal-
ly. However, you can readily use the Solver function described at the end of the
exercise to answer this question.

• To use the Solver, select cell B19, then go to Tools | Solver and the dialog box
shown below.

• To maximize the niche breadth of species 1, we want to set Target Cell B19 (B,
niche breadth) to a maximum by changing cells B6–B15. You can use your
mouse to click on cells for these entries, or you can directly type in the cell ref-
erences in the appropriate locations. If you do the latter, make sure you type in
absolute cell references (e.g., Set Target Cell to $B$19, not B19).

• The spreadsheet will figure out how to change the diets in order to maximize
niche breadth, but we will constrain the numbers that the spreadsheet uses in
the calculations. First select the Add button and add a constraint that the num-
ber of foraging attacks for each resource must be greater than or equal to 0.
Then select the Add button again and constrain the total number of observa-
tions to 1000 (cell B16 must be less than or equal to 1000).

• Once you’ve entered the constraints, click the Solve button. The program will
return a solution, with new values entered automatically in cells B6–B15.
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You can either keep the Solver results (which pastes the Solver values into your
spreadsheet), or simply interpret the results and cancel the Solver results to
return to your original spreadsheet values. (You might want to copy your
spreadsheet into a new worksheet if you wish to keep the Solver answers and
your original cell entries). Note that you can also find minimums or specify a
certain value that you want to be solved. 

4. Assuming that species 2 cannot change its resource use, what diet should
species 1 consume to minimize niche overlap with species 2? Again, you can
use the Solver and set cell B22 to a minimum (and constrain the foraging obser-
vations to a total of 365, the original number of observations). 

5. Ask an interesting question pertaining to niche overlap or niche breadth. Use
your model to answer your question. Provide graphs to support your answer.
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POPULATION ESTIMATION: 
MARK-RECAPTURE TECHNIQUES23
Objectives

• Simulate the process of mark and recapture of individuals in
a closed population.

• Estimate abundance using the Lincoln-Petersen method.
• Perform a Monte Carlo simulation to estimate the accuracy

of the Lincoln-Petersen results.
• Determine how the number of individuals marked and

number of individuals recaptured affects the precision of the
Lincoln-Petersen index.

• Evaluate how emigration and capture probability can bias
the Lincoln-Petersen index.

INTRODUCTION
How many moose are in Vermont? What is the population size of breeding black
ducks in the Adirondacks? How many jaguars are in the Calakmul Biosphere
Reserve in Mexico? How “confident” are we in our estimates? Estimating abun-
dance in animals is a very common procedure for ecologists and land managers.
This is because the size of a population can profoundly affect, among other things,
its genetic make-up, probability of persistence, and rates of immigration, emi-
gration, birth, and survival. 

There are two basic ways of determining population size. The first is an actual
“head count” of individuals, or census; the second is estimation of population
size through sampling. The second method is the only option when (as is often
the case) counting all individuals is impractical or impossible. There are different
strategies for estimating plant and animal population sizes over time. The fore-
most difference is that animals move from location to location, whereas plants
remain rooted in place and are thus often (but not always!) easier to count.

Because most animals are mobile, animal abundance is often estimated through
mark-recapture techniques (Lancia et al. 1994). Deer, for example, are often marked
with ear tags, and birds can be marked with color-coded bracelets attached to their
legs. Marked animals are released and move freely about the population. A fol-
low-up recapture session involves capturing a random sample of individuals from
the population. Some individuals will contain markings, some will not. Mark-
recapture techniques are based on the notion that the proportion of marked indi-
viduals in the second sample should be approximately equal to the proportion of



marked animals in the total population. In other words, if you know the number of
marked and unmarked individuals captured in the second sampling session, and you
know the number marked in the first sampling session, you can estimate the original
population size in the first sampling session.

Several different mark-recapture models exist, including the Lincoln-Petersen model,
the Schnabel model, and the Jolly-Seber model. Of these, the Lincoln-Petersen method
is the simplest, involving only a single marking session and a single recapture session.
This procedure was used by C. J. G. Petersen in studies of marine fishes and by F. C. Lin-
coln in studies of waterfowl populations (Seber 1982). The data in the model include the
number of individuals marked in the first sample (M); the total number of individuals
that are captured in the second sample (C); and the number of individuals in the second
sample that have markings (R). These data are used to estimate the total population size,
N, as

Equation 1

Let’s assume we are trying to estimate the population size of ladybug beetles in a given
area. Equation 1 says that the ratio of the total number of ladybugs in the population
to the total number of marked ladybugs is equal to the ratio of the number of ladybugs
in the sample to the number of marked (recaptured) ladybugs in the sample. We can
rearrange Equation 1 to get an estimate,  of the total population size: 

Equation 2

This formula is the Lincoln-Petersen index of population size. In our spreadsheet, we
will allow resampling (that is, an individual may be recaptured more than once). In
this situation, the following modified index provides a better overall estimate of the
population size when multiple trials are conducted:

Equation 3

The Lincoln-Petersen estimate assumes that the population is closed—that immigra-
tion and emigration are negligible and the population does not change in size between
the mark and recapture sessions. Other assumptions include:

• The second sample is a random sample.
• Marking does not affect the recapture of individuals.
• Marks are not lost, gained, or overlooked.

The Schnabel model is similar (in theory) to the Lincoln-Petersen method but involves
more than one mark and recapture episode. The Jolly-Seber model relaxes the assump-
tion that the population is closed (see Krebs 1999 for an overview of these methods). 

Once we have an estimate of population size, it’s critical to determine just how con-
fident you are in your estimate. After all, you will arrive at an estimate, but since all sam-
pling involves error, your estimate is probably off target by some amount. In this exer-
cise, you will use a Monte Carlo simulation to get a feel for the range of values returned
by the Lincoln-Petersen index. A simulation is any analytical method meant to imitate
a real-life system. A Monte Carlo simulation is a statistical technique in which a quan-
tity is calculated repeatedly, using randomly selected “what-if” scenarios for each cal-
culation. In a nutshell, the technique uses a data-generating mechanism (such as the ran-
dom number function in a spreadsheet) to model a process you wish to understand
(such as the “behavior” of the Lincoln-Petersen index, when, for example, M = 20 and
C = 30). New samples of simulated data are generated repeatedly, and the results approx-
imate the full range of possible outcomes. The likelihood of each possible result can then
be computed. The Monte Carlo technique derives its name from the casinos of Monte
Carlo in Monaco, where the major attractions are games of chance and the successful
gamblers must constantly calculate the probabilities of multiple possible scenarios in
their heads.
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PROCEDURES

In this exercise, you’ll simulate a mark and recapture of individuals in a population
of size 100 (the number you are trying to estimate). You’ll calculate the Lincoln-Petersen
index of abundance, run a Monte Carlo simulation to see the range of possible out-
comes, and examine how the estimate and confidence intervals change as sample effort
changes and as assumptions to the model are violated. Once you are an expert at Monte
Carlo simulations, you can use the procedure to determine the best strategy for win-
ning money at blackjack and head to Las Vegas (or better yet, Monaco).

As always, save your work frequently to disk.

ANNOTATION

For the sake of this exercise, we will consider a population of 100 individuals. How-
ever, you, the field biologist, don’t know the actual population size is 100—you are
trying to estimate it using the mark-recapture technique. You have been granted fund-
ing to mark 20 individuals. (We’ll explore what happens if you mark fewer or more
individuals later in the exercise.)

Enter the number 20 in cell E4.

The mark you will give to the 20 individuals is the letter m. The unmarked individu-
als will have the letter u associated with them.

The Lincoln-Petersen method assumes that the population is closed (births, deaths,
emigration, and immigration are negligible) and that all individuals have the same
probability of capture and recapture. The values in cells E6 and E7 will allow us to
explore violations of these assumptions. Cell E6 is the probability that an individual
will remain in the population. For now it is set to 1 to meet the assumption that the
population is closed. If individuals leave the population, either through death or emi-
gration, that probability will decrease. Cell E7 is the probability that an individual will
be recaptured, which we will also set to 1. If certain individuals (either marked or
unmarked) tend to avoid traps in the recapture session, that probability will decrease.
Perhaps they have learned trap locations and have become “trap shy.”

INSTRUCTIONS

A. Set up and mark the
model population.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 1.

2. In cell E4, enter the
number of individuals you
will mark.

3. Enter the letter m in cell
E5. 

4. Enter 1 in cells E6 and
E7.
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Enter 1 in cell A11. 
Enter =1+A11 in cell A12. Copy your formula down to row 110.
This assigns a number to each individual in the population.

Enter the formula =IF(A11<=$E$4,$E$5,”u”) in cell B11. Copy this formula down to
cell B110.
This formula tells the spreadsheet to examine the number in cell A11. If that number
is less than or equal to (<=) to value in cell E4 (i.e., 20), return the marking listed in
cell E5 (i.e., m); otherwise, return the letter u.

Now we have a sample of marked individuals that have been released back into the
population, and we can (after a period of time) resample the population and compute
the Lincoln-Petersen index. First we will “reshuffle” the population, draw individu-
als from the population at random, and determine whether the individuals are marked
or not. 

Two different formulae can be used to generate a random number between 1 and
100:

• =RANDBETWEEN(1,100)
• =ROUNDUP((RAND()*100),0)

The RANDBETWEEN formula is fairly straightforward. If this function is not avail-
able in your spreadsheet package, the second formula will work by generating a ran-
dom number between 0 and 1 (the RAND() portion of the formula), multiplying the
number by 100 (*100) and rounding the result up to 0 decimal places. 

Enter the formula =AND(RAND()<=$E$6,RAND()<=$E$7) in cell G3.
We’ll take a moment to learn about the AND function, which we’ll use as part of the
formula in the next step. The AND function evaluates conditions you specify and
returns the word “true” only if all the conditions you specify are true, and the word
“false” if any of the conditions are not true. It has the syntax AND(condition1, condi-
tion2, . . .). The formula in cell G3 generates two random numbers between 0 and 1 (the
RAND() portion of the formula). The conditions are that the first random number must
be less than or equal to the value in cell $E$6 (the probability of remaining in the pop-
ulation), and that the second random number must be less than or equal to the value
in cell $E$7 (the probability of being captured in the second sampling bout). Since cells
E6 and E7 are currently set to 1, both random numbers will be less than or equal to 1,
so the program will return the word “true.”

Now set cell E6 and E7 to 0.7 and press F9, the calculate key, to see how this formula
works. Occasionally, a random number greater than 0.7 will be drawn, and the program
will return the word “false.” When you are satisfied that you understand how the AND
function works, return cells E6 and E7 to the value 1 and continue to the next step.

Enter the formula =IF(AND(RAND()<$E$6,RAND()<$E$7),
VLOOKUP($C$11:$C$110,$A$11:$B$110,2),”.”) in cell D11. Copy this formula down
to cell D110.
Now we are ready to determine if the individual that was sampled was marked or not.
We also need to determine if the individual that was sampled left the population
through death or emigration (cell $E$6) and if the individual is trap-shy (cell $E$7). The
formula in cell D11 is a combination of four functions: IF, AND, RAND, and
VLOOKUP. Keep in mind that Excel performs the innermost functions first and then
moves to the outer functions.

5. Set up a linear series
from 1 to 100 in cells
A11–A110.

6. In cells B11–B110, enter
an IF formula to mark the
first 20 individuals with
an m, and designate the
remainder u (unmarked).

7. Save your work.

B. Simulate the recap-
ture of individuals.

1. In cell C11, generate a
random number between
1 and 100. Copy your for-
mula down to row 110. 

2. Use the AND function
in cell G3.

3. In cells D11–D110, enter
a formula to determine 
whether or not a recap-
tured individual was
marked.
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The two inner functions are RAND() functions, which draw a random number between
0 and 1. The first random number is compared to the value in cell $E$6, which is the
probability that the individual remains in the population. The second random number
is compared to the probability that the individual is not trap-shy. In order for an indi-
vidual to be captured in the recapture session, both probabilities need to be considered;
this is done with the AND function, which will return “true” only if the individual
stays in the population and is not trap-shy. Now we are ready for the IF function. If the
individual remained in the population and was not trap-shy, then Excel moves to the
VLOOKUP function. However, if the individual either left the population through
death or emigration, or was trap-shy, Excel returns a missing value in the cell (“.”).

The VLOOKUP formula searches for a value in the leftmost column of a table and then
returns a value in the same row from a column you specify in the table. It has the syn-
tax VLOOKUP(lookup_value, table_array, col_index_num, range_lookup). So, assum-
ing the individual was indeed captured, Excel will look up the value given in column
C (the shuffled individuals) in a table given in columns A and B (specifically, cells
A11–B110), and will return the value in the second column of the table (m or u); note
that the range_lookup parameter is optional, and we are leaving it blank. In other words,
assuming the individual is still in the population and can be captured, the VLOOKUP
formula will find its number in column A and relay its marking from column B.

Enter the formula =COUNTIF($D$11:D11,”u”)+COUNTIF($D$11:D11,”m”) in cell
E11. Copy the formula down to cell E110.
To calculate C in column E, we count the individuals that are marked and those that are
unmarked, then sum the two together. Remember to “anchor” the first reference to cell
D11 with dollar signs (absolute reference). Also remember to use quotes around the let-
ters u and m since they are nonnumerical data. Note that when cells E6 and E7 are both
set to 1 (i.e., when the population is closed and no individuals learn to evade recapture),
this formula will simply produce a linear series from 1 to 100 in column E. When the value
in E6 or E7 is less than 1, however, not every capture attempt in column D will result in
capturing an individual, so we will need this column to keep track of those that do.

To calculate the Lincoln-Petersen index, we need to keep track of M, C, and R. We’ll assume
that we start to recapture individuals one at a time, and we’ll calculate the Lincoln-Petersen
index each time a new individual is captured. The number marked, M, is given in cell E4.
The numbers captured in the second session, C, are given in column E. Acount of the num-
ber recaptured that were marked (R) will be tallied in column F. Row 11 simulates our
first capture (Figure 3). We need to determine if the individual was marked or not, and then
keep a running tally of recaptured individuals as we continue to capture individuals.
Enter the formula =COUNTIF($D$11:D11,”m”) in cell F11. Copy your formula down
to row 110.

4. In cells E11–E110, sum
two COUNTIF formulae
to tally C, a running tally
of the number of marked
(m) plus unmarked (u)
individuals recaptured.

5. Press F9, the calculate
key, to simulate recapture
outcomes.

C. Calculate and graph
the Lincoln-Petersen
index.

1. Set up column headings
in cells F9–G10 as shown.

2. In cells F11-F110, calcu-
late R, the cumulative total
number of recaptures.
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Enter the formula =($E$4*(E11+1))/(F11+1) in cell G11. Copy the formula down to cell
G110. 
This is the spreadsheet version of  Equation 3:

Use the line graph option and label your axes fully. Your graph should resemble 
Figure 4.

Let’s suppose that we mark 20 individuals and capture 20 individuals in the second
sampling bout. How much confidence can we place in the resulting Lincoln-Petersen
estimate? In this section we will set up a Monte Carlo simulation to see the range of
estimates returned by our Lincoln-Petersen index. To do this, we will need to repeat
our entire exercise 1000 times, each time generating a new index. Then we will exam-
ine how the index “behaves” based on our 1000 trials. We’ll write a macro and let the
computer do the tedious work for us.

ˆ ( )N M C
R= +

+
1

1

3. Calculate the Petersen
estimate in cells G11-G110.

4. Graph the Lincoln-
Petersen index as a function
of C, the number of individ-
uals captured in the second
sampling bout.

5. Answer questions 1–3 at
the end of the exercise
before proceeding.

D. Perform a Monte
Carlo simulation.

1. Return the value in cell
E4 to 20 individuals
marked.

2. Set up new column
headings in cells I9–O10 as
shown in Figure 5.
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Enter 1 in cell I11.
Enter =1+I11 in cell I12. Copy the formula down to cell I1010.

Open Tools | Options | Calculation and select Manual.

Bring your spreadsheet macro program into record mode and assign a name and short-
cut key (we used the shortcut <Control>+<m>).

If the small Stop Recording toolbar (Figure 6) doesn’t automatically appear, open View |
Toolbars | Stop Recording. The filled square on the left is the “stop recording” button,
which you press when you complete your macro. The button to the right is the rela-
tive reference button. By default the button is “off,” as shown above, which means that
your macro records keystrokes as absolute references. Leave the button off for now and
record the following steps:

• Select cell E10.
• Press F9, the calculate key, to generate new random numbers and hence a new

simulation of mark-recapture. 
• Open Edit | Find. Enter the number 20 in the box labeled Find What as shown in

Figure 7. Select the Search by Columns and Look in Values options. Click the Find
Next button, then Close. Excel will move your cursor down to the 20th individ-
ual captured.

• Press the relative reference button (see Figure 6); it should become a lighter
shade when depressed. Excel now assumes that cell references are relative
rather than absolute.

• Use the right arrow key to move your cursor two cells to the right. This cell
holds the Lincoln-Petersen estimate associated with 20 captured individuals in
the second session and a variable number of marked and recaptured individu-
als.

• Click the relative reference button off.
• Open Edit | Copy.
• Select cell J10.

3. Set up a linear series
from 1 to 1000 in cells
I11–I1010.

4. Set the calculation key
to manual.

5. Develop a macro to run
a Monte Carlo simulation.
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• Open Edit | Find. Leave the Find What box blank and Search by Columns. Click the
Find Next button, then Close.

• Open Edit | Paste Special. Then select the Paste Values option. Press OK.
• Click on the Stop Recording button.

Now when you press your shortcut key 1000 times you will generate 1000 new Lin-
coln-Petersen indices, each one generated by random numbers and following the
parameters established in the model. A simple shortcut outlined in the next step can
save you 1000 keystrokes.

To edit your macro, open Tools | Macro | Macros, and click the Edit button. You should
see a box that reveals the Visual Basic Applications code that Excel recorded as you
entered your macro (Figure 7)

• After the Keyboard Shortcut Control+m, press Return and type in the words
For counter = 1 to 1000

• Before the last line of code, which reads End Sub, create a new line and type in
the word Next. Close out of the box to return to your spreadsheet. 

Now you press <control>+<m> just once and your new macro, which consists of
1000 different simulations, will run. Before running the macro, you should delete any
previous results from column J (otherwise you will wind up with more than 1000 results
in this column). You can do this by highlighting any results in this column and press-
ing the Delete key.

When you press <control>+m, your computer will flash for several minutes as it cranks
through the simulation. Caution: If you use another program while the simulation is
running, be careful not to copy material to the clipboard—the simulation is making
extensive use of the clipboard (through copy and paste), so putting other material there
can cause errors.

Bear in mind that in actual mark-recapture experiments we don’t know the total pop-
ulation size—that’s what we’re trying to estimate. This Monte Carlo simulation allows
us to determine, for the special case in which N = 100, just how likely the Lincoln-
Petersen index is to come up with an “acceptable” estimate. What is acceptable will
depend on the purpose of the experiment (see question 4 at the end of the exercise).

When analyzing results, scientists  like to be at least 95% certain that a given result is
not due to chance. You can use your spreadsheet to see the range of values that the Lin-

6. (Optional) Edit your
macro using the Visual
Basic code.

7. Examine your results
from 1000 trials.
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coln-Petersen estimate will return 95% of the time. Since you have 1000 results from
your Monte Carlo simulation, the “middle” 950 values represent this range. The remain-
ing 50 values are the 25 highest and 25 lowest Lincoln-Petersen estimates from your
simulation. We are interested in determining the 25th highest observation and the 975th
highest observation. The LARGE function does this: it returns the kth largest value in
a data set—you specify the data set and what value you want returned. 

Enter the formula =LARGE(J11:J1010,975) in cell K11.

Enter the formula =LARGE(J11:J1010,25) in cell L11.

Enter the formula =AVERAGE(J11:J1010) in cell M11.

This step requires that that the Analysis ToolPak be activated. To activate the ToolPak,
go to Tools | Add-Ins and click on the ToolPak option, then press OK. To generate descrip-
tive statistics, go to Tools | Data Analysis | Descriptive Statistics. The dialog box in Figure
8 will appear.

The Input Range will be the results of your 1000 simulations (you can use the relative
reference button to enter this). Use $N$11 as the output range, check the Summary
statistics option, and enter 25 as the Kth Largest and Kth Smallest values. Excel will return
descriptive statistics in columns N and O, as shown in Figure 9. The 95% confidence
intervals are obtained by examining the 25 highest and lowest values. The confidence
values should match the values you computed in cells K11 and L11. Our simulation
revealed that, for a population where 20 individuals are marked in the first session

8. In cell K11, compute the
value of the 975th highest
estimate.

9. In cell L11, compute the
value of the 25th highest
estimate.

10. In cell M11, compute
the average Lincoln-
Petersen index from your
simulation.

E. Optional: Generate
descriptive statistics on
your results.
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and 20 individuals are captured in the second session, the Lincoln-Petersen index
fell between 46.7 and 210 individuals 95% of the time. Your answer might be slightly
different. Remember that the true population size is 100 individuals. You may be able
to get better estimates by changing M and/or C.

QUESTIONS

1. Based on your initial setting of M = 20, how does C (the number captured in the
second sampling bout) affect the Lincoln-Petersen index? Press F9, the calculate
key, to run several simulations and get a qualitative feel for the relationship. 

2. Change the value in cell E4 to 50, then 70, then 90 to increase the proportion of
the population that is initially marked. For each value, press F9 several times to
get a general feel for the results. How does this increase in proportion of
marked individuals affect the Lincoln-Petersen estimate? What happens to the
Lincoln-Petersen estimate when 100 individuals are marked? Use graphs to
illustrate your answer.

3. Examine your graph from Part E (the Lincoln-Petersen index as a function of C).
How were the data collected to generate such a relationship? Is this a legitimate
way to evaluate how the Lincoln-Petersen index changes as C increases? Why
or why not? 

4. Suppose you are planning to study population fluctuations of a species of frog
living in a particular pond, and your initial “guesstimate” is that the pond cur-
rently has about 100 frogs living in it. Discuss the value of estimating variations
in the population size by marking 20 individuals and recapturing 20 individu-
als. Try different values for M and C to try to determine an experimental design
that will produce an “acceptable” margin of error. Which has a greater effect on
the range of results: increasing M or increasing C?

To change M, simple change the value in cell E4. To change C, you need to edit
the macro: Open Tools | Macro | Macros, highlight your macro on the list that
appears, and click on the edit button. In the macro editing window that opens,
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Column1

Mean 100.3880152
Standard Error 1.746782658
Median 84
Mode 84
Standard Deviation 55.23811776
Sample Variance 3051.249654
Kurtosis 13.9588804
Skewness 3.130416209
Range 385
Minimum 35
Maximum 420
Sum 100388.0152
Count 1000
Largest(25) 210
Smallest(25) 46.66666667
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the first “Find What” value represents C, and you can change it to any value up
to 100. Remember to clear your results from column J before running the macro
each time (or, if you want to keep your previous results, save your spreadsheet
with a different name). 

5. Set cell E4 equal to 50. How do violations of the assumptions of “closed” popu-
lation and equal catchability affect the Lincoln-Petersen estimate? Set cells E6 to
0.6 (thus, 40% of the individuals leave the population) and set cell E7 to 0.7
(thus, 30% of the individuals are unlikely to be captured in the second sampling
bout for some reason). Assuming that you can recapture 30 individuals (C = 30),
how do the results of the Monte Carlo simulation change as a result of these
violations? 

*6. Assume that the population is closed (cell E6 = 1). Assume further that the
probability of recapture pertains only to those individuals that were marked in
the initial sampling period (perhaps the individuals have learned to avoid traps
after being captured earlier). How could the model be modified to reflect this
situation?
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SURVIVAL ANALYSIS24
Objectives

• Simulate the fates of 25 individuals over a 10-day period.
• Calculate the Kaplan-Meier product limit estimate.
• Graphically analyze the Kaplan-Meier survival curve.
• Assess how sample size affects the Kaplan-Meier estimate.
• Assess how censorship affects the Kaplan-Meier estimate.

Suggested Preliminary Exercise: Life Tables and Survivorship
Curves

INTRODUCTION
A population of black bears has been surveyed for 10 years, and ecologists note
that the number of bears in the population has declined over this time frame.
Why? Changes in numbers of individuals over time can be directly traced back
to the population’s birth, death, immigration, and emigration rates. The popula-
tion may have declined because the birth rate dropped, the death rate increased,
immigration dropped, or emigration increased. A combination of any or all of
these factors may also be responsible for the decline. Mortality and its counter-
part, survival, are keys to the demographic equation for all organisms. How do
ecologists estimate these two important parameters? In this exercise we’ll explore
one method for estimating survival. 

In your life table exercise, you tracked the fates of individuals over time, not-
ing how many individuals in the cohort were still alive at each time step, and then
calculated the survivorship schedule and survival probabilities from your data.
Suppose we followed a cohort of 100 newborns over time, carefully noting when
deaths occurred. We start with S0 = 100, count individuals again at the next time
step (S1) and then at time step S2. Suppose S1 = 40 and S2 = 10. The survivorship
schedule (see Exercise 12, “Life Tables, Survivorship Curves, and Population
Growth”) tells us that the probability that an individual will survive from birth to
time x. Thus, the probability of surviving to age 1 is S1/S0 = 40/100 = 0.4, and the
probability of surviving from birth to age 2 is S2/S0 = 10/100 = 0.1. Age-specific
survival probabilities, in contrast, tell us the probability that an individual will
survive from one age to the next—such as the probability that an individual alive
in time S1 will be alive at time S2. In life table calculations, the age-specific survival
probability is calculated as gx = lx+1/lx. In our example, the probability that an indi-
vidual of age S1 will survive to age S2 is 0.10/0.40 = 0.25. The life table “cohort”

 



analysis is one way of calculating survival. However, this method is not always possi-
ble to use, especially if the organisms of interest are long-lived. Fortunately, alternatives
for estimating survival exist.

Kaplan-Meier Survival Analysis
When the research question can be posed as “how long does it take until death occurs?”
the Kaplan-Meier survival analysis, also known as the Kaplan-Meier product limit
estimate or the Kaplan-Meier survival curve, can be used to estimate survival. The
Kaplan-Meier method (1958) involves tracking the fates of individuals over time and
estimating how long it takes for death to occur. The method has been applied broadly
to measure how long it takes for any specific event to occur—such as the time it takes
until death, the time until a cancer patient recovers from a treatment, the time until an
infection appears, the time until pollination occurs, and so on.

The Kaplan-Meier method is conceptually similar to life table calculations because you
keep track of the number of individuals alive and the number of deaths that occur over
intervals of time. Specifically, you count the number of individuals who die at a certain
time and divide that number by the number of individuals that are “at risk” (alive and
part of the study) at that time. If we do this for each time period in the study, we will be
able to compute two survival probabilities: the conditional survival probability and the uncon-
ditional survival probability. We will describe how each is computed with a brief example.

Suppose you initiate a study on beetle mortality and track 20 individuals over 5 days,
each day recording the number of deaths and the number of individuals still alive. Let’s
also suppose that some of your population decides to emigrate out of the population so
you can no longer track their fates. The data you collect are:

Now let
t be a particular time period, such as 1 day
d be the number of deaths at time ti
n be the number of individuals at risk at the beginning of time ti.

The conditional survival probability, Pc, is the probability of surviving to a specific
time, given that you survived to the previous time (this is similar to the age-specific
survival probabilities in the life table). Pc is computed as

Equation 1

The term di / ni gives the number of individuals that die in time step i divided by the
number of individuals still alive and still in the population (the number at risk). This
is the conditional mortality probability, or the probability that an individual will die
during that time step. Since survival can be computed as 1 minus mortality, Equation
1 gives the conditional survival probability. 

Because we started with a population of 20 individuals, the number at risk for death
at the beginning of day 1 is 20. During that day, 3 individuals died, so the conditional
mortality probability is 3/20 = 0.15, and the conditional survival probability is 1 – 0.15
= 0.85. Now let’s consider day 2. At the beginning of day 2, there are only 16 individu-
als at risk. Three individuals died the previous time step, and one left the population
through emigration. The individual that left the study is called a censored observation.
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Individuals that die in the previous time step, as well as censored individuals, cannot
be considered at risk, so on day 2 only 16 individuals are at risk. On day 2, 4 deaths
occurred, so the conditional mortality probability is 4/16 = 0.25, and the conditional sur-
vival probability is 1 – 0.25 = 0.75. The rest of the computations are shown in Figure 1.

The unconditional survival probability , Pu, is the probability of survival from the
start of the study to a specific time (this is similar to the survivorship schedule in the
life table). The unconditional probability is equal to the cumulative product of the con-
ditional probabilities, which is why the Kaplan-Meier method is sometimes called the
Kaplan-Meier product limit estimate. The equation can be expressed as

Equation 2

where the Π symbol means “multiply all of the individual conditional probabilities
together.” The computations are shown in Figure 2.

For day 1, the unconditional survival probability is the same as the conditional sur-
vival probability. Pu for day 2 gives the probability that an individual at the start of the
study will survive through day 2. This is obtained by multiplying the conditional sur-
vival probability for day 1 by day 2, since both conditions must be met in order for an
individual to be alive at the end of day 2. 

Notice that Pu decreases with each day because the probability of living to a given
period must decrease as ever-greater time periods are considered. Sometimes ecolo-
gists are interested in expressing Pu as a daily probability. To obtain a daily survival
estimate, you would take the appropriate root. For example, Pu = 0.36 on day 5 in
Figure 2. This gives the probability that an individual will survive through day 5.
What would daily survival be to obtain Pu = 0.36 on day 5? A daily probability of x
would have to yield 0.36 when multiplied by itself once for each day, so x5 = 0.36. By
taking the fifth root of 0.36, you could solve for x. The spreadsheet formula is 0.36^(1/5).

Kaplan-Meier Survival Curves
The results of the Kaplan-Meier analysis are often graphed; graphs are known as the
Kaplan-Meier survival curves (Figure 3). Comparing the survival curves of two dif-
ferent populations can yield insightful information about the timing of deaths in
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Day Emigrants Deaths # at risk Deaths / at risk Pc

1 1 3 20  = 3/ 20 = 0.15 1 - 0.15 = 0.85

2 0 4  = 20 - 3 - 1 = 16  = 4 / 16 = 0.25 1 - 0.25 = 0.75

3 1 2  = 16 - 4 - 0 = 12  = 2 / 12 = 0.16 1 - 0.16 = 0.84

4 0 1  = 12 - 2 - 1 = 9  = 1 / 9 = 0.11 1 - 0.11 = 0.89

1 - 0.16 = 0.84

5 0 2  = 9 - 1 = 8  = 2 / 8 = 0.25 1 - 0.25 = 0.75

Figure 1
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Day Emigrants Deaths # at risk Deaths / at risk P c Pu

1 1 3 20  = 3/ 20 = 0.15 1 - 0.15 = 0.85  = 0.85

2 0 4  = 20 - 3 - 1 = 16  = 4 / 16 = 0.25 1 - 0.25 = 0.75  = 0.85 * 0.75 = .6375

3 1 2  = 16 - 4 - 0 = 12  = 2 / 12 = 0.16 1 - 0.16 = 0.84  = 0.85 * 0.75 * 0.84 = .54

4 0 1  = 12 - 2 - 1 = 9  = 1 / 9 = 0.11 1 - 0.11 = 0.89  = 0.85 * 0.75 * 0.84 * 0.89 = .48

5 0 2  = 9 - 1 = 8  = 2 / 8 = 0.25 1 - 0.25 = 0.75  =  0.85 * 0.75 * 0.84 * 0.89 * 0.75 = .36

Figure 2



response to different environmental conditions. Often in the literature, you will see the
survival curves for two different populations on the same graph so that you can com-
pare the two easily.

PROCEDURES

The method outlined by Kaplan and Meier (1958) is one of the most referenced papers
in the field of science, suggesting that is has played an important role in ecology and
other sciences since its publication. The goal of this exercise is to set up a spreadsheet
model of the Kaplan-Meier product limit estimate, and to learn how censored obser-
vations and sample size affect the survival probabilities. As always, save your work
frequently to disk. 

ANNOTATION

We’ll track 25 individuals for 10 days and keep track of their fates over time. Row 10 will
track Individual 1’s fate, Row 11 will track Individual 2’s fate, and so on to Row 34.

INSTRUCTIONS

A. Set up the model pop-
ulation.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 4.
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Figure 3 Kaplan-Meier survival curves for a hypothetical population.
The unit time is plotted on the x-axis; Pu is plotted on the y-axis. In
Kaplan-Meier curves, the raw data are plotted as in the graph on the left,
then the data points are connected with horizontal and vertical bars as
shown on the right. Large vertical steps downward indicate a large num-
ber of deaths in the given time period, while large horizontal steps indi-
cate few deaths have occurred during an interval.

1

2

3

4

5

6

7

8

9

A C D E F G H I J K
Survival Analysis

Survival = 0.9

Total sample = 25

Prob. of censor = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Individual 1 2 3 4 5 6 7 8 9 10

Model Inputs:

Day

B

Figure 4



In cell A10 enter the value 1.
In cell A11 enter the formula =1+A10. Copy this formula down to cell A34.

Enter the value 0.9 in cell B4. In reality, you wouldn’t know what this number is; you
are using the Kaplan-Meier method to estimate this parameter. 

Enter the value 25 in cell B5.

Enter the value 0.1 in cells B6–K6.
This is the probability that an individual will leave the study on any given day so that
its fate cannot be tracked over time. For now, we set that probability to 0.1 for all
days. Later in the exercise you will change these values to determine how censored
observations, and the time at which they occur, affect survival probability estimates.

In cell B10 enter the formula =IF(RAND()<$B$6,”C”,IF(RAND()>$B$4,”D”,1)). Copy
your formula down to row 34.
The formula in B10 will assign a fate to individual 1 on day 1. The individual will be either
alive (1), censored (C), or dead (D). The formula contains two IF functions and a RAND
function, so it is a nested formula. Remember that the IF function consists of three parts
separated by commas. In the first part of the function, you specify a criteria. If the crite-
ria is true, the spreadsheet will do or carry out whatever you specify in the second por-
tion of the function. If the criterion is false, the spreadsheet will carry out what you spec-
ify in the third portion of the function. Let’s review the B10 formula carefully.

The criterion is that a random number (the RAND() portion of the formula) is less than
the value in cell B6 (the probability of being censored on day 1). If the criterion is true,
the individual is censored and the spreadsheet will return the letter C. If the criterion
is false, the individual is not censored, and the second IF function will be computed.

The second IF function tells the spreadsheet to evaluate whether a random number
between 0 and 1 is greater than the value in cell B4—the true (but unknown to you, the
researcher) daily survival probability. If the random number is greater than the sur-
vival probability, the individual will die (the spreadsheet will return the letter D). If the
random number is less than the value in cell B4, the spreadsheet will return the num-
ber 1, indicating that the individual survived that day. When you copy your formula
down for the 25 individuals in the population, you should see that some individuals
die and some become censored. Press F9, the calculate key, to generate new fates for
individuals in the population.

In cell C10 enter the formula =IF(OR(B10=”D”,B10=”C”,B10=””),””,IF(RAND()<$C$6,
”C”,IF(RAND()>$B$4,”D”,1))). Don’t be intimidated by the length of this formula.
If the individual in cell C10 died or was censored on day 1, we want to return a blank
cell (i.e., two double quotes). If the individual survived day 1, then we want to know
what happened on day 2. The formula in cell C10 is another nested IF function. There

2. Set up a linear series
from 1 to 25 in cells
A10–A34. 

3. In cell B4, enter a value
for the  probability that an
individual will survive
each 24-hour period (daily
survival).

4. Enter the number of
individuals in the initial
population in cell B5.

5. In cells B6–K6, enter a
value for the probability
that an individual in the
population will be cen-
sored on a given day.

5. Save your work.

B. Simulate fates of
individuals over time.

1. In cells B10–B34,  enter a
formula to assign a fate to
each individual for day 1.

2. In cell C10, enter a for-
mula to assign a fate to
individual 1 for day 2.
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are multiple criteria, however, in the first IF function, and these criteria are given with
an OR function. The OR function is used to evaluate whether the value in cell B10 is
“D” or “C” or “”. If any one of those three conditions is true, the spreadsheet will return
a blank, or “”. If none of the conditions is true, the individual must have survived day
1, and the second IF function is computed; it has the same form as the formula in cell
B10, with the spreadsheet again returning a value of “C,” “D,” or the number 1.

Double-check your formulae. They should read as follows:
• In cell D10,

=IF(OR(C10=”D”,C10=”C”,C10=””),””,IF(RAND()<$D$6,”C”,IF(RAND()>$B$4,
”D”,1)))

• In cell E10,
=IF(OR(D10=”D”,D10=”C”,D10=””),””,IF(RAND()<$E$6,”C”,IF(RAND()>$B$4,
”D”,1)))

• In cell F10,
=IF(OR(E10=”D”,E10=”C”,E10=””),””,IF(RAND()<$F$6,”C”,IF(RAND()>$B$4,
”D”,1)))

and so on. Your spreadsheet should now resemble Figure 5, although the fates of
your individuals will likely be different than that shown.

The first calculations in the Kaplan-Meier estimate involve counting the number of
individuals at risk (still alive) during each day, and to count the number of deaths
that occur each day.

Enter 25 in cell B35.
The number at risk on day 1 is 25 because we started with a sample size of 25. 

In cell B36 enter the formula =COUNTIF(B10:B34,”D”).
The number of deaths on day 1 is the number of D’s that appear for the 25 individuals.

3. Select cell C10, and copy
its formula across to cell
K10. Modify the formula
in each cell to reflect the
probability of censorship
for the appropriate day. 

4. Select cells C10–K10,
and copy the formula
down to row 34.

5. Save your work.

C. Compute survival
probabilities.

1. Set up new headings as
shown in Figure 6.

2. In cell B35, enter the
number of at-risk individ-
uals in the population on
day 1.

3. In cell B36, enter a for-
mula to count the number
of deaths on day 1. 

316 Exercise 24

8

9

10

11

12

13

14

B C D E F G H I J K

Individual 1 2 3 4 5 6 7 8 9 10

1 1 D

2 1 1 C

3 C

4 1 1 1 1 1 1 1 1 C

5 1 1 1 1 D

Day
A

Figure 5

35

36

37

38

39

40

41

C D E F G H I J K
# at risk

# deaths

# censored
Conditional P c

Unconditional P u

Expected survival

Daily survival

A B

Figure 6



In cell B37 enter the formula =COUNTIF(B10:B34,”C”).
The number of censored observations on day 1 is the number of C’s that appear for the
25 individuals. 

In cell B38, enter the formula =1-(B36/B35).
This is the spreadsheet version of Equation 1:

The conditional probability of survival is the probability of survival to a particular time
period, given that you survived to the previous time. This probability is easy to calculate
if you know the number of deaths at a specific time and the number of individuals at
risk at that same time. The number of deaths divided by the number at risk gives the
conditional probability of mortality, so 1 minus that value is the conditional probabil-
ity of survival. 

In cell B39 we used the formula =PRODUCT($B$38:B38).
The unconditional probability of survival is the probability of surviving to a particu-
lar time. It is calculated in Equation 2 as the cumulative product of the conditional prob-
abilities:

In cell B40 enter the formula =$B$4^B9.
The ^ symbol means raises the value in cell C4 (the survival probability) to the num-
ber of days under consideration. 

In cell B41 enter the formula =B39^(1/B9) to obtain the daily survival estimate for day
1.
Remember that the Pc gives the probability of surviving to a specific time period. To
convert the Pc to daily survival probabilities, take the appropriate root. For example,
take the third root of Pc for day 3, the seventh root of Pc for day 7, and so on, to obtain
the daily survival estimate. To obtain roots in spreadsheets, use the exponent form with
the exponent as a fraction.

In cell C35 enter the formula =B35-(B36+B37).
Remember that the number of individuals at risk are those currently alive and not cen-
sored. 

Your spreadsheet should now look something like Figure 7, but (with the exception of
Row 40) your numbers will likely be different.
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4. In cell B37, enter a for-
mula to count the number
of censored observations
on day 1.

5. In cell B38, enter a for-
mula to compute the con-
ditional probability of sur-
vival, Pc.

6. In cell B39, enter a for-
mula to compute the
unconditional probability of
survival, Pu.

7. In cell B40, enter a for-
mula to compute the
expected Pu for day 1,
given the survival param-
eter in cell B4. 

8. In cell B41, enter a for-
mula to compute the actual
daily survival for each Pc.

9. In cell C35, compute the
number of individuals at
risk for day 2. 

10. Select your formulae
from steps 3–8 and copy
them across to column K.

11. Save your work.
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# at risk 25 20 14 12 10 6 5 5 5 4

# deaths 3 2 0 1 1 0 0 0 1 0

# censored 2 4 2 1 3 1 0 0 0 0
Conditional P c 0.88 0.9 1 0.917 0.9 1 1 1 0.8 1
Unconditional P u 0.88 0.792 0.792 0.726 0.653 0.653 0.653 0.653 0.523 0.523

Expected survival 0.9 0.81 0.729 0.656 0.59 0.531 0.478 0.43 0.387 0.349
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Use the line graph option and label your axes fully.

Your graph will look different than the Kaplan-Meier survival curve because the points
are connected differently. However, the graphs are interpreted the same way. Note that
the expected Pu is a straight line because we set the daily survival probability as a
constant over time. Sharp drops in the Pu line indicate more mortality on a given day,
and shallow drops in a line indicate fewer deaths occurring during a particular inter-
val. Figure 8 shows few (no) deaths actually occurred from Day 5 to Day 8.

Your results should vary from simulation to simulation. This is due to the random num-
ber function changing the data set, and it is also due to the fact that our population con-
sists of only 25 individuals (so there is some demographic stochasticity in this model).
In order to fully understand how Pc and Pu “behave” over the 10-day period, we need
to run several simulations, and track our results. We will do that in the next step. 

Open up the macro function as described in Exercise 2 or your user’s manual. Once
you have assigned a shortcut and the macro is in Record mode, perform the follow-
ing steps:

• Select cells B39–K39. Copy.
• Select cell N9. Open Edit | Find.
• Leave the Find What box empty, and search by columns. Select Find Next, then

Close. Your cursor should move down to cell N10.
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D. Create graphs.

1. Graph Pc, Pu, and
expected Pu as a function
of time. Interpret your
graph.

2. Press F9 to generate a
new simulation. How do
your results appear to
change with each new
simulation?

E. Track 100 simula-
tions.

1. Set up new headings
as shown in Figure 9,
but extend the trials to
100 (cell M109) and the
days to 10 (cell W9). 

2. Record a macro to track
Pu for 100 trials, logging
your results in cells
N10–W109.
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• Open Edit | Paste Special and select the Paste Values option. Click OK.
• Select Tools | Macro | Stop Recording.

Run your macro until 100 trials have been computed.

Your formula for day 1 should be =AVERAGE(N10:N109). This gives the average
unconditional probability that an individual will survive past day 1. The standard devi-
ation is computed as =STDEV(N10:N109). You will want to divide this number by 2
for graphing purposes in the next step.

Use the column graph option. Your graph should resemble Figure 10 (without the error
bars).

To add error bars, click on the columns in the graph to select them. Then go to Format |
Selected Data Series | Y Error Bars. Select the Custom option. Click on the Display Both option.
Place your cursor in the box labeled +, then use your mouse to select the standard
deviations for your 100 trials divided by 2 (cells N112–W112). Do the same for the box
labeled –. Click OK and your graph should be updated.
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3. Use the AVERAGE func-
tion in cells N110–W110 and
STDEV function in cells
N111–W111 to compute the
average Pu and standard
deviation for the 100 trials. 

4. Graph the average Pu
for each day.

5. Add error bars to your
graph. First, divide each
standard deviation by 2 in
cells N112–W112.

6. Save your work.
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QUESTIONS

1. Interpret the Kaplan-Meier conditional and unconditional probabilities graph
(e.g., Figure 8). What do long stretches of slightly sloping or horizontal lines
indicate? What do steeply sloping vertical drops indicate? 

2. What level of daily survival is needed to ensure that the population will persist
for 10 days? Set up your spreadsheet as shown. Enter the expected Pu’s for each
level of daily survival (given in cells A45–A53). For example, cell B45 should
compute Pu for day 1 when the daily survival is 0.1. Under what conditions is a
population likely to persist for at least 10 days? Graph your results.

3. The Kaplan-Meier estimate is often used because “uncooperative” individuals
can be taken out of the picture. For example, individuals that fly away from
your study plot are censored observations and can be subtracted from your “at
risk” population. Compare your model results to a population where censored
observations are absent (cells B6–K6 = 0). Erase your macro results (cells
N10–W109), then run your macro again under the new conditions. Compare the
average Pu and the standard deviations of the trials.

4. Under some conditions, censored observations may occur early in the study,
and under some conditions censored observations may occur late in the study.
For example, dispersal of individuals out of your study population may occur
early or late in the study, depending on the time of year your study is being
conducted. Compare how early censorship and late censorship affect Pc and Pu.
Set cell B6 = 0.5 to assess early censorship (the remaining cells should be 0).
Then set cell K6 = 0.5 (the remaining censorship probabilities should be 0).
Describe your results in terms of Pu and its standard deviation.

5. In the spreadsheet model, we simulated the fate of individual’s death or sur-
vival by linking a random number to a daily survival probability in cell B4.
Thus we assumed that for each day, an individual had the same probability of
surviving as any other day. What happens to the Kaplan-Meier estimates when
survival probabilities vary over the course of the study? Modify your model to
include this change and discuss your results in graphical form. For example,
establish different daily survival probabilities in cells B4–K4, and adjust the for-
mulae in cells B10–K34 so that the daily survival probability reflects your new
entries in cells B4–K4.

*6. (Advanced) How does sample size affect both Pc and Pu? Modify your model and
compare results when the sample size is increased from 25 to 50 individuals.
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HABITAT SELECTION
In collaboration with David N. Bonter

25
Objectives

• Develop a spreadsheet model of ideal-free habitat selection.
• Compare the ideal-free and ideal-despotic habitat selection

models.

INTRODUCTION
Imagine it is time for dinner, and you are deciding where to eat this evening. Your
options are either ordering pizza or going to the dining hall. You’d prefer pizza,
but you know that as soon as the pizza delivery person appears, everyone in the
dorm will be interested in getting a piece of your pizza. Although your first choice
is pizza, competition for each slice may leave you hungry. On the other hand, you
know that there will be plenty to eat at the dining hall. It may not be pizza, but
at least you won’t be hungry while studying tonight. Which do you choose? Does
it depend on how many friends are in the dorm tonight?

Similarly, organisms must routinely choose between habitat patches that pres-
ent different opportunities for meeting foraging and other resource needs. The
choice between the dining hall (suboptimal forage) and pizza delivery (optimal
forage) is analogous to the choice between habitat patches, where the number of
people in the dorm is the density of organisms within the habitat. Competitors
may decrease an organism’s intake through interference or by reducing the
resources available in a patch through exploitation competition. Facing these cir-
cumstances, an organism may do better by moving to a patch with fewer com-
petitors, even if the overall resources are inferior. In other words, if your dorm is
crowded tonight with many hungry competitors for pizza, you may reach your
daily foraging requirements better by eating in the dining hall!

Ideal-Free Habitat Selection
The intrinsic or basic suitability of a habitat may depend on factors such as food
and predators; some patches are higher in quality than others. Individuals that
compete for similar resources can reduce this basic suitability, so that “crowded”
habitats may be much lower in actual suitability, even if the basic suitability is
high. Thus, even though one habitat may be intrinsically “better” than the other,
an organism can do equally well in either habitat, depending on the density of
individuals within the habitats. This model of habitat selection is known as ideal-
free, because individuals are assumed to have full or “ideal” knowledge of what

 



the intrinsic suitabilities of each habitat are, as well as the densities in each habitat, and
individuals are “free” to select and enter habitats that will optimize their fitness. Hence,
individuals make behavioral decisions based on the behavior of other individuals in
the population (Fretwell and Lucas 1970).

Numerous assumptions are usually associated with the ideal-free distribution model.
• Individuals are of identical competitive ability.
• Habitat patches vary in quality.
• Competitors are free to move without costs or constraints.
• Each competitor will move to where its expected gains are highest.
• The value of a patch declines as more individuals exploit that patch.
• Maximum patch suitability occurs when the population density approaches zero.

The model predicts that all competitors will experience equal gains and that the aver-
age rate of gain in all habitats is equal. In other words, at equilibrium, no individual
should be able to improve its situation by moving to another patch.

Obviously, many of these assumptions are violated in the real world, and we will
address some of these assumptions later. But the ideal-free distribution provides a sound
place to start our model. Mathematically, we can express the suitability of the ith habi-
tat as a function of its basic (or intrinsic) suitability, modified by the density of organ-
isms in the habitat:

Si = Bi – fi(di) Equation 1

where Si is the realized suitability of habitat i, Bi is the basic (intrinsic) suitability of
habitat i, and di is the density of organisms in habitat i. The term fi(di) expresses the low-
ering effect on suitability as a result of an increase in density. When fi is large, each indi-
vidual occupying the habitat reduces the basic suitability of the habitat by a large
amount. 

A hypothetical comparison between the suitability of two habitats is shown in Figure 1.
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Figure 1 In this example, the basic suitability of habitat 1 is 100 units and that of
habitat 2 is 95 units. The amount that each resident lowers suitability, fi(di), is the
same for both habitat patches. As individuals begin to colonize the two empty
habitats, selecting habitat 1 will maximize their fitness. However, after the first
five individuals have established residence in habitat 1, the suitability of this habi-
tat has decreased to be identical to that of habitat 2 (still with 0 occupants). The
sixth colonist would do best to colonize habitat 2. This colonist will then reduce
the quality of habitat 2 such that habitat 1 will be selected by the seventh colonist,
and so on.



Ideal-Despotic Habitat Selection
If individuals are not free to occupy the patch of their choice, we can modify our model
of habitat selection and develop the ideal-despotic model. In this model, some indi-
viduals cannot freely occupy a habitat because other individuals (the “despots,” or
“dictators”) already present in the patch prevent them from colonizing. Thus, for exam-
ple, decisions of unsettled birds are influenced by the behavior of resident birds—the
nonresidents are not always free to select the habitat they want. Mathematically, the
lowered suitability of a habitat patch for future colonists due to resident behavior can
be expressed by

Ti = Si [1 – t(di)]                                      Equation 2

where Ti is the apparent suitability of the habitat for the unsettled bird, or how the col-
onizing individual perceives the quality of habitat i. Equation 2 says that the apparent
suitability is equal to the realized, or actual, habitat suitability, Si (calculated in Equa-
tion 1), discounted by a factor that takes into account the density of occupants already
present in the habitat (di) and the resistance of those occupants to new colonists (t).
When t = 0, the occupants do not resist new colonists at all, and Ti = Si (there is no
despotism). When t = 1, the occupants strongly resist new colonists. As long as t > 0, 
1 – t(di) is less than 1, and higher densities mean lowered apparent suitability. The rela-
tionship between a site’s basic or intrinsic suitability, its suitability when population
density is factored in (from the ideal-free model), and its apparent suitability (from the
ideal-despotic model) is represented in Figure 2. 

Various factors can act to decrease the apparent suitability of a habitat patch. Often
an organism will have to choose between habitat patches that differ in predation risk
in addition to resource availability. We may think that by adding predation risk to habi-
tat selection considerations, the ideal site will have plentiful resources, few competitors,
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Figure 2 The basic (intrinsic) suitability of a habitat patch is fixed and
remains constant regardless of population density. However, this relation-
ship is unlikely to represent conditions in the real world. Basic suitability
is often diminished as a function of population density, fi(di), because indi-
viduals compete for resources. Here we see that 10 individuals reduce the
suitability of the habitat by 90%. If patch residents act to exclude future
colonists, the apparent suitability is reduced even further, by t(di). In this
example, the patch is no longer hospitable to future colonists after 10 indi-
viduals have established residence.



and a low predation risk. However, the interrelationships between habitat characteris-
tics may be more complicated. For instance, choosing a patch with numerous conspecifics
may reduce predation risk. In this situation, allies in predation avoidance become
competitors in resource acquisition. The nature of the relationship between gain and
risk with group size will influence which habitat patches are exploited (Moody et al.
1996). Abiotic factors may also impact habitat suitability. Differences in temperature or
exposure to wind may produce differential energetic costs in different habitat patches.

PROCEDURES

This exercise presents a simple model that focuses only on a density-dependent decrease
in habitat suitability. In this model, competition for resources in “good” patches may
result in lower energetic gains due to loss of resources to rivals. In “poor” patches, it may
be harder to locate available resources, but less competition may make this choice worth-
while. The ideal-free distribution model often successfully predicts the distribution of
organisms in the real world, and has become the basis for more complex models.

In this exercise, you will develop a spreadsheet model of the ideal-free distribution
and explore its consequences on habitat selection. You’ll also compare the ideal-free
model to the ideal-despotic model. As always, save your work frequently to your disk.

ANNOTATION

We will consider two habitats, habitat 1 and habitat 2. 
Habitat 1 has a higher basic suitability than habitat 2. The values entered reflect the
basic or intrinsic suitabilities of each habitat. Remember, these basic suitability scores
are based on factors such as food abundance, predators, and so on, when the patches
are not yet occupied by colonists.

These values represent f(i) for the two habitats, or the “lowering effect” of habitat qual-
ity of each new individual occupying the habitat. Each individual occupying a habi-
tat will reduce the habitats’ quality by this amount. 

First we’ll focus on habitat 1, then we’ll repeat the steps for habitat 2 to examine how
basic suitability is lowered as more individuals colonize the different habitats. 
Enter 0 in cell A10. Enter =1+A10 in cell A11, and copy this formula down to cell A20. 

INSTRUCTIONS

A. Set up an ideal-free
model for two-habitats.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 3.

2. Enter 100 in cell F4 and
95 in cell G4.

3. Enter 0.9 in cells F5 and
G5.

4. Enter densities from
0–10 for habitat 1 in cells
A10–A20
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The basic suitability (Bi) for habitat 1 is given in cell F4, so enter the value =$F$4 in cells
B10–B20.
This is the suitability of the habitat based on intrinsic qualities such as the amount of
food, number of predators, and so on.

This is the value in cell $F$5 times the density (given in cell A10) in habitat 1. So, enter
the formula =A10*$F$5 in cell C10 and copy this formula down to cell C20.
The lowering effect, f, is a fixed value currently set at 0.9. For any given density, however,
the total reduction in suitability is the product of f times the density in the habitat.

In cell D10, enter the formula =B10-C10. Copy this formula down to cell D20.
The suitability of habitat 1, according to the Fretwell-Lucas model (1970), is Si = Bi – fi
(di). Take a good look at this equation. It says that the suitability of a habitat is its intrin-
sic suitability (cell B10) minus the density of individuals in the patch times the amount
that each individual lowers the basic suitability ( fi × di) in cell C10.

Now we are ready to concentrate on habitat 2. Make sure to reference parameters asso-
ciated with habitat 2 in cells G4–G5 in your formulae.

You will be graphing the values in cells A9–B20 and those in cells D9–D20. Use the XY
scatter graph option and label your axes fully. Your graph should resemble Figure 4.

You will be graphing the values in cells A9–A20, D9–D20, and cells J9–J20. Remember
to hold down the <Control> key to select cells that are not contiguous. Use the XY scat-
ter graph option and label your axes fully. Your graph should resemble Figure 5.

5. In cells B10–B20, enter a
value for the habitat’s
basic suitability.

6. In cell C10, enter a for-
mula for the lowering
effect of density on the
suitability of habitat 1.

7. In cell D10, enter a for-
mula to calculate the real-
ized suitability of habitat
1. Copy this formula
down to cell D20.

8. Repeat steps 4–7 to fill
out cells G10–J20.

9. For habitat 1, make a
graph that compares the
basic suitability with the
actual suitability.

10. Graph the suitabilities
of both habitat types as a
function of density.
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Let’s imagine that both habitats are completely empty; then 10 individuals arrive (not
all at once) and have options of settling into habitat 1 or habitat 2. Remember, the goal
for individuals is to maximize their success, so they will choose whatever habitat has
the highest suitability. In this step you will simulate the decisions of the 10 individu-
als on your spreadsheet. 

For the first individual, the decision is easy. It will select the habitat with the greatest
basic suitability. We can use an IF function in the spreadsheet to return the choice made.
An IF function returns one value if a condition you specify is true and another value
if it is false. It has the syntax IF(logical_test,value_if_true,value_if_false).
The formula in cell N10 tells the spreadsheet to examine the contents of cells F4 and
G4, the basic suitabilities of the two habitats. If F4 > G4, the spreadsheet will return the
number 1 (which indicates habitat 1 was selected); otherwise, it will return the num-
ber 2 (which indicates habitat 2 was selected). Use IF functions in cell O10 and Q10 to
keep a running total of individuals in habitats 1 and 2.

We need to record the suitabilities of each habitat, depending on what their current
densities are. We’ll use VLOOKUP to do this. The VLOOKUP function searches for a
value in the leftmost column of a table, and then returns a value in the same row from
a column you specify in the table. It has the syntax VLOOKUP(lookup_value,
table_array,col_index_num,range_lookup), where lookup_value is the value to be
found in the first column of the table, table_array is the table of information in which

11. Save your work.

B.  Simulate settlement
patterns of individuals.

1. Set up new column
headings as shown in
Figure 6.

2. Enter the numbers 1–10
in cells M10–M19.

3. In cell N10, enter the
formula =IF(F4>G4,1,2).
In cell O10, enter the for-
mula =IF(N10=1,1,0).
In cell Q10, enter the for-
mula =IF(N10=1,0,1).

4. In cell P10, enter the for-
mula =VLOOKUP
(O10,$A$10:$D$20,4).
Copy this formula down
to cell P19.
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the data are looked up, and col_index_num is the column in the table that contains the
value you want the spreadsheet to return. Range_lookup is either true or false (use
false for your formula). For example, the formula in cell P10 tells the spreadsheet to
look up the value in O10 (which is the running tally of individuals in habitat 1) in the
table in cells A10–D20, and return the value associated with the fourth column of the
table that is associated with the value listed in O10. 

In cell R10 enter the formula =VLOOKUP(Q10,$G$10:$J$20,4).

Now we need to focus on the second individual. The IF formula tells the spreadsheet
to determine if the value in cell P10 is greater than or equal to (>=) the value in cell R10.
If so, the spreadsheet returns a 1 (indicating a selection of habitat 1); otherwise the
spreadsheet returns a 2 (indicating a selection of habitat 2).

To keep a running tally of how many individuals are in habitats 1 and 2, we can use
the COUNTIF function. The COUNTIF function counts the number of cells within a
range that meet the given criteria. It has the syntax COUNTIF(range,criteria), where
range is the range of cells from which you want to count cells, and criteria is what
you want to count. For example, the formula in cell O11 tells the spreadsheet to count
how many 1s there are in cells N10–N11. 

You will be graphing the values in cells O9–O19 and cells Q9–Q19. Use a line graph
and use the values in cells M10–M19 as your x-axis (under the Series tab). Your graph
should resemble Figure 7.

5. Use the VLOOKUP for-
mula in cell R10 to return
the current suitability of
habitat 2 (based on its cur-
rent occupancy). Copy the
formula down to cell R19.

6. In cell N11, enter the
formula
=IF(P10>=R10,1,2). Copy
this formula down to cell
N19.

7. Enter the formula
=COUNTIF($N$10:N11,1)
in cell O11 and the formula
=COUNTIF($N$10:N11,2)
in cell Q11. Copy these
formulae down to cells
O19 and Q19, respectively.

8. Graph the running pop-
ulation totals of habitat 1
and habitat 2.

9. Save your work, and
answer Questions 1–4 at
the end of the exercise
before proceeding.
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Now we will consider the ideal-despotic model of habitat selection, where unsettled
individuals are restricted by the “despotic” behavior of already settled individuals.
Thus, even though they may “choose” to settle in a particular habitat based on its
suitability, the colonists may not successfully settle and hence their success will be lower
than expected for that habitat.

The parameter t represents how “resistant” a resident individual is to new colonizers.
Its value ranges from 0 to 1, where 0 means no resistance to new settlers and 1 indi-
cates full resistance to new settlers. For now, t = 0.01, indicating little resistance. You
will be able to change this value later in the exercise.

The total resistance of the habitat to new colonizers is a function of how many residents
there are in the habitat. Thus, the term t × d is an indication of the overall resistance
to new colonists.

T is the apparent suitability of a habitat, from the perspective of an individual looking
to settle into a habitat. We used the formula =D10*(1-E10) in cell F10 to calculate the
apparent suitability of habitat 1 when habitat 1 is vacant. 

Now consider the influence of despotic behavior on the apparent suitability of habitat 2.
We used the formula =$G$6*G10 in cell K10 and =J10*(1–K10) in cell L10.

Highlight cells A9–A20, D9–D20, and F9–F20. Use the XY scatter graph option and label
your axes fully. Your graph should resemble Figure 8.

C. Enter parameters for
the ideal-despotic
model.

1. Enter 0.1 in cells F6 and
G6.

2. In cell E10, enter the for-
mula =$F$6*A10. Copy
this formula down to cell
E20.

3. In cell F10, calculate the
apparent suitability, T, as
Si[1 – (tdi)]. Copy your for-
mula down to cell F20.

4. Enter formulae in cells
K10–L20 for habitat 2.

5. Graph the suitabilities
and apparent suitabilities
for habitat 1.

6. Save your work, and
answer questions 5–7.
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QUESTIONS

1. Based on your graph and the parameters used in the model in Section A of the
exercise, if the density of habitat 1 is 3, and the fourth individual is looking for
a place to settle, which habitat should it select? What if the density in habitat 1
is 8 and the density in habitat 2 is 0, which habitat should an individual select?
When all 10 individuals have settled into their respective habitats, how do the
two habitats compare in terms of per capita fitness?

2. In the ideal-free model, how does f affect suitability? Enter various values into
the spreadsheet and examine graphical results from Section A of the exercise for
habitat 1. 

3. Your ideal-free model suggests a linear decline in suitability as density increas-
es. Is this assumption justified? Modify your model so that each additional indi-
vidual adds more and more of a “penalty” to suitability. For example, each new
individual decreases suitability by a squared function of the density [Si = Bi –
fi(d

2
i )]. How does your modification change your basic results?

4. One assumption of the ideal-free model is that all individuals are free to move
into any habitat patch. In reality, individuals currently occupying a habitat
patch may attempt to prevent others from entering. What influence would these
“despots” have on the apparent suitability of a habitat patch? Consider how you
would modify your model to be an ideal-despotic model. (We will do this in
Part C, but your ideas may be better than ours.)

5. In the ideal-despotic model, what effect does t have on habitat suitability? Enter
various values in your model and interpret your results.

6. Does the ideal-despotic distribution lead to a condition similar to what we
found in the ideal-free model, where Ti is relatively equal in all habitats?

7. Both the ideal-free and the ideal-despotic models assume that individuals have
“ideal” knowledge of relative habitat quality. Hypothesize about the effects on
habitat selection if this assumption were violated.
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OPTIMAL FORAGING MODELS
In collaboration with David N. Bonter

26
Objectives

• Develop a spreadsheet model of foraging choices among
two prey types, prey 1 and prey 2.

• Determine the conditions in which individuals should be
specialists (consume either prey 1 or prey 2) or generalists
(consume both prey types).

INTRODUCTION
What are you going to eat for lunch today? Your choices may be many or few,
depending on how far you are from various restaurants, how much change you
have in your pocket, or whether you packed a lunch from home. The decision of
what to eat for most animals is not a matter of luxury, but of survival, and the
decisions that organisms make in their selection of food can be strongly shaped
by natural selection. Costs and benefits are ultimately calculated in terms of Dar-
winian fitness (survival and reproduction). In this exercise, we use energy gained
from foraging as a surrogate measure of fitness.

Let’s suppose that you are enjoying a snack consisting of peanuts (prey 1, still
in their shell) and popcorn (prey 2, already popped). Let’s further suppose that
you are very, very hungry. Which food item will you choose to eat first? When will
you stop eating the first food item and switch to the second? Ecologists think about
the choices animals make in terms of economic profitabilities. Each food item has
a benefit associated with it if consumed: energy (E). Each item also has a cost, which
includes the time it takes to manipulate the food so that it can be consumed (called
handling time, h). The “profitability” of a particular food item is E/h.

Should you eat the peanuts or popcorn? Peanuts have more energy per unit
than the popcorn, but their handling time can be quite large, especially if the
nuts are tightly closed. You, the predator, should eat the peanuts when: 

Epeanuts/hpeanuts > Epopcorn/hpopcorn Equation 1

At the beginning of your snack, this is likely to be true. You simply find the
peanuts that are cracked half-open, which have lower handling times and can
be consumed fairly quickly. Spending time eating popcorn means that you’ll be
missing the opportunity to consume the more energetically profitable peanuts.
But this may not continue to be the case. When should you start eating pop-
corn? When the gain from eating popcorn is greater than the gain from rejecting

 



the popcorn and searching for the more profitable peanuts. That is, you should eat pop-
corn when

Epopcorn / hpopcorn > Epeanuts / hpeanuts Equation 2

Even if the search times were equal, you might switch to popcorn when you get to the
last of the peanuts, where the nuts that are so tightly sealed that the handling time
becomes enormous, sending the profitability of peanuts spiraling downward. 

With this analogy in mind, in this exercise we will develop an optimal foraging model
for two prey types. We will predict when a predator will specialize in the more prof-
itable prey type, and when it will become a generalist and consume either prey type
when encountered. Assuming that we can measure prey value, that handling times are
fixed, that prey are recognized instantaneously, and that prey are encountered randomly,
we can make a few predictions. First, the most valuable prey item will never be ignored.
Second, the lower value prey will be ignored until 

Elower value/hlower value > Ehigher value/hhigher value

This simple ecological model suggests that foragers should make decisions that “opti-
mize” their energy gain. Our model makes several assumptions in addition to those
mentioned above: a single predator has only two choices of prey items; fitness is related
to energy gain; and the predator can make “informed” decisions about whether to
consume or bypass an encountered prey item.

Specialists and Generalists
In addition to handling time (h), prey availability (λ) may be added into the foraging
cost portion of Equations 1 and 2. Prey availability ranges between 0 and 1, and the
search time is defined as 1/λ (Figure 1). When the more profitable prey type is com-
mon (λ ~ 1), the search time is low and the predator wastes little energy locating the
more profitable prey type.  In such cases, it never pays to miss an opportunity to con-
sume that prey type by spending time and energy pursuing or handling the less prof-
itable prey. But as the more profitable prey item becomes less available (λ < 1), and
search time increases nonlinearly. That is, even when E/h remains constant over time,
decreasing availability (λ) leads the overall value of the prey to decline.  Equation 3
shows how profitability (E/h) is modified to include both search and handling time
costs: Equation 3

which can also be written as
λ

λ
E

h1+

E
h1

λ +
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Figure 1 Search time is inversely related to prey availability. When availability is
0, search time is infinite.



if we multiply both the numerator and the denominator by λ. We can see that as
availablity (λ) declines in Equation 3, the denominator increases, and profitability
declines in a nonlinear manner (Figure 2). Even when λ = 1, profitability (E/h). is down-
wardly adusted to included energy involved with locating prey (i.e., search time).

As the more profitable prey type becomes rare, a point is reached where profitabili-
ties of both prey types become roughly equivalent. Consuming the lesser quality prey
will provide as much energetic benefit as spending time and searching for the remain-
ing highly profitable items. In order to maximize energy gain per unit time, the preda-
tor will specialize on prey type 1 if

Equation 4

That is, energetic gain from specializing on prey type 1 alone is greater than that from
foraging on both prey types. As long as this inequality is true, the predator will ignore
prey 2 and specialize on prey 1. At some point, the decreasing availability of prey 1 will
force a change in foraging strategy, and our predator will become a generalist and con-
sume either prey type it encounters. Figure 3 shows that the energetic value of forag-
ing exclusively on prey 1 is higher than generalizing (consuming both prey types) until
approximately the sixtieth encounter. At this point, the left side of Equation 4 is no
longer greater than the right side. If the predator stays and continues to forage in the
habitat patch, it will eventually deplete both prey types as the energy gained per unit
time foraging steadily diminishes.

Optimal foraging models lead to a number of predictions (Begon et al. 1986):
• Predators with short handling times compared to search times are likely to be

generalists. If the time lost handling less profitable prey items is small, the
predator will consume the less profitable prey while continuing to search for
preferred prey. Fish consuming aquatic insects may be an example. Once the
prey item is located, time spent pursuing, subduing, and consuming the prey is
negligible; the largest energetic costs are in finding the prey (search time), and
any prey that are located are readily consumed.

• Predators with large handling times relative to search times should be special-
ists. A large carnivore (a lion, for example) may have negligible search times.
Their potential prey (ungulates on an African savannah) are usually all around
them. However, catching the prey—the handling time—is energetically expen-

λ
λ

λ λ
λ λ

1 1

1 1

1 1 2 2

1 1 2 21 1
E

h
E E

h h+ > +
+ +
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Figure 2 Profitability of a prey item after being adjusted for both handling time
(h) and availability (λ) as shown by Equation 3. In this example, we set E = 200 and
h = 1 to illustrate how adjusted profitability decreases sharply as prey availability
decreases. This graph would differ if the values of E and h were changed.



sive and often unsuccessful. Therefore, lions typically specialize in those prey
items that are easier to handle (i.e., young, old, or sick individuals).

• Predators in unproductive environments are more likely to be generalists than
predators in productive environments, as search times are likely to be high. On
the other hand, when prey densities are high in a productive environment, the
predator will benefit from specialization, as search times are negligible. 

• Predators should specialize when profitable food types are common, and gen-
eralize when profitable items are rare.

• Predators should discriminate when the differences in profitabilities are great
and be indiscriminate when the differences in profitabilities are negligible.

PROCEDURES

In this exercise, we’ll see how these predictions are developed mathematically by mod-
eling the conditions under which our energy-maximizing predator should be a spe-
cialist or a generalist. As always, save your work frequently to disk.

ANNOTATIONINSTRUCTIONS

A. Set up the model pop-
ulations.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 4.
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Let’s assume that our predator is foraging in a patch that initially consists of 100 items
of prey 1 and 100 items of prey 2. The initial numbers are given in cells D5–D6, and rep-
resent the number of each prey present before our forager enters a patch. The current
number of prey items is given in cells C5 and C6. The values in cells C5–C6 will decrease
as our forager consumes prey.

Enter the formula =SUM(C5:C6) in cell C7.

We need to establish the energy and handling times of each prey type. In this model,
prey 1 will always be more profitable than prey 2. Let’s assume that prey 1 has an
energy of 400 calories/individual, and prey 2 has 50 calories/individual. Let’s assume,
like the peanuts and popcorn, that prey 1 has a slightly larger handling time (3 seconds
vs. 1 second) than prey 2. 

Enter the formula =B3/C3 in cell D3.
Enter the formula =B4/C4 in cell D4.
Profitability is E/h for each prey type. (This profitability is not adjusted for availability.)

Enter the formula =C5/($D$5+$D$6) in cell E3.
Enter the formula =C6/($D$5+$D$6) in cell E4. 
The availability λ (type the letter ‘l’ and change the font to Symbol) is the proportion
of current prey type out of the total initial prey.

Now we are ready to determine which prey type should be eaten. Since prey 1 is
more profitable than prey 2, the choices are whether to consume only prey 1 or to
consume both prey 1 and prey 2. 

Enter the formula =(E3*B3)/(1+E3*C3) in cell A11.
Enter the formula =(E3*B3+E4*B4)/(1+E3*C3+E4*C4) in cell B11.
Recall from Equation 4 that, in order to maximize energy per unit time, the predator
specialize on prey type 1 if

If this inequality is true (the left side of the equation is indeed greater than the right
side of the equation), only prey 1 should be consumed. Otherwise, both prey items
should be consumed. This equation suggests that there can be a swift switch from being
a specialist to being a generalist.

In cell C11, enter the formula =IF(A11>B11,”specialist”,”generalist”).
This formula uses an IF function to return either the word “specialist” or the word “gen-
eralist.” The C11 formula examines cell A11. If the value is greater than the value in cell
B11, the inequality is true and the predator should specialize on prey type 1; otherwise
it should be a generalist. (Given your initial conditions, a specialist strategy should be
adopted.)

λ
λ

λ λ
λ λ

1 1

1 1

1 1 2 2

1 1 2 21 1
E

h
E E

h h+ > +
+ +

2. Enter 100 in cells
C5–D6.

3. In cell C7, SUM the
total prey in the patch. 

4. Enter 400 in cell B3 and
50 in cell B4, and enter 3 in
cell C3 and 1 in cell C4. 

5. In cells D3 and D4, cal-
culate initial profitability
for each prey type.

6. In cell E3 and E4, calcu-
late the current availabili-
ties (λ) of prey 1 and prey
2.

B. Determine a foraging
strategy.

1. Set up new column
headings as shown in
Figure 5.

2. In cells A11 and B11,
enter formulae based on
Equation 4 to calculate the
energy gain from special-
izing or generalizing.

3. In cell C11, enter a for-
mula to determine
whether a predator should
be a specialist on prey
type 1, or a generalist.
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In cell B12, enter the value 1 (because prey item 1 will always be taken, whether the
predator is a specialist or not). 
In cell B13, enter the formula =IF(C11=”generalist”,2,”.”).
If only prey 1 is selected, we want the number 1 to appear in cell B12 and a missing
value (a period) to appear in cell B13. If both prey are selected, we want the number 1
to appear in cell B12 and the number 2 to appear in cell B13.  The IF statement in cell
B13 returns the value 2 if the forager can consume both prey types, and returns a miss-
ing value if the forager is a specialist. Make sure your spreadsheet is working correctly
by changing the energy associated with prey 1 (cell B3) from 400 to 200 calories per
individual, and press F9 to see your results. Although prey 1 is still more profitable
than prey 2, it is now economically most cost effective to consume both prey types, and
this should be reflected in cells A11–B13. When you are finished, reset cell B3 to 400. 

Now we’ll set up a simulation to see what happens and what kinds of foraging deci-
sions are made as the food in the patch is consumed. Assuming that our predator enters
a patch with 100 items of prey 1 and 100 items of prey 2, it should consume prey 1
and bypass prey 2. The forager’s first encounter is listed as Encounter X in cell A16.

Which prey our forager encounters is given in cell B16, and depends on prey avail-
ability, λ. The encounter number will change over time as our predator continues to
forage. Cell C15 indicates whether the encountered prey was consumed or bypassed,
and cells D16 and E16 indicate how many prey remain in the patch. If the encoun-
tered prey was pursued, the energy gained associated with the prey is given in cell F16.

Enter the formula =IF(RAND()<C5/C7,$A$3,$A$4) in cell B16.
This formula simply states that prey items are encountered according to their current
proportions in the patch. If the random number (the RAND() portion of the formula)
is less than the current proportion of prey 1, then the organism encounters prey 1,
otherwise it encounters prey 2.

Enter the formula =IF(OR(B16=$B$12,B16=$B$13),”yes”,”no”) in cell C16.
Now, although both prey 1 and prey 2 may be encountered, a prudent predator will
bypass prey 2, since prey 1 is more profitable. Cell C16 returns the word “yes” if the
prey encountered was consumed, and “no” if the prey was bypassed. It is an IF for-
mula with an OR formula embedded in it. The OR portion of the formula—
OR(B16=$B$12,B16=$B$13)—returns the value “true” if any of the arguments speci-
fied are true. Thus, if  B16 = B12 or B16 = B13, the formula returns the value “true.”
Because the OR statement is embedded in an IF statement, the spreadsheet returns the
word “yes” if either of the OR conditions is met, and “no” if neither condition is met.

Enter the formula =IF(B16=1,$C$5-1,$C$5) in cell D16.
Enter the formula =IF(AND(B16=2,C16=”yes”),$C$6-1,$C$6) in cell E16.
The formulae in cells D16 and E16 reflect a decrease in number of prey 1 and prey 2,

4. In cell B12 and B13,
indicate which prey items
will be selected given the
foraging strategy
employed. 

C. Simulate foraging
decisions over time.

1. Set up new column
headings as shown in
Figure 6.

2. In cell B16, enter an IF
formula to specify whether
the forager encounters
prey 1 or prey 2.

3. In cell C16, enter a for-
mula to determine
whether the prey encoun-
tered was consumed.

4. In cells D16 and E16,
adjust the number of each
prey type remaining in the
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respectively, based on whether individuals of each type were consumed. The D16 for-
mula is another IF formula: If cell B16 = 1, we know that prey item 1 was selected, so
the total number of prey 1 is reduced by 1. The E16 formula is an IF formula with an
AND formula embedded. In this case, cell B16 (the prey encountered) must equal 2 and
cell C16 must equal “yes” in order for prey 2 to be depleted. Make sure these formu-
las are working correctly by pressing F9 several times. When prey item 1 is encoun-
tered, it should be selected and the total number of prey 1 should be reduced to 99 indi-
viduals. If prey 2 is encountered, it should be bypassed and the total number of prey
2 should remain at 100 individuals. 

Enter the formula =IF(C16=”no”,0,IF(B16=1,B3,B4)) in cell F16.
This formula tells the spreadsheet to examine cell C16. If cell C16 has the word “no”
in it, return a 0; otherwise, run through the second IF statement, IF(B16=1,B3,B4). If
the prey encountered was prey 1, the energy consumed is given in cell B3. Otherwise,
prey item 2 was selected and the energy consumed is given in cell B4.

Now we are ready to let our predator continue their foraging in the patch, encounter-
ing prey 1 and prey 2 according to their availabilities, which change as the predator
forages. The best way to simulate our predator’s behavior is to record a macro that
repeats the steps in row 16 several times, keeping track of the total number of prey 1
and prey 2 left in the patch. 

Enter the number 1 in cell A21.
Enter the formula =1+A21 in cell A22. Copy this formula down to cell A120.

You’ve already simulated the first encounter, so simply paste the values you obtained
into the row associated with encounter 1 (when pasting, select Edit | Paste Special | Paste
Values). Now you are ready for encounter 2. 

From the menu, open Tools | Options | Calculation and select Manual.

Bring your spreadsheet macro program into record mode and assign a name and short-
cut key. Your macro should repeat the steps in row 16 several times, keeping track of
the total number of prey 1 and prey 2 left in the patch. Record the following steps in
your macro:

•Press F9, to obtain a new random number that will generate which prey type is
encountered by the predator. 

•Highlight cells B16–F16 and select Edit |Copy.
•Highlight cell B20, then go to Edit | Find. Select Search by Columns (not by rows).

Leave the Find What box empty and select Find Next, then Close. Cell B22 should
be highlighted. 

•Select Edit | Paste Special | Paste Values (not the formulas) and select OK.
•Select cell D16–E16, then select Edit | Copy.
•Highlight cell C5, then select Edit | Paste Special | Paste Values. Make sure to

select the Transpose option.
•Stop recording.

Now when you press your shortcut key 99 times you should be able to see how the our
predators’ foraging decisions changed over the course of time.

patch (which depends on
the decisions of the 
forager).

5. In cell F16, enter a for-
mula to calculate the ener-
gy gained from a prey
item, given that the prey
item was selected and con-
sumed.

6. Save your work.

D. Write a macro to
simulate foraging over
time. 

1. Set up a linear series
from 1 to 100 in cells
A21–A120.

2. Copy cells B16–F16, and
paste the values into cells
B21–F21. 

3. Set the calculation key
to manual.

4. Record a macro to simu-
late encounters 2–100.
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You can edit Excel’s Visual Basic Editor code to avoid pressing the shortcut key 99 times.
Push <Alt>+<F8> and select Edit ; the code should appear. After the first line, simply
enter the code For counter = 1 to 100 in the first line of your program. The word
Calculate should now be the second line of code. At the end of your program, before
the words End Sub appear, type in a new line of code that reads Next. Now when you
press your shortcut key just once, the macro will repeat 100 times. 

Use the line graph option and label your axes fully. Your graph should resemble 
Figure 7.

QUESTIONS

1. Interpret the results of your model. Did the forager specialize or generalize?
Why? 

2. Assuming your answer from Question 1 was “specialize,” the forager must
have bypassed several food items of the non-preferred prey. What is a major
assumption of the model (not explicit in the model) regarding the metabolic
costs of our forager while bypassing prey item 2?

3. Change the energy for prey 2 to 75 units (cell B4). Erase your macro results
(cells B21–F120), and reset your initial prey abundances to 100 (cells C5–D6).
Run your macro again. Interpret your results. Did the forager specialize or gen-
eralize? At what point did a change in behavior occur? Why?

4. Examine the availability λ as your simulation progressed. Why does the avail-
ability change as the simulation proceeds? How would availability (cells E3 and
E4) change if one prey type were very rare, but highly profitable? Set the initial
number of prey 1 to 10 individuals (cells C5–D5), and the initial number of prey
2 to 100 individuals (cells C6–D6). How are these differences reflected in avail-
ability? In the encounter probability (cell B16)? As prey is consumed, how do
these values change? 

5. (Optional) Edit your
macro using the Visual
Basic code.

6. Save your work.

E. Create graphs.

1. Graph the prey items
remaining as a function of
encounter number.
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5. Critically consider some assumptions of this model. Are energy content, han-
dling time and prey availability the only factors that influence foraging deci-
sions? Name other factors.

6. Which parameters drive the outcome of the model most: handling time, energy,
or the initial prey availability? Run several trials that vary in 1 parameter (e.g.,
handling time) while keeping the other two parameters constant. Repeat for the
other two parameters. Set up column headings so that you can track your
results, and present your results graphically.
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RANGE EXPANSION27
Objectives

• Build a spatially explicit model of range expansion by a
logistically growing population.

• Model the expansion of a species’ range in one and two
dimensions.

• Determine how the rate of range expansion relates to popu-
lation growth and emigration.

Suggested Preliminary Exercise: Logistic Population Models

INTRODUCTION
Species occasionally invade new habitat, often as an intentional or unintentional
result of human activities. Invaders usually consist of a few founding individu-
als, occupying a small area. If the invasion is successful, the invading popula-
tion grows in numbers and in area occupied—its range. Invading species often
become pests, displacing or attacking native species, poisoning livestock, or
otherwise making nuisances of themselves. It is therefore important to under-
stand how and why a species’ range expands. We will focus on two factors that
influence range expansion: population growth and emigration rate. You will deter-
mine how a population’s range expands or contracts, depending on its rates of
growth and emigration.

In this exercise, you will treat each cell in the spreadsheet as a patch of habitat,
which may house a local population. Each local population may grow or shrink
according to its birth and death rates, and it may exchange members with neigh-
boring local populations by emigration and immigration. The number of cells occu-
pied by local populations is the range of the population. The model developed
here is loosely based on one in Case (2000).

We begin by assuming that the local population in each cell grows according to
a logistic model:

Nt+1 = Nt + (b + b′Nt)Nt – (d + d′Nt)Nt Equation 1

Here, Nt and Nt+1 represent the size of the local population at times t and t + 1, b
represents the per capita birth rate and d the per capita death rate, each when
the local population is very small and uncrowded. The symbols b′ and d′ repre-
sent the change in per capita birth and death rates caused by each additional mem-
ber of the local population. This is the same equation as you used for the logistic
model in Exercise 8.

 



Equation 1 ignores immigration and emigration, which we want to include in our
model for this exercise. We could just add terms for immigration and emigration, but
the model would rapidly become unwieldy. So let’s simplify Equation 1 a bit first. If we
multiply out the terms in parentheses, we get

Nt+1 = Nt + bNt + b′Nt
2– d Nt – d′Nt

2

We can rearrange these terms to get

Nt+1 = Nt + bNt – dNt + b′Nt
2 – d′Nt

2

Factoring gives us

Nt+1 = Nt + (b – d)Nt + (b′ – d′)Nt
2

We can use the symbol Rmax to represent the population’s maximum geometric rate of
growth and Rdd for the density-dependent reduction in population growth rate—i.e.,
the amount by which each added member of the population reduces the population’s
per capita rate of growth. If we define Rmax = b – d and Rdd = b′– d′, we can write

Nt+1 = Nt + RmaxNt + RddNt
2

Factoring out Nt once again gives us

Nt+1 = Nt + (Rmax + RddNt)Nt Equation 2

As the above derivation shows, this model is identical to the logistic model you used
in an earlier exercise, but instead of showing per capita birth and death rates and
their density-dependent changes explicitly, it combines all that into Rmax and Rdd.

Next, we incorporate emigration out of the cell, symbolized E:

Nt+1 = Nt + (Rmax + RddNt)Nt – (Emin + EddNt)Nt Equation 3

Here Emin represents the minimum emigration rate and Edd the density-dependent
increase in emigration, that is, the amount by which each added member increases
the per capita emigration rate from the cell. According to this model, a small propor-
tion of the members of the population emigrate when the population of the cell is small,
and the proportion emigrating increases as the population grows (see the exercise,
“Metapopulation Dynamics”).

These emigrants have to go somewhere, and in this model we will assume they move
equally into immediately adjacent cells to the right and left of their natal cell. From the
point of view of the population in a cell, new members move in from neighboring cells
at rates determined by the sizes of the populations in those neighboring cells, which we
simply call Left and Right. We can now write the whole equation for the population of
a cell as

Nt+1 = Nt + (Rmax + RddNt)Nt – (Emin + RddNt)Nt +

0.5(Emin + EddLeftt)Leftt + 0.5(Emin + EddRightt)Rightt

Equation 4

In words, the population of each cell grows by reproduction of its own members and
loses members by emigration. It also receives members from adjacent cells. The factor
of one-half in each of these immigration terms comes from the assumption that half
of the emigrants from each cell go to the left, and half go to the right.

Although we have written this equation as a logistic model, you can make it into a
geometric model by setting Rdd to zero. Notice that this makes (Rmax + RddNt)Nt =
(Rmax + 0Nt)Nt = RmaxNt, which is our old geometric model (with immigration from
neighboring cells added).

Likewise, the model assumes that emigration grows in a density-dependent fashion,
but you can make emigration a constant proportion of population size by setting Edd
to zero. If you set Emin to zero, that represents a situation in which no individuals leave
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the population when it is very small (when Nt = 0, strictly speaking). If you set both Emin
and Edd to zero, it represents a situation with no emigration at all.

Thus by choosing appropriate values for the model parameters, you can model geo-
metric or logistic population growth, with density-dependent or density-independent
emigration, or no emigration at all. You will use the model to find out how a species’
range expands under each of these scenarios.

PROCEDURES

First we will model range expansion in one dimension. You might think of one-dimen-
sional habitat as something like a narrow stream, or a narrow riparian zone. Then we
will expand the model to two dimensions and see if any of the model predictions
change.

As always, save your work frequently to disk.

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

In cell A9 enter the value 0.
In cell A10 enter the formula =A9+1; copy this formula into cells A11–A59.

These are the initial population sizes in each habitat patch, or site. For now, we model
a situation in which the population begins with two individuals at the center of the
potential range. We call these the “seed population.” You can change the initial condi-
tions later.

Enter the formula =C9+($D$4+$D$5*C9)*C9-($F$4+$F$5*C9)*C9+0.5*($F$4+$F$5*B9)
*B9+0.5*($F$4+$F$5*D9)*D9.
This corresponds to Equation 4:

Nt+1 = Nt + (Rmax + RddNt)Nt – (Emin + RddNt)Nt + 0.5(Emin +

EddLeftt)Leftt + 0.5(Emin + EddRightt)Rightt

Note that the formula refers to cell B9, which is empty. The spreadsheet treats empty
cells as zero values. In effect, we assume that cell B9 is unsuitable habitat, from which
no emigrants emerge and within which immigrants die.

INSTRUCTIONS

A. Set up the one-dimen-
sional model.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 1. Enter the param-
eter values shown for
Rmax, Rdd, Emin, and Edd.

2. Set up a linear series
from 0 to 50 in column A.

3. Enter zeros into cells
C9–H9, and cells J9
through O9. Enter the
value 2 into cell I9.

4. In cell C10, enter a for-
mula into to calculate the
size of the population in
that cell at time 1.
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Note that the formula in cell O10 refers to cell P9, which is empty. The same interpre-
tation applies here as in the case of cell B9.

Enter the formula =SUM(C9:P9). Copy the formula in cell Q9 and paste it into cells
Q10–Q59.

Enter the formula =COUNTIF(C9:O9,”>1”). Note the quotation marks around >1. Copy
this formula into cells R10–R59. This formula tells the spreadsheet to count the num-
ber of cells in columns C–O of the current row that contain values greater than one.

We use the cutoff value of 1 rather than 0, because if we use 0 the behavior of the model
becomes unrealistic due to the way the spreadsheet handles very small numbers. This
cutoff is also more biologically reasonable, because we should not count habitat as occu-
pied until the population there has reached some minimum size. Later, you can try rais-
ing the threshold value higher than 1 to see what effect that has.

Your one-dimensional model is now complete. You can now use it to graph various
aspects of the population’s size and range.

Select cells A8–A59. Hold down the control key (Windows) or the  key (Macintosh) and
select cells Q8–Q59. Make an XY graph. Your graph should resemble Figure 2.

5. Copy the formula into
cells D10–O10.

6. Copy cells C10–O10 into
cells C11–O59.

7. In cell Q9, enter a for-
mula to calculate the total
population (in all cells) at
time 0. Copy this formula
down the column.

8. In cell R9, enter a for-
mula to calculate the total
range of the population at
time 0. Copy this formula
down the column.

9. Save your work.

B. Graph various
aspects of the one-
dimensional model.

1. Graph the total popula-
tion size against time. Edit
your graph for readability.
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Select cells A8–A59. Hold down the control key (Windows) or the  key (Macintosh) and
select cells R8–R59. Make an XY graph. Your graph should resemble Figure 3.

Select cells A8–A59.
Hold down the control key (Windows) or the  key (Macintosh), and select cells
C8–C59.
Hold down the control key (Windows) or the  key (Macintosh), and select cells F8–F59.
Hold down the control key (Windows) or the  key (Macintosh), and select cells I8–I59.
Make an XY graph. Your graph should resemble Figure 4.

2. Graph the range of the
population (number of
occupied cells) against
time. Edit your graph for
readability.

3. Graph the population
sizes at three sites: (1) the
“seed population” (see
Step 3 above); (2) a local
population about halfway
from the middle to the
edge of the range; and (3)
a local population at the
edge of the range. Edit
your graph for readability.
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Expanding into Two Dimensions
In the next part of the exercise, we examine range expansion in two dimensions. You
can visualize this as a homogeneous plain—perhaps a tract of prairie or forest. In the
spreadsheet, you will model this with a two-dimensional grid of cells. We can refer to
neighboring populations as UpLeft, Up, UpRight, etc. (Figure 5). 

In two dimensions, each cell will lose emigrants to, and receive immigrants from,
eight neighboring cells instead of two. We can represent this in an equation similar to
Equation 4:
Nt = Nt+1 + (Rmax + RddNt)Nt – (Emin + EddNt)Nt +

(1/8)(Emin + EddUpLeftt)UpLeftt + (1/8)(Emin + EddUpt)Upt +

(1/8)(Emin + EddUpRightt)UpRightt + (1/8)(Emin + EddLeftt)Leftt + Equation 5

(1/8)(Emin + EddRightt)Rightt +(1/8)(Emin + EddDownLeftt)DownLeftt +

(1/8)(Emin + EddDownt)Downt + (1/8)(Emin + EddDownRightt)DownRightt

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

INSTRUCTIONS

C. Set up the two-
dimensional model.

1. Open a new spreadsheet
and set up labels in cells
A1–F5 as shown in Figure
6. Enter the labels shown
in cells A9, A11, and A13.
Enter the parameter val-
ues shown for Rmax, Rdd,
Emin, and Edd.
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Figure 5 Eight neighboring populations around a
central, focal population. 
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Parameters

Rmax 0.75 Emin 0.5

Rdd -0.1 Edd 0.001

Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total pop 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00

Range 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 6



The matrix of cells C9–I15 represent the area of suitable habitat. At time 0, the habitat
is empty except for a small seed population in cell F12.

Enter the values shown for the local populations at time 0. The easiest way to do this
is to enter a value of 0 into cell C9, then copy that and paste it into cells C10–C15.
Then copy cells C9–C15 and paste into cells D9–I15. Finally, enter a value of 2 into cell
F12.

In cell A10, enter the value 0.

Enter the formula =SUM(B9:I15).

Enter the formula =COUNTIF(C9:I15,”>1”).

Copy cells A9–I15 and paste into cells A17–I23. Change the time-value in cell A18 from
0 to =A10+1.

Equation 5 above is the basis for this formula. In cell C17, enter the formula 
=C9+($D$4+$D$5*C9)*C9-($F$4+$F$5*C9)*C9+(1/8)*($F$4+$F$5*B8)*B8+
(1/8)*($F$4+$F$5*C8)*C8+(1/8)*($F$4+$F$5*D8)*D8+(1/8)*($F$4+$F$5*B9)*B9+(1/8)*
($F$4+$F$5*D9)*D9+(1/8)*($F$4+$F$5*B10)*B10+(1/8)*($F$4+$F$5*C10)*C10+(1/8)*
($F$4+$F$5*D10)*D10.
Copy this formula into cells C18–C23.
Copy cells C17–C23 and paste into cells D17–I23.

Copy cells A17–I23. Paste separately into each of the following cells: A25, A33, A41,
A49, A57, A65, A73, A81, A89, A97, A105, A113, A124, and A129.

These are all literals, so just select the appropriate cells and type them in.

Enter the value 0 in cell L9.
In cell L10, enter the formula =L9+1.
Copy this formula into cells L11–L22.

2. Set up a two-dimension-
al matrix of cells to repre-
sent the local populations
at time 0.

3. Mark this matrix as rep-
resenting time 0.

4. In cell A12, enter a for-
mula to calculate the total
population size.

5. In cell A14, enter a for-
mula to calculate the
range of the population.

6. Set up a separate matrix
of cells to represent the
population at time 1.

7. Enter formulae to calcu-
late the size of each local
population at time 1.

8. Copy the entire matrix
of cells for time 1 down
the spreadsheet to model
the spread of the species
through time 15.

9. Set up titles and column
headings as shown in
Figure 7.

10. Set up a linear series
from 0 to 15 in cells
L9–L22.
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In cell M9, enter the formula =A12.
In cell M10, enter the formula =A20.
In cell M11, enter the formula =A28.
Continue down the column, incrementing the row address by 8, until you reach cell
M22, which should contain the formula =A132.

In cells N9–N22, enter the formulae =F12 through =F132, in steps of 8, as you did for
the formula in column M.
Similarly, in cells O9 through O22, enter the formulae =D10 through =D130 in steps
of 8.
In cells P9 through P22, enter the formulae =C9 through = C129 in steps of 8.

In cells Q9 through Q22, enter the formulae =A14 through =A134 in steps of 8.

Your spreadsheet is now complete.

Select cells L9 through M22, and make an XY graph. Edit your graph for readability. It
should resemble Figure 8.

11. Set up cells M9–M22 to
echo the values of total
population size at times
0–15.

12. Set up cells series in
columns N, O, and P to
echo the population size of
the central population
(Central Pop), a local pop-
ulation about halfway to
the edge of the suitable
habitat (Medial Pop), and
a local population at the
edge of suitable habitat
(Edge Pop).

13. Set up series in column
Q to echo the size of the
range at times 0 through
15.

14. Save your work.

D. Graph aspects of the
two-dimensional model.

1. Graph total population
size against time.
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Select cells L9 through L22. Hold down the  key (Macintosh) or control key (Win-
dows) while selecting cells N9 through P22. Make an XY graph. Edit your graph for
readability. It should resemble Figure 9.

Select cells L9 through L22. Hold down the  key (Macintosh) or control key (Win-
dows) while selecting cells Q9 through Q22. Make an XY graph. Edit your graph for
readability. It should resemble Figure 10.

2. Graph the sizes of the
central population, medial
population, and edge pop-
ulation against time.

3. Graph the range of the
population against time.
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QUESTIONS

Answer questions 1–5 first for the parameters given for the one-dimensional
model, and then again using the parameters in the two-dimensional model.
(You should find that the two models behave very similarly.)

1. With the parameter values given, how do the local populations and the total
population grow?

2. How does the range of this population expand?

3. Can you change parameter values to model geometrically growing local popu-
lations?

Does this affect the predictions of the model?

4. Does changing the emigration parameters change the behavior of the model?

5. How is the rate of range expansion affected by rates of local population growth
and emigration?

ADDITIONAL THINGS TO TRY

1. Set Rmax high enough to produce cyclic or chaotic behavior in the seed popula-
tion, and graph a few populations (columns) as well as total population. How
do the dynamics of these populations compare to dynamics of isolated logistic
populations?

2. Start two or more populations at nonzero values (i.e., set up two or more seed
populations). Graph each seed population and the total population. What hap-
pens when their ranges meet and overlap? 

LITERATURE CITED

Case, T. J. 2000. An Illustrated Guide to Theoretical Ecology. Oxford University Press,
New York.
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Objectives

• Understand the concept of succession and several theories
of successional mechanisms.

• Set up a spreadsheet matrix model of succession.
• Use the model to explore predictions of various theories of

succession.

SUCCESSION28

INTRODUCTION
Succession is change in community composition at one site over time-scales
longer than a year and shorter than millenia. We exclude shorter time-spans
because we want to exclude cyclic seasonal changes in abundance, and longer
time-scales because we want to exclude evolutionary changes and responses to
climate changes.

Succession may occur on newly exposed substrate, such as glacial till or fresh
lava, in which case it is called primary succession. Succession may also occur
on previously vegetated soil, from which much or all of the biota has been
removed by some disturbance, such as fire or clear-cutting. In this case, we call
it secondary succession.

A Markov Chain Model of Succession
Primary and secondary succession often differ in the sequence of organisms that
appear at a site and in the mechanisms that determine that sequence. However,
we can describe either kind of succession in purely phenomenological terms by
specifying transition probabilities from one state of the community to another. The
technical term for such a model is a Markov chain or Markov process. A Markov
chain is a sequence of states of a system in which each successive state depends
only on the previous state and the transition probabilities between possible states.

To make the concept a bit more concrete, consider algal succession on rock in
the intertidal zone of an ocean shore. A storm roils the surf, shifting boulders,
and scraping some clean. Let us focus on the surface of one such boulder. After the
waters calm, propagules of species A may settle out and begin to grow. Soon there-
after, propagules of species B may settle out on the same rock, compete with species
A, and eventually take over the rock. Somewhat later, species C may similarly dis-
place species B. In short, we have a successional sequence of species A → B → C.

 



The system here is the community (consisting in this case of a single species) occu-
pying the rock surface. The states of the system are “Occupied by bare rock,” “Occupied
by species A,” “Occupied by species B,” and “Occupied by species C.” Whatever state
the system is in at any given time, there is some probability that it will be in each of the
other states one time unit later. These probabilities are the transition probabilities.

We can conveniently represent the states of the system, and the transition probabili-
ties between states, in matrix form (Table 1). By convention, the top row of the matrix
lists all possible current states of the system (species occupying the rock) at some time
t; the left column lists all possible succeeding states of the system  one arbitrary time
unit later. The entries in the body of the matrix represent the probabilities of each pos-
sible transition from one state to another state or the same state over that time period.

According to this matrix, bare rock is unlikely (p = 0.10) to remain bare from time t to
time t + 1. The probability that a bare rock will be colonized by species A in that time is
0.80; that it will be colonized by species B is 0.06; and by species C, 0.04. A patch of rock
already occupied by species A is likely to remain so (p = 0.75), but there is a 10% chance
that it will succeed to species B and a 5% chance that it will succeed to species C. There
is also a 10% chance that a new disturbance will remove whatever species currently occu-
pies the rock (note the values of 0.10 in the three right-hand cells of the top row). 

Notice that each column of the transition matrix adds to 1. This has to be, because we
must account for the fate of all patches that began the interval from t to t + 1 in each state.

To apply the transition matrix, we must begin with the number of rocks currently in
each stage of succession (i.e., bare rock or occupied by species A, B, or C). These num-
bers are arranged in a state vector, which describes the current state of the system. For
example, if we examined our intertidal area at some time and found 70% of the rocks
were bare, 20% occupied by species A, 5% occupied by species B, and 5% occupied by
species C, we could write that as a state vector st

To predict the number of rocks occupied by each species (or bare) in the future, we mul-
tiply the state vector by the transition matrix A:

A =
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Table 1. Matrix of hypothetical transition probabilities between successional
states on a rock in the intertidal zone.

Species occupying the rock at time t

Bare Rock A B C

Bare Rock 0.10 0.10 0.10 0.10

A 0.80 0.75 0.02 0.01
Species
occupying the
rock at time 
t + 1

B 0.06 0.10 0.80 0.04

C 0.04 0.05 0.08 0.85



That is,

st+1 = A × st

or in our example,

We can carry our predictions as far into the future as we wish by iterating this matrix
multiplication:

st+1 = A × st

st+2 = A × st+1

st+3 = A × st+2

st+4 = A × st+3

and so on. (If you are unfamiliar with matrix multiplication, or have forgotten the
details, consult the Appendix at the end of this exercise.)

We can ask a variety of interesting questions about long-term model predictions. For
example, will the system eventually come to equilibrium? If so, will the equilibrium con-
sist of a single species (a climax), or will it consist of a stable mixture of species? If the
latter, what will be the proportion of each species? Does the eventual state of the system
depend on the initial state vector, or only on the transition probabilities?

It may be tempting to conceive of successional changes not from one species to
another but of entire communities. This presupposes that communities in a successional
sequence are discrete entities, corresponding to the discrete states of a Markov chain.
However, the evidence from field ecology shows that communities are not discrete enti-
ties, and that succession is not a change from one discrete community to another, but
rather individualistic, species-by-species changes in abundance, presence, and absence.
Therefore, to model successional change accurately at the community level requires a
species-level model.

We can use a Markov chain model, however, if we keep in mind that we are model-
ing a continuous process as if it proceeded in discrete steps. That is, we may choose to
look at community composition at, say, 50-year intervals. With that much time, com-
munity composition may have changed enough to permit us to regard communities as
discretely different, despite our knowledge that change over the intervening years was
individualistic and continuous.

Whether we think of our model as representing species-by-species replacement or
whole-community replacement, the mathematics is the same, only our interpretation
changes. Indeed, the model is mathematically identical to a Leslie matrix model of a
size-structured or stage-structured population.

PROCEDURES

Connell and Slatyer (1977) described three fundamentally different ways in which suc-
cession might proceed. Early-arriving individuals (“pioneers”) may change the envi-
ronment in ways that favor other species at the expense of their own offspring, as for
example by casting shade or adding organic matter and other substances to the soil.
Connell and Slatyer call this the facilitation model. Alternatively, early-arriving indi-
viduals may simply hold onto their sites, and the only way other individuals can enter
the community is if disturbance removes the site-holders. Connell and Slatyer call

st+ =
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. . . .
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this the inhibition model. Finally, it is logically conceivable that existing individuals
may have no significant influence, either positive or negative, on the establishment of
others. Connell and Slatyer call this the tolerance model. You can examine the outcome
of each of these models with the Markov chain model set up in this exercise.

As always, save your work frequently to disk.

ANNOTATION

The text items are all literals, so just select the appropriate cells and type them in. The
transition probabilities correspond to Table 1.

In cell B10 enter the formula =SUM(B6:B9). Copy this formula into cells C10–E10.
You will use these sums to check your transition probabilities when you change them
later in the exercise. Remember that each column of the transition matrix must add
up to 1.

Enter the values shown in cells H6 through H9.

INSTRUCTIONS

A. Markov chain model
of succession.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 1

2. Enter formulae to sum
up each column of transi-
tion probabilities.

3. Enter column and row
headings shown in Figure
2. Continue the sequence
of time values to the right
until you reach t = 20 in
column AB.

4. Enter the initial state
vector.
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A Markov-chain model of community change over time.

Example: Table 1 from Introduction

Bare rock Species A Species B Species C

Bare rock 0.10 0.10 0.10 0.10

Species A 0.80 0.75 0.02 0.01

Species B 0.06 0.10 0.80 0.04

Species C 0.04 0.05 0.08 0.85

Sum 1.00 1.00 1.00 1.00

Transition matrix: A

Figure 1
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State vectors: s (t )

Time (t ) 0 1 2 3 4

Bare rock 0.70

Species A 0.20

Species B 0.05

Species C 0.05

Sum 1.00

Figure 2



In cell H10 enter the formula =SUM(H6:H9).
This is another check on your model. State vectors must also add up to 1.

In cell I6 enter the formula =$B6*H$6+$C6*H$7+$D6*H$8+$E6*H$9.
Be careful to use absolute and relative addresses exactly as shown. This allows you to
copy the formula into other cells and get correct results. Any deviation from the for-
mula will produce erroneous results.

Select cells G5 through AB9. Make an XY (Scatterplot) Chart. Edit your graph for read-
ability. It should resemble Figure 3.

These probabilities indicate that bare rock is frequently replaced by species A, species
A by species B, and species B by species C. All these species are equally likely to be
replaced by bare rock. Species C is unique in that it is almost always replaced by itself,
only rarely by bare rock, and never by other species.

5. Enter a formula to total
the frequencies in the ini-
tial state vector.

6. Enter a formula to cal-
culate the state vector at
time 1.

7. Copy the formula from
cell I6 into cells I7 through
I9.

8. Copy cells I6 through I9
into cells J6 through AB9

9 Your spreadsheet is com-
plete. Save your work.

10. Graph the proportion
of rock surfaces occupied
by each species (or bare
rock) against time.

B. Facilitation model.

1. To see the predictions
of Connell and Slatyer’s
(1977) facilitation model
of succession, change
the transition probabili-
ties in your spreadsheet
to those given in Table 2.
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Your graph should resemble Figure 4.

These probabilities indicate that each species is equally likely to colonize bare rock, and
all species are equally susceptible to disturbance. The transition probabilities between
species are all 0.00, indicating that each species holds its site and inhibits occupancy by
al others. Replacement occurs only by disturbance.

2. Change the initial state
vector so that the initial
frequency of Bare Rock is
1.00, and all other species
have frequencies of 0.00.
Graph the results.

C. Inhibition model.

1. To see the predictions of
Connell and Slatyer’s
inhibition model, enter the
transition probabilities
given in Table 3 in your
spreadsheet.
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Table 3. Transition matrix for the Connell and Slatyer 
(1977) inhibition model.

Transition Matrix: Inhibition

Bare Rock Species A Species B Species C

Bare Rock 0.10 0.10 0.10 0.10

Species A 0.30 0.90 0.00 0.00

Species B 0.30 0.00 0.90 0.00

Species C 0.30 0.00 0.00 0.90

Sum 1.00 1.00 1.00 1.00

Table 2. Transition matrix for the Connell and Slatyer
(1977) facilitation model.

Transition Matrix: Facilitation

Bare Rock Species A Species B Species C

Bare Rock 0.10 0.10 0.10 0.01

Species A 0.90 0.10 0.00 0.00

Species B 0.00 0.80 0.10 0.00

Species C 0.00 0.00 0.80 0.99

Sum 1.00 1.00 1.00 1.00



Your graph should now resemble Figure 5.

As you can see, all the transition probabilities are equal. This indicates that any species
is equally likely to replace any other, and equally susceptible to disturbance.

Your graph should now resemble Figure 6. 

2. Keep the initial state
vector set with the initial
frequency of bare rock at
1.00 and all other frequen-
cies at 0.00. Graph the
results

D. Tolerance model.

1. To see the predictions
of Connell and Slatyer’s
tolerance model, enter
the transition probabili-
ties given in Table 4. 

2. Keep the initial state
vector set with the initial
frequency of bare rock at
1.00 and all other frequen-
cies at 0.00. Graph the
results.
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Table 4. Transition matrix for the Connell and Slatyer
(1977) tolerance model.

Transition Matrix: Tolerance

Bare Rock Species A Species B Species C

Bare Rock 0.25 0.25 0.25 0.25

Species A 0.25 0.25 0.25 0.25

Species B 0.25 0.25 0.25 0.25

Species C 0.25 0.25 0.25 0.25

Sum 1.00 1.00 1.00 1.00



QUESTIONS

1. Will the system eventually come to equilibrium? That is, will the frequencies of
rocks occupied by three species and bare rock stop changing?

2. Does the equilibrium consist of a single species occupying all rocks, or is there a
stable mixture of species?

3. Are the equilibrium frequencies determined by the initial frequencies (initial
state vector), by the transition probabilities, or both?

4. Will any valid transition matrix (valid meaning that the columns each add to 1)
result in equilibrium? Or are there valid transition matrices that do not lead to
an equilibrium?

5. Describe each of Connell and Slatyer’s (1977) models of succession, based on
the information in the graphs you produced in Sections B–D of this exercise.

(A) Facilitation model (Figure 4)
(B) Inhibition model (Figure 5)
(C) Tolerance model (Figure 6)

LITERATURE CITED

Connell, J. H. and R. O. Slatyer. 1977. Mechanisms of succession in natural commu-
nities and their role in community stability and organization. American
Naturalist 111: 119–144.
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Appendix: MATRIX MULTIPLICATION

A matrix is a rectangular array of numbers characterized by the number of its rows and
columns. Matrix A below is a 2 × 3 matrix. A matrix with one row or one column is
called a vector. Vector B is a 3 × 1 vector.

Matrices and vectors can only be multiplied by other matrices or vectors if the number
columns of the first equals the number of rows of the second. Thus, matrix A could be
multiplied by vector B; that is, A × B is a valid matrix multiplication.

Matrix multiplication is not commutative: that is, A × B ≠ B × A. Indeed, B × A can-
not be done, since the number of columns in B does not equal the number of rows in A.

Finally, here is how to do A × B:

Notice that the resulting matrix (vector in this case) has the same number of rows as
the first matrix and the same number of columns as the second.

31 7 23
11 5 17

2
4
6

31 2 7 4 23 6
11 2 5 4 17 6
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31 7 23
11 5 17
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HARDY-WEINBERG EQUILIBRIUM29
Objectives

• Understand the Hardy-Weinberg principle and its 
importance.

• Understand the chi-square test of statistical independence
and its use.

• Determine the genotype and allele frequencies for a popula-
tion of 1000 individuals.

• Use a chi-square test of independence to determine if the
population is in Hardy-Weinberg equilibrium.

• Determine the genotypes and allele frequencies of an off-
spring population.

Suggested Preliminary Exercises: Statistical Distributions;
Hypothesis Testing

INTRODUCTION
When you picture all the breeds of dogs in the world—poodles, shepherds, retriev-
ers, spaniels, and so on—it can be hard to believe they are all members of the same
species. What accounts for their different appearance and talents, and how do
dog breeders match up a male and female of a certain breed to produce prize-
winning offspring? The physical and behavioral traits we observe in nature, such
as height and weight, are known as the phenotype. An individual’s phenotype
is the product of its genotype (genetic make-up), or its environment, or both. In
this exercise, we focus on the genetic make-up of a population and how it changes
over time. This field of study is known as population genetics.

Genes, Alleles, and Genotypes
A gene, loosely speaking, is a physical entity that is transmitted from parents to
offspring and determines or influences traits (Hartl 2000). In one of the great
achievements of the life sciences, Gregor Mendel studied the inheritance of flower
color and seed shape in common peas and hypothesized the existence and behav-
ior of such an entity of heredity many years before genes were actually described
and shown to exist (Mendel 1866).

The multitude of genes in an organism reside on its chromosomes. A particu-
lar gene will be located at the same position, called the locus (plural, loci), on the

 



chromosomes of every individual in the populations. In sexually reproducing diploid
organisms, individuals have two copies of each gene at a given locus; one copy is inher-
ited paternally (from the father), the other maternally (from the mother). The two copies
considered together determine the individual’s genotype. Genes can exist in different
forms, or states, and these alternative forms are called alleles. If the two alleles in an
individual are identical, the individual’s genotype is said to be homozygous. If the
two are different, the genotype is heterozygous.

Although individuals are either homozygous or heterozygous at a particular locus,
populations are described by their genotype frequencies and allele frequencies. The
word frequency in this case means occurrence in a population. To obtain the genotype
frequencies of a population, simply count up the number of each kind of genotype in
the population and divide by the total number of individuals in the population. For
example, if we study a population of 55 individuals, and 8 individuals are A1A1, 35 are
A1A2, and 12 are A2A2, the genotype frequencies (f) are

f(A1A1) = 8/55 = 0.146

f(A1A2) = 35/55 = 0.636

f(A2A2) = 12/55 = 0.218

Total = 1.00

The total of the genotype frequencies of a population always equals 1. 
Allele frequencies, in contrast, describe the proportion of all alleles in the population

that are of a specific type (Hartl 2000). For our population of 55 individuals above, there
are a total of 110 alleles (of any kind) present in the population (each individual has two
copies of a gene, so there are 55 × 2 = 110 total alleles in the population). To calculate
the allele frequencies of a population, we need to calculate how many alleles are A1 and
how many are A2. To calculate how many copies are A1, we count the number of A1A1
homozygotes and multiply that number by 2 (each homozygote has two A1 copies), then
add to it the number of A1A2 heterozygotes (each heterozygote has a single A1 copy).
The total number of A1 copies in the population is then divided by the total number of
alleles in the population to generate the allelele frequency. The total number of A1 alle-
les in our example population is thus (2 × 8) + (1 × 35) = 51. The frequency of A1 is cal-
culated as 51/(2 × 55) = 51/110 = 0.464. Similarly, the total number of A2 alleles in the
population is (2 × 12) + (1 × 35) = 59, and the frequency of A2 is 59/(2 × 55) = 59/110 =
0.536.

As with genotype frequencies, the total of the allele frequencies of a population always
equals 1. By convention, frequencies are designated by letters. If there are only two alle-
les in the population, these letters are conventionally p and q, where p is the frequency
of one kind of allele and q is the frequency of the second kind of allele. For genes that
have only two alleles,

p + q = 1 Equation 1

If there were more than two kinds of alleles for a particular gene, we would calculate
allele frequencies for the other kinds of alleles in the same way. For example, if three
alleles were present, A1, A2, and A3, the frequencies would be p (the frequency of the
A1 allele), q (the frequency of the A2 allele) and r (the frequency of the A3 allele). No
matter how many alleles are present in the population, the frequencies should always
add to 1. In this exercise, we will keep things simple and focus on a gene that has only
two alleles. 

In summary, for a population of N individuals, the number of A1A1, A1A2, and A2A2
genotypes are NA1A1, NA1A2, and NA2A2, respectively. If p represents the frequency of the
A1 allele, and q represents the frequency of the A2 allele, the estimates of the allele fre-
quencies in the population are
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f(A1) = p = (2NA1A1 + NA1A2)/2N Equation 2

f(A2) = q = (2NA2A2 + NA1A2)/2N Equation 3

The Hardy-Weinberg Principle

Population geneticists are not only interested in the genetic make-up of populations,
but also how genotype and allele frequencies change from generation to generation. In
the broadest sense, evolution is defined as the change in allele frequencies in a popu-
lation over time (Hartl 2000). The Hardy-Weinberg principle, developed by G. H. Hardy
and W. Weinberg in 1908, is the foundation for the genetic theory of evolution (Hardy
1908). It is one of the most important concepts that you will learn about in your stud-
ies of population biology and evolution.

Broadly stated, the Hardy-Weinberg principle says that given the initial genotype fre-
quencies p and q for two alleles in a population, after a single generation of random mat-
ing the genotype frequencies of the offspring will be p2:2pq:q2, where p2 is the frequency
of the A1A1 genotype, 2pq is the frequency of the A1A2 genotype, and q2 is the frequency
of the A2A2 genotype. The sum of the genotype frequencies, as always, will sum to
one; thus, 

p2 + 2pq + q2 = 1 Equation 4

This equation is the basis of the Hardy-Weinberg principle.
The Hardy-Weinberg principle further predicts that genotype frequencies and allele

frequencies will remain constant in any succeeding generations—in other words, the
frequencies will be in equilibrium (unchanging). For example, in a population with an
A1 allele frequency p of 0.75 and an A2 allele frequency q of 0.25, in Hardy-Weinberg
equilibrium, the genotype frequencies of the population should be:

f(A1A1) = p2 = p × p = 0.75 × 0.75 = 0.5625

f(A1A2) = 2 × p × q = 2 × 0.75 × 0.25 = 0.375

f(A2A2) = q2 = q × q = 0.25 × 0.25 = 0.0625

Now let’s suppose that this founding population mates at random. The Hardy-Wein-
berg principle tells us that after just one generation of random mating, the genotype fre-
quencies in the next generation will be 

f(A1A1) = p2 = p × p = 0.75 × 0.75 = 0.5625

f(A1A2) = 2 × p × q = 2 × 0.75 × 0.25 = 0.375

f(A2A2) = q2 = q × q = 0.25 × 0.25 = 0.0625 

Additionally, the initial allele frequencies will remain at 0.75 and 0.25. These frequen-
cies (allele and genotype) will remain unchanged over time.

The Hardy-Weinberg principle is often called the “null model of evolution” because
genotypes and allele frequencies of a population in Hardy-Weinberg equilibrium will
remain unchanged over time. That is, populations won’t evolve. When populations vio-
late the Hardy-Weinberg predictions, it suggests that some evolutionary force is acting
to keep the population out of equilibrium. Let’s walk through an example.

Suppose a population is founded by 3,000 A1A1 and 1,000 A2A2 individuals. From
Equation 2, the frequency of the A1 allele, p, is (2 × 3000 + 0)/(2 × 4000) = 0.75. Because
p + q must equal 1, q must equal 1 – p, or 0.25. So, since p and q are equal to the values
we used above to calculate the equilibrium genotype frequencies, if this population were
in Hardy-Weinberg equilibrium, 56% of the population should be homozygous A1A1,
38% should be heterozygous, and 6% should be homozygous A2A2. But the actual geno-
type frequencies in this population are 75% homozygous A1A1 and 25% homozygous
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A2A2—there are no heterozygotes! So this founding population is not in Hardy-Wein-
berg equilibrium.

To determine whether an observed population’s deviations from Hardy-Weinberg
expectations might be due to random chance, or whether the deviations are so signifi-
cant that we must conclude, as we did in the preceding example, that the population is
not in equilibrium, we perform a statistical test.

The Chi-Square Test of Independence
Once you know the actual allele frequencies observed in your population and the genotype
frequencies you expected to see in an equlibrium population, you have the information to
answer the question, “Is the population in fact in a state of Hardy-Weinberg equilibrium?”

When we know the values of what we expected to observe and what we actually
observed, a chi-square (c2) test of independence is commonly used to determine
whether the observed values in fact match the expected value (the null model or null
hypothesis) or whether the observed values deviate significantly from what we expect
to find (in which case we reject the null model).

Chi-square statistical tests are performed to test hypotheses in all the life and social
sciences. The test basically asks whether the differences between observed and expected
values could be due to chance. The mathematical basis of the test is the equation

Equation 5

where O is the observed value, E is the expected value, and Σ means you sum the val-
ues for different observations. Hardy-Weinberg genotype frequencies offer a good oppor-
tunity to use the chi-square test. 

In conducting a χ2 test of independence, it’s useful to set up your data in a table for-
mat, where the observed values go in the top row of the table, and the expected values
go in row 2. The expected values for each genotype are those predicted by Hardy-Wein-
berg, computed as p2 × N, 2pq × N, and q2 × N for the A1A1, A1A2, and A2A2 genotypes,
respectively. If N = 1000 individuals and p = 0.5 and q = 0.5, our expected numbers would
be 250 A1A1, 500 A1A2, and 250 A2A2 (Figure 1).

To compute the χ2 test statistic, we start by computing the difference between the
observed and expected numbers for a genotype, square this difference, and then divide
by the expected number for that genotype. We do this for the remaining genotypes, and
then add the terms together: 

χ2 1 1 1 1
2

1 1

1 2 1 2
2

1 2

2 2 2 2
2

2 2
= − + − + −( ) ( ) ( )O E

E
O E

E
O E

E
A A A A

A A

A A A A

A A

A A A A

A A

χ2
2

= −∑ ( )O E
E
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A2A1
A1A1 A1A2 A2A2

Observed 258 504 238

Expected  p 2 * N = 250 2pq * N = 500 q 2 * N = 250

Parental Population

Figure 1 The top row gives the observed genotypes in a population of 1,000 indi-
viduals in which both p and q = 0.5. The bottom row gives the expected genotype
distribution for those values of p and q if the population were in Hardy-Weinberg
equilibrium.



The χ2 test statistic for Figure 1 would be computed as

D.F. and Critical Value
You now need to see where your computed χ2 test statistic falls on the theoretical c2

distribution. If you are familiar with the normal distribution, you know that the mean
and standard deviation control the shape and placement of the distribution on the x-
axis (see Exercise 3, “Statistical Distributions”). A χ2 distribution, in contrast, is char-
acterized by a parameter called degrees of freedom (d.f.), which controls the shape of
the theoretical χ2 distribution. The degrees of freedom value is computed as 

d.f. = (number of rows minus 1) × (number of columns minus 1)

or

d.f. = (r – 1) × (c – 1) Equation 6

In Figure 1, we had two rows (observed and expected) and three columns (three kinds
of genotypes), so our degrees of freedom = (2 – 1) × (3 – 1) = 2. 

The mean of a χ2 distribution is its degrees of freedom, and the mode of a χ2 distri-
bution is the degrees of freedom minus 2. The distribution has a positive skew, but this
skew diminishes as the degrees of freedom increases. Figure 2 shows two χ2 distribu-
tions for different degrees of freedom. The χ2 distributions in Figure 2 were generated
from an infinite number of χ2 tests performed on data sets where no effects were present.
In other words, the theoretical χ2 distribution is a null distribution. Even when no effects
are present, however, you can see that, by chance, some χ2 test statistics are large and
appear with a low frequency. Thus, you can get a very large test statistic by chance even
when there is no effect.

By convention, we are interested in knowing if our computed χ2 statistic is larger than
95% of the statistics from the theoretical curve. The 95% value of the theoretical curve’s
χ2 statistic is called the critical c2 value, and at this value, exactly 5% of the test statis-
tics in the χ2 distribution are greater than this critical value (α = 0.05; see Exercise 5,
“Hypothesis Testing”). For example, the critical value for a χ2 distribution with 4 degrees
of freedom is 9.49, which means that 5% of the test statistics in the χ2 distribution are
equal to or greater than this value. The critical value for a χ2 distribution with 10 degrees
of freedom is 18.31.

Table 1 gives the critical values for χ2 distributions with various degrees of freedom
when α = 0.05 (the “95% confidence level”). Tables of χ2 critical values for different α
values can be found in almost any statistics text. If our computed statistic is less than the

χ2 258 250
250

504 500
500

238 250
250 0 864

2 2 2
= − + − + − =( ) ( ) ( ) .
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Figure 2 Two χ2 distributions. Note that the curve steepens (positive
skew increases) when the degrees of freedom (d.f.) parameter is smaller.



critical value, we conclude that any difference between our observed and expected
values are not significant—the difference could be due to chance—and we accept the
null hypothesis (i.e., that the population is in Hardy-Weinberg equilibrium). But if our
computed statistic is greater than the critical value, we conclude that the difference is sig-
nificant, and we reject the null model (i.e., we conclude the population is not in equi-
librium).

How do you interpret a significant χ2 test? Interpretation requires that you examine
the observed and expected values and determine which genotypes affected the value of
the computed χ2 statistic the most. In general, the larger the deviation between the
observed and expected values, the greater the genotype contributed to the χ2 statistic.
In our first example, in which we expected 38% of an equilibrium population would
be heterozygotes but in fact observed no heterozygotes, the deviation from Hardy-Wein-
berg expectations is caused primarily by the absence of heterozygotes. You could then
proceed to form hypotheses as to why there are no heterozygotes.

What forces might keep a population out of Hardy-Weinberg equilibrium? Evolu-
tionary forces include natural selection, genetic drift, gene flow, nonrandom mating
(inbreeding), and mutation. These forces are introduced in other exercises, but here we
will set up the “null model” of a population in Hardy-Weinberg equilibrium.

PROCEDURES

In this exercise, you will develop a spreadsheet model of a single gene with two alle-
les in population and will explore various properties of Hardy-Weinberg equilibrium. 

ANNOTATION

Here we are concerned with a single locus, and imagine that this locus has two alle-
les, A1 and A2. Thus, an individual can be homozygous A1A1, heterozygous A1A2, or
homozygous A2A2 at the locus.

INSTRUCTIONS

A. Set up the model par-
ent population.
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TABLE 1.  Critical values of χ2 at the 0.05 level of significance (a)

Degrees of Degrees of
freedom a = 0.05 freedom a = 0.05

1 3.84 11 19.68
2 5.99 12 21.03
3 7.82 13 22.36
4 9.49 14 23.69
5 11.07 15 25.00
6 12.59 16 26.30
7 14.07 17 27.59
8 15.51 18 28.87
9 16.92 19 30.14
10 18.31 20 31.41

Source: χ2 values from  R. A. Fisher and F. Yates, 1938, Statistical Tables for
Biological, Agricultural, and Medical Research. Longman Group Ltd., London.



In cell A8, enter the value 0. 
In cell A9, enter =A8+1. Copy the formula in cell A9 down to cell 1007 to designate
the 1,000 individuals in the population. 

Enter 0.5 in cell C3 to indicate that the frequency of the A1 allele, or p, is 0.5. 

Enter the formula =1-$C$3 in cell C4 to designate the frequency of the A2 allele, or q.
Remember that p + q = 1.

Enter the formula =IF(RAND()< $C$3,”A1”,”A2”)& IF(RAND()< $C$3,”A1”,”A2”) in
cell B8. Copy this formula down to cell B1007.
The IF formula returns one value if a condition you specify is true, and another value
if the condition you specify is false. The RAND() part of the formula in cell B8 tells
the spreadsheet to choose a random number between 0 and 1. Then, if that random
number is less than the value designated in cell C3, assign it an allele of A1; otherwise,
assign it a value of A2. Because there are two alleles for a given locus, you need to repeat
the formula again, and then join the alleles obtained from the two IF formulas by using
the & symbol. Once you’ve obtained genotypes for individual 1, copy this formula
down to cell B1007 to obtain genotypes for all 1,000 individuals in the population.

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 3.

2. Set up a linear series
from 0 to 999 to represent
1000 individuals in cells
A8–A1007. 

3. In cell C3, enter a value
for p.

4. In cell C4, enter a for-
mula to compute the value
for q.

5. In cells B8–B1007, enter
an IF formula to assign
genotypes to each individ-
ual in the population
based on the allele fre-
quencies designated in
cells C3 and C4.

6. Set up new spreadsheet
headings as shown in
Figure 4. 
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The COUNTIF formula counts the number of cells within a range that meet the given
criteria. It has the syntax COUNTIF(range,criteria), where range is the range of cells
from which you want to count cells, and criteria is what you want to count. We used
the formulae:

• Cell K10 =COUNTIF($B$8:$B$1007,”A1A1”)
• Cell L10

=COUNTIF($B$8:$B$1007,”A1A2”)+COUNTIF($B$8:$B$1007,”A2A1”)
• Cell M10 =COUNTIF($B$8:$B$1007,”A2A2”)

The formula in cell K10 counts the number of A1A1 individuals in cells B8 through
B1007. In cell L10, you’ll want to count both the A1A2 and the A2A1 heterozyotes. Your
total observations should add to 1000. You can double-check this by entering
=SUM(K10:M10) in cell N10.

The values from these formulae are your “observed” genotypes, and you’ll compare
these to the genotypes predicted by Hardy-Weinberg. (Your observed genotypes should
be in Hardy-Weinberg equilibrium because of the way you assigned the genotypes.
In a natural setting, however, you probably won’t know the initial frequencies, but you
can count genotypes, and then determine if the organisms are in Hardy-Weinberg equi-
librium or not.)

Enter the formula =(K10*2+L10)/(2*A1007) in cell G3.
Enter the formula =1-G3 in cell G4.
Since each individual carries two copies of each gene, your population of 1,000 indi-
viduals has 2,000 “gene copies” (alleles) present. To calculate the allele frequency, you
simply calculate what proportion of those 2000 alleles are A1, and what proportion
are A2. The frequency of the A1 allele is 2 times the number of A1A1 genotypes, plus the
A1’s from the heterozygotes. The frequency of the A2 allele is 2 times the number of
A2A2 genotypes, plus the A2’s from the heterozygotes. Since p + q = 1, q can be com-
puted also as 1 – p. Your estimates of allele frequencies should add to 1. 

Now that you have computed the observed allele frequencies, you can calculate the
estimated genotype frequencies predicted by Hardy-Weinberg. Remember that if the
population is in Hardy-Weinberg equilibrium, the genotype frequencies should be p2

+ 2pq + q2. This means that the number of A1A1 genotypes should be p × p ( p2), the num-
ber of A1A2 genotypes should be 2 × p × q, and the number of A2A2 genotypes should
be q × q (q2).

Enter the formula =$G$3^2*1000 in cell K11.
The caret symbol (^) followed by the number 2 indicates that the value should be
squared. Thus, we obtained expected number of A1A1 genotypes by multiplying p ×
p, which gives us a proportion, and then multiplied this proportion by 1,000 to give
us the number of individuals out of 1,000 that are expected to be A1A1 if the population
is in Hardy-Weinberg equilibrium. 

Enter the formula =2*$G$3*$G$4*1000 in cell L11.

Enter the formula =$G$4^2*1000 in cell M11.
The expected numbers should add to 1000. You can double-check this by entering
=SUM(K11:M11) in cell N11.

Use a column graph and label your axes fully. Your graph may look a bit different than
Figure 5, and that’s fine.

7. In cells K10, L10, and
M10, use the COUNTIF
formula to count the num-
ber of A1A1, A1A2, and
A2A2 genotypes. 

8. In cell G3, enter a for-
mula to calculate the actu-
al frequency of the A1
allele. In cell G4, enter a
formula to calculate the
actual frequency of the A2
allele.

9. Save your work.

B. Calculate expected
genotype frequencies in
the parent population.

1. In cell K11, enter a for-
mula to calculate the
expected number of A1A1
genotypes, given the p
value calculated in cell G3. 

2. Calculate the expected
number of heterozygotes
in cell L11.

3. Calculate the expected
number of A2A2 genotypes
in cell M11.

4. Graph your observed
and expected results.
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Now you are ready to perform a χ2 test to verify whether your population’s observed
genotype frequencies are statistically similar to those predicted by Hardy-Weinberg.

Enter the formula =(K10-K11)^2/K11+(L10-L11)^2/L11+(M10-M11)^2/M11 in cell M13.
This corresponds to Equation 5:

Starting with A1A1, we observed 245 individuals and determined that there should be
255 individuals (you may have obtained slightly different numbers than that). Fol-
lowing the chi-square formula, 245 – 255 = 10, 102 = 100, 100 divided by 255 = 0.392.
Repeat this step for the A1A2 and A2A2 genotypes. As a final step, add your three cal-
culated values together. This sum is your chi-square (χ2) test statistic.

Enter the value 2 in cell M14.
Recall from Equation 6 that the degrees of freedom value is the (number of rows minus
1) × (number of columns minus 1), or (r – 1) × (c – 1). In our example, we had two
rows (observed and expected) and three columns (three kinds of genotypes), so our
degrees of freedom = (2 – 1) × (3 – 1) = 2. 

Enter the formula =CHIDIST(M13,M14) in cell M15.
The CHIDIST function has the syntax CHIDIST(x,degrees_freedom), where x is the
test statistic you want to evaluate and degrees_freedom is the degrees of freedom for
the test. The formula in cell M15 returns the probability of obtaining the test statistic
you calculated, given the degrees of freedom—if this probability is less than 0.05, your
test statistic exceeds the critical value. If this probability is greater than 0.05, your test
statistic is less than the critical value. You can now make an informed decision as to
whether your population is in Hardy-Weinberg equilibrium or not.

Enter the formula =CHITEST(K10:M10,K11:M11) in cell M16.
The CHITEST formula returns the test for independence (the probability) when you
indicate the observed and expected values from a table. It has the syntax
CHITEST(actual_range,expected_range), where actual range is the range of observed
data (in your case, cells K10–M10), and expected range is the range of expected data
(in your case, cells K11–M11). This number should be very close to what you obtained
in cell M15. (If it’s not, you did something wrong.)

χ2
2

= −∑ ( )O E
E

5. Interpret your graph.
Does your population
appear to be in Hardy-
Weinberg equilibrium?

6. Press F9, the calculate
key, to generate new ran-
dom numbers and hence
new genotypes. Does your
population still appear to
be in equilibrium?

C. Calculate chi-square
test statistics and prob-
ability.

1. In cell M13, enter the
formula to calculate your
χ2 test statistic. Refer to
Equation 5.

2. In cell M14, enter a
value for degrees of free-
dom.

3. In cell M15, use the
CHIDIST function to deter-
mine the probability of
obtaining your χ2 statistic.

4. In cell M16, double-
check your work by using
the CHITEST function to
calculate your test statistic,
degrees of freedom, and
probability.
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Enter the formula =IF(M15<0.05,”Yes”,”No”) in cell M17.
This IF formula tells the spreadsheet to evaluate the probability obtained in cell M15.
By convention, if the value in M15 is more than 0.05, you would conclude that your
observed frequencies are not significantly different than those expected by chance alone.
If the value is less than 0.05, you would conclude that the population’s observed geno-
types are not in Hardy-Weinberg equilibrium.

Our results looked something like Figure 6 (your results are probably slightly differ-
ent, and that’s fine).

Now that you have an idea of whether your population of 1,000 is in Hardy-Wein-
berg equilibrium, we will let your population mate and produce offspring that make
up the next generation. 

Enter the formula =IF(RAND()<0.5,RIGHT(B8,2), LEFT(B8,2)) in cell C8. Copy this
formula down to cell C1007.
Homozygotes can produce only one kind of gamete, while heterozygotes can pro-
duce both A1 and A2 gametes. We’ll assume that each individual produces a single
gamete, and that which of the two possible gametes are actually incorporated into the
zygote is randomly determined. The formula in cell C8 tells the spreadsheet to draw
a random number between 0 and 1 (the RAND() portion of the formula). If the ran-
dom number is less than 0.5, the program returns the RIGHT two characters in cell B8;
otherwise, it will return the LEFT two characters in cell B8. (You might want to explore
the RIGHT and LEFT functions in more detail.) This formula simulates the random
assortment of alleles into gametes that will ultimately fuse with another gamete to form
a zygote. 

Enter the formula =ROUND(RAND ()*1000,0) in cells D8 and F8. Copy the formula
down to cells D1007 and F1007, respectively.
This formula simulates random mating by choosing a random female and random male
from our population to mate. The formula tells the spreadsheet to draw a random num-
ber between 0 and 1, multiply this number by 1,000, then round it to 0 decimal places.
This action will “choose” which individuals will mate. Note that not all individuals in

5. In cell M17, enter an IF
formula to determine
whether the probabilities
you obtained in cell M15
is significant (i.e., signifi-
cantly different from what
would be expected by
chance alone).

6. Answer questions 1 and
2 at the end of exercise
before proceeding.

D. Simulate random
mating to produce the
genotypes of the next
(F1) generation.

1. In cells C8–C1007, enter
a formula to simulate the
random assortment of alle-
les into gametes.

2. In cells D8 and F8, enter
a formula to randomly
select a male and a female
from the population that
will mate and produce a
zygote.
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the population will actually mate, but that each individual has the same probability
of mating as every other individual in the population. 

In cell E8 enter the formula =VLOOKUP(D8,$A$8:$C$1007,3).Copy this formula down
to E1007.
In cell G8, enter the formula =VLOOKUP(F8,$A$8:$C$1007,3). Copy this formula down
to G1007.
The formula in cell E8 tells the spreadsheet to look up the value in D8, which is the ran-
dom mom, from the table A8 through A1007, and return the associated value listed in
the third column of the table. In other words, find mom from column A and relay the
gamete associated with that mom in column C. The formula in G8 does the same for
the random dad.
The VLOOKUP function searches for a value in the leftmost column of a table, and
then returns a value in the same row from a column you specify in the table. It has the
syntax VLOOKUP(lookup_value,table_array,col_index_num,range_lookup), where
lookup_value is the value to be found in the first column of the table, table_array is
the table of information in which the data are looked up, and col_index_num is the
column in the table that contains the value you want to return. Range_lookup is either
true or false. If Range_lookup is not specified, by default it is set to “false,” which indi-
cates that an exact match will be found. 

Enter the formula =E8&G8 in cell H8. Copy this formula down to cell H1007. 

Now you can determine if the offspring generation has genotypes predicted by Hardy-
Weinberg. Remember, the Hardy-Weinberg principle holds that whatever the initial
genotype frequencies for two alleles may be, after one generation of random mating,
the genotype frequencies will be p2:2pq:q2. Additionally, both the genotype frequencies
and the allele frequencies will remain constant in succeeding generations. The observed
genotypes are calculated by tallying the different genotypes in cells H8–H1007. The
expected genotypes are calculated based on the parental allele frequencies given in cells
G3 and G4. 

3. In columns E and G,
enter VLOOKUP formu-
lae to determine the
gamete contributed by
each parent randomly
selected in step 2.

4. In cell H8, enter a for-
mula to obtain the geno-
types of the zygotes by
pairing the egg and sperm
alleles contributed by each
parent.

E. Calculate Hardy-
Weinberg statistics for
the F1 generation.

1. Set up new column
headings as shown in
Figure 7.
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If you’ve forgotten how to calculate a formula, refer to the formulas you entered for
the parents as an aid. Double-check your results:

• K23 =COUNTIF($H$8:$H$1007,”A1A1”)
• L23 =COUNTIF($H$8:$H$1007,”A1A2”)+COUNTIF($H$8:$H$1007,”A2A1”)
• M23 =COUNTIF($H$8:$H$1007,”A2A2”)
• K24 =$G$3^2*1000
• L24 =2*$G$3*$G$4*1000
• M24 =$G$4^2*1000

You can also simply copy and paste the formulae from the parental population; the pro-
gram should automatically update your formulae to the new cells (but double-check,
just to be sure).

QUESTIONS

1. The Hardy-Weinberg model is often used as the “null model” for evolution.
That is, when populations are out of Hardy-Weinberg equilibrium, it suggests
that some kind of evolutionary process may be acting on the population. What
are the assumptions of Hardy-Weinberg?

2. Press F9, the Calculate key, to generate a new set of random numbers, which in
turn will generate new genotypes, new allele frequencies and new Hardy-
Weinberg test statistics. Press F9 a number of times and track whether the pop-
ulation remains in Hardy-Weinberg equilibrium. Why, on occasion, will the
population be out of HW equilibrium?

3. A basic tenet of the Hardy-Weinberg principle is that genotype frequencies of a
population can be predicted if you know the allele frequencies. This allows you
to answer such questions as Under what allelic conditions should heterozygotes dom-
inate the population? In cell C3, modify the frequency of the A1 allele (the A2
allele will automatically be calculated). Begin with a frequency of 0, then
increase its frequency by 0.1 until the frequency is 1. For each incremental value
entered, record the expected genotype frequencies of A1A1, A1A2, and A2A2
given in cells K11–M11. (You can simply copy and paste these values into a new
section of your spreadsheet, but make sure you use the Paste Values option to
paste the expected genotypes.). You spreadsheet might look something like this
(but the frequencies will extend a few more rows until the frequency of A1 is 1:

2. Enter formulae in cells
K23–M24 to calculate
observed and expected
genotypes of the new gen-
eration.

3. Enter formulae in cells
M26–M30 to determine if
the new generation is in
Hardy-Weinberg equilibri-
um. 

4. Graph your observed
and expected results. 
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Expected genotypes

Frequency of A1 A1A1 A1A2 A2A2

0 0 0 1000

0.1 9 180 817

0.2 36 320 658

0.3 86 420 498

0.4 173 480 341

0.5 262 500 239



Make a graph of the relationship between frequency of the A1 allele (on the x-
axis) and the expected numbers of genotypes. Use a line graph, and fully label
your axes and give the graph a title. Consider the shapes of each curve, and
write a one- or two-sentence description of the major points of the graph. 

4. The Hardy-Weinberg principle states that after one generation of random mat-
ing, the genotype frequencies should be p2:2pq:q2. That is, even if a parental
population is out of Hardy-Weinberg equilibrium, it should return to the equi-
librium status after just one generation of random mating. Prove this to yourself
by modifying the genotypes of the 1,000 individuals listed in column B. Let
individuals 0–499 have genotypes A1A1; individuals 500–999 have genotypes of
A2A2. (You’ll have to overwrite the formulas in those cells.) Estimate the gene
frequencies and determine if this parental population is in Hardy-Weinberg
equilibrium. Graph your results, and indicate the chi-square test statistic some-
where on your graph. After one generation of random mating, what are the
allele frequencies and genotype frequencies? Is this “new” population in
Hardy-Weinberg equilibrium? 
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MULTILOCUS HARDY-WEINBERG
AND LINKAGE DISEQUILIBRIUM30
Objectives

• Develop a spreadsheet model of allele and genotype fre-
quencies at two loci.

• Examine properties of independent assortment of alleles.
• Use the chi-square test to determine if an offspring popula-

tion is in Hardy-Weinberg equilibrium.
• Calculate D, the linkage disequilibrium coefficient.
• Graphically determine whether the population is in linkage

equilibrium.

Suggested Preliminary Exercise: Hardy-Weinberg Equilibrium

INTRODUCTION
Now that you have been introduced to the Hardy-Weinberg equilibrium princi-
ple, it’s time to explore the model in greater detail. Recall that this “null model” of
evolution specifies algebraically what will happen across generations to the fre-
quencies of alleles and genotypes. The bottom line is that in the absence of natu-
ral selection, genetic drift, mutation, and gene flow (and given a population of infi-
nite size where mating is random), allele and genotype frequencies will not change
over generations. That is, populations will not evolve. If the allele frequencies for
a given locus in a population are given by p and q, the genotype frequencies will
be p2, 2pq, and q2 if the population is in Hardy-Weinberg equilibrium.

In a previous exercise, you developed a single-locus model of the Hardy-Wein-
berg principle for locus A where p1 was the frequency of the A1 allele and q1 was
the frequency of the A2 allele. In reality, organisms may have hundreds of loci on
each of their chromosomes, and thus we need to start thinking about evolution
at multiple loci.

In this exercise, you will learn that when multiple loci are involved, there
are two kinds of equilibrium states: one is Hardy-Weinberg equilibrium, in which
allele frequencies remain constant from generation to generation, and the sec-
ond is linkage equilibrium. You will extend your single-locus model to examine
two loci, loci A and B, simultaneously and to discover whether they are in fact
in linkage equilibrium.

 



Hardy-Weinberg Equilibrium for Two Loci
Let’s assume that the two alleles at locus B have the frequencies p2 for the B1 allele
and q2 for the B2 allele. Furthermore, let’s assume that the locus B is located on a dif-
ferent chromosome than locus A. Since the A and B loci each have only two alleles pres-
ent in the population, the frequencies for each locus (p and q) must add to 1: 

p1 + q1 = 1 Equation 1 

and

p2 + q2 = 1 Equation 2

When two loci are considered, the genotype of an organism is characterized by its geno-
type at both loci, and 9 different genotypes are possible: 

A1A1B1B1 A1A1B1B2 A1A1B2B2

A1A2B1B1 A1A2B1B2 A1A2B2B2

A2A2B1B1 A2A2B1B2 A2A2B2B2

Now suppose our hypothetical population mates randomly to produce a new gen-
eration of offspring. Individuals produce gametes (sex cells) through the process of meio-
sis. The end result is an egg or sperm cell that contains a single allele for the A locus and
a single allele for the B locus. When an egg and sperm unite via sexual reproduction,
the offspring zygote will regain its full complement of alleles. Depending on their geno-
type, individuals can produce between 1 and 4 different kinds of gametes (called gamete
classes). The A1A1B1B1 individual can produce only 1 kind of gamete: A1B1. The A1A2B1B2
individual can produce 4 kinds of gametes: A1B1, A1B2, A2B1, and A2B2. In the space pro-
vided in Figure 1, write in the kinds of gametes that each genotype can produce.

The frequencies of each gamete class (A1B1, A1B2, A2B1, and A2B2) in a population
depend on the genotype frequencies in the adult population. Thus, the gamete fre-
quencies in the total population must be related in some way to the allele frequencies
in the population. Indeed, the frequency of a gamete class is the product of the fre-
quencies of the alleles that make up the gamete (Hartl 2000): 

Frequency of the A1B1 gamete = p1 × p2 Equation 3

Frequency of the A1B2 gamete = p1 × q2 Equation 4

Frequency of the A2B1 gamete = q1 × p2 Equation 5

Frequency of the A2B2 gamete = q1 × q2 Equation 6
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If we assume that p and q are known for each locus, Equations 3–6 allow us to predict the
genetic makeup of the offspring population. Let’s walk through an example. If our
parental population has initial frequencies of p1 = 0.5 and q1 = 0.5 for the first locus, and
p2 = 0.25 and q2 = 0.75 for the second locus, the frequencies of the gamete classes are:

Frequency of the A1B1 gamete = p1 × p2 = 0.5 × 0.25 = 0.125

Frequency of the A1B2 gamete = p1 × q2 = 0.5 × 0.75 = 0.375

Frequency of the A2B1 gamete = q1 × p2 = 0.5 × 0.25 = 0.125

Frequency of the A2B2 gamete = q1 × q2 = 0.5 × 0.75 = 0.375

Note that the sum of the gamete frequencies is 1, as it should be. Now that we know
what the gamete frequencies are, we can predict the genotype frequencies of the off-
spring population by multiplying the probability that two gamete types will join to
form a zygote. For example, an A1A1B1B1 genotype in the offspring population is the
result of combining an A1B1 egg with a A1B1 sperm. The frequency of this genotype
should be 0.125 × 0.125 = 0.015625 in the offspring population. 

Because the gamete frequencies are related to the allele frequencies in the parental
population, a second way of predicting the genotype frequencies of the offspring pop-
ulations is to multiply their independent allele probabilities together. For example, if we
want to estimate the proportion of A1A1B1B1 individuals in the next generation, we
would multiply the probability that the offspring would inherit two A1 alleles,

Probability = p1 × p1 = p1
2

by the probability of inheriting two B1 alleles, or 

Probability = p2 × p2 = p2
2

In our example, the proportion of A1A1B1B1 individuals is expected to be (0.5 × 0.5) ×
(0.25 × 0.25) = 0.015625, or about 1.5% of the population. This is the same answer
obtained by the gamete probability method. As a second example, if we want to esti-
mate the proportion of A1A2B2B2 individuals in the population or in the next genera-
tion, we would multiply the probability of being heterozygous at the A locus (2 × p1 ×
q1, or 2 × 0.5 × 0.5) by the probability of being homozygous B2B2 at the B locus (q2 × q2,
or 0.75 × 0.75). This generates a probability of (2 × 0.5 × 0.5) × (0.75 × 0.75), which is
0.28125, or about 28% of the population. It’s really that simple … or is it?

Linkage Disequilibrium
A key assumption in calculating Hardy-Weinberg frequencies for two or more loci is
that the loci are independent of each other. Essentially, this means that if you know
what genotype the organism has at the first locus, you can’t necessarily predict what
its genotype will be at the second locus beyond what Hardy-Weinberg predicts. Know-
ing that an individual is A1A1 at the first locus doesn’t tell us what the genotype at the
second locus will be. Given that p2 = 0.25 and q2 = 0.75, Hardy-Weinberg tells us it has
a 0.0625 chance of being B1B1 at the second locus, a 0.375 chance of being B1B2 at the
second locus, and 0.5625 chance of being B2B2 at the second locus. Note that these fre-
quency probabilities for this locus would be the same regardless of the genotype at the
first locus. When alleles at different loci associate independently (at random), they are
said to be in linkage equilibrium.

Sometimes, however, the two loci are not independent. For example, the A1 allele
may always associate with the B1 allele and the A2 allele with the B2 allele. When this
happens, the population is said to be in linkage disequilibrium. Linkage disequilib-
rium means, for example, that the different B genotypes are not distributed randomly
among the different A genotypes and that, generally speaking, if you know the geno-
type at the A locus, you have a good idea of what the genotype at the B locus will be.
Figure 2, for instance, shows that the B1B1 genotype occurs more commonly with the
A1A1 genotype, and the B2B2 genotype occurs more frequently with the A2A2 genotypes.
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Linkage disequilibrium can occur when the two loci are physically linked, meaning
that they must be located close to each other on the same chromosome. During meiosis,
the two alleles on the same chromosome may tend to segregate into the same gamete
because of this physical linkage (Be aware, however, that not all alleles on the same chro-
mosome are physically linked.)

Alleles can also be associated with each other because they are coadapted. Coadapta-
tion is a beneficial interaction between alleles at different loci. For instance, if the A1 and
B1 allele “work well” together to benefit an organism in its environment, they are said
to be coadapted. Ayala (1982) gives this analogy to illustrate coadaption of alleles at dif-
ferent loci:

A successful performance by a symphony orchestra requires not only that
each player know how to play his instrument (a gene must be able to
function), but also that he master his part in the piece being performed (a
gene type must interact well with the other genes). A violinist playing his
part for Beethoven’s Sixth Symphony while the rest of the orchestra was
playing Ravel’s Bolero would be cacophonic.

Linkage disequilibrium can be quantified as the difference between the probability that
A1B1 gametes unite with A2B2 gametes (these are called the coupling gametes) and the
probability that A1B2 and A2B1 gametes unite (the repulsion gametes). The linkage dis-
equilibrium coefficient is

D = GA1B1GA2B2 – GA1B2GA2B1 Equation 7

where GA1B1 is the frequency of the A1B1 gamete, GA2B2 is the frequency of the A2B2
gamete, etc. The value of D ranges from 0 to 0.25. When the two alleles associate ran-
domly, D will be 0. If the alleles are not randomly associated, D will increase. Assuming
that the A and B loci are situated on different chromosomes, and assuming that the pop-
ulation mates at random without natural selection, gene flow, or mutation, the “level”
of linkage disequilibrium breaks down with every passing generation. Unlike the sin-
gle-locus Hardy-Weinberg model, which demonstrated that populations that are out
of equilibrium go back into equilibrium after a single generation, several generations
may be required for a population that is in linkage disequilibrium to acquire low lev-
els of D.
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Figure 2 The bar graph shows linkage disequilibrium between the A and B alleles. If the
population were in linkage equilibrium, the three different B genotypes would be distrib-
uted more or less equally among the three genotypes of the A allele.



PROCEDURES

The spreadsheet model you are about to develop is intended to give you some insights
into how allele and genotype frequencies change over time when multiple loci are con-
sidered, and to help you determine whether or not a population is in linkage equilib-
rium. In this exercise, you will set up a population of 1000 individuals with a speci-
fied genotype frequency, let them mate at random, and then examine the genotype and
allele frequencies of the offspring population. You will also calculate D, the linkage dis-
equilibrium coefficient, and graphically determine whether populations are in linkage
equilibrium. The approach in assigning genotypes to individuals in the population will
be different than in the single-locus Hardy-Weinberg exercise, so that you can easily
see how linkage disequilibrium works.

As always, save your work frequently to disk. 

ANNOTATION

Cells B5–B13 give the genotype frequencies for the population. Enter the number 1 in cell
B9, and 0s in the remaining cells. This indicates that our population will consist solely
of A1A2B1B2 genotypes. Later in the exercise you will modify the values in these cells.
Remember that the sum of the genotype frequencies in the population must equal 1.

Enter the number 0 in cell C4.
Enter the formula =B5 in cell C5.
Enter the formula =SUM($B$5:B6) in cell C6 and copy this formula down to cell C13. 
Cell C5 gives the running tally of genotype frequencies when only the first genotype,
A1A1B1B1, has been considered. When you use the SUM function in cell C6 and copy
the formula down to cell C13, it keeps a running tally of the genotype frequencies in
your total population. Note that $B$5 is an absolute reference, whereas the other cells

INSTRUCTIONS

A. Set up the model pop-
ulation.

1. Open a new spreadsheet
and set up headings as
shown in Figure 3.

2. In cells B5–B13, enter
genotype frequency values
shown.

3. In cells C4–C13, enter
formulae to keep a run-
ning tally of the total
genotype frequencies.
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Individual Random # Genotype Gamete

Figure 3



are relative references. This “anchors” cell B5 in the SUM so that the tally is a running
tally. If cell C13 does not equal 1, it means that cells B5–B13 don’t add to 1. If so, make
the necessary adjustments. 

Your spreadsheet should now look like Figure 4. This tally will allow you to assign
genotypes to individuals in a later step, and will help you determine quickly if your
genotype frequencies add to 1.

Enter 1 in cell A17. 
Enter the formula =A17+1 in cell A18. Copy this formula down to cell A1016.
Your population now consists of 1000 individuals. 

Enter the formula =RAND() in cell B17 and copy this formula down to cell B1016.
When you press F9, the calculate key, the spreadsheet will generate new random num-
bers that will be used to assign a genotype to individuals in the population.

Enter the formula =LOOKUP(B17,$C$4:$C$13,$A$5:$A$13) in cell C17. Copy this for-
mula down to cell C1016.
Here we use the LOOKUP function to assign genotypes based on the random number
generated for each individuals, the frequencies you entered in cells B5–B13, and the tally
of genotype frequencies in cells C4–C13. The function looks up a value (B17) in a vec-
tor that you specify (cells $C$4:$C$13) and returns a genotype for the individual given
in the vector $A$5:$A$13. (Remember that a vector is a single row or column of val-
ues.) The LOOKUP function is handy because if it can’t find the exact lookup value (the
random number given in cell B17), it matches the largest value in lookup vector (cells
$C$4:$C$13) that is less than or equal to lookup_value. The result is that genotypes
are assigned to individuals in approximately the proportions that you specified.

Examine your first 10 genotypes. They should all be A1A2B1B2 if the LOOKUP func-
tion worked properly. To see how the function works, change cells B5 and B13 to 0.5,
and set cell B9 to 0. (Remember that the final tally of genotype frequencies must equal
1 in cell C13.) Now examine the genotypes of your first 10 individuals. The genotypes
should be either A1A1B1B1 or A2A2B2B2. When you feel you have a handle on how this
function works, return cells B5 and B13 to 0, and return cell B9 to 1.

4. Save your work prior to
assigning genotypes to
individuals in the next step.

5. In cells A17–A1016, set up
a linear series from 1 to
1000.

6. In cells B17–B1016, gen-
erate a random number
between 0 and 1.

7. In cells C17–C1016, enter
a formula to assign a geno-
type to each individual

8. Save your work.
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In cell F5 enter the formula =(COUNTIF(C17:C1016,”A1A1*”)*2+COUNTIF
(C17:C1016,”A1A2*”))/(2*A1016).
In cell F6 enter the formula =1-F5.
In cell H5 enter the formula 
=(COUNTIF(C17:C1016,”*B1B1”)*2+COUNTIF(C17:C1016,”*B1B2”))/(2*A1016).
In cell H6 enter the formula =1-H5.
Recall from your first Hardy-Weinberg exercise that the frequencies of the A1 and A2
alleles are 

Frequency (A1) = 2NA1A1 + NA1A2)/2N

Frequency (A2) = 2NA2A2 + NA1A2)/2N

There are 1000 individuals in the population, so the denominator will be 2000, which
means that there are 2000 total “gene copies” present in the population. To obtain the
frequency of the A1 allele, we need to know how many of those gene copies are A1.
Since this locus has only two alleles, the remainder of the gene copies will carry allele
A2, so its frequency can be obtained by subtraction.

The * in the COUNTIF formulae is a “wildcard” that represents one or more unspec-
ified characters. The F5 formula, for example, tells the spreadsheet to search for and
count the number of A1A1 individuals regardless of what the remaining text in the
cell is. Similarly, the H5 formula tells the spreadsheet to search for and count the
number of B1B1 individuals regardless of what their genotype was at the A locus. 

Enter the following formulae:
Cell E10 =F5*H5.
Cell F10 =F5*H6.
Cell G10 =F6*H5.
Cell H10 =F6*H6.

These formulae correspond to Equations 3–6. Gametes contain a single allele for the A
locus and a single allele for the B locus. There are four possible gamete combinations:
A1B1, A1B2, A2B1, and A2B2. The expected proportions of each combination are calcu-
lated by multiplying the appropriate allele frequencies together. For example, the
expected proportion of A1B1 gametes in the population is the product of the A1 allele
frequency times the B1 allele frequency.

Enter the formula =SUM(E10:H10) in cell I10.
The sum of the gamete probabilities will always be 1.

B. Calculate allele fre-
quencies, and determine
gamete probabilities. 

1. Set up new column
headings as shown in
Figure 5.

2. Enter formulae in cells
F5–F6 and H5–H6 to cal-
culate the allele frequen-
cies for the two loci. 

3. In cells E10–H10, enter
formulae to calculate the
expected gamete propor-
tions.

4. In cell I10, enter a for-
mula to sum the gamete
probabilities.
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In cell D15 enter the formula =MID(C17,1,2).
The MID function has the syntax MID(text,start_num,num_chars). The formula in cell
D15 tells the spreadsheet to examine the text in cell C17 and, starting with the first char-
acter, return 2 characters. If the formula were =MID(C17,3,2), the spreadsheet would exam-
ine the text in cell C17 and would return 2 characters starting with the third character.
In the next step, the MID function will allow us to generate a single gamete (selected
randomly from the possible gametes that can be produced by an individual) for each
individual in the population. If an individual is selected for mating, this gamete will
be incorporated into the offspring’s gene pool. The gamete will contain either the first
allele (A1) or the second allele (A2) for the A locus, and either the first allele (B1) or sec-
ond allele (B2) for the B locus.

In cell D17 enter the formula =IF(RAND()<0.5,MID(C17,1,2),MID(C17,3,2))&
IF(RAND()<0.5,MID(C17,5,2),MID(C17,7,2)). Copy this formula down to cell D1016.

The first part of this formula (to the left of the &) generates the A allele in the gamete,
and the second part (to the right of the &) generates the B allele. The first part draws
a random number between 0 and 1; if this random number is less than 0.5, the spread-
sheet returns the first and second values from cell C17; otherwise, it returns the third
and fourth values from C17. The second part of the formula draws a random number,
and returns the fifth and sixth values from C17 or returns the seventh and eighth val-
ues. Joining the two parts with the & symbol results in a gamete for the individual.

Enter the following formulae:
Cell E11 =COUNTIF($D$17:$D$1016,E9)/1000.
Cell F11 =COUNTIF($D$17:$D$1016,F9)/1000.
Cell G11 =COUNTIF($D$17:$D$1016,G9)/1000.
Cell H11 =COUNTIF($D$17:$D$1016,H9)/1000.

Note that when you press F9, the calculate key, new random numbers are generated.
This action generates new genotypes, and also generates a new gamete for each indi-
vidual in the population. 

In cells E17–E1016 and cells G17–G1016 you can enter either one of the follow formu-
lae:
=ROUNDUP(RAND()*1000,0)
=RANDBETWEEN(1,1000)
In cells F17–F1016 enter the formula =VLOOKUP(E17,$A$17:$D$1016,4).
In cells H17–H1016 enter the formula =VLOOKUP(G17,$A$17:$D$1016,4).
Refer to  Exercise 29, “Hardy-Weinberg Equilibrium,” if needed. Your spreadsheet
should look similar to Figure 7, although your numbers will be different.

5. In cell D15, enter a for-
mula using the MID func-
tion to generate a gamete
type for each individual.

6. In cell D17–D1016, enter
a combination of the
RAND() and MID func-
tions to generate a random
gamete for each individual.

7. In cells E11–H11, use the
COUNTIF formula to cal-
culate the observed
gamete frequencies. 

8. Save your work.

C. Simulate sexual repro-
duction.

1. Set up new column
headings as shown in
Figure 6.

2. Use the RAND() and
VLOOKUP functions to
select random parents and
lookup their gametes as
you did in the Hardy-
Weinberg equilibrium
exercise.
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In Figure 7, the first random Mom was individual 654, and the first random Dad was
individual 528. Since the population has a genotype frequency of A1A2B1B2 = 1, all indi-
viduals in the population have the genotype A1A2B1B2. This type of individual can pro-
duce four kinds of gametes: A1B1, A1B2, A2B1, and A2B2. Although four different kinds
of gametes can be produced, a single randomly chosen gamete from an individual will
fuse with a gamete from another individual, producing a zygote. Mom 654 has a gamete
A2B1, while Dad 528 has a sperm gamete A1B2. The zygote offspring from this union
will have the genotype A1A2B1B2. The next few steps will generate the genotypes of the
offspring. 

Enter the formula =LEFT(F17,2)&LEFT(H17,2) in cell I17. Copy this formula down to
cell I1016.
Offspring 1 in cell I17 will inherit one A allele from its mother and one A allele from
its father. The formula in cell I17 takes the left two characters from cell F17 and com-
bines them with the left two characters from cell H17. 

Enter the formula =RIGHT(F17,2)&RIGHT(H17,2) in cell K17. Copy this formula down
to cell K1016.

Enter the formula =IF(I17=“A2A1”,”A1A2”,I17) in cell J17 and copy it down to cell
J1012.
Enter the formula =IF(K17=“B2B1”,”B1B2”,K17) in cell L17 and copy it down to cell
L1012.
This step is necessary because an A1A2 heterozygote is the same thing as an A2A1 het-
erozygote, but the spreadsheet “interprets” them as being different.

Enter the formula =J17&L17 in cell M17. Copy your formula down to cell M1016.
The genotype of the offspring is the combination of genotypes at the A and B loci.

3. In cells I17–I1016 enter a
formula to determine the
offspring’s genotype at the
A locus.

4. In cells K17–K1016 enter
a formula in cell K17 to
determine the offspring’s
genotype at the B locus.

5. In cells J17–J1012 and
L17–L1012, enter a formu-
la to adjust the genotypes
so that all heterozygotes
are described as either
A1A2 or B1B2 (not A2A1 or
B2B1).

6. In cells M17–M1016
enter a formula to deter-
mine the genotype of each
offspring.

7. Save your work.

D. Determine if the pop-
ulation is in Hardy-
Weinberg equilibrium
and linkage equilibrium.
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Enter the following formulae:
• Cell K3 =COUNTIF($M$17:$M$1016,”A1A1B1B1”)/1000
• Cell K4 =COUNTIF($M$17:$M$1016,”A1A1B1B2”)/1000
• Cell K5 =COUNTIF($M$17:$M$1016,”A1A1B2B2”)/1000
• Cell L3 =COUNTIF($M$17:$M$1016,”A1A2B1B1”)/1000
• Cell L4 =COUNTIF($M$17:$M$1016,”A1A2B1B2”)/1000
• Cell L5 =COUNTIF($M$17:$M$1016,”A1A2B2B2”)/1000
• Cell M3 =COUNTIF($M$17:$M$1016,”A2A2B1B1”)/1000
• Cell M4 =COUNTIF($M$17:$M$1016,”A2A2B1B2”)/1000
• Cell M5 =COUNTIF($M$17:$M$1016,”A2A2B2B2”)/1000

Remember that you can calculate the expected genotype frequencies of the offspring
in either one of two ways:

• Multiply the expected gamete frequencies or
• Multiply the allele frequencies in the adult population

Both methods should both yield the same results.

If you calculate the expected frequencies based on expected gamete frequencies in the
adult population, remember to calculate the variety of ways in which gametes from
Mom and Dad can combine. For example, if the frequency of an offspring genotype
of A1A1B1B2 can be generated in two ways: Mom’s egg can be A1B1 and Dad’s sperm
can be A1B2, or Mom’s egg can be A1B2 and Dad’s sperm can be A1B1. Both possibili-
ties need to be accounted for to generate correct offspring genotype frequencies. Enter
the following formulae:

• Cell K8 =E10*E10
• Cell K9 =E10*F10+F10*E10
• Cell K10 =F10*F10
• Cell L8 =E10*G10+G10*E10
• Cell L9 =E10*H10+H10*E10+F10*G10+G10*F10
• Cell L10 =F10*H10+H10*F10
• Cell M8 =G10*G10
• Cell M9 =G10*H10+H10*G10
• Cell M10 =H10*H10

1. Set up new column
headings as shown in
Figure 8.

2. Enter formulae in cells
K3–M5 to calculate the
observed genotype fre-
quencies in the offspring
population.

Double-check your results.
Your frequencies should
add to 1.

3. Enter formulae in cells
K8–M10 to calculate the
expected genotype fre-
quencies in the offspring
population.

Double-check your results.
Your frequencies should
add to 1. 
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If you calculate the expected frequencies based on allele frequencies in the parental
population, enter the following formulae: 

• Cell K8 =F5*F5*H5*H5
• Cell K9 =F5*F5*2*H5*H6
• Cell K10 =F5*F5*H6*H6
• Cell L8 =2*F5*F6*H5*H5
• Cell L9 =2*F5*F6*2*H5*H6
• Cell L10 =2*F5*F6*H6*H6
• Cell M8 =F6*F6*H5*H5
• Cell M9 =F6*F6*2*H5*H6
• Cell M10 =F6*F6*H6*H6

Enter the formula =CHITEST(K3:M5,K8:M10) in cell M11.
Refer to Exercise 29, on “Hardy-Weinberg Equilibrium,” for the information on this test
and its interpretation.

Enter the formula =IF(M11>0.05,”yes”,“no”) in cell M12.

In cell M13 enter the formula =E11*H11-F11*G11.
Equation 7 gave the formula for the disequilibrium coefficient D as

D = GA1B1GA2B2 – GA1B2GA2B1

where G represents the frequency of the different kinds of gametes observed in the pop-
ulation. Remember that D ranges between 0 and 0.25. When the population is in link-
age equilibrium, D = 0. Your result for this exercise should be very close to 0, indicat-
ing that your population is in linkage equilibrium. 

Select cells J2–M5. Use the bar graph option and label your axes fully. Your graph should
resemble Figure 9, although your frequencies will likely be a bit different than the ones
shown. 

4. Save your work.

5. In cell M11, conduct a
chi-square test on
observed and expected
frequencies.

6. In cell M12, enter a for-
mula to answer “yes” or
“no” to the question “Is
the population in Hardy-
Weinberg equilibrium?”

7. In cell M13, enter a for-
mula to calculate D, the
linkage disequilibrium
coefficient.

E. Create graphs. 

1. Create a column graph
of the genotypes observed
in the offspring popula-
tion. Label your axes fully. 
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Select cells J2–M5 again. Create a new bar graph and choose the 100% stacked col-
umn option. Your graph should resemble Figure 10. This graph breaks down the per-
centage of each B genotype within each A genotype. Since the percentages are relatively
equal, this population is in linkage equilibrium.

QUESTIONS

1. Interpret the graph you generated in the very last step. In particular, comment
on whether the frequencies of B1B1, B1B2, and B2B2 are proportionately the same
for A1A1, A1A2, and A2A2 individuals. Is your population in linkage equilibri-
um? Why or why not?

2. Alter allele frequencies as shown below. Update your graphs and calculate D.
Comment on whether the frequencies of B1B1, B1B2, and B2B2 are the same for
all of the A1A1, A1A2, and A2A2 individuals. 

3. Assume that alleles A1and B1 interact well with each other and thus are coad-
apted, and that the A2 and B2 alleles are also coadapted. Assume also that other
combinations of alleles (A1A2B1B1, etc.) yield a poorly adapted phenotype. In

2. Graphically determine
whether the various B
genotypes are distributed
more or less equally
among the various A
genotypes.

3. Save your work.
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A1A1B1B1 0.1
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A2A2B2B2 0.1



this case, A1A1B1B1 and A2A2B2B2 individuals will dominate the population.
Alter allele frequencies so that A1A1B1B1 = 0.5, and A2A2B2B2 = 0.5. Modify val-
ues in cells B5 and B13, and set the remaining genotype frequencies to 0. Is the
parental population in Hardy-Weinberg equilibrium? Is the offspring popula-
tion in Hardy-Weinberg equilibrium? What is D? Graph your results and inter-
pret D.

4. If your offspring population from question 3 were to reproduce, how would D
change over time? How does the frequency of the A1 allele (p1) and the frequen-
cy of the B1 (p2) allele change over time? Simulate the reproduction of individu-
als over three generations. Set up column headings as shown in the figure
below. Start with the genotype frequencies shown for generation 1. Enter 0.5 in
cells B5 and B13. Set the remaining genotypes to 0. Calculate D, p1, and p2.
Record this information in cells V15–V17. Examine the genotypes of the off-
spring. Enter those genotype frequencies in cells W5–W13 (as shown in the fig-
ure below; your numbers will be slightly different). Enter them again in cells
B5–B13. Calculate D, p1, and p2 for the second generation. Record your results in
cells W15–W17. Repeat the process for generation 3. For each generation, exam-
ine the 100% column graph (as in Figure 9). Graphically show how D, p1, and p2
change over generations. 
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Objectives

• Estimate allele frequencies from a sample of individuals
using the maximum likelihood formulation.

• Determine polymorphism for a population, P.
• Determine heterozygosity for a population, H.
• Evaluate how sample size affects estimates of allele 

frequency, polymorphism, and heterozygosity.

Suggested Preliminary Exercise: Hardy-Weinberg Equilibrium

MEASURES OF GENETIC DIVERSITY31

INTRODUCTION
The amount of genetic variation on earth is astounding. Think of the genetic pro-
gramming that creates first a larva, then a caterpillar, then a cocoon, and finally
an adult butterfly. Or think of the programming that created a single Sequoia tree,
and then the different kinds of programming that created an entire forest of
Sequoias. Or marvel at the programming required to create you inside your
mother’s womb. Who would have thought that a mere four molecules—adenine,
thymine, cytosine, and guanine, the bases of the genetic code—could be arranged
in such a multitude of ways to produce the astonishing variation found among
the organisms, living and extinct, that have called the earth home.

The total genetic variation existing on earth today can be “partitioned” or “organ-
ized” into four different levels: variation among species; variation among popula-
tions of a species; variation among individuals within a population; and variation
within a single individual (Hunter 1996). The genetic differences among species such
as Sequoias, butterflies, and humans clearly accounts for a large chunk of the total
genetic diversity. But populations and individuals of the same species differ in their
genetic makeup too. For example, a population of garter snakes living near Lake
Ontario may have a very different genetic make-up than a population of the same
species of snake living in the Ozark Mountains. Even within a single population, indi-
viduals can be quite variable, although they can also be genetically very similar to
one another. And within an individual—you, for instance—some portion of the total
genome is heterozygous (two different alleles of a gene are present at a locus), and
some portion of the genome is homozygous (the two alleles at a locus are both the
same). The diversity within any individual can be great or small, depending on
how many gene loci are heterozygous. It is important to realize that diversity is meas-
ured as a continuum from little or no diversity to very high levels of diversity. 

 



How is genetic diversity measured in populations? Typically, a sample of individu-
als is obtained from the population and the genotype of each individual is determined
using one of several methods (e.g., protein electrophoresis or DNA sequencing). From
there, allele frequencies can be estimated, and two other measures of genetic diversity—
polymorphism and heterozygosity—can be measured (Hartl 2000).

Let’s illustrate these measures with an example. Suppose you sample five individu-
als of mice from a nearby farm field. For two loci, you obtain the genotypes shown in
the table.

Based on your sample, there are two “alleles” present at the A locus (A1 and A2) and
three alleles present at the B locus (B1, B2, B3). For the A locus, the frequency of the A1
allele is 0.6 because 6 of the 10 total alleles (5 individuals, each with two alleles) at this
locus are A1. Likewise, the frequency of the A2 allele is 0.4. For the B locus, the frequency
of the B1 allele is 0.8, the frequency of the B2 allele is 0.1, and the frequency of the B3
allele is 0.1. Note that the sum of the frequencies for any locus must equal 1. By sam-
pling five individuals from the population and deriving allele frequency estimates, you
are hoping that the five individuals sampled reflect the greater population of mice that
live in the field but were not sampled. But does the greater population of field mice
really have these frequencies? If we sampled five additional mice, our allele frequency
estimates might change. And they might continue to change until every single mouse
in the field population is sampled; at that point we could calculate (as opposed to
estimate) the true allele frequency of the mouse population.

Estimating Polymorphism and Heterozygosity
Sampling, by nature, involves some error. But we can estimate what the most likely allele
frequencies are in the greater population, given the size of our sample. The procedure
to estimate the frequencies is called maximum likelihood formulation. And we can
make a statement about how accurate our estimates are by calculating the variance of
the estimates themselves. 

If we assume that the genetic system of the A and B alleles is one of co-dominance,
the maximum likelihood estimate of p (the frequency of the A1 allele) is

Equation 1

and the variance in p̂ is

Equation 2

Equation 1 should look familiar to you. Using these formulae, the maximum likelihood
estimate of the A1 allele is 0.6, and the variance is .024. The frequency of the A2 allele,
q, can be similarly calculated. 

Once we have estimated the allele frequencies in the population, we can estimate
another useful measure of genetic diversity, polymorphism, P. The word “polymor-
phism” literally means “many forms.” It follows that P measures whether a locus con-
tains many different forms of a gene (i.e., alleles), or whether a locus contains few forms
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Individual Locus A Genotype Locus B Genotype

1 A1A1 B1B1

2 A1A2 B1B2

3 A1A2 B1B3

4 A1A1 B1B1

5 A2A2 B1B1



or even just one allele. In our example above, the A locus has two alleles (A1 and A2),
while the B locus has three (B1, B2, and B3). Both loci are polymorphic. Since 2 loci out
of 2 loci sampled (A locus and B locus) each have different kinds alleles, P = 2/2 = 1. On
the other hand, if all five individuals were B1B1 genotypes at locus B, the B locus would
be monomorphic (literally, “one form”), and so 1 of 2 loci examined would be poly-
morphic, and P would equal 0.5. Thus, P can be defined as

P = Number polymorphic loci/Total number loci evaluated          Equation 3

In a large population, almost all loci will have more than one allele (Hartl 2000), so
if we consider a polymorphism to be any locus that has more than one allele, the value
of P will never be very far from 1. To make P more meaningful, a locus is usually con-
sidered to be polymorphic only if the frequency of the most common allele is less than some
arbitrary threshold, usually 0.95 (Ayala 1982). Sample size is therefore a key issue in esti-
mating P. Suppose, for example, that we are examining the C locus in a population
and the first four individuals all have the genotype C1C1, but the fifth has the genotype
C1C2. Of the ten alleles we have sampled so far, all but one are C1, so our estimate of
the frequency of C1 is 9/10, or 0.9. On the basis of this very small sample we would con-
clude that the C locus is polymorphic. If we continue to sample and find that the next
45 individuals are all C1C1, however, we need to reconsider—now we’ve sampled 100
alleles (from 50 individuals in all), and 99 of them are C1, so our new estimate of the
frequency of C1 is 0.99. It’s beginning to look as if the C2 allele is less common than our
initial sample of five individuals suggested, and the C locus may actually not be poly-
morphic (if we use a frequency of 0.95 as the cutoff in our definition). A larger sample
size yet would give us greater confidence in our results.

Another useful measure of genetic diversity is heterozygosity, H, which measures
the percentage of genes at which the average individual is heterozygous. In our exam-
ple, individual 1 is homozygous at both the A and B locus, so its heterozygosity is 0
out of 2 loci = 0. Individual 2 is heterozygous at both the A and B locus, so its het-
erozygosity is 2 out of 2 loci examined = 1. The average individual heterozygosity for
these two individuals is then the average of individual 1 and individual 2, so H = 0.5.
In mathematical terms, average heterozygosity is calculated as 

Equation 4

and the variance in Ĥ is

Equation 5

where N is the sample size and m is the number of loci examined. You’ll see clearly how
these formulae function as you work through the exercise.

PROCEDURES

In this exercise, you’ll learn how to estimate allele frequencies using the maximum like-
lihood formulation, and you will learn how to calculate P, H and Ĥ. We’ll examine only
four loci (A, B, C, and D) and we will assume that each locus has only two alleles
present in the population. We’ll also assume that you are sampling individuals one at
a time from a very large population and can identify the genotypes of each individual
at the different loci. You’ll examine how your estimates of allele frequencies, P, and Ĥ
change as new individuals are sampled and sample size increases. As always, save your
work frequently to disk.
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ANNOTATION

Enter 0.5 in cells B10–E10.
Enter =1-B10 in cell B12, and copy this formula across to cell E12.
The values in cells B10–E10 and B12–E12 represent the true allele frequencies of a
very large (infinite) population from which we’ll sample individuals and estimate allele
frequencies, P, and H. To begin, we’ll let the true frequencies of each allele for each locus
be 0.5. Remember, the sum of the allele frequencies for a given locus must equal 1.
The values in cells B10–E10 can be modified directly as you go through the exercise
(cells B12–E12 will automatically be updated). 

Enter 1 in cell A16. 
In cell A17, enter the formula =1+A16.
Copy the formula down to cell A115. 
We will sample 100 individuals from this large population and determine the geno-
types of each individual. We will then assume that individuals are sampled in order
(from 1 to 100), and will then estimate the allele frequencies, polymorphism, and het-
erozygosity as new individuals are included in the total sample. 

In cell B16, enter the formula =IF(RAND()<$B$10,$B$9,$B$11)&IF(RAND()<
$B$10,$B$9,$B$11).
This formula will assign genotypes based on the allele frequencies that we designated
in cells B10 and B12. The IF formula in cell B16 is used to determine the genotype of
individual 1. The first part of the formula in cell B16 tells the spreadsheet to choose a
random number between 0 and 1 (the RAND() portion of the formula), and if that ran-
dom number is less than the value designated in cell B10, then return the value in cell
B9 (A1); otherwise, return the value in cell B11 (A2). All individuals have two alleles for

INSTRUCTIONS

A. Set up the hypotheti-
cal population.

1. Open a new spreadsheet
and set up headings as
shown in Figure 1.

2. In rows 10 and 12,
assign true allele fre-
quences to a very large
hypothetical population.
We will try to estimate
these frequencies by sam-
pling individuals from the
population.

3. Set up spreadsheet
headings as shown in
Figure 2.

4. Set up a linear series
from 1 to 100 in cells
A16–A115.

5. Assign genotypes at the
A locus to each individual
in the population, based
on the allele frequencies
designated in Step 2.
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a given locus, so you need to repeat the formula again, and then join the two alleles
obtained from the two IF formulas by using the & symbol.

Once you’ve obtained genotypes for individual 1, copy this formula down to cell
B115 to obtain genotypes for all 100 individuals in the population. Note that when you
press F9, the calculate key, the spreadsheet generates a new random number, and hence
a new genotype.

Enter the formulae:
• C16 =IF(RAND()<$C$10,$C$9,$C$11)&IF(RAND()<$C$10,$C$9,$C$11)
• D16 =IF(RAND()<$D$10,$D$9,$D$11)&IF(RAND()<$D$10,$D$9,$D$11)
• E16 =IF(RAND()<$E$10,$E$9,$E$11)&IF(RAND()<$E$10,$E$9,$E$11)

When you copy the formula down, note that the genotypes are assigned based on the ran-
dom numbers and the allele frequencies in row 10, and the allele designations in rows 9
and 11. These formulae require absolute cell references (with row and columns preceded
by $ signs) so that when the formulae are copied down to individual 100, the spread-
sheet will go back to the appropriate, fixed, cells in assigning genotypes to individuals.

We’ll let p̂ estimate the frequency of the A1 allele, r̂ be the estimate of the B1 allele fre-
quency, t̂ be the estimate of the C1 allele frequency, and v̂ be the estimate of the D1 allele
frequency. Enter the formula =(COUNTIF($B$16:B16,$B$4)+COUNTIF($B$16:B16,$B$5)
*0.5+COUNTIF($B$16:B16,$B$6)*0.5)/$A16 in cell F16. This represents Equation 1, the
formula for estimating the frequency of an allele in a population:

The first step is to tally the number of A1A1 homozygotes and the number of A1A2
heterozygotes. The tally of heterozygotes is then multiplied by 0.5. The sum is divided
by the number of individuals sampled, N. The formula in cell F16 does this with the
COUNTIF function. The formula in cell F16 counts the number of A1A1 homozygotes
(cell $B$4) in the range of cells $B$16–B16, then counts the number of A1A2 heterozy-
gotes in the same range and multiplies this number by 0.5, then counts the number of
A2A1 heterozygotes and multiplies this number by 0.5. (Remember that a heterozygote
can be either A1A2 or A1A2 in your spreadsheet.) The sum of these numbers is brack-
eted by parentheses so that the total is divided by N, the sample size. In this case, the
sample size is 1, given in cell A16. Note the use of absolute and relative references. This
will allow you to copy your formula down to cell F115 while updating N and the range
of cells to be counted.

In cell G16, enter the formula =(COUNTIF($C$16:C16,$C$4)+COUNTIF($C$16:C16,$C$5)*
0.5+COUNTIF($C$16:C16,$C$6)*0.5)/$A16.
In cell H16, enter the formula =(COUNTIF($D$16:D16,$D$4)+COUNTIF($D$16:D16,$D$5)*
0.5+ COUNTIF($D$16:D16,$D$6)*0.5)/$A16.

ˆ
.

p
N N

N
A A A A=

× +0 5
1 2 1 1

6. Enter formulae in cells
C16–E16 to generate geno-
types for individual 1 at
the B, C, and D loci. 

7. Copy cells B16–E16
down to row 115.

8. Save your work.

B. Calculate likelihood
estimators.

1. Set up spreadsheet
headings as shown in
Figure 3.

2. In cell F16, enter a for-
mula to estimate the fre-
quency of the A1 allele of
our population (this will
be a maximum likelihood
formula based on
Equation 1).

3. Enter formulae in cells
G16–I16 to compute the
estimated allele frequencies
of the B1, C1, and D1 alleles. 
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In cell I16, enter the formula=(COUNTIF($E$16:E16,$E$4)+COUNTIF($E$16:E16,$E$5)*
0.5+ COUNTIF($E$16:E16,$E$6)*0.5)/$A16.

Use the line graph option and label your axes fully. Your graph should resemble 
Figure 4.

How closely do your samples reflect the allele frequencies given in rows 10 and 12? Exam-
ine your graph carefully and write a one or two sentence summary of the major results.

Now we are ready to estimate polymorphism. To begin, our criterion will be 0.95, so
enter 0.95 in cell G6.

Remember, a gene locus is polymorphic if the frequency of the most common allele is less
than the criterion. Another way of saying this is that a locus is considered monomor-

4. Select cells F16–I16 and
copy their formulae down
to row 115. 

5. Graph the estimated
allele frequencies as a
function of sample size.
Set the y-axis scale to
range between 0 and 1.

6. Press F9 to generate
new random numbers,
and hence new genotypes.

7. Save your work.

C. Estimate polymor-
phism, P.

1. Enter new spreadsheet
headings as shown in
Figure 5.

2. In cell G6, enter the cri-
terion parameter for poly-
morphism.

3. Enter =1-G6 in cell H6. 
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phic if any of the alleles at that locus has a frequency >0.95. Thus, if either the A1 or A2
allele has a frequency of greater than 0.95, the locus is monomorphic. Concentrating
on just the A1 allele, the A locus is polymorphic if the A1 allele has a frequency of
<0.95 (which means that the A1 allele frequency is <.95) or >0.05 (which means that the
A2 allele frequency is <.95). Otherwise, it is monomorphic. 

In cell J16, enter the formula =IF(OR(F16>$G$6,(F16<$H$6)),0,1).
We have already calculated the estimated allele frequencies for our population. We’ll
examine these estimates to determine whether or not the locus is polymorphic. The for-
mula in cell J16 evaluates individual 1. Based on this single sample, if the value in cell
F16 is either greater than the criterion in cell G6 or less than the criterion in cell H6,
we will consider the locus to be monomorphic (0). Otherwise, it is considered to be
polymorphic (1). The OR part of this formula—OR(F16>$G$6,(F16<$H$6)—allows us
to evaluate both conditions; if either one is true the spreadsheet will return the num-
ber 0. If both criteria are false, the spreadsheet will return the number 1. 

Select cell J16, and copy its formula across to cell M16, or enter the following:
In cell K16, enter the formula =IF(OR(G16>$G$6,(G16<$H$6)),0,1).
In cell L16, enter the formula =IF(OR(H16>$G$6,(H16<$H$6)),0,1).
In cell M16, enter the formula  =IF(OR(I16>$G$6,(I16<$H$6)),0,1).

Enter the formula =AVERAGE(J16:M16).

Keep in mind that although the average polymorphism appears to be calculated for
each individual, column A really gives the sample size from the population. The allele
frequency estimates are based on all of the samples up to and including the individ-
ual sampled, so the P estimates are really estimates that change as individuals are added
to the sample. Also keep in mind that since only four loci have been evaluated, P can
take on only five values: 0, 0.25, 0.5, 0.75, and 1, where 0/4, 1/4, 2/4, 3/4, or 4/4 loci
are polymorphic. 

Use the line graph option and label your axes fully. Your graph should resemble 
Figure 5.

4. Determine whether the
locus is polymorphic (1) or
monomorphic (0). 

5. Enter formulae in cells
K16–M16 to determine the
polymorphism at the B, C,
and D loci. 

6. In cell N16, compute the
average P for individual 1. 

7. Select cells J16–N16, and
copy their formulae down
to row 115. 

8. Graph P as a function of
sample size. Set the y-axis
scale to range between 0
and 1. 
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Since all loci have allele frequencies around 0.5 (for large enough sample sizes), P should
equal 1, indicating that all four loci are polymorphic.

Remember that heterozygosity has two components: within individuals (H) and
among (or across) individuals (Ĥ). Columns O through R tackle the within individ-
ual component. Column S uses that information to calculate the among-individuals
component. 

In cell O16, enter the formula =IF(OR(B16=$B$5,B16=$B$6),1,0).
Within an individual, heterozygosity is the proportion of loci that are heterozygous.
The O16 formula examines the A locus for individual 1 and returns a 1 if the individ-
ual is heterozygous at that locus, and a 0 if it is homozygous at that loci. An OR for-
mula is used because either A1A2 or A2A1 heterozygotes should be counted. Copy this
formula down to row 115 to determine the heterozygosity of the A locus for each
individual in the sample.

In cell P16, enter the formula =IF(OR(C16=$C$5,C16=$C$6),1,0)
In cell Q16, enter the formula =IF(OR(D16=$D$5,D16=$D$6),1,0)
In cell R16, enter the formula =IF(OR(E16=$E$5,E16=$E$6),1,0)

Now we are ready to calculate Ĥ, which is calculated with Equation 4:

In cell S16, enter the formula =1/(4*A16)*SUM($O$16:R16). The formula 
=AVERAGE($0$16:R16) gives the same result.
In row 16, we are considering Ĥ when the sample size consists of a single individual.
Our sample size, N, is 1 in this row, designated by cell A16. The number of loci evalu-
ated, m, is 4. So the first part of the formula is easy to take care of. For the second part
of the equation (the summation signs, Σ), we simply need to sum the 0’s and 1’s for
individual 1, then multiply this sum by 1/Nm, or 1/4.  As you copy this formula down
to row 115, Ĥ will be automatically updated as a running estimate as sample size
changes.

Use the line graph option and label your axes fully. Your graph should resemble 
Figure 7.
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9. Press F9 several times
and examine how P
changes as the sampled
individuals change in
genotypes. 

10. Save your work.

D. Estimate heterozy-
gosity, H.

1. Enter new spreadsheet
headings as shown in
Figure 6.

2. Determine the heterozy-
gosity of locus A for each
individual.

3. Enter formulae in cells
P16–R16 to compute het-
erozygosity for each indi-
vidual in the sample at the
B, C, and D loci.

4. Determine Ĥ, the aver-
age heterozygosity across
all individuals.

5. Select cells O16–S16,
and copy their formulae
down to row 115.

6. Graph Ĥ as a function
of sample size.
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By now you should have noticed that when you press F9, the calculate key, all of your
results, including your graphs, change. This is because the genotypes of individuals
change when a new random number is generated. Although you can get a “feel” for
how estimates change as sample size increases by pressing F9 a number of times and
examining the graphs, quantitative approaches are usually used. How can you therefore
assess how sample size affects your estimates of P, Ĥ, and p̂, when your results keep
changing? In order to determine how sample size affects these estimates, we need to
press F9 many times (say 100), and compute the average estimate. This is called a Monte
Carlo simulation. We will do this in the next step for P; you may wish to evaluate other
metrics as well. 

See Exercise 2, “Spreadsheet Functions and Macros,” for information on how to record
a macro. When you are in the Record Macro mode, assign a name (e.g., Trials) and a
shortcut key (e.g., <Control>+t) to your macro. Then record the following steps:

• Press F9, the Calculate key, to generate new genotypes for the population.
• Highlight cell N20 (the P estimate for a sample size of 5). 
• Press down the <Control> key, and P estimates for sample sizes 10 (N25), 15

(N30), up to N(115).

7. Press F9 and evaluate
how changes in sampling
affect your estimates.

8. Save your work.

E. Generate 100 esti-
mates of P as a function
of sample size. 

1. Set up new spreadsheet
headings as shown, in
Figure 8, but extend the
trials down to 100 (cell
U115), and extend the
sample size out to 100 (in
increments of 5, cell
AO15). 

2. Write a macro to record
estimates of P for different
sample sizes, tracking
your results for 100 trials.
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• Open Edit | Copy.
• Select cell V15.
• Open Edit | Find. A dialog box will appear. Leave the Find What box blank,

search by columns and values. Select Find Next, and then Close.
• Open Edit | Paste Special, and select the Paste Values and Transpose options.

Click OK. Your results should be pasted into row 16.
• Open Tools | Macro | Stop Recording.

Now when you press your shortcut key 100 times, your estimates of P under different
sample sizes will automatically be recorded. 

Enter the formula =AVERAGE(V16:V115) in cell V116. Copy this formula over to cell
AO116.

Use the line graph option and under the Series tab, select cells V15–AO15 as Category
(x) axis labels. Your graph should look like Figure 9. Perhaps this figure is a bit boring,
but it suggests that when the frequencies at all four loci are 0.5 for each allele (set in
cells B10–E10), the estimate of P is insensitive to sample size. You will see that this is
not the case when there are rare alleles at a locus. 

You can edit your macro to examine other metrics (p̂ , H) by making some slight mod-
ifications. (You can also just record a brand new macro if the idea of editing the code
of a current macro does not appeal to you).

Open Tools | Macro, then select the macro Trials and Edit. You should now see the Visual
Basic for Applications code that the spreadsheet “wrote” when you went through your
keystrokes. Read through the code. It should make some sense to you, since it is sim-
ply a record of which cells you selected, copied, and pasted. We added two sentences
to our code: For counter = 1 to 100 was added after the fourth line (a keyboard
shortcut) and the word Next was typed into the second to the last line of the code
(before the last line, ENDSUB) so that when the macro is run, all 100 trials are completed.
In this macro, estimates of polymorphism (P) are given in column N. If you manually
replace the letter N with the letter F in all of the appropriate places, your macro can
be used to evaluate how p̂ or other estimates change as a function of sample size. 

3. Compute the average P
in row 116. 

4. Graph your results, the
average P as a function of
sample size.

5. Examine the visual basic
for application code to
learn how to modify your
macro for other metrics.
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QUESTIONS

1. Examine your estimates of P as a function of sample size (last step). How do the
allele frequencies affect your result? Set cell B5 to 0.05 (cell B6 should be updat-
ed to 0.95). Erase your macro results (cells V16–AO115), and then run your
macro again. Your graphs should automatically be updated. Interpret your
results.

2. Change polymorphism criteria from 0.95 to some other value, such as 0.9. How
does the criteria affect the polymorphism estimate? 

3. Which measure is a better indicator of genetic diversity for your population, P
or H? Why is it useful to have multiple measures of diversity?

4. Add a fifth and sixth allele to your spreadsheet model. How does increasing the
number of alleles affect polymorphism and heterozygosity estimates? If you
were given additional funds to evaluate additional loci, would these dollars be
well spent? Use graphs to illustrate your answer.

*5. (Advanced) Our model is based on a co-dominant allele system, but several
other kinds of genetic systems are possible. Modify your model to estimate
allele frequencies in a system where one allele is dominant over the other.
Compare your results in terms of maximum likelihood estimators, polymor-
phism, and heterozygosity.
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NATURAL SELECTION AND FITNESS32
Objectives

• Mathematically define absolute fitness, relative fitness, and
the selection coefficient.

• Predict the course of evolution by natural selection from any
given initial allele condition, using the formula

• Predict the change in population size over time, using the
formula

Nt+1 = (W11p
2
t + W122ptqt + W22q

2
t) × Nt

• Develop a spreadsheet model of a population of 100 indi-
viduals that undergo natural selection and track genotypes
through time.

Suggested Preliminary Exercises: Geometric and Exponential
Population Models; Hardy-Weinberg Equilibrium
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INTRODUCTION
Evolutionary biologists are interested in how genotypes and allele frequencies
will change over time. Natural selection takes place in a population when dif-
ferent genotypes have different probabilities of survival or different abilities to
reproduce (Roughgarden 1998). That is, genotypes themselves have growth rates,
where “fit” genotypes increase in the population relative to “less fit” or “unfit”
genotypes. Stated more succinctly, dN/dt varies among genotypes when natural
selection is acting on a population (Wilson and Bossert 1971). Because natural
selection affects the growth rates of genotypes, it can profoundly affect how allele
frequencies change from one generation to the next. One of the assumptions of
the Hardy-Weinberg principle is that natural selection does not act on the popu-
lation. In this exercise, you’ll explore how violating this assumption affects the
evolution of a population.

Let’s start with a quick review of the Hardy-Weinberg principle. You might recall
that if there are only two alleles at a given locus, A1 and A2, the frequencies of the
alleles are symbolized by p and q, where p is the frequency of the first allele (A1)



and q is the frequency of the second allele (A2). Recall further that, for genes with only
two alleles,

p + q = 1 Equation 1

Assume that the A locus has allele frequencies of p = 0.6 and q = 0.4. Given these fre-
quencies, the Hardy-Weinberg principle allows us to predict the genotype frequen-
cies of a population, assuming that the population is large, that mating occurs at ran-
dom, and that there is no gene flow, natural selection, or mutation acting on the
population. The predicted genotypes of a population in Hardy-Weinberg equilibrium
are p2:2pq:q2, where p2 is the frequency of the A1A1 genotype, 2pq is the frequency of the
heterozygous genotype (A1A2 and A2A1), and q2 is the frequency of the A2A2 genotype.
The sum of the genotype frequencies will be 1. In this example, a population in Hardy-
Weinberg equilibrium will have roughly the following genotype frequencies:

• frequency (A1A1) = p2 = p × p = 0.6 × 0.6 = 0.36, or 36% of the population will be
A1A1.

• frequency (A1A2) = 2 × p × q = 2 × 0.6 × 0.4 = 0.48, or 48% of the population will
be A1A2.

• frequency (A2A2) = q2 = 0.4 × 0.4 = 0.16, or 16% of the population will be A2A2.

Note that the genotype frequencies add to 1:

p2 + 2pq + q2 = 1 Equation 2

The numbers of individuals of each genotype that are expected in the population can be
calculated by multiplying the genotype frequencies by the population size, N.

Number of A1A1 individuals = p2 × N

Number of  A1A2 individuals = 2pq × N Equation 3

Number of A2A2 individuals = q2 × N

If our population consists of 400 individuals, for example, 0.36 × 400 = 144 individu-
als are expected to be A1A1, 0.48 × 400 = 192 individuals are expected to be A1A2, and
0.16 × 400 = 64 individuals are expected to be A2A2.

Natural Selection
When natural selection is at work on a population, the genotype frequencies may not
match the frequencies predicted by Hardy-Weinberg. If some genotypes are more likely
to survive than others, the genotype frequencies in the population will be altered. In
turn, the allele frequencies of the population may also change.

Consider a population of 100 individuals that consists of 25 A1A1 individuals, 50 A1A2
individuals, and 25 A2A2 individuals. Given the numbers of individuals of each geno-
type, the allele frequencies can be calculated and are p = 0.5 and q = 0.5. With these fre-
quencies, p2 × N = 0.5 × 0.5 × 100 = 25 individuals are expected to be A1A1, 2pq × N = 2
× 0.5 × 0.5 × 100 = 50 individuals are expected to be A1A2, and q2 × N = 0.5 × 0.5 × 100 =
25 individuals are expected to be A2A2. Because the observed genotype frequencies equal
the expected genotype frequencies, the population is in Hardy-Weinberg equilibrium.

Now let’s consider what happens to the population when natural selection acts on it.
In this exercise we will assume that our population has discrete, nonoverlapping gen-
erations, in which individuals start out as zygotes, reach sexual maturity, reproduce,
and then immediately die. The probability of surviving to sexual maturity (adulthood)
is given by the letter l. Given that individuals survive to reproductive age, the number
of gametes than an adult contributes to the next generation’s gene pool is given by 2m.
(The reason m is multiplied by 2 will become clear later on.) The life cycle of such an
organism is depicted in Figure 1.

Let’s assume that the A2A2 genotype has a low probability—say, 0.2—of surviving to
reproductive age. If in fact only 20% of the A2A2 genotypes survive and all of the A1A1
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and A1A2 genotypes survive, the genotype frequencies of the adult population will be
25 A1A1, 50 A1A2, and 5 A2A2 (because 20 of the A2A2 individuals died). A graph of the
genotype numbers before and after selection is shown in Figure 2.

Not only has natural selection altered the genotype frequencies, but the allele frequencies
have consequently been altered as well. After selection, p = 0.625 and q = 0.375. Because p
and q have changed, it might be tempting to conclude that the population has evolved.
However, evolution is a change is allele frequencies across generations; so far we have
examined the effects of selection within a generation. In order to determine the effects of
natural selection on evolution, we must calculate p and q in the next generation, which
depends on both the survival and the reproduction of the different genotypes. 

To determine what p and q will be in the next generation, we will utilize the notation
outlined by Roughgarden (1998) to follow the progress of a set of individuals from the
zygote stage until death, keeping track of how many individuals of each genotype sur-
vive to sexual maturity (adulthood) and how many of the total gametes produced by each
genotype make it into the next generation’s gene pool (Table 1). The starting number of
individuals (zygotes) of various genotypes in the population is shown in row 1 of Table
1. This is the Hardy-Weinberg genotype frequency multiplied by the total number of indi-
viduals in the population (Equation 3). The probability that a zygote of a given genotype
will survive to sexual maturity (adulthood) is denoted by the letter l. The subscript after
the letter l indicates the survival probability for a specific genotype; thus, l12 is the proba-
bility that an A1A2 genotype will survive to adulthood. The number of adults of a partic-
ular genotype can then be computed as the probability of surviving to adulthood multi-
plied by the number of zygotes of that genotype. This value appears in row 2 of Table 1.
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The number of gametes that are produced per individual of a specified genotype that
actually become incorporated into the next generation’s gene pool is 2m: m represents
one-half the gametes produced per individual. The total number of gametes from a sin-
gle genotype in next year’s gene pool is 2m multiplied by the probability of survival and
by the number of individuals of that genotype in the population. This value appears in
row 3 of Table 1.

To be clear, let’s walk through an example. If p = 0.5 and there are 100 individuals in
the population, then there would be p2N = 25 A1A1, 2pqN = 50 A1A2, and q2N = 25 A2A2
zygotes in the population. If l11 = 1, l12 = 1, and l22 = 0.2, all of the A1A1 and A1A2 zygotes
would reach adulthood, but only 0.2 × 25 = 5 A2A2 zygotes would reach adulthood. If
2m = 3 for all genotypes, then the number of gametes contributed to the next generation
is 3 × 25 = 75 gametes for A1A1 individuals, 3 × 50 = 150 gametes for A1A2 individuals,
and 3 × 5 = 15 gametes for A2A2 adults. Thus, in total the next generation consists of 75
+ 150 + 15 gametes (240 total), which translates to 120 zygotes in the next generation.
Thus, given information in Table 1, you can compute directly how each genotype will
impact the gene pool in the next generation.

Absolute and Relative Fitness
We can also be more general in our computations. The frequency of the A1 allele, p, at
time t + 1 is

Equation 4

The denominator is the total number of alleles or “gene copies” at the A locus for the
offspring population. Obviously, these copies are from the parent’s gametes, so you can
compute the denominator of Equation 3 as the sum of the bottom row in Table 1:

Total allelest+1 = 2m11l11 pt
2N + 2m12l12 2ptqtN + 2m22l22qt

2N Equation 5

We use the subscript t with pt and qt to indicate that these represent the frequencies at
time t. To compute the numerator of Equation 4, we need to count up the gametes con-
tributed by the A1A1 individuals (all of the gametes from this genotype will be A1), plus
one-half the gametes contributed by A1A2 individuals (only half of the gametes from
this genotype will be A1; the other half of the gametes will be A2). Thus, the numera-
tor can be rewritten as

2m11l11 p2
tNt + (1/2)(2m12l122ptqtNt) Equation 6

Thus, we can now rewrite Equation 4 as Equation 6 divided by Equation 5:

Equation 7

You will notice that you can factor out both  a 2 and an N from both the numerator and
the denominator, which cancel out and give

p
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TABLE 1.

A1A2 A1A2 A2A2

1 p2N 2pqN q2N

2 l11p
2N l122pqN l22q

2N

3 2m11l11p
2N 2m12l122qpN 2m22l22q

2N



Equation 8

Thus, although 2m is the number of gametes contributed by an individual to the next
generation’s gene pool, our computations, once simplified, express each individual’s
contribution to the next generation’s gene pool as m. To simplify things even further,
we can combine both the survival probabilities and gamete contributions of a geno-
type into a single value, capital W:

• W11 = m11l11
• W12 = m12l12
• W22 = m22l22

and by substitution

Equation 9

Equation 9 is a fundamental formula in evolutionary biology. It was derived in the
1920s by R. A. Fisher, J. B. S. Haldane, and S. Wright. The value W is the absolute fit-
ness of a genotype. Knowing W provides information on a genotype’s survival prob-
ability and its reproductive contribution to the next generation’s gene pool (Rough-
garden 1998). Accordingly, “fitness” has both survival and reproductive components.
Absolute fitness is sometimes designated as λ because it is the finite rate of increase for
a particular genotype. Thus, when W > 1, the genotype is increasing over time; when
W < 1, the genotype decreases over time; and when W = 1, the genotype remains sta-
ble over time. In a broad sense, absolute fitness can be formally defined as the average
per capita lifetime contribution of individuals of that genotype to the population after one or
more generations (Futuyma 1998). 

By convention, W is “scaled” such that the genotype with the largest W has the value
1; this scaled value is its relative fitness. Relative fitness is designated by a lowercase
w, and is computed by

wij = Wij/Wmax Equation 10

For instance, assume that the following W’s depict the absolute fitnesses of genotypes
in the population:

• W11 = 2
• W12 = 1
• W22 = 0.4

The A1A1 genotype has the largest absolute fitness, and so we establish the relative fit-
ness of this genotype as the standard genotype (the denominator of Equation 10)
with which other genotype fitnesses will be compared:

• w11 = W11/W11 = 1
• w12 = W12/W11 = 1/2 = 0.5
• w22 = W22/W11 = 0.4 / 2 = 0.2

The relative fitness values can be interpreted as the growth rate of a genotype relative to
the fastest growing genotype. Thus, the A1A2 genotype grows at one-half the rate as the
A1A1 genotype, and the A2A2 genotype is growing at 1/5 the rate of the A1A1 genotype.

The expression 1 – w is called the selection coefficient and indicates the degree to
which natural selection selects “against” a genotype. Evolutionary modelers often use
the relative fitness calculation and selection coefficients rather than the absolute fitnesses,
because then the exact numbers of individuals of each genotype in the population do not
need to be known. However, in this exercise you will track the fates of 100 individuals
over time and will therefore be able to compute absolute fitnesses without difficulty. 
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The use of absolute fitness over relative fitness has another advantage: Because the
number of gametes that each genotype contributes to the next generation is known, the
population size of the next generation can also be determined. Refer again to Equation 4:

The denominator gives the total number of alleles that will be incorporated into the
next generation’s gene pool. Since we are talking about a diploid organism, the total
number of individuals in the next generation is simply the total number of alleles in t
+ 1, multiplied by 0.5.

Nt+1 = 0.5 × total alleles at t + 1 Equation 11

Remember that the total number of alleles at t + 1 is the sum of the bottom row in the
table, given in Equation 5:

Total allelest+1 = 2m11l11 p2
tN + 2m12l12 2pt qtN + 2m22l22q

2
tN

Multiply Equation 5 by 0.5, then replace the mij’s and lij’s with Wij’s, and we are left
with the formula

Nt+1 = (W11p
2
t + W122ptqt + W22q

2
t) × Nt Equation 12

Hopefully, Equation 12 has a form that is familiar to you.
In Exercise 7, “Geometric and Exponential Population Models,” we developed a

model with the form

Nt+1 = λ × Nt Equation 13

Thus, the term W11p2
t+W122ptqt+W22q

2
t in Equation 12 is the same thing as λ in Equation

13, the finite rate of increase for the population. This should not be too surprising, since
fitness is the growth rate of the various genotypes over time. It is computed by sum-
ming the W’s for each genoytpe, weighting each W by the frequency of each genotype
(given by Hardy-Weinberg) in the population.

PROCEDURES

In this exercise, you’ll set up a spreadsheet model of a population of 100 individuals
and subject the population to various selective forces. Your population will consist of
individuals that reproduce sexually during a discrete time period and then die (think
of an annual plant whose seeds are viable only until the following year). The ultimate
goal of the model is to predict the allele frequencies p and q at time t + 1 given their ini-
tial state at time t, and to predict the new population size as well. As always, save your
work frequently to disk.

ANNOTATION

We’ll consider a population of 100 zygotes of varying genotypes and track their fates
to adulthood. 

p
A

t
t

t
+

+
+

=1
1 1

1

alleles
Total alleles

INSTRUCTIONS

A. Set up the model
parameters.

1. Open a new spread-
sheet and set up column
headings as shown in
Figure 3.
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A2A2 25 <== this number MUST total 100

Figure 3



To begin, we will have the population consist of 25 A1A1 homozygotes, 50 A1A2 het-
erozygotes, and 25 A2A2 homozygotes.

Cells C3–C6 will keep track of the total number of individuals by “tallying” the numbers
in cells B4–B6. This tally will be used to assign genotypes to individuals in a few steps. 

The spreadsheet should return the number 25 in cell C4. Your result in cell C6 should
be 100, indicating that the population consists of 100 individuals. Later in the model,
you will be free to change the genotype composition of the 100 individuals in cells
B4–B6, but you’ll want to make sure that cell C6 totals 100.

In cell C9, enter the formula =B4/C6.
In cell D9, enter the formula =B5/C6.
In cell E9, enter the formula =B6/C6.
The frequency of the various genotypes is simply the number of individuals of a given
genotype divided by the total number of individuals in the population. 

Cells C10–E10 give the viability (survival) fitness component, or the probability of sur-
viving to reproduction. (Make up a hypothetical situation in which the A2A2 genotypes
are selected against; perhaps their phenotype is more susceptible to being eaten by an
introduced herbivore.) A survival probability for A2A2 genotypes of 0.2 means that each
individual has a 20% probability of surviving to reproductive maturity.

For now, let’s assume that each genotype that reaches sexual maturity will contribute
an equal number of gametes to the next generation (that is, fitness is not affected by
reproductive potential). Let m be one-half the number of gametes that a sexually repro-
ducing individual will contribute to the next generation. Since m is the same for all
genotypes, each individual (regardless of its genotype) will contribute roughly the same
number of gametes per adult to the next generation as any other individual (given that
individuals reach adulthood). Note that we don’t care how these gametes recombine in
the next population, only that they are present and available for counting when we
calculate the p’s and q’s in the next generation. 

In cell C12, enter the formula =C10*C11.
In cell D12, enter the formula =D10*D11.
In cell E12, enter the formula =E10*E11.
Recall that the absolute fitness, w, is equal to l × m.

2. Enter numbers in cells
B4–B6 as shown.

3. Enter 0 in cell C3. 

4. Enter =SUM($B$4:B4)
in cell C4. Copy this for-
mula down to cell C6. 

5. Set up new headings as
shown in Figure 4.

6. Calculate the initial
genotype frequencies in
cells C9–E9. 

7. Enter values in cells
C10–E10 as shown in
Figure 4.

8. Enter values in cells
C11–E11 as shown in
Figure 4. 

9. Compute the absolute
fitness, W, in cells
C12–E12.

10. Save your work.

B. Simulate the survival
and reproduction of the
100 individuals in the
population.

1. Set up column headings
as shown in Figure 5.
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Enter the value 0 in cell A16.
Enter = 1+A16 in cell A17. Copy this formula down to cell A115.

In cell B16, enter the formula =LOOKUP(A16,$C$3:$C$6,$A$4:$A$6).
The LOOKUP function will allow us to assign genotypes according to the numbers
you entered in cells B4–B6. The vector form of the LOOKUP function looks in a one-
row or one-column range (known as a vector) for a value and returns a value from
the same position in another one-row or one-column range. For instance, the formula
in cell B16 tells the spreadsheet to look up the individual’s number given in cell A16
in the vector C3–C6 (the genotype tallies), and return the appropriate genotype in cells
A4–A6. If LOOKUP can’t find an exact match (for instance, individual 37 cannot be
found because the number 37 is not part of the “tally”), LOOKUP returns the genotype
that is associated with a number in the tally less than 37. Thus, individuals 0–24 are
assigned the genotype listed in cell A4, individuals 25–74 are assigned the genotype
listed in cell A5, and individuals 75–99 are assigned the genotype listed in cell A6.
The result is that the genotypes are assigned exactly the way you specified in cells
B4–B6.

In cell C16, enter the formula =HLOOKUP(B16,$C$8:$E$12,3,FALSE).
We need the spreadsheet to examine individual 0’s genotype in cell B16, look up its
survival probability in the table in cells C8–E12, and return that probability to cell C16.
The HLOOKUP function can be used for this purpose. The HLOOKUP formula
searches for a value in the top row of a table, and then returns a value in the same col-
umn from a row you specify in the table. The HLOOKUP formula has the form
HLOOKUP(lookup_value,table_array,row_index_num,range_lookup), where
lookup_value is the value to be found in the first row of the table (in our case, we want
to look up the individual’s genotype in cell B16); table_array is a table of information
in which data is looked up (in our case, we want to look up information in the table
consisting of cells C8–E12); row_index_num is the row number in table_array from
which the matching value will be returned (in our case, we want to return the value
associated with survival probabilities, which is the third row in the table). The word
FALSE tells the program that you require an exact match in the table.

Select cell C15, select the HLOOKUP function, and follow the prompts to create your
formula. Copy your formula down to record survivorship probabilities for the remain-
ing 99 individuals in the population.

We used the formula =HLOOKUP(B16,$C$8:$E$11,4,FALSE).
Your spreadsheet should now look something like Figure 6.

2. Set up a linear series
from 0 to 99 in cells
A16–A115.

3. Enter a LOOKUP for-
mula to assign a genotype
to each of the 100 individ-
uals in the population.
Copy the formula down to
cell B115. 

4. In cell C16, enter an
HLOOKUP formula to
calculate the survival
probability of each zygote
in the population and list
the survival probability of
its genotype in column C.
Copy the formula down to
cell C115. 

5. In cell D16, use the
HLOOKUP function to
return the gamete contri-
butions for each individ-
ual in the population.
Copy your formula down
to cell D115.
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In cell E16 enter the formula =IF(RAND()<C16,B16,”.”).
Remember, the survival probabilities indicate the probability that an individual will sur-
vive to reproductive maturity (adulthood). In cell E16, we need a formula that will ran-
domly determine whether individual 0 will survive to adulthood or not, based on the
survival probability given in cell C16. The formula in cell E16 uses an IF formula to accom-
plish this task. The formula draws a random number between 0 and 1 (the RAND() por-
tion of the formula). If the random number is less than the survival probability given in
cell C16, the spreadsheet returns the value in cell B16 (the genotype of the zygote, or shall
we now say the genotype of the adult). If the random number is greater than the survival
probability, however, the individual died and a period (which designates a missing value)
is returned instead. So far, we know which individuals survived to reproduce. 

In cell F16, enter the formula =IF(E16=”A1A1”,D16*2,IF(E16=”A1A2”,D16,”.”)).
We will keep track of the A1 gametes in column F and A2 gametes in column G. The
formula in cell F16 is two nested IF functions. The first part of the formula,
IF(E16=”A1A1”,D16*2, tells the spreadsheet to examine cell E16, and if cell E16 is an
A1A1 genotype, to multiply cell D16 by 2 (remember that cell D16 is one-half the gametes
contributed, so when this number is multiplied by 2 it is the total number of gametes
that an individual of genotype A1A1 contributes to the next generation).
However, if cell E16 is not genotype A1A1, the spreadsheet walks through the second
IF statement, IF(E16=”A1A2”,D16,”.”). This states that if the genotype is A1A2, then
return the value in cell D16; otherwise return a missing value. Remember that the
gametes produced by A1A2 genotypes include both A1 gametes and A2 gametes in
approximately equal numbers, so that half of an individual’s gametes are A1 and half
are A2. Therefore, to count the A1 gametes from heterozygotes, only half the gamete
contribution can be tallied in column F, which is simply m.

We entered the formula =IF(E16=”A2A2”,D16*2,IF(E16=”A1A2”,D16,”.”)).

Your spreadsheet should look something like Figure 7.

6. In cell E16, enter a for-
mula to determine which
zygotes survive to adult-
hood. Copy your formula
down to cell E115. 

7. In cell F16, enter a for-
mula to count how many
gametes the surviving
individuals actually con-
tribute to the next genera-
tion.

8. In cell G16, enter a for-
mula to compute the num-
ber of A2 gametes con-
tributed to the next gener-
ation by each surviving
individual. 

9. Copy the formulae in
cells F16–G16 down to
cells F115–G115.

10. Save your work.
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We entered the following formulae, although you may have come up with other meth-
ods for counting individuals:

• J9 =B4
• K9 =B5
• L9 =B6
• J10 =COUNTIF($E$16:$E$115,J8)
• K10 =COUNTIF($E$16:$E$115,K8)
• L10 =COUNTIF($E$16:$E$115,L8)

In cell J11, enter the formula =C12.
In cell K11, enter the formula =D12.
In cell L11, enter the formula =E12.

The LARGE function returns the largest (or second largest, or third largest, etc.) value
in a data set. We entered =LARGE(J11:L11,1), where cells J11 and L11 give the data set,
and the number 1 at the end of the formula indicates that we want the largest value
returned (as opposed to the second largest or third largest value). 

In cell J12, enter the formula =J11/$N$11.
In cell K12, enter the formula =K11/$N$11.
In cell L12, enter the formula =L11/$N$11.
The relative fitness of each genotype is the fitness of each genotype relative to the fittest
genotype in the population. In cell N11, you’ve calculated the largest of the W values
in the population. This represents the “fittest” genotype in the population, and all other
genotypes will be assigned fitness values relative to this genotype. Relative fitness, w,
can be obtained for each genotype by dividing the genotype’s absolute fitness (W) by
the largest absolute fitness (Wmax).

In cell J13, enter the formula =1-J12.
In cell K13, enter the formula =1-K12.
In cell L13, enter the formula =1-L12.
Another useful characterization of the strength of natural selection against a geno-
type is the selection coefficient, S. S is simply 1 – w, and indicates the relative decrease
of a genotype due to selection. A high S indicates that a genotype was selected against,
while a low S indicates that it was not selected against.

Use a column graph and label your axes fully. Your graph should resemble Figure 9
(although the number of A2A2 adults may differ from our graph.

C. Calculate selection
statistics.

1. Set up new column
headings as shown in
Figure 8.

2. Enter formulae to count
the initial number of
zygotes in the population
in cells J9–L9 and the
number of adults in cells
J10–L10. 

3. Enter formulae to re-
compute the absolute fit-
nesses of each genotype in
cells J11–L11.

4. Use the LARGE formu-
la in cell N11 to determine
the largest absolute fitness
of the three genotypes.

5. In cells J12–L12, enter
formula to compute the
relative fitness, symbol-
ized with a lowercase w,
for each genotype.

6. Calculate the selection
coefficient, S, as 1 – w for
each of the genotypes in
cells J13–L13.

7. Save your work.

D. Make graphs of the
selection statistics.

1. Graph the numbers of
zygotes and breeding
adults for each genotype
(cells I8–L10). 
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Use a column graph and label your axes fully. Your graph should resemble Figure 10.2. Graph W (absolute fit-
ness), w (relative fitness),
and S (the selection coeffi-
cient) for each genotype
(cells I11–L13). Select the
Series tab as you make
your chart, and select cells
J8–L8 as the Category (x)
axis labels.

3. Answer Question 1 at
the end of this excercise
before proceeding.

E. Project allele frequen-
cies and population num-
bers to next generation.

1. Set up new column
headings as shown in
Figure 11.
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In cell J18, enter the formula =(COUNTIF(B16:B115,”A1A1”)*2+COUNTIF
(B16:B115,”A1A2”))/(2*C6).
In cell K18, enter the formula =1-J18.
Refer to the exercise on Hardy-Weinberg equilibrium if you are rusty on the computations.

This represents the total initial population, tallied in cell C6.

We are now ready to write an equation to predict the change in allele frequencies
from one time step to the next as a result of natural selection. Remember that selec-
tion happens within generations, but in this step we will now consider how natural
selection may alter allele frequencies between generations. That is, how populations
evolve as a result of natural selection. 

In cell J19, enter the formula =(($J$11*J18^2)+($K$11*J18*K18))/(($J$11*J18^2)
+($K$11*2*J18*K18)+($L$11*K18^2)).
This corresponds to Equation 9, 

Follow the equation outlined in Step 4 above.

We used the formula =SUM(F16:F115)/SUM(F16:G115).
Your results might not exactly match cell J19. Why? Press F9, the calculate key, and you
will generate a new set of random numbers, and hence a new set of adults in column
E. Only when the number of surviving adults exactly equals the survival probability
times the number of zygotes will your answer match cell J19. This is because you
selected which zygotes would reach adulthood with a random number function. 

We will now  use the p’s, q’s, and absolute fitnesses to calculate the new population size
in cell L19. 
We used the formula =($J$11*J18^2+$K$11*2*J18*K18+$L$11*K18^2)*L18. This cor-
responds to Equation 12:

Nt+1 = (W11p
2
t + W122ptqt + W22q

2
t ) × Nt

Your spreadsheet should now look something like Figure 12.

p
W p W p q

W p W p q W q
t

t t t

t t t t
+ =

+
+ +1
11

2
12

11
2

12 22
22

2. In cells J18 and K18,
enter formulae to compute
p and q for the initial
zygote population.

3. In cell L18, enter the for-
mula =C6.

4. In cell J19, enter a for-
mula to compute the new
frequency of the A1 allele,
p. Copy your formula
down to cell J27. Refer to
Equation 9 in the
Introduction.

5. In cell K19, compute the
new frequency of q as =1-
J19. Copy your formula
down to cell K27.

6. For comparison, in cell
H19 compute the frequen-
cy of the A1 allele by count-
ing the A1 gametes in cells
F16–F115, and divide that
number by the total gam-
etes (in cells F16–G115). 

7. In cell L19, enter a for-
mula to compute Nt+1.
Copy your formula down
to cell L27. Refer to
Equation 12 in the
Introduction.
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16
17
18
19
20
21
22
23
24
25
26
27

I J K L
A1 allele A2 allele

Time Step p q N

1 0.5 0.5 100

2 0.625 0.375 160

3 0.7042254 0.2957746 284
4 0.7572203 0.2427797 528.247887

5 0.7946929 0.2053071 1006.67819

6 0.8224257 0.1775743 1945.46438

7 0.8437092 0.1562908 3792.77583

8 0.8605251 0.1394749 7437.31905

9 0.8741288 0.1258712 14643.1502

10 0.8853505 0.1146495 28915.1013

Figure 12



We used the formula =SUM(F16:G115)/2 to compute the number of individuals
(zygotes) in time step 2. Your results may not exactly match cell L19 because of the ran-
dom number function used to determine which genotypes survived.

Use the XY scattergraph and label your axes fully. Your graph should resemble Figure 13.
To create a secondary axis on the graph so that the frequencies are shown on the right
axis and the number of individuals is on the left axis, double-click on the data in the
graph that depicts p or q. A dialog box will appear. Click on the Axis tab, then select Sec-
ondary axis. Repeat for the other allele. To label the new axis, select the chart, then go
to Chart | Chart Options | Titles and type in the labels for the primary y-axis (Number of
individuals) and secondary y-axis (Frequency). 

QUESTIONS

1. From your graphs in Section D of the exercise, describe the population in terms
of natural selection within a generation (Figure 9). Describe the population in
terms of W, w, and S (Figure 10). 

2. In your model, you’ve selected against the A2 homozygote. Yet the A2 allele per-
sists in the population, even after 10 years of constant selection. Extend your
model to 100 years. At what frequency does the A2 allele appear to stabilize?
Why does the A2 allele persist?

3. Modify your absolute fitness parameters by increasing the gamete contribution
of the A2A2 genotype to 10 in cell E11. Examine your graph of relative fitness
and selection coefficients. How did this change affect your population? What
will happen to the frequency of the A1 and A2 allele over time?

4. Which affects the genetic rate of change in the population (change in A1 allele
from time step 1 to time step 2), relative fitness or absolute fitness? (Keep in
mind that our calculations are based on absolute fitnesses.) Modify cells
C10–E11 to answer this question. Enter the values shown below into your
model:

Note that the absolute fitnesses have been changed, but the relative fitnesses
(given in cells J12 and L12) remain the same. How does changing the absolute

8. For comparison, in cell
M19 compute Nt+1 as the
sum of the gametes in cells
F16–G115 divided by 2. 

9. Graph p, q, and N as a
function of time.

10. Save your work.
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fitness in the manner described affect p and q in the next generation? Modify
your model so that the relative fitnesses are altered. How does changing the rel-
ative fitness affect p and q in the next generation?

5. Set up new entries as follows:

Compute the weighted average fitness (absolute fitness) in cell F12. The weight-
ed average fitness can be computed by multiplying the absolute fitness of each
genotype by its frequency in the population, and then summing these values
together. Now compute λ for your population as Nt+1/Nt (given in cells L19 and
L18). How do these numbers compare? Change some of your parameters in
your model to see if your relationship holds no matter what parameters you
change in your model. Why calculate a weighted average, rather than simply
the average to predict population growth? Why is absolute fitness (weighted)
used as indication of population growth rather than relative fitness?

6. Modify your absolute fitness parameters by selecting against the heterozygotes
(absolute fitness = 0). Enter survival and reproductives values for the A1A1 and
A2A2 homozygotes such that their absolute fitnesses are > 0 but equal in value.
Change the genotype make-up of the initial population in the following manner:

How do p and q change over time? Next, change your values in cells B4–B6 as
shown: 

Update and graph your results. What happens to allele frequencies over time
when A1 > 0.5? When A1 < 0.5? Explain your results.
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8
9
10
11
12

A B C D E
A1A1 A1A2 A2A2

Initial genotype frequencies = 0.25 0.5 0.25

Probability of genotype survival = l = 1 1 0.4

Half the # of gametes in next gen. = m = 4 4 2

Absolute fitness = W = l * m = 4 4 0.8

8
9
10
11
12

A B C D E
A1A1 A1A2 A2A2

Initial genotype frequencies = 0.25 0.5 0.25

Probability of genotype survival = l = 0.6 0.2 0.4

Half the # of gametes in next gen. = m = 4 4 2

Absolute fitness = W = l * m = 2.4 0.8 0.8

3
4
5
6

A B
Genotypes # of individuals (zygotes)

A1A1 30

A1A2 50

A2A2 20

3
4
5
6

A B
Genotypes # of individuals (zygotes)

A1A1 20

A1A2 50

A2A2 30



7. Modify your absolute fitness parameters by selecting for the heterozygotes.
Enter survival and reproductive values for the A1A1 and A2A2 homozygotes that
result in an absolute fitness of 0, and values for the heterozygote > 0 as shown:

How does selection for the heterozygote affect p and q over time?

8. *(Advanced). Modify your model to include frequency dependent selection (the
selection of a genotype depends on the frequency of the genotype in the popu-
lation).

9. *(Advanced). Although you’ve entered survival and reproductive values for
each genotype, these values remain fixed in your model. In reality, survival and
reproductive rates are stochastic in nature. Modify your model to incorporate
this element of stochasticity.
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A B C D E
A1A1 A1A2 A2A2

Initial genotype frequencies = 0.25 0.5 0.25

Probability of genotype survival = l = 0 1 0

Half the # of gametes in next gen. = m = 4 3 4

Absolute fitness = W = l * m = 0 3 0



ADAPTATION: PERSISTENCE IN A
CHANGING ENVIRONMENT
In collaboration with Mary Puterbaugh

33
Objectives

• Consider how recombination and natural selection can lead
to new phenotypes.

• Develop a spreadsheet model of allele and genotype fre-
quencies at three loci.

• Examine how the abruptness of an environmental change
affects the ability of a population to adapt to that change.

• Consider how genetic factors (recombination, genetic diver-
sity, and number of genes) influence the likelihood of extinc-
tion in a finite population experiencing selective pressure.

Suggested Preliminary Exercise: Hardy-Weinberg Equilibrium

INTRODUCTION
We hear a lot these days about global warming. Global climate change is not a
new phenomenon—over its history, the earth has been warmer than it is today,
and also much, much colder. But one of the concerns biologists have about the
current warming trend is that, because it is occurring so rapidly, many popula-
tions will not be able to respond to the changes.

For many organisms even a small increase in environmental temperature can
spell the difference between life and death. Estuarine marine organisms, for exam-
ple, may have to adapt quickly to rising sea levels in order to persist over time.
Species that cannot adapt quickly will go extinct, while species that are able to
adapt will persist. What factors govern whether a population persists through a
period of environmental change? Population size is obviously one answer. But we
also should consider whether enough heritable genetic variation is present to allow
the population to respond to selective pressures. Such variation arises either
through mutation or recombination. This exercise will illustrate the process of
recombination, an important force for evolution as we understand it.

Recombination is the process by which a sperm or an egg randomly receives
one allele from a pair of alleles possessed by each parent. Suppose your mother
has the genotype A1A1B1B1C1C1 for the A, B, and C loci, and your father has the
genotype A2A2B2B2C2C2. You must have the genotype A1A2B1B2C1C2, because each
of your parents produced only one type of allele at those loci, and you inherited
one allele from each parent for each locus. In your case, however your gametes
(eggs or sperm) randomly receive either an A1 or A2 allele, a B1 or B2 allele, and a

 



C1 or C2 allele during meiosis. Your gametes thus have the potential to carry any one
of the following nine genotypes: A1B1C1, A1B2C1, A1B2C2, A2B1C2, A2B1C1, A1B1C2, A2B2C1,
or A2B2C2. Your mother could produce only A1B1C1 eggs, but the alleles you inherited
from your father recombined with hers to create genotypes (yours!) that weren’t present
in the previous generation. 

Recombination has a strong influence on the genotypes of offspring, especially for
traits that are controlled by multiple genes. For example, beak size in birds is a herita-
ble trait, and many different genes probably act together to determine beak size for an
individual bird. When many genes affect the expression of a single trait, it is called a
polygenic trait. Many traits are polygenic. In the simplest case, each locus makes a con-
tribution to the expressed trait. For example, three different loci (A, B, and C) might con-
tribute to beak size. If an individual inherits an A1, B1, or C1 allele from its parents, it
“inherits” a 1-mm contribution to beak size. If it inherits an A2, B2, or C2 allele from its
parents, it “inherits” a 2-mm contribution to beak size. Thus, A1A1B1B1C1C1 individu-
als have the smallest beaks (6 mm), while A2A2B2B2C2C2 individuals have the largest
beaks (12 mm). Individuals that are heterozygous at either gene have intermediate-sized
beaks (e.g., A1A2B1B2C1C2 genotypes have 9-mm beaks). The loci, then, act additively to
determine the phenotype. Because several loci contribute to beak size, the population
will tend to exhibit continuous variation in beak size, with beaks ranging from 6 mm
to 12 mm. 

The environment may play a large role in determining which genotype combinations
are “best suited” in terms of survival and reproduction. For example, large beak size in
one of Darwin’s finches (Geospiza fortis) may be favored in drought years, but small beak
sizes may be favored in wet years (Grant and Grant 1993). In other words, certain geno-
type combinations are favored under drought conditions, while other combinations are
favored under wet conditions. Imagine for a moment that the frequencies of the alleles
A2, B2, and C2 (the alleles that produce larger beaks) are initially low in a given popula-
tion. This means that A2A2 individuals will be rare, as will B2B2 and C2C2 individuals.
The probability that random mating and recombination will produce an individual with
the genotype A2A2B2B2C2C2 may be so small that this genotype may never occur in the
population. If natural selection favors larger beaks, however, the frequencies of the A2,
B2, and C2 alleles in the population will increase, and recombination may occasionally
produce individuals with the A2A2B2B2C2C2 genotype. 

Experiments with corn and fruit flies have demonstrated dramatic changes in phe-
notype that are probably the result of selection and recombination. In a famous exper-
iment, Clayton and Robertson (1957) started out with a population of fruit flies and
counted the bristles on the abdomen of each fly. They found that the number of bristles
varied from 30 to 50. Over many generations, Clayton and Robertson consistently took
the flies with the highest number of bristles and mated them. After 35 generations, all
of the flies had between 60 and 110 bristles—phenotypes that didn’t even occur in the
original population!

Perhaps some novel mutation arose that increased bristle number, but it is more likely
that changes in the frequencies of existing alleles led to the changes in bristle number:
If bristle number is polygenic—controlled by several different genes—and if alleles that
produce higher bristle numbers are rare, then the probability may be very small that
recombination will produce an individual with more than 50 bristles. But by selecting
against individuals with low bristle numbers (or for individuals with high bristle num-
bers), Clayton and Robertson increased the frequencies of the alleles that produce high
bristle numbers, and thus increased the probability that recombination would result in
individuals with more than 50 bristles. After 35 generations, the frequencies of alleles
that result in high bristle numbers were high enough that recombination occasionally
produced individuals with 110 bristles. On the other hand, the frequencies of alleles that
produce low bristle numbers decreased, making it very unlikely that recombination
could produce an individual with fewer than 60 bristles.
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PROCEDURES

From an evolutionary perspective, key questions include “How much genetic variation
is needed for a population to persist through a period of rapid environmental change?”
and “How does variation in environmental conditions affect the ability of a population
to respond?” In this exercise, you’ll set up a spreadsheet model to answer these ques-
tions. We will consider a single trait (beak size, which determines drought resistance) and
the allele frequencies at different loci that influence beak size. To begin, the initial allele
frequencies will be determined by you, the modeler. The population at the beginning of
the first year will consist of 500 adults with beak sizes determined by the allele frequen-
cies you input. This population will then experience the environmental conditions for
that year, again determined by the modeler. Certain individuals will survive to repro-
duce, while others will not. Those that survive will go on to reproduce at the end of the
year. Since beak size is a heritable trait, the “new” population will have beak sizes that
reflect the genetic composition of the survivors. You will follow the population for 5 years,
during which you can alter environmental conditions (dry, mild, and wet) and alter the
phenotypes that survive. If in any given year no individuals survive, the population
has gone extinct. If you are pinched for time, you may model just 3 generations.

The goal of the exercise is to explore how much genetic variation is needed for a pop-
ulation to adapt to environmental change, and to explore how variation in environ-
mental conditions affects the genetic diversity of populations. As always, save your work
frequently to disk.

ANNOTATION

We’ll consider three types of environmental conditions: dry, mild, and wet. Each con-
dition favors different beak-length phenotypes. If a year is wet, individuals with a beak
size of greater than 0 will survive. If there is a severe drought (dry conditions), only
individuals with beak sizes greater than 11 will survive. 

For now, year 1 will be a wet year, years 2, 3, and 5 will be mild, and year 4 will be a
dry year. You will be able to manipulate these environmental conditions later in the
exercise.

INSTRUCTIONS

A. Set up the model pop-
ulation.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 1.

2. In cells C4–E4, enter 11,
8, and 0 respectively as
shown.

3. Enter the environmental
conditions shown in cells
B11–B15. 
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A B C D E F G H
Adaptation

Environmental condition: Dry Mild Wet

Select phenotypes above: 11 8 0

1 2 1 2 1 2

Year Condition A1 A2 B1 B2 C1 C2

Initial 0.8 0.2 0.8 0.2 0.8 0.2

1 Wet

2 Mild

3 Mild

4 Dry

5 Mild

Allele frequencies of surviving parents

Phenotype contribution =>

Figure 1



We’ll track the allele frequencies of three loci (A, B, and C) over a 5-year period. At each
locus, there are just two alleles; their frequencies are p and q. In year 1, we’ll start with
allele frequencies of roughly A1 = B1 = C1 = 0.8. Because only two alleles are present at
each locus, the frequencies of the A2, B2, and C2 alleles must be (1 – p), which is 0.2. 

These contributions ultimately determine what an individual’s phenotype will be. For
example, the number 1 entered in cell C8 designates that individuals with the A1
allele inherit a 1-mm contribution to beak size. The number 2 in cell D8 specifies that
individuals with the A2 allele inherit a 2-mm contribution to beak size. With the phe-
notypic contributions given, the genotype A1A2B1B2C2C2 has a phenotype of 1 + 2 + 1
+ 2 + 2 + 2, or 10 mm.

Repeat the column headings Genotype, Phenotype, Survive? and Phenotype for years
2 – 5 in columns F through U.

Enter the number 1 in cell A20. 
In cell A21, enter =A20+1. Copy this formula down to cell A519.

Now we will assign genotypes to individuals at the beginning of year 1. These geno-
types depend on the allele frequencies of breeders from the previous year, listed as “ini-
tial” frequencies. Only some of these genotypes will actually survive to breed at the
end of the year. You might review the formulas used in the Hardy-Weinberg exercise.

Enter the formula =IF(RAND()<$C$10,”A1”,”A2”)&IF(RAND()<$C$10,”A1”,”A2”)&
IF(RAND()<$E$10,”B1”,”B2”)&IF(RAND()<$E$10,”B1”,”B2”)&
IF(RAND()<$G$10,”C1”,”C2”)&IF(RAND()<$G$10,”C1”,”C2”) in cell B20.
Copy this formula down the column.

Each individual will have two alleles at each of the three loci (A, B, and C); the three loci
are joined with the & symbol. (In the above rendition, the formula for each allele is on
a separate line; your formula will be entered as a unit, with no spaces around the amper-
sands).  Let’s go over the formula for the A locus: Have the spreadsheet generate a ran-
dom number. If this number is less than the allele frequency for the A1 allele given in
cell C10, return an A1 allele; if the random number is greater than the allele frequency
of the A1 allele given in cell C10, return an A2. Use the analogous procedure to gener-
ate the second allele at the A locus, and then to obtain the B and C alleles.

Enter the formula =LOOKUP(MID(B20,1,2),$C$9:$H$9,$C$8:$H$8)+
LOOKUP(MID(B20,3,2),$C$9:$H$9,$C$8:$H$8)+
LOOKUP(MID(B20,5,2),$C$9:$H$9,$C$8:$H$8)+
LOOKUP(MID(B20,7,2),$C$9:$H$9,$C$8:$H$8)+

4. Enter the initial allele
frequencies of the popula-
tion shown in cells
C10–H10.

5. Enter the phenotypic
contributions of each allele
as shown in cells C8–H8.

6. Save your work.

B. Track the population
through year 1.

1. Set up the new column
headings  shown in Figure
2, but extend and repeat
your column headings to 5
years. 

2. In cells A20–A519,
establish a population of
500 individuals. 

3. In cell B20, enter a for-
mula to generate a geno-
type for individual 1, and
copy the formula down to
obtain genotypes for the
remaining individuals in
the population. 

4. In cell C20, enter a for-
mula to generate pheno-
types for each individual.
Copy your formula down

420 Exercise 33

18
19

A B C D E

Individual Genotype Phenotype Survive? Phenotype

Year 1

Figure 2



LOOKUP(MID(B20,9,2),$C$9:$H$9,$C$8:$H$8)+
LOOKUP(MID(B20,11,2),$C$9:$H$9,$C$8:$H$8) in cell C20 (there should be no spaces
when you enter the formula). Copy this formula down the column.

We used two functions to generate phenotypes: the LOOKUP and MID functions. The
MID function returns a specific number of characters from a text string, starting at
the position you specify. It has the syntax MID(text,start_num,num_chars), where text
is the text string containing the characters you want to extract, start_num is the posi-
tion of the first character you want to extract in text, and num_chars is the number of
characters you want to extract. The first character in text has start_num 1, and so on.

For example, =MID(B20,1,2) tells the spreadsheet to examine the genotype in cell
B20, start with the first character in the genotype, and return two characters. If your
genotype in cell B20 is A1A1B1B1C1C1, the MID function will return the portion of
the genotype that is bolded. Similarly, the formula =MID(B20,5,2) will examine the
genotype in cell B20, start with the fifth character in the genotype, and return two char-
acters (the program will return “B1”). 

The LOOKUP formula returns a value either from a one-row or one-column range or
from an array. The LOOKUP function has two syntax forms: vector and array. We
will use the vector form, which looks in a one-row or one-column range (the vector)
for a value and returns a value from the same position in a second one-row or one-
column range. It has the syntax LOOKUP(lookup_value,lookup_vector,result_vec-
tor), where lookup_value is a value the function searches for in the first vector,
lookup_vector is a range that contains only one row or one column, and result_vec-
tor is the value that the spreadsheet returns from the same position in a row or column
that is adjacent to the lookup vector. For example, =LOOKUP(“A1”,C9:H9,C8:H8) finds
the value A1 in the vector C9–H9 and returns the phenotype contribution associated
with that allele.

We have combined LOOKUP and MID formulae to generate a phenotype. For exam-
ple,  =LOOKUP(MID(B20,1,2),$C$9:$H$9,$C$8:$H$8) uses the MID formula to deter-
mine the first allele in the A locus (either A1 or A2), finds this value in cells C9–H9,
and returns the associated phenotype contribution listed in cells C8–H8. You can add
several of these kinds of formulae together to generate a final phenotype. It produces
a very long formula that looks intimidating at first, but is really quite simple once you
work through it.

Enter the formula =IF(C20>LOOKUP($B$11,$C$3:$E$3,$C$4:$E$4),B20,””) in cell D20.
Copy this formula down the column.
We want to know whether an individual survives to reproduce, given the environ-
mental condition for year 1 (cell B11) and the beak size required to survive the envi-
ronment for year 1 (listed in cells C4–E4). The formula simply tells the spreadsheet to
look up year 1’s condition in cell B11, locate that condition in cells C3–E3, and return
the minimum phenotype required for survival listed in cells C4–E4. IF the individual
has a phenotype greater than necessary for survival, return the individual’s genotype;
otherwise, return a blank cell (indicated by the two sets of quotation marks). Year 1 is
a wet condition, and hence all genotypes will survive.

Enter the formula =IF(D20=““,””,C20) in cell E20. Copy this formula down for the
remaining 499 individuals in the population. 

to obtain phenotypes for
the remaining individuals
in the population.

5. In cell D20, enter a for-
mula to determine
whether individual 1 sur-
vived the conditions asso-
ciated with year 1. Copy
the formula down for the
remaining individuals in
the population.

6. In cell E20, enter a for-
mula that returns the indi-
vidual’s phenotype if it
survived.
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Enter the formula =COUNTIF(D20:D519,”A*”) in cell I11.
The COUNTIF formula counts the number of cells within a range that meet the given
criteria. The formula above tells the spreadsheet to examine cells D19–D518 and to
count any cell that begins with an A. The * following the A is a wild card, indicating
that it doesn’t matter what text follows the A. Since only surviving individuals have a
genotype listed, the formula will count only those individuals that survived.

Enter the formula =AVERAGE(E20:E519) in cell J11. 

We entered the following formulae:
• Cell C11 =(2*COUNTIF($D$20:$D$519,”A1A1*”)+

COUNTIF($D$20:$D$519,“A1A2*”)+
COUNTIF($D$20:$D$519,”A2A1*”))/(2*$I$11)

• Cell D11 =1-C11
• Cell E11 =(2*COUNTIF($D$20:$D$519,”*B1B1*”)+

COUNTIF($D$20:$D$519,“*B1B2*”)+
COUNTIF($D$20:$D$519,”*B2B1*”))/(2*$I$11)

• Cell F11 =1-E11
• Cell G11 =(2*COUNTIF($D$20:$D$519,”*C1C1”)+

COUNTIF($D$20:$D$519,“*C1C2”)+
COUNTIF($D$20:$D$519,”*C2C1”))/(2*$I$11)

• Cell H11 =1-G11

You have entered similar formulae in your Hardy-Weinberg exercise. Remember the
trick of using the * wild card character. For example, when we used the COUNTIF for-
mula to count the number of A1A1* individuals, it counted all individuals with the
A1A1 genotype, regardless of their genotypes at the B or C locus. The same principle
applies to the B (*B1B1*) and C (*C1C1) genotypes.

Since these individuals survived to breed, they will determine the genotypes of indi-
viduals at the beginning of year 2.

Your spreadsheet should now look something like Figure 4. Your numbers will be a bit
different in Row 11, and that’s fine.

7. Set up new headings as
shown in Figure 3.

8. In cell I11, enter a for-
mula to count the number
of survivors in year 1.
These individuals will
produce offspring for the
next generation.

9. In cell J11, use the
AVERAGE function to cal-
culate the mean pheno-
type of the survivors. 

10. Enter formulae in cells
C11–H11 to compute allele
frequencies of the surviv-
ing adults.

11. Save your work.
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A B C D E F G H

1 2 1 2 1 2

Year Condition A1 A2 B1 B2 C1 C2

Initial 0.8 0.2 0.8 0.2 0.8 0.2

1 Wet 0.80 0.20 0.78 0.22 0.81 0.19

Allele frequencies of surviving parents

Phenotype contribution =>

Figure 4



The headings in Figure 5 should already be in place. You can simply repeat the step
you completed for year 1 to complete column F. 
Enter the formula =IF(RAND()<$C$11,”A1”,”A2”)&IF(RAND()<$C$11,”A1”,”A2”)&
IF(RAND()<$E$11,”B1”,”B2”)&IF(RAND()<$E$11,”B1”,”B2”)&
IF(RAND()<$G$11,”C1”,”C2”)&IF(RAND()<$G$11,”C1”,”C2”) in cell F19. Copy this
formula down to row F519.

This will determine the phenotypes of the 500 individuals that are present in the pop-
ulation at the beginning of year 2. 

Refer back to the formula used in year 1. We entered the formula 
=IF(G20>LOOKUP($B$12,$C$3:$E$3,$C$4:$E$4),F20,””).
This formula looks up the conditions associated with year 2 and returns the phenotype
of individuals whose beak sizes are large enough to survive the environmental condi-
tions for year 2. 

The formula in cell E20 returns the phenotype of individuals that survive to breed. 

Enter the formula =COUNTIF(H20:H519,”A*”) in cell I12.

Enter the formula =AVERAGE(I20:I518) in cell J12. 

As you did for year 1, compute the allele frequencies for the population that survives
to breed in year 2. These frequencies will be used to assign genotypes to individuals
(offspring) in year 3.

• Cell C12 =(2*COUNTIF($H$20:$H$519,”A1A1*”)+
COUNTIF($H$20:$H$519,“A1A2*”)+
COUNTIF($H$20:$H$519,”A2A1*”))/(2*$I$12)

• Cell D12 =1-C12
• Cell E12 =(2*COUNTIF($H$20:$H$519,”*B1B1*”)+

COUNTIF($H$20:$H$519,“*B1B2*”)+
COUNTIF($H$20:$H$519,”*B2B1*”))/(2*$I$12)

• Cell F12 =1-E12
• Cell G12 =(2*COUNTIF($H$20:$H$519,”*C1C1”)+

COUNTIF($H$20:$H$519,“*C1C2”)+
COUNTIF($H$20:$H$519,”*C2C1”))/(2*$I$12)

• Cell H12 =1-G12

C. Track the population
for year 2. 

1. In cells F20–F519, enter
a formula to generate a
genotype for each individ-
ual (offspring), given the
allele frequencies listed in
cells C11–H11.

2. Select cell C20, and copy
it to cell G20. 

3. Enter a formula in cell
H20 to determine if indi-
vidual 1 survives to breed
in year 2. 

4. Select cell E20, and copy
it to cell I20. 

5. Enter a formula in cell
I12 to count the number of
survivors in year 2. 

6. Enter a formula in cell
J12 to determine the aver-
age phenotype of sur-
vivors in year 2. 

7. Enter formulae in cells
C12–H12 to compute the
allele frequencies of sur-
vivors for year 2. 
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Note that when you press F9, the calculate key, the spreadsheet generates new geno-
types, and hence a new set of survivors and frequencies.

Use the line graph option and label your axes fully. Your graph should resemble Fig-
ure 6.

Your graph should resemble Figure 7.

8. Save your work. 

9. Repeat steps 1–8 to
obtain results for each of
years 3–5 in cells
J20–U519.

D. Create graphs.

1. Graph the frequencies
of each allele over time.

2. Graph the numbers of
survivors over the 5-year
period. 
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QUESTIONS

1. Hit the F9 key 20 times, keep track of the values in cells I11–I15, and count how
many times the population goes extinct. (Under these conditions it will proba-
bly never go extinct.) In what percentage of the 20 trials did the population go
extinct at any time during the 5-year period? This is the extinction rate for the
situation in which year 1 is wet, years 2, 3, and 5 have a mild drought, and year
4 is dry (drought conditions). Change cell B12 (year 2) to DRY instead of MILD.
Again hit the F9 key 20 times. In what percentage of the 20 trials did the popu-
lation go extinct? This is the extinction rate for the situation in which the
change in precipitation occurred more abruptly. Relate the extinction rate to the
genetic variation and phenotypic variation in the population.

2. How do starting initial allele frequencies affect how the population adapts to
abrupt changes in environmental conditions? 

3. What if initial frequency of the C2 allele was zero? Would the population ever
be able to adapt to a harsh drought? Explain how genetic diversity is important
to adaptation.

4. Is the following statement true or false? Explain. “The population had the
genetic diversity to adapt, but could not adapt because the environmental
change occurred too abruptly.”

*5. (Advanced) Explore the model by modifying the trait size needed for survival
(cells C4–E4), initial allele frequencies, and the environmental conditions experi-
enced in years 1–5. Provide an interesting observation in terms of adaptation as
a result of your exploration.
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Objectives

• Model two subpopulations that exchange individuals
through gene flow.

• Determine equilibrium allele frequencies as a result of gene
flow.

• Calculate H (heterozygosity) statistics for the population.
• Calculate F statistics for the population.
• Determine how H, F, and allele frequencies change over

time as a result of gene flow.

Suggested Preliminary Exercise: Hardy-Weinberg Equilibrium

34

INTRODUCTION
Think about a favorite plant or animal species, and consider how it is distributed
across the earth. Are the individuals all in one place, or are individuals scattered
in their distribution? Most of the earth’s species have distributions that are “patchy”
in some way. In other words, the greater population is subdivided into smaller
units or subpopulations. For example, a species of fish may have a subdivided dis-
tribution if individuals inhabit a number of different lakes. Similarly, maple forests
may be patchily distributed within a mosaic of farm land, resulting in a number
of subpopulations. Even dandelions in a lawn may have distinct patches to which
individuals belong. But does this “subdivision” in distribution suggest that the
species is made up of several “subpopulations,” each with an independent evo-
lutionary trajectory? Or does the species “behave” as a single, panmictic popula-
tion, where individuals can mix freely in spite of the patchiness? Or perhaps the
population is somewhat subdivided, where individuals from one location can mix
(breed) with individuals from other locations, but not as freely as a single pan-
mictic population because they are spatially separated from each other.

These questions concerning gene flow and population structure are important
from the perspectives of evolution, ecology, and conservation. A population is
“structured” if the individuals that make up the greater, overall population are
subdivided spatially, and hence random mating among individuals in the greater
population is limited. The degree to which populations are structured depends
in large part on the amount of gene flow— the migration of individuals between
subpopulations, with subsequent breeding—that takes place between the subdi-
vided populations (or subpopulations). If there is little or no gene flow, then each
subpopulation evolves independently of the other. In contrast, if there is substan-
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tial gene flow, the structure in the population breaks down because sufficient genetic
mixing has occurred. Gene flow is therefore a homogenizing force that causes allele fre-
quencies in subdivided populations to converge (Wilson and Bossert 1971).

Allele Frequencies in Subpopulations
Let’s consider gene locus A in two subpopulations. To keep things simple, we’ll assume
locus A exists in two forms, or alleles, A1 and A2. Let’s assume that subpopulation 1
has an A1 allele frequency, p1, of 0.7, while subpopulation 2 has an A1 allele frequency
of p2 = 0.2. Let’s now let the two subpopulations exchange individuals through migra-
tion, where m is the migration rate of individuals into a subpopulation. The individu-
als that make up the population that did not migrate in are called residents, and the
resident population is designated as 1 – m. If m > 0, then after a single generation of
mixing, p1 in subpopulation 1 will be changed; subpopulation 1 now consists of some
portion of individuals that remained within subpopulation 1, plus some portion of indi-
viduals that migrated from subpopulation 2 into subpopulation 1. Mathematically, the
new frequency of allele A1 is designated as p1′, and

Equation 1

Equation 1 says that the new frequency of allele A1 will have two components: (1 – m)p1,
which represents the proportion of subpopulation 1 that does not emigrate times the
frequency of A1 in subpopulation 1 before migration, and mp2, which represents the
proportion of immigrants from subpopulation 2 times the frequency of A1 in subpop-
ulation 2.

Equation 2

Substituting p1′ from Equation 1 into the Equation 2, we get

The p1s drop out of the equation, and we can factor out –m from the remaining terms
to get

Equation 3

Equation 3 says that a change in allele frequency of a recipient population (subpopu-
lation 1) due to migration is a function of the migration rate, as well as of the difference
in the allele frequency between the migrants and the recipient population. If the migra-
tion rates remain constant over time, eventually the two subpopulations will have
exactly the same allele frequencies (Figure 1; Wilson and Bossert 1971).

H and F Statistics
When two populations have reached the same allele frequencies, the larger population
will appear to be unstructured. Or is it? Structure depends not only on allele frequen-
cies but also how the A1 and A2 alleles are distributed among individuals. Therefore,
we must also consider genotype frequencies in the subpopulations.

In many species, especially animals, individuals carry two copies of  most genes, one
from each parent. Let’s assume that subpopulation 1 consists of 5 individuals with geno-
types A1A1, A1A1, A1A2, A2A2, A2A2, and that subpopulation 2 consists of 5 individuals
with genotypes A1A2, A1A2, A1A2, A1A2, A1A2. The  subpopulations have identical fre-
quencies of the A1 allele, p = 0.5, but the two subpopulations have quite different levels
of heterozygosity. Most of the individuals in subpopulation 1 are homozygotes—they
carry either two copies of A1 or two copies of A2; but the individuals in subpopulation
2 are heterozygotes and each of them carries one copy each of allele A1 and A2. So
allele frequency alone does not tell us everything about a population’s structure. The
level of structure depends on levels of heterozygosity in the subpopulations, as well as
the level of heterozygosity in the greater population. 

∆p m p p= − −( )1 2

∆p m p mp p p mp mp p= − + − = − + −( )1 1 2 1 1 1 2 1

428 Exercise 34



Why is heterozygosity used to estimate structure? And how is the degree of struc-
turing measured through heterozygosity statistics? Two measures are commonly used,
H and F (Hartl 2000).

H is a measure of heterozygosity; it is used to measure structure because individu-
als within subdivided populations are likely to inbreed due to small population sizes,
which typically results in decreased heterozygosity (see Exercise 41/24, “Inbreeding and
Outbreeding”). Thus, if there is no gene flow between subpopulations, each subpopu-
lation will (theoretically) have more homozygotes (A1A1 or A2A2) than predicted by
Hardy-Weinberg.

The statistic Hi measures the observed level of heterozygosity in a subpopulation For
example, 1 of 5 individuals in subpopulation 1 from our previous example were het-
erozygotes while 5/5 individuals in subpopulation 2 were heterozygotes. This measure
is averaged across subpopulations, and can be interpreted as the average heterozygos-
ity of an individual in a subpopulation, or the proportion of the genome that is het-
erozygous within an individual. For example, H for subpopulation 1 equals 1/5 = 0.2.
H for subpopulation 2 equals 5/5 = 1.0. The average of the two H scores = 0.6 = Hi.

The observed levels of heterozygosity in subpopulations are compared to two other
measures of heterozygosity, Hs and Ht. Hs is the expected level of heterozygosity in a sub-
population if the subpopulation is randomly mating as predicted by Hardy-Weinberg.
This measure is also averaged across subpopulations. Returning to our example, both
subpopulations have allele frequencies p = 0.5 and q = 0.5. If each subpopulation were
in Hardy-Weinberg equilibrium, we would expect the genotype frequency of het-
erozygotes to be 2 × 0.5 × 0.5 = 0.5. This number is averaged for the two subpopula-
tions to give us Hs: (0.5 + 0.5)/2 – 0.5. Thus, in our example, Hi = 0.6 and Hs = 0.5. This
means that the observed levels of heterozygotes are, on average, higher than what is
expected for a population in Hardy-Weinberg equilibrium.Ht is the expected level of
heterozygosity that should be observed in the subpopulations if the greater popula-
tion (subpopulation 1 and subpopulation 2) were really a single, randomly mating, pan-
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mictic population. If our subpopulations were really a single, panmictic population,
the expected genotype frequency of heterozygotes would be 2 × p × q, where p and q
are the averages of the subpopulation allele frequencies (Hartl, 2000). In out example,
p = q = 0.5 for both subpopulations, so the equation is 2 × 0.5 × 0.5 = 0.5.

The three H statistics are used to calculate F statistics, which are common measures
of population subdivision and inbreeding; F is sometimes referred to as the inbreeding
coefficient. The F statistics use the different H statistics to reveal different things about
population subdivision. Fis compares observed and expected heterozygosities within a
subpopulation. It is calculated as

Equation 4

and suggests the level of inbreeding at the subpopulation level. Thus, Fis is often called
the inbreeding coefficient within subpopulations. The numerator reveals how much the het-
erozygosity observed in the subpopulations differs, on average, from what is expected
from Hardy-Weinberg. For mathematical reasons, this difference is then “adjusted” by
the expected level.

When Hi is approximately the same as Hs, the deviation from Hardy-Weinberg is
small, and Fis is close to 0, suggesting that observed and expected levels of heterozy-
gosity within subpopulations are close in value. When Hi is much different than Hs, Fis
deviates from 0. When Fis is positive, fewer heterozygotes are observed in subpopula-
tions than predicted by Hardy-Weinberg. When Fis is negative, more heterozygotes are
observed in the subpopulation than predicted by Hardy-Weinberg. Fis is usually large
in self-fertilizing (inbred) species.

Fit also measures inbreeding, but is concerned with how individuals (Hi) deviate,
on average, from the heterozygosity of the larger population (Ht). It is calculated as

Equation 5

Thus, it calculates a level of inbreeding at the total population level. When Hi is similar to
Ht, the observed heterozygosities in subpopulations are close to what is predicted as
if the population were really a single large, panmictic population, and Fit is 0. When
Hi is much different than Ht, Fit deviates from 0. When Fit is positive, fewer heterozy-
gotes are observed in subpopulations than predicted by Hardy-Weinberg. When Fit is
negative, more heterozygotes are observed in the subpopulation than predicted by
Hardy-Weinberg. These differences can be caused by both inbreeding and by genetic
drift, both of which reduce heterozygosity in a subpopulation. Thus, Fit measures the
amount of inbreeding due to the combined effects of nonrandom mating within sub-
populations and to random genetic drift among subpopulations. 

Fst is a measure of nonrandom mating among or between subpopulations relative to the
total population, and hence this statistic is often used to indirectly measure the amount
of population subdivision. It is calculated as

Equation 6

Fst is a measure of the genetic differentiation of subpopulations and is always posi-
tive. The formula “compares” two expected values from Hardy-Weinberg calculations.
The numerator in the formula measures the difference in Ht (the average of the expected
heterozygosity in the total population) and Hs (Hs is the average expected heterozygos-
ity within the subpopulations). Fst is not concerned with individual subpopulations, so
it measures the reduction in heterozygosity due to factors other than inbreeding (such
as genetic drift). When population subdivision is great, the difference between the val-
ues in the numerator increases, Fst takes on a high value.

F
H H

Hst
t s

t
= −

F
H H

Hit
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t
= −

F
H H

His
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s
= −
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PROCEDURES

The H and F statistics can be confusing until you sit down and work through the math.
The purpose of this exercise is to set up a model of two subpopulations of equal size
that interact through migration. You’ll enter observed genotype frequencies, then cal-
culate gene frequencies and how these frequencies change over time. You’ll also cal-
culate and interpret the H and F statistics as gene flow occurs between the two popu-
lations. As the simulation progresses, you’ll be able to see how the H and F statistics
change as the two subpopulations become homogenized, and you’ll interpret what the
statistics mean.

As always, save your work frequently to disk. 

ANNOTATION

We’ll consider a general model of gene flow and population structure that focuses on
a single locus, the A locus. We’ll start with two subpopulations, 1 and 2, that each
consist of N individuals; we designate N as 100 in cells C5 and C6. In this exercise, N
will be the same for both populations.

The migration rate, m, ranges between 0 and 1 and is the proportion of the population
that migrates from one subpopulation to the other. The value in cell D5 gives the migra-
tion rate into subpopulation 1 (from subpopulation 2). The value in cell D6 gives the
migration rate into subpopulation 2 (from subpopulation 1). To begin the exercise, we’ll
consider two subpopulations where the migration rate between them is 0. We’ll mod-
ify m later in the exercise. 

Enter =1-D5 in cell E5 and =1-D6 in cell E6.
The total subpopulation consists of migrants that move into the population plus the
residents that remain in the population, so the sum of m (the migration rate) and r (res-
ident population proportion) is equal to 1. 

For the purpose of this exercise, we’ll assume that you have the ability to determine
the genotype of each individual in the subpopulations, and can then calculate the
proportion of A1A1, A1A2, and A2A2 genotypes. The current values in cells F5–H6 indi-
cate that both subpopulations are in Hardy-Weinberg equilibrium. (Prove this to your-
self before you continue). You will be able to manipulate the observed genotype pro-
portions later in the exercise (i.e., you can model populations that are not in
Hardy-Weinberg equilibrium). 

INSTRUCTIONS

A. Set up the spread-
sheet.

1. Open a new spreadsheet
and set up headings as
shown in Figure 2.

2. Enter N and m subpop-
ulation parameters as
shown.

3. Enter a formula to cal-
culate the value of r (the
proportion of each sub-
population that are resi-
dents as opposed to
migrants).

4. Enter the observed
genotype frequencies for
each subpopulation in
cells F5–H6 as shown in
Figure 2.
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Enter the formula =SUM(F5:H5) in cell I5 and =SUM(F6:H6) for subpopulation 2. These
equations are used to ensure that the genotype frequencies for each subpopulation sum
to 1. If the frequencies don’t sum to 1, change the observed genotype frequencies so
that they sum to 1.

We’ll calculate the allele frequencies in our two subpopulations over a 50-generation
period. Year 0 will represent the initial conditions in terms of allele frequencies. 

Remember that a population of 100 individuals has 200 “gene copies” or “total alleles”
present. (Each individual has 2 copies). We just need to know how many of those are
A1 alleles, and how many are A2 alleles. Homozygote A1A1 individuals carry two of the
A1 alleles, and heterozygotes carry 1 A1 allele.
Enter the formula =(2*F5*C5+G5*C5)/(2*C5) in cell B13.
Enter the formula =1-B13 in cell C13.

Enter the formula =(2*F6*C6+G6*C6)/(2*C6) in cell E13.
Enter the formula =1-E13 in cell F13.

Remember that the frequencies in the next time step can be computed as 

We used the formula =$E$5*C13+$D$5*F13 in cell C14 to calculate the frequency of
the A2 allele, and then calculated A1 as 1 – q in cell B14 (=1-C14).
Make sure you understand the C14 formula. It says that the frequency of the A2 allele
in subpopulation 1 in year 1 depends on two factors: (1) the frequency of the A2 allele
in the resident population ($E$5*C13), and (2) frequency of the A2 allele in the immi-
grants ($D$5*F13). 

We used the formula =C14-C13. (You can make a delta symbol, ∆, by typing in a cap-
ital D, and then changing the font to Symbol.)

Enter the following formulae:
• E14 =1-F14
• F14 =$E$6*F13+$D$6*C13
• G14 =F14-F13

p m p mpt1 1 1 21, ( )+ = − +

5. Sum the genotype fre-
quencies for each subpop-
ulation in cells I5 and I6. 

6. Save your work.

B. Set up the general
model of gene flow.

1. Set up new headings as
shown in Figure 3.

2. Set up a linear series from
0 to 50 in cells A13–A63.

3. In cell B13 and C13,
enter formulae to calculate
the initial frequencies of
the A1 and A2 alleles in
subpopulation 1, respec-
tively.

4. In cells E13 and F13,
enter formulae to calculate
the starting frequencies of
the A1 and A2 alleles in
subpopulation 2. 

5. Enter formulae in cells
B14 and C14 to calculate
the allele frequencies of
subpopulation 1, given the
migration and resident
parameters.

6. Calculate the change in
the frequency of the A2
allele (∆A2) in cell D14. 

7. Calculate the allele fre-
quencies and change in the
A2 allele frequency in sub-
population 2 for year 1.

8. Select cells B14–G14 and
copy their formulae down
to row 63. 

9. Save your work.
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Use the line graph option and label your axes fully. Your graph should look something
like Figure 4. (We have graphed only the first 15 generations for clarity.)

We generated the graph in Figure 5 by changing the migration rate for subpopulation
1 from 0 to 0.2.

C. Make graphs.

1. Graph the frequency of
the A1 allele over time.

2. Change the migration
rate for your two popula-
tions (choose any rate
between 0 and 1), and con-
struct a new graph of
allele frequencies over
time.

3. Save your work, and
answer questions 1–3 at
the end of the exercise.

D. Calculate H and F
statistics.

1. Set up new headings as
shown in Figure 6.
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Enter the formula =AVERAGE($G$5:$G$6) in cell H13.
Hi is the average observed heterozygosity within a total population. Thus, we take

the average of cells G5 and G6, which are the frequencies of heterozygotes in sub-
poplation 1 and subpopulation 2. Keep in mind that by making cells G5–G6 absolute
references, you are forcing the heterozygote proportions to remain constant over
time—this will affect the calculation of F statistics later in the exercise. 

Enter the formula  =AVERAGE(2*B13*C13,2*E13*F13) in cell I13.
Hs is the average expected heterozygosity within the subpopulations. Cell B13 and C13
give the frequency of the A1 (p) and A2 (q) allele in subpopulation 1. Cells E13 and F13
give the frequency of the A1 (p) and A2 (q) allele for subpopulation 2. The Hardy-Wein-
berg principle tells us that, for each subpopulation, the expected heterozygote frequency
is 2 × p × q. The formula in I13 tells Excel to multiply 2 × p × q for subpopulation 1, then
multiply 2 × p × q for subpopulation 2, and finally to average these two values together. 

Enter the formula =2*AVERAGE(B13,E13)*AVERAGE(C13,F13) in cell J13.
Ht is the average of the expected heterozygosity in the total population. Ht is similar
to Hs, but it’s the average expected heterozygosity for the population at large. There-
fore, first we calculate an overall p, then an overall q, and then multiply by 2. The result
tells us what heterozygosity should be if the two subpopulations were one panmictic
population. 

Enter the formula =(I13-H13)/I13 in cell K13.
Now that we have the H statistics calculated, the F statistics are fairly straightfor-
ward. The F statistics compare the different levels of heterozygosities to reveal how the
population is structured. All three F statistics (Fis, Fit, Fst) have Ht or Hs as the denomi-
nator, which “adjusts” for the expected level of heterozygosity if the population were
a single randomly mating, panmictic population (Ht) or randomly mating subdivided
populations (Hs). 

Fis measures of the deviation from Hardy-Weinberg heterozygote proportions within
subpopulations (or the deviation of Hi from Hs). Remember that Fis also called the
inbreeding coefficient because it measures the decrease in heterozygosity within a sub-
population (due to inbreeding). The numerator in the equation Fis = (Hs – Hi) / Hs
thus reveals the difference between the actual, observed heterozygosities in the sub-
populations (Hi) and the expected heterozygosities if the subpopulations were in Hardy-
Weinberg equilibrium (Hs). When Hi is approximately the same as Hs, the deviation
from Hardy-Weinberg is small, and Fis is close to 0. When Hi is much different than
Hs, Fis deviates from 0. When Fis is positive, fewer heterozygotes are observed in sub-
populations than predicted by Hardy-Weinberg. When Fis is negative, more heterozy-
gotes are observed in the subpopulation than predicted by Hardy-Weinberg. 

Enter the formula =(J13-H13)/J13 in cell L13.
Fit measures the total inbreeding coefficient. It measures the deviations of observed het-
erozygosities within subpopulations from Hardy-Weinberg proportions of the total
population (or the deviation of Hi from Ht). The equation for calculating Fit is Fit =
(Ht – Hi)/Ht. When Hi is similar to Ht, the observed heterozygosities in subpopulations
are close to what is predicted as if the population were really one large, panmictic pop-
ulation, and Fit is 0. Thus, Fit measures the amount of inbreeding due to the combined
effects of nonrandom mating within subpopulation and to random genetic drift among
subpopulations. When Hi is much different than Ht, Fit deviates from 0. When Fit is pos-
itive, fewer heterozygotes are observed in subpopulations than predicted by Hardy-
Weinberg. When Fit is negative, more heterozygotes are observed in the subpopulation
than predicted by Hardy-Weinberg.

2. In cell H13, enter a for-
mula to calculate Hi.

3. In cell I13, enter a for-
mula to calculate Hs.

4. In cell J13, enter a for-
mula to calculate Ht.

5. In cell K13, enter a for-
mula to calculate Fis.

6. In cell L13, enter a for-
mula to calculate Fit.

434 Exercise 34



Enter the formula =(J13-I13)/J13 in cell M13.
Fst is a measure of the genetic differentiation of subpopulations and is always posi-
tive. The formula “compares” two expected values from Hardy-Weinberg calculations.
The numerator in the formula Fst = (Ht – Hs)/Ht measures the difference in Ht (the aver-
age of the expected heterozygosity in the total population) and Hs (Hs is the average
expected heterozygosity within the subpopulations). Thus, Fst is the amount of “inbreed-
ing” due solely to population subdivision (i.e., due to genetic drift). When inbreeding
due to subdivision is great, the difference between the values in the numerator increases,
and Fst takes on a high value. 

At this time, you might want to play around with your model parameters and con-
template the meaning of the H and F statistics in Generation 0. Then consider the sta-
tistics as gene flow occurs in subsequent generations.

Interpret your graph. Your graph should resemble Figure 7.

Your graph should resemble Figure 8. Interpret your graph.

7. In cell M13, enter a for-
mula to calculate Fst.

8. Select cells H13–M13,
and copy their formulae
down to row 63.

9. Save your work.

E. Create graphs. 

1. Set the migration rate to
0, and graph the H statis-
tics and allele frequencies
as a function of time. Use
the line graph option and
label your axes fully.

2. Graph the F statistics
and allele frequencies as a
function of time.

3. Save your work.
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QUESTIONS

1.Enter the following values in your spreadsheet:

Change cell D5 by increments of 0.1. What is the equilibrium allele frequencies
for subdivided populations with gene flow? How does changing m determine
the point in time is equilibrium reached? 

2. How do allele frequencies change in the two populations in an island model
(gene flow is uni-directional) compared to a general model in which gene flow
is bi-directional? Set m for subpopulation 1 to 0 to indicate that subpopulation 1
is a mainland that sends out emigrants but does not receive immigrants. Set m
= 0.5 for subpopulation 2 to indicate that subpopulation 2 is an island that
receives immigrants from subpopulation 1. Graph your results. Then change m
for subpopulation 1 from 0 to 1 in increments of 0.1. How do the two models
compare? How do your results change if m for subpopulation 2 is changed?

3. What determines the amount of time to reach equilibrium frequencies in subdi-
vided populations that have gene flow? Set up population genotypes as shown.

The allele frequencies for the subpopulations are p = 0.91 for subpopulation 1
and p = 0.09 for subpopulation 2. Keeping m fixed at 0.1 for both subpopula-
tions, change the intial genotype frequencies (the allele frequencies will also be
altered). How does change in initial genotype frequency (and allele frequency)
affect the amount of time until equilibrium is achieved? 

Return your spreadsheet to its initial settings (Figure 2) and continue to Part D
in the exercise.

4. Set m to 0 in both subpopulations, and enter genotype frequencies in cells
F5–H6 so that both subpopulations are in Hardy-Weinberg equilibrium, and
have identical allele frequencies. (In the exercise both subpopulations were in
Hardy-Weinberg equilbrium and had different allele frequencies within them.)
How does this change affect the H and F statistics? Graph the results and fully
interpret the meaning of the H and F statistics. 
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3

4

5

6

A B C D E F G H

N m r A1A1 A1A2 A2A2

Subpopulation 1: 100 0 1 0.25 0.5 0.25

Subpopulation 2: 100 0 1 0.09 0.42 0.49

Parameters Genotype frequencies

3

4

5

6

A B C D E F G H

N m r A1A1 A1A2 A2A2

Subpopulation 1: 100 0.1 0.9 0.83 0.16 0.01

Subpopulation 2: 100 0.1 0.9 0.01 0.16 0.83

Parameters Genotype frequencies



5. Set m as 0 values for both subpopulations, then enter genotype frequencies in
cells F5–H6 so that at least one subpopulation is out of Hardy-Weinberg equilib-
rium. For example, you might enter values as shown: 

How do H and F statistics reflect structure? How did Fis change? Is it positive or
negative? Is it large or small? Explain why you obtained the Fis value that you
did. What does this tell you about the populations? (Remember that the geno-
type frequencies will remain out of Hardy-Weinberg equilibrium over time
because of the formula entered in cell H13.) 

6. For this question, you will ignore the genotype frequencies given in rows 5 and
6, and directly enter the initial allele frequencies for subpopulations in cells
B13–F13. (We’ll assume the genotypes are in Hardy-Weinberg proportions.)
Start with p = 0.6 for subpopulation 1 and p = 0.5 for subpopulation 2. Record
the F statistics for that generation. Then let p = 0.8 in supopulation 1 and p = 0.2
in subpopulation 2, and record the F statistics. Then let p = 0.9 in subpopulation
1 and subpopulation 2, and record the F statistics. How did the F statistics
change as the two subpopulations became more differentiated (allele frequen-
cies diverged)? Which F statistic changed the most? Why? 
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N m r A1A1 A1A2 A2A2

Subpopulation 1: 100 0 1 0.5 0 0.5

Subpopulation 2: 100 0 1 0.04 0.32 0.64

Parameters Genotype frequencies



LIFE HISTORY TRADE-OFFS35
Objectives

• Develop a spreadsheet model of annual versus perennial life
history strategies for plants.

• Determine how adult survival and offspring survival affect
the breeding success of plants. 

• Evaluate how trade-offs in reproduction and survival affect
population growth.

• For a given environment, determine the life history schedule
that maximizes growth.

Suggested Preliminary Exercises: Age-Structured Matrix
Models; Life Tables and Survivorship Curves

INTRODUCTION
A sockeye salmon (Oncorhynchus nerka) is born in an Alaskan stream. It migrates to
the ocean and spends several years there while it grows to reproductive size, and
then journeys back to its natal stream to spawn. It lays hundreds of eggs (few of
which will survive to reproductive age) and then dies. Foxglove (Digitalis purpurea)
is a plant that flowers when it reaches a critical size (usually 2 years after it germi-
nates), produces hundreds of seeds, and normally dies after setting seed. Human
beings (Homo sapiens) have a typical life span of more than 65 years and can pro-
duce offspring when they are teenagers. Female humans typically produce a sin-
gle offspring in each reproductive bout (multiple births, even twins, are relatively
rare) and provide more than a dozen  years of care for their young. These examples
describe the life history of various species. If you’ve worked through a life table
exercise, you’ve essentially charted an organism’s life history. 

Ecologists describe a species in terms of its reproductive life history. Life his-
tory schedules address the following questions:

• At what age does reproduction start?
• How many offspring are typically produced in a single reproductive

bout?
• How many reproductive bouts does an organism have in its lifetime?
• Does number of offspring produced vary with the adult’s age? 

Species that reproduce only once during their life have a semelparous life history
strategy. Salmon are examples of semelparous species. The fecundity schedule

 



for such an organism would have zero for all age brackets except the age at which the
reproduction occurs. Semelparous species can be early reproducers (produce offspring
in their first year of life, such as many annual plants), or late reproducers (produce off-
spring after their first year of life, such as salmon). In contrast, iteroparous species
reproduce several times in a lifetime. Maple trees, humans, and sea turtles are exam-
ples of iteroparous species. 

To begin our discussion of life histories, let’s assume that a hypothetical species has
two age classes and that its life history can be shown with a Leslie matrix. Let’s also
assume that the second age class is a composite age class consisting of individuals of
age 2 and any older individuals. This Leslie matrix has the form

Remember that the top row of the Leslie matrix gives the fertility (F) of age class 1
and age class 2+ (which is a composite of 2-year-olds plus any older individuals). Let’s
assume that F1 = F2 = 10 individuals per individual per year. The bottom row of the
Leslie matrix gives the survival probabilities, P. The left entry is the probability that an
individual in age class 1 will survive to age class 2+, and the right entry is the proba-
bility that an individual in age class 2+ will survive to live additional years, and remain
in the 2+ age class. Let’s assume that these parameters are 0.3 and 0.4, respectively. If
we describe life histories generally in terms of early reproduction versus late repro-
duction and semelaparous versus iteroparous, we arrive at four life history strategies
and their associated Leslie matrices (Table 1).

Trade-Offs between Reproduction and Survival
Ideally, a species would reproduce as often as possible, have as many young as possi-
ble to maximize lifetime reproduction, and live forever. But is it that simple? An organ-
ism has a finite amount of energy to allocate to survival and reproduction. Energy allo-
cated to reproduction means that less energy may be allocated to growth or
maintenance (i.e., tasks that enhance survival). This creates a trade-off between pres-
ent reproduction and survival, since organisms cannot maximize both. If size confers
a significant survival advantage, for example, an organism may maximize its growth
at the expense of reproducing until it reaches a critical size (Silvertown and Dodd 1999).
And individuals that invest heavily in early reproduction may have poor survivorship
later in life (Gotelli 2001). Figure 1 shows such a trade-off. The x-axis gives the pro-
portional effort invested in reproduction, ranging between 0 and 1. The y-axis gives the
survival rate, adjusted for the reproductive effort. When the proportional reproductive

A =










F F

P P
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Table 1.  Four Life History Strategies and their Associated Leslie Matrices

The top row of each matrix gives the fertility of age classes 1 and 2+, F1 and F2,
respectively. The lower row of each matrix gives the respective survival probabil-
ity for each class, P1 and P2. The left-hand column represents age class 1, the right-
hand column age class 2+.

Semelparous Iteroparous

Early reproduction

Delayed reproduction A =










0 10
0 3 0 4. .

A =










0 10
0 0

A =










10 10
0 3 0 4. .

A =










10 0
0 0



effort is 0, no energy is devoted to current reproduction, and survival is determined by
the intrinsic qualities of the environment in which the organism lives. In Figure 1, the
survival rate is 0.5 even when individuals do not reproduce. When reproductive effort
is greater than 0, it has a negative impact on survival, and the nature of this impact
depends on the shape of the curve. When the effort is 1, all energy is devoted towards
current reproduction, and survival becomes 0. Figure 1 has a fairly steep slope, which
suggests that there is a “high cost of reproduction” in this environment. A high cost of
current reproduction negatively impacts survival, which in turn affects future popu-
lation size and hence future reproduction. 

Figure 2 also shows trade-offs between survival and reproduction. However, sur-
vival is not decreased until almost all energy is devoted towards current reproduction.
This environment would be considered a “low cost of reproduction” environment. Such
environments may be so benign that resources are available for both survival and repro-
duction (survival is high no matter how much energy is devoted to reproducing). Or,
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Trade-offs in Current Reproduction and Survival
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Figure 1 The shape of this curve indicates that virtually any energy
devoted to reproduction will negatively impact survival; this species has a
“high cost of reproduction” since the curve slopes downward.
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Figure 2 The shape of this curve indicates that energy expended on
reproduction has little impact on survival unless almost all of an individ-
ual’s energy is devoted to reproduction. This species has a “low cost of
reproduction.”



conversely,  it may be that individuals die no matter how much effort is put into repro-
duction (survival is low no matter how much energy is devoted to reproducing). For
example, if breeding ponds dry out in the summer, all the adults die regardless of their
reproductive effort.

Given such trade-offs, natural selection will “favor” those individuals whose life his-
tory schedules maximize the number of offspring an individual contributes to the next
generation, and select against individuals whose life histories are less compatible with
the environment. The study of trade-offs in survival and reproduction, and how life his-
tory strategies can evolve, is called life history theory. One such life history theory is
the theory of r-K selection (MacArthur and Wilson 1967; Pianka 1970). This theory
describes organisms as being r-selected versus K-selected, where the terms r (the instan-
taneous rate of increase) and K (the carrying capacity of the environment) come from
the logistic growth model (see Exercise 8, “Logistic Population Models”). Organisms
that are r-selected live in highly disturbed environments, tend to increase in numbers
exponentially with a high r, and then are depressed dramatically in numbers when a
disturbance such as a storm or drought occurs. In other words, their growth is governed
by r (or λ) until a disturbance occurs. Such populations rarely approach K and intraspe-
cific competition has a negligible impact on growth rates. Because the future is uncer-
tain in terms of resources, these organisms tend to breed early in life, are semelparous,
and have large clutches.

In contrast, organisms that live in more stable, competitive environments are called
K-selected species because their population numbers tend to be stable over time and
exist at levels near the carrying capacity of the environment. Intraspecific competition
is great for such species. These organisms tend to bear fewer offspring later in life and
are iteroparous, because this schedule gives young a competitive advantage to survive
in a competitive environment. A summary of how life history attributes are expected
to vary for r and K selected species is given in Table 2.

Cole’s Paradox
Even before r-K selection theory was formulated, Lamont Cole (1954) wondered about
how life histories evolve in plant species. An annual plant is one that reproduces in
its first year and then dies. Thus, an annual has a semelparous reproductive strategy.
A perennial plant may also reproduce in its first year, but survives into future years
and reproduces each year thereafter; thus it has an iteroparous reproductive strategy.

Cole realized that an annual strategy could achieve the same growth rate (λ) as a peren-
nial strategy, where a perennial is immortal (never dies; survival = 1), as long as the annual
can reproduce just one more offspring per year than the perennial. If we assume a pop-
ulation is censused with a prebreeding census (all individuals are counted immediately
before the birth pulse occurs, Figure 3), this means that an annual with a Leslie matrix
A produces the same finite rate of increase (λ) as a perennial with Leslie matrix B:

Note that in matrix A (the annual), reproduction occurs in only one age class (semel-
parous), and that the probability of survival beyond age class 1 is 0, so individuals
reproduce and then die. Matrix B, in contrast, shows reproduction occurring in both
age groups (iteroparous), and survival equals 1. Since the two matrices yield the same
λ, a perennial that produces 10 offspring per year and lives forever has the same fitness
as an annual that produces just one more offspring and then dies. Cole wondered why
we see perennial life history strategies at all, given that just a bit more reproductive
effort could compensate for energy that otherwise would be devoted to survival. This
is called Cole’s paradox.

The key to understanding Cole’s paradox is to realize that in a matrix model, the
fertility rates for each age class (Fi for age class i) are the birth rates (bi) adjusted for
survival (see Exercise 13, “Age-Structured Matrix Models”). Figure 3 illustrates this using
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Table 2.  Summary of r- versus K-Selected Life History Strategies

r-Selected

Reproduce early, since disturbance is fre-
quent and unpredictable; those individuals
that wait to reproduce may die before
reproduction occurs.

Produce many offspring per reproductive
bout. Saving energy for future reproduc-
tion is fruitless if the probability of mortali-
ty in the future is uncertain.

Produce small offspring, because if there
is a finite amount of energy that can be
used for reproduction, more offspring can
be produced if each offspring is small.

Smaller adults. Because individuals breed
at an early age, breeding individuals may
be smaller on average than K-selected
species.

Tendency is to reproduce once, then die.
Allocating energy for future reproduction
in an uncertain environment may lead to
fewer offspring overall.

Type III survivorship curve. Because the
environment is unpredictable, and because
offspring are small, survivorship is low for
young and intermediate ages.

K-Selected

Reproduce later, since individuals that
reproduce early are likely to have smaller,
less competitive offspring.

Produce fewer offspring per reproductive
bout, since fewer offspring with parental
care are more likely to survive in a compet-
itive environment than many offspring
with no parental care.

Produce large offspring, since smaller off-
spring will not be able to compete and sur-
vive in competitive environments as well
as larger offspring.

Larger adults able to produce larger off-
spring. 

Tendency to reproduce repeatedly,
because only one or few offspring are pro-
duced per reproductive bout and require
care. Repeated reproduction allows more
total offspring to be produced, spread out
over the reproductive portion of the life
cycle.

Type I survivorship curve. Because the
young are large and competitive, there is
high survivorship of young and intermedi-
ate ages, then a drop-off as old age sets in.

F2 = b2P2

N1

N2

N1

N2

Census:
Time t – 1

Census:
Time t

Census:
Time t + 1

N1

N2

F1 = b1P1 F1 = b1P1

F2 = b2P2

Summarized from Begon et al. (1986).

Figure 3 In this hypothetical population, the number of individuals of each age
class (N1 and N2) is counted during the census, and a birth pulse (filled circles)
occurs just after the census. Offspring are produced according to the birth rate (b1
or b2). Both age classes contribute individuals to age class 1 in the next year.
However, in order for these young to be counted in the population as 1-year-olds
(and to reproduce) in the next time step, they must survive almost a full year, until
the next birth pulse. Thus, the fertilities are multiplied by the probability that an
individual will survive to reproduce the following year (P1 or P2). The resulting
adjusted fertility (biPi) gives the number of offspring produced per individual that
will survive and be counted in the next time step (Caswell 1989).



a hypothetical population with two age classes, censused over a 3-year period (time 
t – 1, time t, and time t + 1). Cole’s paradox relies on the unlikely assumption that all
individuals born in year t will survive to year t + 1 (i.e., P1 = 1).

Model Development
In this exercise, you will set up a matrix model of Cole’s paradox, and will explore the
conditions that lead to iteroparity, semelparity, early reproduction, and late reproduc-
tion. Our model will take the form of a Leslie matrix model, but will include something
that Cole did not consider: trade-offs in survival and reproduction. The standard matrix
model has the form

Equation 1

where F1 and F2 are the fertility rates of 1-year-olds and 2-year-olds, respectively, and P1
and P2 are the survival rates. P1 gives the probability that an individual in the first age
class will survive to the second age class. P2 gives the probability that an individual in
the second age class will survive but remain in age class 2+. The model multiplies the
matrix of fertilities and survivals by the number of individuals in each age class at
time t to give the number of individuals in each age or stage class at time t + 1. For exam-
ple, the number of individuals in age/stage  1 at time t + 1 (N1(t+1)) is computed as

N1(t+1) = F1 × N1(t) + F2 × N2(t)

The number of individuals in age/stage 2 at time t + 1 is computed as

N2(t+1) = P1 × N1(t) + P2 × N2(t)

We will modify the standard matrix model by adding terms to the Fi and Pi elements
in the Leslie matrix, which control trade-offs in survival and reproduction (after Cooch
and Ricklefs 1994).

Equation 2

The term E gives the proportional effort of energy allocated towards current repro-
duction, and ranges from 0 to 1. Thus, the fertility rates are multiplied by E in the mod-
ified Leslie matrix. When E = 1, all energy is allocated toward current reproduction,
so individuals reproduce with fertility rates in the standard model. As E decreases, the
current fertility rate decreases proportionately. The trade-off between current repro-
duction and survival is reflected in the second row of the Leslie matrix. Each survival
probability is multiplied by the term (1 – Ez). The survival probabilities are adjusted
depending on both E (the proportional investment into reproduction) and z (the envi-
ronment’s cost of reproduction). The lower the value of  z, the higher the cost of repro-
duction (Figure 1), and the higher the z, the lower the cost of reproduction (Figure 2). 

PROCEDURES

With this background in mind, let us begin with the model. The goal of the model is
to explore how λ, the finite rate of increase, can be maximized given trade-offs in sur-
vival and reproduction, and to think about the kinds of environments that promote
early versus late reproduction, and semelparous versus iteroparous reproduction. If
you are rusty on Leslie matrices, refer back to Exercise 13 before you begin. As always,
save your work frequently to disk.
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ANNOTATION

We will consider a plant that has just two age/stage classes. The matrix of cells

is the life history for an annual plant. Each plant in the first year of life produces 11 off-
spring, and then dies. P1, the probability that a individual in age class 1 will move to
age class 2, is 0. Thus, F2 and P2 are also 0. 

The initial vector of abundances

gives the starting number of individuals in age class 1 and age class 2+, respectively. 

Enter 0 in cell A12.
Enter =1+A12 in cell A13. Copy cell A13 down to cell A62.
This will allow us to track the dynamics of this plant species over 50 years.

Enter the formula =D7 in cell B12.
Enter the formula =D8 in cell C12.

Enter the formula =SUM(B12:C12) in cell D12.

Enter the formula =D13/D12 in cell E12. Your result will not make sense until you have
computed the total population size in year 1.

10
0











11 0
0 0











INSTRUCTIONS

A. Model Cole’s para-
dox.

1. Open a new spreadsheet
and set up headings as
shown in Figure 4.

2. Enter the parameter val-
ues shown in cells B7–C8.

3. Enter the initial vector
of abundances as shown
in cells D7 and D8. 

4. Set up a linear series
from 0 to 50 in cells
A12–A62. 

5. Enter formulae in cells
B12 and C12 to link the
number of individuals in
age classes 1 and 2 to the
vector of abundances in
cells D7 and D8. 

6. Enter a formula in cell
D12 to compute the total
population size at time 0. 

7. In cell E12, Compute λ
for year 0 as N(0)/N(1).
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Enter the formula =$B$7*B12+$C$7*C12 in cell B13 to compute the number of indi-
viduals in age class 1 in year 1. 
Enter the formula =$B$8*B12+$C$8*C12 in cell C13 to compute the number of indi-
viduals in age class 2+ in year 1. 
Remember, the matrix calculations are 

This completes the 50-year projection of your population. Your spreadsheet should now
resemble Figure 5.

Use the scattergraph option, and label your axes fully. Your graph should resemble 
Figure 6.
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8. Enter formulae in cells
B13 and C13 to compute
the number of individuals
in age class 1 and 2 in year
1. 

9. Copy cells B13–C13
down to cells B62–C62.

10. Copy cells D12–E12
down to cells D62–E62.

11. Graph the population
numbers over time.
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10 2.5937E+11 0 2.5937E+11 11
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The matrix entries now suggest an everlasting perennial. All individuals produce 10
offspring per year, and survival from age class 1 to age class 2+ is 1. Additionally, all
individuals in age class 2+ survive with a probability of 1 to the next age class, and then
survive with a probability of 1 to the next age class (and so on). 

Now we will add trade-offs between survival and current reproduction into the model.

We will let E be a proportional reproductive effort. If E is 1, then the organism repro-
duces at fertility rates given in the original Leslie matrix. If E is 0, then current repro-
duction is 0 times the fertility rates in the Leslie matrix. If E is any value between 0.1
and 0.9, that number is multiplied by the fertility rates in the Leslie matrix. Thus, E
“brakes” the fertility rates by a proportional amount. 

12. Change the matrix
entries as shown in 
Figure 7.

13. Update your projec-
tions (this may be done
automatically, or by press-
ing F9). 

14. Answer Questions 1–3
at the end of this exercise.

15. Save your work.

B. Establish trade-offs
for survival versus
reproduction.

1. Set up new headings as
shown in Figure 8.
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P is a generic survival value, or the probability that an organism of age x will survive
to the next time step. For now P = 0.5. You will be able to change this shortly. 

The variable z controls the cost of reproduction in an environment. For our purposes,
we will let z range between 0 and 20. The higher the z, the lower the cost of reproduc-
tion, and the lower the z, the higher the cost of reproduction in a given environment.
Currently z = 2, so the cost of reproduction is high. You will be able to see how z and
P affect trade-offs in survival and reproduction shortly. 

Enter the formula =$L$9*(1-K11^$L$8) in cell L11. Copy the formula down to cell
L21. The adjusted survival can be computed as P × (1 – Ez). 

Use the scatterplot option and label your axes fully. Your graph should resemble 
Figure 9.

Keep in mind that this figure is for z = 2 and P = 0.5. This figure will change as you
modify z and P in the next step. When current reproductive effort is 1 (100%), sur-
vival becomes 0 because all energy is devoted to reproduction. When current repro-
duction is 0, adjusted survival is at 0.5, the baseline survival value. In between, as
current reproduction effort is increased, the adjusted survival probability decreases
rather abruptly. This is the trade-off between energy allocated to survival and energy
allocated to reproduction. We will incorporate this trade-off into the matrix model in
Part C.

Your graph should resemble Figure 10.
You should see that as z increases, the cost of reproduction is lessened. When z is 20,
there is still a trade-off between survival and reproduction, but survival is adjusted
only when reproductive effort is close to 100% effort (E = 1). Habitats with high z’s
are low cost of reproduction habitats.

2. Enter 0.5 in cell L9. 

3. Enter 2 in cell L8. 

4. In cells L11–L21, enter
an equation to compute
adjusted survival for a
given level of E. Refer to
Equation 2.

5. Graph the adjusted sur-
vival as a function of E.

6. Interpret your graph
fully. 

7. Increase the value of z to
20 by units of 5, and inter-
pret your final graph (z =
20).
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Now that you have a handle on how E and z function, the next step is to incorporate
E and z in the matrix model. 

Enter 0 in cell F12. 
Enter the formula =1+F12 in cell F13. Copy this formula down to cell F62.

Enter the formula =I7 in cell G12.
Enter the formula =I8 in cell H12.

Enter the formula =SUM(G12:H12) in cell I12.
Enter the formula =I13/I12 in cell J12.

8. Save your work.

C. Set up the trade-off
model. 

1. Set up new headings as
shown in Figure 11.

2. Set up a time series
from 0 to 50 in cells
F12–F62. 

3. Enter a formula in cells
G12 and H13 that links to
the initial vector of abun-
dances in cells I7 and I8. 

4. Enter a formula in cell
I12 to compute the total
population size. Compute
λ in cell J12.
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Our trade-off matrix has the form

Enter the formula =$G$7*$L$7*G12+$H$7*$L$7*H12 in cell G13.
Enter the formula =$G$8*(1-$L$7^$L$8)*G12+$H$8*(1-$L$7^$L$8)*H12 in cell H13.
Enter the formula =SUM(G13:H13) in cell I13.
Enter the formula =I14/I13 in cell J13.

Use the scatterplot option and label your axes fully. Your graph should resemble 
Figure 13. What is the asymptotic λ for your model? (This is a key model output that
will be compared to the models.)

QUESTIONS

1. What is Cole’s paradox? Which of the two strategies (annual or perennial) is the
fittest in this environment? Try entering other fertilities in the Leslie matrix so
that the annual has 1 more offspring than the perennial. Does Cole’s paradox
still hold?

2. In modeling Cole’s paradox, we set adult survival of perennials to 1 so that a
perennial never dies. What is another major assumption of Cole’s paradox
regarding the fertility rates of the annual life history strategy?
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5. Enter 0.5 in cell L7 and 2
in cell L8. E and z estab-
lish the cost of reproduc-
tion on survival for the
trade-off matrix model. 

6. Enter formulae in cells
G13–J13 to project popula-
tion sizes in year 1, includ-
ing trade-offs in survival
and reproduction. 

7. Copy cells G13–J13
down to row 62. 

8. Graph the population
size over time.

9. Save your work and
answer questions 4–9.
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3. To understand Cole’s paradox more fully, it’s helpful to break apart the F entry
for age class 1 into its components, b1 and P1, where b1 is the per capita birth
rate of one-year-old females and P1 is the probability that an offspring pro-
duced will survive to be counted as a one-year-old in the next census. Set up
column headings as shown, and enter a formula in cell B7 to compute F1 as cell
B3*B4, or b1P1. When the probability of juvenile survival decreases, how much
must b1 increase (cell B3) to match the λ of the everlasting perennial? Track your
results for P1 = 0.1 to 1 in increments of 0.1, display your results graphically,
and interpret your results.

4. In question 3, you addressed what b1 must be for an annual to match the
growth rate of an everlasting perennial when juvenile survivorship (P1) is not 1.
Now let’s focus on what happens when a perennial is not immortal, and con-
sider trade-offs between current reproduction and future survival. In the trade-
off model, which of the strategies below will yield the highest asymptotic
growth rate, λ: the annual matrix, A, or the perennial matrix, B? Explain your
results. 

5. How does changing z in Question 4 affect the asymptotic growth rate, λ, for the
annual? For the perennial?

6. Set up spreadsheet parameter values as shown below. Is this a low or a high
cost-of-reproduction environment? Assuming a hypothetical organism that can
produce 100 offspring maximum per year, what kind of reproduction schedule
(early versus late, iteroparous versus semelparous) will maximize λ? Given
your results, how can adjustments to E affect which life history strategy will be
most fit?

7. Change the survival rates to 0.9 in your matrix. Would an early semelparous or
early iteroparous strategy be favored under these conditions? Why?

B =










10 10
1 1

A =










11 0
0 0
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8. Consider another environment and a different organism. Set up your spread-
sheet as shown below. Assuming that your organism can produce a maximum
of 5 offspring per year, what kind of reproductive schedule will maximize λ?

9. Suppose an organism’s life history can be described with the Leslie matrix
shown below. What level of E will produce the highest λ? Explain your result in
detail in terms of trade-offs in reproduction and survival. What level of E
would produce the highest λ if cells G8–H8 = 0.9? Explain.

10. Two marine bivalves, Mercenaria mercenaria and Gemma gemma, live in the same
habitat. However, their reproductive strategies are very different. M. mercenaria
is a broadcast spawner, meaning that male and female adults release eggs and
sperm into the water column where external fertilization takes place, and the
larvae undergo planktonic development. G. gemma is a brooder, meaning
females retain their eggs and fertilization is internal. The offspring undergo
direct development within the female. G. gemma produce small broods during
the reproductive season, while M. mercenaria releases thousands of gametes into
the water column. Surprisingly, both species enjoy similar reproductive success.
Let’s assume that in each reproductive season G. gemma will successfully rear 25
offspring that survive to be counted as N1 individuals, and M. mercenaria will
release 4000 gametes, all of which will be fertilized. Assuming equal costs of
reproduction, what must the survival rate of M. mercenaria offspring (P1) be in
order to equal the reproductive output G. gemma?

*11.(Advanced) Some organisms have life histories that cannot be described as
either r or K. “Bet-hedging” is a strategy that is predicted to evolve in environ-
ments that have unpredictable disturbances that increase the mortality of
young, but not adults. If young are produced all at once, and it turns out to be a
bad year, then an adult’s fitness is 0. But if young are spread out across different
generations, fitness may be increased by producing at least some young in
some years when conditions are good. Add an element of stochasticity to your
model that affects juvenile survival rate either by letting F1 vary stochastically,
or by splitting apart F into its components b1 and P1 (as in Question 3) and let-
ting each component vary. Adjust your model, then examine the life history
conditions that are needed to maximize λ.
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HERITABILITY
In collaboration with Mary Puterbaugh and Larry Lawson

36
Objectives

• Understand the concept of heritability.
• Differentiate between broad-sense heritability and narrow-

sense heritability.
• Learn different methods for computing heritability.
• Understand the conditions that lead to high heritability and

low heritability.

INTRODUCTION
Can you think of a physical trait that makes you different from your brother or
sister? You may be taller than your sibling or have darker skin or have a differ-
ent hair color. Can you think of a trait in which you and your sibling are simi-
lar? Were either of these traits inherited from your parents, or were they controlled
more by environmental factors?

Most people have a good general concept of heritability. Surprisingly, the strict
scientific definition of heritability is a much more difficult concept to grasp than
our everyday use of the word. This is partly because heritability has a theoretical
definition that is impossible to directly measure in the field, and there are several
different ways to estimate heritability in practice (e.g., twin studies, breeding exper-
iments, offspring-parent regressions, and selection experiments). These different
ways of estimating heritability have assumptions. As such, it is not uncommon
that two different methods of estimating heritability might lead to quite different
values even in the same population in the same environment.

Possibly the most important key to understanding the scientific definition of
heritability is to realize that the trait itself is almost completely unimportant to the
definition of heritability. Rather, it is the variation in the trait that is important. If
you repeatedly remind yourself that heritability is defined by the variation in a
trait and not by the trait itself, you will avoid falling into many pitfalls with your
understanding of the term.

The Theoretical Definition of Heritability
Imagine that you take a black-and-white photograph of people you know and
you “score” the darkness of their hair with a single value. The lightest-haired peo-
ple would receive a zero and the darkest-haired people would receive a 100.
Everyone else would receive values between these. You could describe the vari-

 



ation among individuals by calculating the variance, a common statistic that you are
likely to have calculated in your science, math, or statistics courses. This statistic is
(approximately) the average squared deviation from the mean, and we calculate it to
measure the amount of variation in a collection of observations. For a sample taken
from a population, variance (abbreviated V in this exercise) is calculated as

Equation 1

N is used when the computations are for a population, and N – 1 is used when the com-
putations are for a sample of the population. 

For a set of observations, the variance is easily computed with a spreadsheet func-
tion. Individuals vary in their hair color for at least two different reasons. One is that
they inherited different kinds of genes for hair color, and the other reason is that they’ve
experienced different environments. For example, hair color may depend on a chemi-
cal environment (a hair dye or bleach), or on time spent (or not spent) exposed to the
sun. Theoretically, the variance in hair color (abbreviated Vp; the “p” subscript comes
from term “phenotype”) can be divided into the variance that is due to genetic differ-
ences among individuals (Vg) and the variance due to differences among the environ-
ments of the individuals (Ve) Thus,

Vp = Vg + Ve Equation 2

Heritability (abbreviated here as h2) in a strict genetic sense is the proportion of total
phenotypic variance in a trait that is explained by genetic differences among individ-
uals. Theoretically, heritability can vary between 0 and 1.

h2 = Vg /Vp Equation 3

Let us look more closely at the Vg and Ve components of total variation. How do we
determine the deviations from which these variance components are calculated? If
you could take the mean hair color of the population and then ask how much a partic-
ular individual differs from that population mean due to particular alleles it has, and
then how much that individual differed from the population mean due to its environ-
ment, you could express these deviations with quantities called G and E, respectively,
for each individual in the population (Hartl 2000). G represents a deviation of that
individual’s phenotype from the population mean (µ) due to the particular genotype
that individual has, and E represents the deviation of that individual’s phenotype
from the population mean that is due the environment in which the individual was
raised. Once you had a G and E for every individual, the variance in the G and E are the
phenotypic variance due to environmental and genotypic effects, respectively. The vari-
ance in G would be calculated as 

and the variance in E would be calculated as

Note that capital letters G and E are used for individuals. Provided that individuals
were randomly occurring in different environments, Vg + Ve would equal Vp as in Equa-
tion 2. Furthermore, you can now define the phenotype of each individual in a popula-
tion in a particular environment (Equation 4). In this equation, the P stands for the phe-
notype of the particular individual. In theory, all the G’s in the population should add
to zero, and likewise all the E’s should add to zero. Notice that if you took the variance
of each variable in the equation below, you would recreate Equation 2 because the vari-
ance in µ is zero.

P = µ + G + E Equation 4

One of the advantages of using modeling is that it can allow you to investigate a
process that is not directly measurable in reality. In this exercise, you will construct a
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population and define the G’s and E’s, two variables that can not be directly measured
in real life, so that you can investigate many aspects of the definition of heritability
that are virtually impossible to investigate any other way.

Types of Genetic Variation
Before reviewing some of the practical methods of measuring heritability, it is useful
to briefly discuss what types of genetic variation exist. The Vg that you have just
reviewed above can also be partitioned into two parts: the phenotypic variances owing
to additive genotypic effects (Va) and the phenotypic variances owing to non-additive
genotypic effects (Vna). Thus, 

Vg = Va + Vna Equation 5

In the exercise to follow, we will assume that Vna = 0. We will do this by construct-
ing individuals with genotypes for two genes (A and B). For these genes, there will be
only two alleles (a “1” allele and a “2” allele, each with a frequency of 0.5). Each allele
will have a given affect on the phenotype of the individual regardless of what other allele
occurs at that gene and regardless of what alleles occur at other genes. In other words,
an A1 allele will always be worth “+1” units from the mean in terms of your phenotype,
an A2 will be worth “–1”; a B1 will be worth “+1” and a B2 will be worth “–1”. Thus an
individual who is A1A2B2B2 will differ from the mean population phenotype by –2 units
because the deviation of this individual’s phenotype from the mean is 1 – 1 – 1 – 1 = –2.
In real life, the A1 and A2 alleles might interact—for example, A2 might be dominant
over A1 (in which case the A1 allele would be worth nothing in the presence of A2). Like-
wise, it is not uncommon for epistasis to occur, meaning that the effect of an allele at the
B gene depends on what alleles are at the A gene. 

Thus, in the scientific literature, there are two types of heritability: broad-sense her-
itability (Vg/Vp where Vg includes the nonadditive component) and narrow-sense her-
itability (Va/ Vp where the numerator is only the additive component of genetic variance).
In this exercise, all Vg is additive, so the broad- and narrow-sense heritabilities are the
same. Narrow-sense heritability is a more useful measure of heritablity as it is the vari-
ance in a population that will respond predictably to selection. In the next exercise on
quantitative genetics, you will see how heritability is related to a response to selection.

Practical Methods of Estimating Heritability
How does one go about estimating heritability if you cannot measure Vg and Ve
directly? Probably the most conceptually simple way is to compare offspring to their
parents. The more closely the offspring’s phenotype is predicted by their parents’
appearances, the more the variation among individuals in a population is due to genetic
variation. Specifically, you can measure the trait in an offspring and graph it against
the mean of the trait in the two parents (the midparent trait value; Figure 1). The slope

Heritability 457

h 2 = 1

0

2

4

6

8

10

0 2 4 6 8 10

Midparent trait value

O
ff

sp
ri

n
g

tr
ai

t
va

lu
e h 2 = 0

0
2

4

6

8

10

0 2 4 6 8 10

Midparent trait value

O
ff

sp
ri

n
g

tr
ai

t
va

lu
e

Figure 1 Parent-offspring regressions showing high (left) and low (right) 
heritability.



of that plot of offspring values against midparent values is exactly narrow-sense heri-
tability. In this exercise you will see that the slope really does accurately estimate the
heritability that you can also calculate as Vg/Vp, if you know Vg.

When an offspring’s trait is perfectly matched to the average of its two parents, h2 =
1 (Figure 1, left). Small parents will have small offspring, and large parents will have
large offspring. The slope of the line is 1, and h2 = 1. When an offspring’s trait cannot
be predicted by the traits of its parents, h2 = 0 (Figure 1, right). Parents of any size can
have offspring of any size. In this case, the slope of the regression line is 0, and h2 = 0.

In many cases, the parent-offspring graph for a given trait might look like Figure 2.
This graph shows a tendency for larger parents to have larger offspring and for smaller
parents to have smaller offspring, but there is substantial scatter. This suggests that h2

would fall between 0 and 1.
There are other ways to measure heritability that we will not explore in this exer-

cise. One commonly used method in human studies is to investigate twins. This method
is based on the idea that monozygotic (identical) twins are more similar genetically than
dizygotic (non-identical) twins. Other methods of estimating heritability involve esti-
mating Vg and Ve through carefully planned breeding experiments (Falconer 1989).
Finally, realized heritability (the degree to which a trait responds to selection in a
population) can be estimated through a selection experiment. You will investigate this
method in the “Quantitative Genetics” exercise that follows.

Take-Home Messages about Heritability
It is easy to get mired in the details of heritability and forget the big picture. If you recall,
we began this exercise by emphasizing that heritability in a scientific sense is defined
by the variation among individuals. This fact has two important consequences:

• Variation is a population level trait and is undefined at the level of an individual. 
• Heritability is not fixed. It depends on the genetic variation in a population and

the environment in which the population occurs. In other words, a population
with exactly the same genetic composition as another population can have a
different heritability if the two populations are in different environments.

458 Exercise 36

Parent-Offspring Regression Slopes

y = 0.4008x + 30.015

R2 = 0.0805

40.00

42.00

44.00

46.00

48.00

50.00

52.00

54.00

56.00

58.00

60.00

40.00 45.00 50.00 55.00 60.00

Midparent value

O
ff

sp
ri

n
g

va
lu

e

Figure 2 A parent-offspring regression in which heritability is somewhere
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Likewise, if the genetic composition of a population changes, even if the envi-
ronment stays the same, estimates of heritability for that population will also
change.

Let us return for a moment to the hair color example. Suppose cloning had advanced
to the point that we could clone all the people you knew and split them into two groups.
If we prevent the clones in one group from going out in the sun or using any hair dyes
or bleaches, we might be able to eliminate most of variation among individuals in hair
color that is due to environment (i.e., we could reduce Ve). If we allow the clones in the
other group to go out in the sun and color their hair as they please, the variation in
hair color due to environment will be greater, and heritability will be lower. To reiter-
ate, even though the two populations would be identical genetically, the heritability
would be different! Perhaps you can begin to see why heritability in a strict scientific
sense has some nuances that make it quite different from the way we use the term in
everyday conversation.

PROCEDURES

In this exercise, you will explore the theoretical definition of heritability. At the same
time you will see that the practical method of constructing a regression of offspring
against midparent values can also be used to estimate heritability. Two consequences
of the theoretical definition of heritability (that heritability is a population level trait,
and that it depends on both the genetic composition and environment of the popula-
tion) will also be illustrated.

As always, save your work frequently to disk.

ANNOTATION

We will assume that genes at two loci control the trait, the A locus and the B locus. Thus,
we are dealing with a polygenic trait. We will also assume that each locus has just two
alleles, A1 and A2, and B1 and B2. In the simplest case, each allele makes a contribution to

INSTRUCTIONS

A. Set up the population
parameters.

1. Open a new spreadsheet
as shown in Figure 3.
Enter the values shown in
cells B6–E6. 
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the expressed trait. For example, if an individual inherits an A1 or B1 allele from its par-
ents, it “inherits” a +1 unit contribution in the trait size. If it inherits an A2 or B2 allele from
its parents, it “inherits” –1 units in the trait size. Thus, A1A1B1B1 individuals will have a
+4 phenotype, A2A2B2B2 genotypes will have a –4 phenotype. Because A1A2B1B2 (het-
erozygotes) will have a phenotype of 0, they are the “standard” upon which other geno-
types are compared. Note that since two loci contribute to the trait size, the population
will tend to exhibit continuous variation in trait size, ranging between –4 and +4 units. 

Cells B7–E7 give the frequencies of each allele. Remember that the frequencies must
add to 1. You will be able to change these frequencies later in the exercise. You may
wish to enter the formula =1-B7 in cell C7 and =1-D7 in cell E7.

This represents the average phenotype of the parental population. In our example,
the parents are currently located in an environment and have genotypes that confer,
on average, 50 units to trait size (cell D11).

Cells D12–E12 set how variable the environmental conditions are for the parental and
offspring populations, respectively. Each individual will experience its own set of envi-
ronmental conditions that will cause its phenotype to deviate from the population’s
average phenotype, µ. In this model, a very low score (standard deviation) such as 0.01
suggests that the deviation from the mean phenotype due to the environment is very
low—in other words, most individuals occupy the same kind of environment. High
numbers, such as 10 or greater, suggest that individuals experience dramatically dif-
ferent environments; some will be located in low-quality environments, some in high-
quality environments, and some will be found in an “average” environment. If our
environmental conditions can be described with a normal distribution, and cell D12
is set to 0.1, then approximately 68% of the adults in the population experience envi-
ronments that alter their phenotypes by 0.01 units, and 95% of the individuals will expe-
rience environments that alter their phenotypes by 0.02 units (±2 standard devia-
tions) from the population mean.

Now we will generate genotypes and phenotypes for a population of individuals (par-
ents) who will then mate and produce offspring. Columns B–E will focus on the first
parent, and columns F–I will focus on the second parent of each pair.

Enter 1 in cell A19.
Enter =1+A19 in cell A20. Copy the formula down to cell A1018.

In cell B19, enter the formula =IF(RAND()<$B$7,”A1”,”A2”)&
IF(RAND()<$B$7,”A1”,”A2”)&IF(RAND()<$D$7,”B1”,”B2”)&
IF(RAND()<$D$7,”B1”,”B2”). Copy the formula down to cell B1018.
This formula follows the nested formula used in the Hardy-Weinberg exercise. It uses
the & function to join the results of 4 separate IF functions together, because each
individual requires four alleles (two A alleles and two B alleles) to make up its geno-

2. Enter 0.5 in cells B7–E7.

3. Enter 50 in cells D11–E11.

4. Enter 0.01 in cells
D12–E12. 

5. Save your work.

B. Set up the parental
population. 

1. Set up new headings as
shown in Figure 4.

2. Generate a linear series
from 1 to 1000 in cells
A19–A1018. 

3. In cells B19–B1018, enter
a formula to generate a
genotype for parent 1
based on the allele fre-
quencies in cells B7–E7.
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type. Each IF function draws a random number between 0 and 1 (the RAND() portion).
For the A locus, if the random number is less than the frequency of the A1 allele given
in cell B7, the individual gets an A1 allele; otherwise it gets an A2 allele. 

Enter the formula =LOOKUP(MID(B19,1,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(B19,3,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(B19,5,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(B19,7,2),$B$5:$E$5,$B$6:$E$6) in cell C19. Copy the formula down to
cell C1018.
This long formula is really quite simple; it is just four LOOKUP equations added
together. The first part of the formula, =LOOKUP(MID(B19,1,2),$B$5:$E$5,$B$6:$E$6),
is a nested function because within the LOOKUP function is the MID function. The
LOOKUP function looks up the value given by the function MID(B19,1,2). This func-
tion examines the first A allele for individual 1, which will be either A1 or A2. It exam-
ines the text in cell B19 (individual 1’s genotype), and starting with the first character,
returns two characters from the text given in cell B19. The result will be either A1 or A2.
The program then returns to the lookup function, finds this value in the range of cells
B5–E5, and returns the number associated with the appropriate value in cells B6–E6.
When this procedure is done for each of the alleles in individual 1’s genotype, and the
results are added together, it generates the genetic contribution to trait size.

Double-check your results. You should be able to examine a genotype and make
sure that the function is generating the proper trait size. Technically, this computation
provides the contribution to the phenotype for individuals, rather than the deviation
of the genotype from the population mean phenotype, which is the correct computa-
tion of G. Since p and q = 0.5 for both loci, the average trait should in fact be 0, so the
G’s represent deviations from this mean and also the phenotypic contribution. 

Enter the formula =NORMINV(RAND(),0,$D$12) in cell D19. Copy the formula down
to cell D1018. 
Remember that the NORMINV function draws a random cumulative probability from
a distribution whose mean and standard deviation are specified, and then converts that
probability to an actual number from the distribution. Here we are interested in how
much individual 1 deviates from the average phenotype because of the environment
in which it lives, so the mean of 0 and the standard deviation from cell D12 is used. The
result shows, generally speaking, what kind of environment each individual is located
in. For example, Figure 5 shows that individual 1 has a genotype of A2A2B2B2 and so
the genetic contribution to a trait is –4 units (it is 4 units smaller than the heterozyo-
gous “standard” in terms of genetic trait size). But this individual is located in an envi-
ronment that is somewhat better in quality than average (deviation = 0.01 in cell D19).
Its phenotype (computed in the next step) will be the genetic trait, plus the environ-
mental deviation, plus the average phenotype of the population. In contrast, individ-
ual 4 is 2 units larger than an A1A2B1B2 heterozygote, but it is located in an average
environment (0.00), so the deviation in its phenotype is not due to the environment. 

4. In cells C19–C1018, use
a LOOKUP formula to
generate a trait size for
individual 1, based on
individual 1’s genotype
(cell B19) and the contri-
bution of each allele to
trait size (cells B6–E6).

5. In cells D19–D1018,
enter a NORMINV func-
tion to obtain the deviation
in trait size for individual
1 as determined by indi-
vidual 1’s environment.
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Enter the formula =$D$11+D19+C19 in cell E19. Copy the formula down to cell E1018.
This formula is the spreadsheet version of the Equation 4, P = u + G + E.

The formulae are the same except that cell references should refer to columns F, G, H,
and I. We entered the formulae

• F19 =IF(RAND()<$B$7,”A1”,”A2”)&IF(RAND()<$B$7,”A1”,”A2”)&
IF(RAND()<$D$7,”B1”,”B2”)&IF(RAND()<$D$7,”B1”,”B2”)

• G19 =LOOKUP(MID(F19,1,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(F19,3,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(F19,5,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(F19,7,2),$B$5:$E$5,$B$6:$E$6)

• H19 =NORMINV(RAND(),0,$D$12)
• I19 =$D$11+H19+G19

Enter the formula =AVERAGE(E19,I19) in cell J19. Copy the formula down to J1018.
Review your entries to this point to make sure you fully comprehend the model thus far.

Enter the formula =IF(RAND()<0.5,MID(B19,1,2),MID(B19,3,2))&
IF(RAND()<0.5,MID(F19,1,2),MID(F19,3,2))&
IF(RAND()<0.5,MID(B19,5,2),MID(B19,7,2))&
IF(RAND()<0.5,MID(F19,5,2),MID(F19,7,2)) in cell K19. Copy the formula down to
cell K1018.
With this formula, we simulate gamete formation and independent assortment so
that each parent contributes a single A allele and a single B allele. The alleles from both
parents are then joined with the & function to specify the offspring’s genotype. The
first portion of the formula, =IF(RAND()<0.5,MID(B19,1,2),MID(B19,3,2)) , specifies
the A allele for parent 1. If a random number is less than 0.5, parent 1 will contribute
the first A allele listed in its genotype (given by the first and second characters in cell
B19). Otherwise, parent 1 will contribute the second A allele listed in its genotype (given
by the third and fourth characters in cell B19). The second IF function concentrates on
the A allele for parent 1. The third and fourth IF functions concentrate on the B allele
contributions from parents 1 and 2, respectively. 

Double-check your results:
• L19 =LOOKUP(MID(K19,1,2),$B$5:$E$5,$B$6:$E$6)+

LOOKUP(MID(K19,3,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(K19,5,2),$B$5:$E$5,$B$6:$E$6)+
LOOKUP(MID(K19,7,2),$B$5:$E$5,$B$6:$E$6)

• M19 =NORMINV(RAND(),0,$E$12)
• N19 =$E$11+M19+L19

6. Enter a formula in cells
E19–E1018 to generate the
phenotype for individual 1
(parent 1).

7. Enter formulae in cells
F19–I19 to generate G, E,
and P (steps 3–6) for the
second parent. Copy your
formulae down to row
1018. 

8. In cells J19–J1018, enter
a formula to compute the
average phenotype for
parent 1 and parent 2 (the
midparent value).

9. Save your work.

C. Generate offspring. 

1. Set up new headings as
shown in Figure 6.

2. In cells K19–K1018,
enter formulae to random-
ly obtain an A and a B
allele from each parent to
generate a zygote.

3. Enter formulae in cells
L19–N19 to generate G, E,
and P for offspring 1.
Copy your formula down
to row 1018. Be sure to ref-
erence cells E11–E12 in
your formulae. 
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Remember that the frequency function is an array function, so must be entered differ-
ently than a standard function. (Refer to Exercise 2 for information on how to use array
functions.) This function computes the frequency of the average parent phenotype (cells
J19–J1018) and uses cells P19–P39 as bins. When you are finished, your formula in cells
Q19–Q30 should read {=FREQUENCY(J19:J1018,P19:P39)}.

For offspring, the formula in cell R19–R39 should read 
{=FREQUENCY(N19:N1018,P19:P39)}.

Use the column graph option and label your axes fully. Your graph should resemble
Figure 8.

4. Save your work. 

D. Obtain frequencies
and make graphs. 

1. Set up new headings as
shown in Figure 7.

2. In cells Q19–Q39, use
the FREQUENCY function
to generate frequencies of
average parent pheno-
types.

3. In cells R19–R39, use the
FREQUENCY function to
generate frequencies of
average offspring pheno-
types.

4. Make a frequency his-
togram of midparent and
offspring phenotypes.
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Your graph should resemble Figure 9. To add the trendline, select the Chart Menu, then
go to Chart | Add Trendline. Select the Linear option, then click on the Options tab. Select
Display equation on the chart.

The heritability statistics are based on offspring traits, as well as on parent-offspring
regressions. 

5. Graph the midparent
versus the offspring trait
size. Use the scattergraph
option and add the regres-
sion equation to the graph.
Adjust your axes so that
the each axis ranges from
40–60 units in trait size. 

6. Save your work.

E. Compute heritability
statistics.
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Enter the formula =VAR(M19:M1018) in cell I5.

Enter the formula =VAR(L19:L1018) in cell I6.

Enter the formula =I6+I5 in cell I7.

Enter the formula =VAR(N19:N1018) in cell H8.

Enter the formula =I6/I8 in cell I9.

Enter the formula =SLOPE(N19:N1018,J19:J1018) in cell I10.

QUESTIONS

1. Why do you suppose that the slope is sometimes not exactly equal to Vg/Vp?

2. How does the mean affect heritability? Using the initial conditions you entered
upon setting up the spreadsheet model (top of next page) hit the F9 key several
times to examine the heritability. Your heritability measures as shown in cells I9
and I10 should be very close to 1. Now, change the mean of the parental and
offspring population to 10 (change cells D11 and E11 both to 10). Hit the F9 key
several more times. Leave cell D11 as 10 but change cell E11 to 50. Again hit the
F9 key and observe the effect on the heritability estimates. You may want to
examine the parent-offspring regression as well. 

1. Set up new column
headings as shown in
Figure 10.

2. In cell I5, use the VAR
function to compute the
variance in offspring’s
environmental conditions.

3. In cell I6, use the VAR
function to compute the
variance in offspring’s
genetic traits.

4. In cell I7, add Ve + Vg .

5. In cell H8, use the VAR
function to compute the
total phenotypic variation
in offspring. 

6. In cell I9, compute heri-
tability as Vg/Vp.

7. In cell I10, compute her-
itability as the slope of the
parent-offspring regres-
sion. 

8. Save your work.
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3. How does environmental variation affect heritability? Return cells D11 and E11
to 50. Hit the F9 key five times, and fill in the first column of the table below.
Repeat this but this time change both cells D12 and E12 to 1, then to 5 and then
to 20. Observe changes in cells I9 and I10. How do the graphs change? How do
the Ve and Vg change? What can you conclude about the effect of the environ-
ment on estimates of heritability? Is heritability really constant for a population
with a specific genetic composition? What does this exercise suggest to you
about studies in which people attempt to make conclusions about heritability of
traits in a natural/wild population, but they measure heritability in a green-
house or growth chamber setting? What happens to the slope if the parental
population has a different environmental variation than the offspring?

4. How does heritability change if there is very little or no genetic variation in the
population? Return the environmental heterogeneity to 0.01, and change the
frequencies of the alleles so that they look like those below. Hit the F9 key sev-
eral times to see how the heritability changes.
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5. What do you think might happen if we changed our model so that genotypes
were no longer randomly assigned to different environments? (You do not need
to try to change the model to do this, treat this instead as a thought question.)

6. Consider what might happen if there were effects of the maternal environment
on the offspring (for example, if mothers in resource rich microhabitats bore
larger babies). (You do not need to try to change the model to do this; treat this
instead as a thought question.)
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QUANTITATIVE GENETICS: 
EVOLUTION BY NATURAL SELECTION
In collaboration with Mary Puterbaugh

37
Objectives

• Set up a spreadsheet model for a population with a continu-
ously varying trait.

• Understand the difference between selection and response
to selection.

• Consider how differences in heritability and strength of
selection can alter the response to selection.

Suggested Preliminary Exercises: Hardy Weinberg Equilibrium;
Heritability

INTRODUCTION
To evolutionary biologists, natural selection and an evolutionary response to natural
selection are different phenomena. For a population to experience natural selec-
tion, two conditions must be met: (1) individuals must vary from one another for
a particular trait, and (2) an individual’s survival and reproductive success must
be affected by which of the the traits it possesses.

Some traits will be well adapted to a given environment and some will not.
For example, Darwin’s finches are highly variable in beak size, and individuals
with larger beaks tend to survive periods of drought more successfully than those
with smaller beaks (Grant and Grant 1993). This is an example of natural selec-
tion: during drought, birds with small beaks are more likely to be eliminated from
the population.

Note that selection happens within generations. However, natural selection says
nothing about what happens to beak size in subsequent generations. Since evo-
lution can be broadly defined as a change in genetic make-up over time, we need
to examine future generations to determine if natural selection is a mechanism that
causes an evolutionary change in organisms. If natural selection does indeed
lead to changes in future generations, then you have observed an evolutionary
response to natural selection, or evolution by natural selection.

Suppose you are studying butterflies that live just one summer. You find that
the caterpillars vary in weight. Some are fat and some are skinny. At the end of the
summer, you are able to show that many more fat caterpillars survived pupation
than did skinny caterpillars. However, when you come back the next year, there
are just as many skinny caterpillars as there were the previous year. How can
that be? Perhaps the caterpillar population didn’t fulfilled all three of the criteria

 



for evolution by natural selection:
1. Individuals in a population must vary from one another. 
2. Survival and reproduction must be affected by that variation.
3. The variation must be heritable. 

So in your population, caterpillars varied in weight and this variation influenced sur-
vival; but the variation in weight among individuals did not reflect genetic variation.
Instead, it was probably due to environmental factors such as the particular plant that
the caterpillar happened to eat. In other words, higher weight was not heritable.

Heritability is a concept best dealt with by quantitative genetics. The field of quan-
titative genetics examines quantitative (measurable) traits that vary continuously—
over a range of values—such as beak size or caterpillar weight. All of the traits Mendel
studied were qualitative traits in which individuals could be neatly lumped into two
groups per trait, and a single gene controlled each trait. Pea color was either green or
yellow; pea pods were either pinched or swollen; pea shapes were either wrinkled or
smooth, and so on. What would Mendel have done if he had chosen to work with
humans? Could he lump them by tall or short? Humans vary from short to tall and
everything in between. Human height is a quantitative rather than a qualitative trait and
is influenced by numerous genes and by the environment. When you consider that most
traits are in fact quantitative, continuous, and affected by many genes, it is easy to under-
stand why it took so long for scientists to understand that inheritance is caused by dis-
crete factors called genes.

In the Hardy-Weinberg equilibrium exercise, you used a population genetics approach
to studying evolution, where you were concerned with calculating specific changes in
allele frequency over time. For example, we were interested in determining how p and
q change over time. Quantitative geneticists also study evolution, but they use slightly
different mathematical tools than population geneticists. In contrast to the population
genetics approach, most of the mathematical equations used by a quantitative geneti-
cist do not require knowing the genotype of individuals. A fundamental equation quan-
tifies the evolutionary response selection (Falconer 1989). The formula is simple, yet
wonderfully useful:

R = S × h2 Equation 1

where R stands for evolutionary response to selection, a measure of how natural selec-
tion causes a population to evolve; S is the strength of selection (also known as the selec-
tion differential); and h2 is heritability. 

In order to understand R, let’s first discuss the concepts of selection, selection differ-
ential, and heritability. Then we will return to Equation 1 and tie the concepts together.

Selection and the Strength of Selection
Natural selection occurs whenever survivorship or reproductive success is nonrandom
with respect to a particular trait. Selection can be either directional, stabilizing, or dis-
ruptive (Figure 1). Directional selection occurs when the survivors are at either the high
or the low end of the variation in a trait. In the caterpillar example, there was direc-
tional selection for weight of the caterpillars: the fattest caterpillars (those at the extreme
high end of the population) survived.

In stabilizing selection, individuals with intermediate values survive best; individ-
uals at both extremes do not survive as well. For example, suppose that small caterpil-
lars did not survive due to insufficient resources to survive pupation, but that very large
caterpillars also did not survive well because predators such as birds were better able
to see and eat them. Then the best survivors would be caterpillars with an intermedi-
ate size. In this case, the caterpillar population is experiencing stabilizing selection.

The third and final type of selection is disruptive selection, where individuals in
the population with either high or low extremes for a trait survive better than individ-
uals with an intermediate-sized trait. Suppose that the caterpillars varied in their degree
of melanism (pigmentation), with some caterpillars being quite dark, some being
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very light-colored, and some caterpillars having an in-between color. Now suppose
that the caterpillars were found on both the white bark of birch and the darker bark
of walnut trees. The light caterpillars would be protected from predators because
they would be hidden on the white bark of the birch trees. The dark caterpillars would
be protected on the bark of the walnut trees. However, the caterpillars with interme-
diate coloring would be visible to predators on both types of tree, and so they would
not survive as well as either of the extreme colors.

Suppose that the only those caterpillars at the extreme high end of a trait’s value in
the population survived (directional selection). How would you measure the impact
of natural selection on the population? You could take the mean weight of the popula-
tion before any individuals died, and then compare it to the mean weight of those
individuals that survived natural selection. This is what S, the strength of selection or
selection differential, measures—the difference in a population’s trait before and after
natural selection. If S = 0, then survivors and nonsurvivors did not differ in this trait,
and the offspring of survivors should not differ from the previous generation. The larger
the value of S, the more intense the action of natural selection on the population.

Heritability
Another important component of Equation 1 is heritability, h2. You were introduced
to the concept of heritability in the previous exercise, and we will briefly review the
important concepts here because knowledge of heritability is required to determine
how natural selection can give rise to evolutionary change.

Heritability in a scientific sense is not the degree to which a trait is genetic, nor is it
the proportion of an individual’s phenotype that is controlled by genes (rather than envi-
ronment). These concepts are often mistaken for h2, which in reality has a much more
specific meaning. Heritability is the proportion of variation for a trait that is explained
by genetic variation among individuals, abbreviated Vg. The variation in a trait that is
due to variation in environmental conditions is Ve. The total variation in population is
thus Vg + Ve. Heritability, h2, has the formula

Equation 2

Theoretically, h2 can only vary between 0 and 1. When variation among individuals in
a population is due entirely to differences in environmental conditions, h2 = 0. When
the total variation among individuals in a population is due solely to differences in the
genotypes of individuals, h2 = 1. Note that h2 is a specific measure for a specific popu-
lation at a specific point in time.

h
V

V V
g

g e
2 = +( )
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Quantitative geneticists calculate heritability in two ways. By manipulating Equa-
tion 1, you can solve for heritability as

h2 = R/S

This is the realized heritability, or heritability defined by the degree to which a trait
responds to selection in a population. We’ll return to this equation after we learn
more about R.

A second way to solve for heritability is to graph the trait in a set of offspring against
the mean of the trait of each of their two parents (called the midparent value; Figure
2). The slope of the regression line for such a plot is one way to estimate heritability.

Putting S, h2, and R Together
Now that we have a little background on S and h2, let’s return to Equation 1 and our
discussion of how populations can evolve as a result of natural selection. Recall that

R = S × h2

R measures the evolutionary response to selection, or how natural selection will cause
a population to evolve. Recall that there will be a response to selection only if three cri-
teria are fulfilled:
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Figure 2 (A) When an offspring’s trait is perfectly matched to the average of its
two parents, h2 = 1. Small parents will have small offspring, and large parents will
have large offspring. The slope of the line is 1, and h2 = 1. (B) When an offspring’s
trait cannot be predicted by the traits of its parents, h2 = 0. Parents of any size can
have offspring of any size. In this case, the slope of the regression line is 0, and h2 =
0. (C) This graph shows a tendency for larger parents to have larger offspring and
for smaller parents to have smaller offspring, but there is substantial scatter, sug-
gesting that h2 here falls between 0 and 1. 
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1. Individuals in a population must vary from one another.
2. Survival and reproduction must be affected by that variation.
3. The variation must be heritable. 

Equation 1 reflects all three criteria:
1. If individuals do not vary for a trait, then the denominator of Equation 2 is 0 

and h2 is undefined, so Equation 1 is undefined.
2. If S is 0, then R is 0, and natural selection did not impact the population.
3. If h2 is 0, then R is 0.

If both S and h2 are greater than 0, then you can expect the offspring will have a dif-
ferent mean trait than the previous generation’s population before selection. Thus, R
can be measured directly as the mean of the offspring population minus the mean of
the original parental population before any individuals died.

PROCEDURES

In this exercise, you will develop a spreadsheet model of a population of 100 individ-
uals that undergoes natural selection. You can imagine that the trait you are following
is beak size in birds. (For real data on such a trait, see Grant and Grant 1993 or read
Jonathan Weiner’s The Beak of the Finch, one of our all-time favorite books.) In this exer-
cise, you can manipulate several variables: the mean and variance of a trait in the
parental population, the “quality” of breeding habitat, how the individuals are dis-
tributed across breeding habitats, the degree of environmental and genetic influence
on the offspring trait (a modeling surrogate for heritability), and how natural selection
favors individuals of various traits. You’ll be able to manipulate these values to see how
they affect S, R, and the course of evolution.

As always, save your work frequently to disk. 

ANNOTATION

Enter 50 in cell C4.
Enter 10 in cell C5.
First we’ll define the parental population to have a particular mean and standard devia-
tion for the trait. Let’s suppose the birds in our study population have a mean beak size of
50 mm. Keep in mind that evolution requires variation in the parental population; this is
the standard deviation of beak size. For now, enter a standard deviation of 10 in cell C5. 

INSTRUCTIONS

A. Set up the model
parental population.

1. Open a new spreadsheet
and set up headings as
shown in Figure 3.

2. Enter the values shown
in cells C4 and C5 for
mean size and standard
deviation.
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Enter 50 in cell C8.
Enter 10 in cell C9.
Cells C8 and C9 establish the environmental conditions in which the parents breed and
produce offspring. Set cell C8 to 50, suggesting that on average (genetics aside), most
parents nest in environments that produce offspring with 50 mm beak size. The vari-
ation in the environment is set by cell C9, which is currently set to 10. This means that
the population is nesting is a very heterogeneous environment; some individuals will
nest in high-quality environments that generate large offspring with big beaks, while
others will nest in lower-quality environments that generate smaller offspring with
smaller beaks. If the value in cell C9 were small, such as 1, it would indicate that par-
ents are breeding in a similar (homogeneous) environment. 

Enter 0 in cells E8 and E9.
Cells E8 and E9 establish how natural selection will “select” or pick which parents will
breed. You can set these cells so that only large or small parents breed (directional selec-
tion), both small and large parents breed (disruptive selection), or only medium-sized
parents breed (stabilizing selection). For now, cells E8 and E9 are set to 0, which indi-
cates that all parents are able to breed, and natural selection will not discriminate among
the parent trait size. In the Questions section, you will be asked to modify these cells
to see how natural selection affects S and R.

Enter 0.5 in cells E4 and E5.
Cells E4 and E5 define the extent to which an offspring’s trait size will be controlled by
its parental genotype or by the environment in which it was raised. For lack of a bet-
ter term, we call these cells the “heritability factor” and the “environmental factor,”
respectively. Remember that heritability measures the amount of variation in a popu-
lation that can be explained by genetic variation among individuals. In this exercise,
we use the term “heritability factor” to shape each offspring’s phenotype. In this sense,
the word “heritability” is not correct because heritability is not a phenomenon that hap-
pens to individuals, but is a population-level measure. We trust that you have com-
pleted the heritability exercise for a true interpretation of the term.

We will track the fates of 100 pairs of individuals (male and female breeders) and
their offspring. 

Enter 0 in cell A20.
Enter =1+A20 in cell A21. Copy your formula down to cell A119. 

Enter the formula =NORMINV(RAND(),$C$4,$C$5) in cell B20. Copy this formula
down to cell B119.
The formula in cell B20 tells the spreadsheet to draw a random cumulative probabil-
ity (the RAND() portion of the formula) from a distribution whose mean is given in
cell C4 and whose standard deviation is given in cell C5. This probability is converted

3. Enter the values shown
in cells C8 and C9 to rep-
resent the mean and varia-
tion in evironmental con-
ditions. 

4. Enter the selection val-
ues shown in cells E8 and
E9. 

5. Enter the values shown
in cells E4 and E5 for the
heritability and environ-
mental contributions to
offspring phenotype.

6. Save your work.

B. Establish parental
traits before and after
selection.

1. Set up new column
headings as shown in
Figure 4.

2. Set up a linear series
from 0 to 99 in cells
A20–A119.

3. In cells B20–B119, use the
NORMINV and RAND
functions to assign average
beak sizes to each pair in
the parental population.
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into an actual data point by the NORMINV function. We’ll assume that this data point
represents the average of the male and female beak size. Copy the formula down to
obtain midparent beak sizes for the remaining pairs in the population.

Each parent will vary in beak size, but we’ll keep track of the average value from the
two individuals. Remember that our population has an average beak size of 50 mm
and a standard deviation of 10 mm. If our population is normally distributed (see Exer-
cise 3, “Statistical Distributions”) with respect to beak size, 68% of the population will
have beak sizes between the mean and ±1 standard deviation. That is, 68% of the
population will have beak sizes between 40 and 60 mm. About 95% of the population
will have beak sizes between the mean and ±2 standard deviations. That is, 95% of
the population will have beak sizes between 30 and 70 mm. Thus, our initial popula-
tion is quite variable with respect to beak size.

Enter the formula =IF(OR(B20>$E$8,B20<$E$9),1,0) in cell C20. Copy this formula
down to cell C119. 

We’ll now subject our population to natural selection in which only certain breeding
pairs survive. The IF formula returns one value if a condition you specify is true, and
another value if the condition you specify is false. The OR formula returns the word
“true” if any of the conditions specified are true. For example, the section
OR(B20>$E$8,B20<$E$9 tells the program to evaluate two conditions: first, Is the value
in cell B20 greater than the value in cell E8? and second, Is the value in cell B20 less than
the value in cell E9? If either of these conditions is true, the program returns the word
“true”; otherwise, it returns the word “false.” The IF formula tells the program to eval-
uate the OR function, and if it is true, return the number 1; if false, return the number 0.

Because cells E8 and E9 are both set to 0, all pairs of parents will survive natural selec-
tion, and column C should be filled with the number 1.

Enter the formula =IF(C20=1,B20) in cell D20. Copy this formula down to cell D119.
Cell D20 simply returns the midparent trait if the parents survived the selection event.
It tells the program to evaluate cell D20, and if the value is 1, then return the traits of
the parents given in cell B20. 

Your spreadsheet should now look something like Figure 5, although your midparent
trait values will be different due to the nature of random sampling.

4. In cells C20–C119, enter
an IF(OR) formula to see
which breeding pairs sur-
vive.

5. In cells D20–D119, enter
a formula to return the
mid-trait of those parents
that survived the selection
event.

6. Save your work.
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Enter the formula =AVERAGE(B20:B119) in cell H3. 

Enter the formula =SUM(C20:C119) in cell H4. 

Enter the formula =AVERAGE(D20:D119) in cell H5. 

We used the formula =H5-H3 in cell H6.
Note that since we haven’t considered offspring yet, we cannot measure the response
to selection, R.

Now that we’ve exposed the population to natural selection, we need to determine if
the population evolved as a result. Since an evolutionary response is a change in trait
over generations, we’ll let the surviving pairs of parents mate and produce a single off-
spring, and see if the offspring beak sizes have changed as a result of natural selection.
The traits in the offspring are controlled by cells E4 and E5. The values in cells E4
and E5 must sum to 1. If cell E4 is set to 1, an offspring will be identical to its parents.
If cell E5 is set to 1, the beak size will be determined solely by the environment in which
the offspring was raised. 

C. Calculate selection
statistics.

1. Set up new column
headings as shown in
Figure 6.

2. In cell H3, use the
AVERAGE function to
obtain the mean initial
parental trait (designated
as Averagei). 

3. In cell H4, use a SUM
formula to count the num-
ber of surviving pairs of
parents, designated as Ns.

4. In cell H5, use the
AVERAGE formula to
obtain the mean parental
trait after natural selection
(designated as Averages). 

5. In cell H6, calculate the
strength of selection (S) as
the mean trait after selec-
tion minus the mean trait
before selection. 

6. Save your work.

D. Establish offspring
traits.
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Enter the formula =IF(C20=1,$E$4*B20) in cell F20. Copy this formula down to cell
F119.
The formula in cell F20 evaluates first whether the value in cell C20 is 1 (the pair sur-
vived natural selection and were able to breed). If the pair survived, the spreadsheet
will compute $E$4*B20, or the genetic “component” multiplied by the midparent beak
size. Notice that the last part of the IF function was omitted; by default, the spreadsheet
will return the word “false” if the last part of the IF function is not specified.

Enter the formula =IF(C20=1,$E$5*NORMINV(RAND(),$C$8,$C$9)) in cell G20. Copy
this formula down to cell G119.
How much the environment will affect the offspring’s phenotype depends on three
things: first, the pair must survive to breed; second, the mean of the environment in
which the offspring are produced needs to be specified; and third, the standard devi-
ation of that environment needs to be specified. The formula in cell H20 is another IF
function that evaluates whether the pair of adults survived to reproduce. If so, the
spreadsheet will use the NORMINV function to draw a random cumulative proba-
bility from a normal distribution whose mean is given in cell $C$8 and whose standard
deviation is given by cell $C$9. This number is then multiplied by the value in cell $E$5,
which is the environmental component of the offspring’s phenotype. Note again that
the last part of the IF function was not specified, so the word “false” will be returned
if the pair failed to breed.

Enter the formula =IF(C20=1,F20+G20) in cell H20. Copy this formula down to cell
H119.
The offspring’s final beak size is determined by the genetic component plus the envi-
ronmental component. The IF function is used again so that only parents that survive
to breed can generate offspring.

We’ll now examine the effect of the selection event on the population visually. The most
common way to depict a population’s values is through a frequency distribution—a
plot of the raw data (in this case, beak sizes) against the frequency that values appear
in the population. We will calculate the frequencies of adult traits before and after
natural selection, as well as offspring traits. 
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1. Set up new column
headings as shown in
Figure 7.

2. In cells F20–F119, enter
a formula to determine the
genetic component of the
offspring’s beak size.

3. In cells G20–G119, enter
a formula to determine
how the environment
affects the offspring’s phe-
notype.

4. In cell H20, enter a for-
mula to compute the off-
spring’s beak size.

5. Save your work.

E. Construct histograms.
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The FREQUENCY function calculates how often values occur within a range of val-
ues, and then returns a vertical array of numbers. You will use the FREQUENCY func-
tion to count the number of beaks in cells B20–B119 that fall below 10 mm, within 10
and 19 mm, within 20 and 29 mm, and so on. These are the “bins” in which numbers
will be grouped. 

The FREQUENCY function works best when you use the fx key and follow the cues
for entering a formula. Remember that since you will be entering this formula for an
array of cells, the mechanics of entering this formula is a bit different than the typical
formula entry. Instead of selecting a single cell to enter a formula, you need to select
a series of cells, then enter a formula, and then press <Control><Shift><Enter> (Win-
dows machines) or  + <Return> (Macintosh) to enter the formula for all of the cells
you have selected.

To determine the frequencies of beak lengths before selection, select cells L20–L29, then
select the FREQUENCY function. To define the Data Array, use your mouse to highlight
all 100 pairs of individuals before the selection event in cells B20–B119. To define the
Bins Array, select cells J20–J28. Instead of clicking ΟΚ, press <Control><Shift><Enter>.
The program will return your frequencies of beak sizes before the selection event.

After you’ve obtained your results, examine the formulas in cells L20–L29. Your for-
mula should be { =FREQUENCY(B20:B119,J20:J28)}. The { } symbols indicate that the
formula is part of an array. If for some reason you get “stuck” in an array formula, press
the escape key and start over.

The formula that calculates frequencies after the selection event is {=FRE-
QUENCY(D20:D119,J20:J28)}.

The formula that calculates frequencies of offspring is
{=FREQUENCY(H20:H119,J20:J28)}.

1. Set up new column
headings as shown in
Figure 8.

2. Use the FREQUENCY
function in cells L20–L29
to count the number of
adult pairs with trait sizes
<10, <20, etc. before natu-
ral selection. 

3. Use the FREQUENCY
function in cells M20–M29
to count the number of
adults pairs with trait
sizes <10, < 20, etc. after
natural selection. 

4. Use the FREQUENCY
function in cells N20:N29
to count the number of
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Now you can visually examine strength of selection (S). (You’ve already calculated S
in cell H6). It’s the difference in the trait before and after selection—that is, the shift in
the distribution as a result of natural selection. In this case, because natural selection
did not kill off any adults, S is 0. 

Use the column graph option, and label your graph fully. Your graph should resem-
ble Figure 9, but your values may be different.

Interpret your graph. You should see that the frequency distribution of parents before
and after natural selection is identical because all of the parents survived to breed. The
offspring traits are a bit different than the parents because the environment played a role
in shaping their beak sizes. Press F9, the calculate key, and you will see the offspring
traits can be quite variable from calculation to calculation. This is because the environ-
ment plays an equal role in shaping beak sizes of offspring, and the environment for
breeding is quite variable at the moment. If natural selection “picked” only adults
with beak sizes larger than 50 mm (cell E8), our graph would look like Figure 10.

offspring with trait sizes
<10, <20, etc. 

5. Graph your frequency
distributions of beak sizes
for parents before and
after the selection event,
and for offspring of sur-
viving parents.
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Enter the formula =AVERAGE(H20:H119) in cell I7.

Enter the formula =I7-H3 in cell I8.

Take time now to fully interpret your graphs and calculations, keeping in mind the
model entries given at the beginning of the exercise.

QUESTIONS

1. Although the model is currently set so that all parents survive to breed (S = 0),
occasionally you will see that R does not equal 0. Fill in the table below by
striking the F9 key 5 times. After each strike, record your results, and then
describe the pattern you see. After filling in the table, continue to hit the F9 key
many more times. Are your offspring ever smaller than your parents? In other
words, do you ever get a negative response to selection? Are they ever larger
than the parents are? Why? Interpret S and R.

2. Let’s continue to let all parents breed, but we will alter how the offspring’s phe-
notypes are generated. Set cell E4 to 1 (and cell E5 to 0) so that offspring are
identical to their parents in phenotype. Press F9 several times and interpret R.
Then set cell E4 to 0 and cell E5 to 1 so that an offspring’s phenotype is con-
trolled strictly by the environment in which it was raised. Under what condi-
tions is it possible to see a change in R? Why?

3. Now let’s let only some parents survive to breed. If you were trying to commer-
cially breed these birds to obtain birds with a mean beak size of 70 mm, what
conditions would you modify in your spreadsheet to consistently generate birds
with the desired traits? Answer this question first for a population with a heri-
tability factor (cell E4) of 1. Answer this question a second time for a population
with heritability factor (cell E4) of 0.6. Assume that you cannot control the envi-
ronment in which the birds are living (C8 and C9), but you can change the
selection values (cells E8 and E9). Discuss your answer in terms of S and R, and
interpret your updated graphs.

4. Now that you have tried the above (and perhaps looked at the answer), let us
try to use a population with a heritability factor of 0.6 again, but this time try to
breed for birds with a mean beak size of 55 mm. Discuss your answer in terms
of S and R.

F. Calculate offspring
statistics and R.

1. In cell I7, compute the
average of the offspring’s
trait size. 

2. In cell I8, calculate R,
the response to selection,
as the mean offspring trait
minus the mean parental
trait. 

3. Save your work. 
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5. In questions 3 and 4, you explored directional selection. Alter the values in cells
E8–E9 to model the effects of disruptive selection. How does changing E4–E5
affect the distribution of the offspring population, R, and S? Compare your
results with earlier answers from directional selection. 

6. Explore your spreadsheet in new ways, and ask an interesting question and
answer it. Modify parents original traits (variable or not variable, cells C4–C5),
the environment of the nest (C8–C9) in which the offspring is raised, the genetic
and environmental influence on offspring traits (cells E4–E5), and selection of
parents (cells E8 and E9). 
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SEXUAL SELECTION 
In collaboration with Shelley Ball

38
Objectives

• Determine how female choice affects allele and genotype
frequencies in a population.

• Determine how initial allele frequencies influence the evolu-
tion of allele frequencies through female choice.

• Evaluate how natural selection can counter sexual selection
in the evolution of a trait.

Suggested Preliminary Exercises: Hardy-Weinberg Equilibrium
and Multilocus Hardy Weinberg

INTRODUCTION
From a genetic perspective, evolution is often described as a change in allele fre-
quency over time. What mechanisms cause changes in allele frequencies? Gene
flow, mutations, and genetic drift can all spur such change. Natural selection—
the differential survival and reproductive success of individuals in populations—
is another major evolutionary force. Natural selection simply means that if some
individuals have genetic characteristics that are well-suited for a particular envi-
ronment, they will on average survive better and produce more offspring than
other individuals in the population, thereby changing allele frequencies in sub-
sequent generations.

In some cases, natural selection arises from differences in mating success: cer-
tain individuals possess traits that cause them to be perceived as “better” mates,
and hence to mate more frequently than other individuals in the population.
For example, the long, bright tails of male peacocks may have evolved because
females preferentially selected males with the longest and brightest tails (the selec-
tive force was female choice). This difference in mating success due to such traits
is called sexual selection.

Charles Darwin  thought that sexual selection was different from natural selec-
tion, saying “Sexual selection … depends not on a struggle for existence, but on a
struggle between the males for possession of the females; the result is not death to
the unsuccessful competitor, but few or no offspring” (Darwin 1871).

The theory of sexual selection assumes the selection of traits that are purely con-
cerned with maximizing mating success. Males can “increase the odds” of mating
by having traits (such as the long, bright tail feathers in male peacocks) that attract
females. Males can also maximize their mating success by the “brute force” method:



outcompeting other males for mating opportunities (male-male contests). Female traits
may not be so visible; females maximize their fitness by selecting males that somehow
enhance their own fitness or the fitness of their offspring. A female might select males
that have “good genes” which enhance her offspring’s fitness (an indirect benefit of mate
choice), or by selecting males that are “good parents/mates,” which enhance the female’s
own survival and reproductive success (a direct benefit of mate choice).

In these cases it’s fairly easy to imagine how females that choose beneficial mates can
be favored in a population, and how such choices influence the evolution of a species
(Alcock 2001). But what happens when there is no direct or indirect fitness benefit asso-
ciated with mate choice? Can a population still evolve due to sexual selection? The
answer, in theory, is yes. Ronald Fisher introduced the theoretical argument in 1930.
Fisher realized that sexual selection could cause populations to evolve when there is no
fitness gain associated with mate choice, and that sometimes even traits that decrease
survivorship, such as an extraordinarily long tail, can evolve in a population as a result.
Fisher’s model is called runaway sexual selection.

An important underlying assumption of Fisher’s model is that both the female pref-
erence and the male trait (i.e. tail length) must be under genetic control. (Remember,
traits cannot evolve unless they have a genetic basis.) So, let’s imagine that males have
a gene associated with tail length in which males have either a T1 (short) or a T2 (long)
genotype (let’s assume, for simplicity, that we’re dealing with a haploid organism).
Females also have these genes for tail length but do not express them. Let’s further
assume that the T2 genotype has a fitness cost—perhaps males with long tails have higher
mortality rates because predators capture them more easily. Let’s also imagine that a
separate, nonlinked gene determines mating preference, where the genotype P1 indicates
no preference for tail length but the P2 allele indicates a strong preference for long tails.
Both males and females have the P gene, but only females express the gene when they

484 Exercise 38

T1

T1

P1

T2

T2

P2

P
r
o
b
a
b
i
l
i
t
y
o
f
m
a
t
i
n
g

b
y
f
e
m
a
l
e
o
f
t
y
p
e
P
i

Male trait
type, Ti

Son’s trait

(A)



D
a
u
g
h
t
e
r
s
’
m
a
t
i
n
g
p
r
o
p
e
n
s
i
t
y

P2
(for
T2)

P1
(for
T1)

Figure 1 When some females prefer males with
long tails, males with the T2 genotypes will
increase in frequency in the population in the
next generation (bottom). P1 females randomly
choose to mate with both long- and short-tailed
males, while P2 females prefer males with long
tails. If this preference is strong enough, and if P2
females are sufficiently frequent in the popula-
tion, long-tailed males may mate more success-
fully on average and thus produce more off-
spring than short-tailed males. These offspring
will tend to inherit both the allele for long tails
(from their male parents) and the allele for tail
preference (from their female parents), so that as
selection increases the frequency of T2 it also
increases the frequency of P2. As P2 becomes
more frequent and an increasing proportion of
females favors long tails, the advantage of hav-
ing a long tail increases. Alleles T2 and P2 may
thus both increase in frequency over time, at
ever-increasing rates. The change in genotype
frequency over time for males is shown in Figure
2. Note that male genotypes containing a T2 allele
increase in frequency, while male genotypes with
T1 decrease in frequency. (From Futuyma 1998.)



solicit matings. Thus, both sexes carry an allele for both the P and T genes. Because of
this, selection for a particular allele of one gene can “drag along” a particular allele of
the other gene. This association leads to a genetic correlation between the tail length
gene and the mating preference gene, as shown in Figure 1.

If runaway sexual selection actually happens in nature, why don’t we commonly see
birds with super-long tails? Although sexual selection for long tails increases the fitness
of long-tailed males over short-tailed males, natural selection may select against long-
tailed males through decreased survivorship. For example, if a tail is so long that the
bird has troubles escaping from predators, there will be fewer long-tailed males in the
population. Depending on the strength of selection against long-tailed males, we can
expect some equilibrium level that would balance survival costs of having a long tail
with the reproductive benefits of having such a tail. Figure 3 shows an example of how
natural selection can drive the T2 allele to extinction by substantially decreasing the sur-
vival probability of T2 males.
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INSTRUCTIONS

A. Set up the model
parental population.

1. Open a new spread-
sheet and set up headings
as shown in Figure 4.

2. In cells C5–C8 and
E5–E8, enter the number
of individuals with each
genotype. 
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In Fisher’s (1958) model of sexual selection, he assumed that the female’s prefer-
ence must confer some sort of selective advantage and that this advantage was neces-
sary to “get the ball rolling” in the runaway process. However, later work by Kirkpatrick
(1982) showed that an initial selective advantage was not a necessary prerequisite for
the runaway process of sexual selection and that evolution of the male trait could occur
without selection for or against female preference. We will model Fisher’s runaway
process of sexual selection and in doing so, show that no initial selective advantage of
female preference is necessary for generating the runaway process.

PROCEDURES

In this exercise, you’ll set up a runaway sexual selection model and see first-hand how
the runaway process works. You’ll model a population of 2000 haploid individuals
(1000 males and 1000 females). There will be two alleles, P and T, as previously
described, and thus there are 4 possible genotypes: P1T1, P1T2, P2T1, and P2T2. You
will set up a table of mating preferences that indicate the preferences of a female geno-
type for the various male genotypes. These mating preferences will be converted to
mate selection probabilities that account for the frequencies of male genotypes in the
population. Once the mating preferences are assigned, you will simulate the repro-
duction of offspring as a diploid organism (by joining the male and female partner’s
genotypes), and then will simulate meiosis to so that organisms so that the haploid sys-
tem is maintained. Once the offspring are generated, you will compute the numbers of
P1T1, P1T2, P2T1, and P2T2 individuals in the offspring population, and then compute
their allele frequencies. And finally, you will develop a macro to track the allele fre-
quencies over time to see how the various genotypes evolve.

Admittedly, this is a pretty complicated spreadsheet, so take your time as you work
through it and try to keep the bigger picture in mind as you develop the model. As
always, save your work frequently to disk.

ANNOTATION

We will start by setting up a parent population that contains 1000 males and 1000
females. The tail length locus, T, has 2 alleles, T1 (short tail) and T2 (long tail). The pref-
erence locus, P, has two alleles, P1 (no preference for tail length) and P2 (preference
for long tails).

The possible genotypes for the population are given in cells A5–A8.

Enter 250 in cells C5–C8 and E5–E8.
To begin, we will assume that the all genotypes are equally represented in the popu-
lation. You will be able to change these cells later in the exercise. 

1
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A B C D E F
Sexual Selection

Tally Tally

Genotype Male 0 Female 0

T1P1 Short tail, no preference 250 250

T1P2 Short tail, preference 250 250

T2P1 Long tail, no preference 250 250

T2P2 Long tail, preference 250 250

PARENTAL GENOTYPE NUMBERS

Figure 4



This is a “place holder” to tally the total number of males and females in cells D5–D8
and cells F5–F8. It is necessary so that we can assign genotypes properly to the 1000
males and females. 

Enter =C5 in cell D5.
Enter the formula =D5+C6 in cell D6. Copy this formula down to cell D8. 
This is a running tally that counts the total number of individuals as we consider addi-
tional genotypes. The final result in cell D8 should be 1000. 

Enter =E5 in cell F5. 
Enter =F5+E6 in cell F6. Copy the formula down to cell F8. Your total should be 1000
in cell F8.

Enter 0 in cell A22. 
In cell A23, enter =1+A22. Copy your formula down to cell A1021. This assigns a num-
ber to each male and each female in the population.

Enter the formula =LOOKUP(A22,$D$4:$D$8,$A$5:$A$8). Copy this formula down
to cell B1021.
The LOOKUP function looks up a value (A22) in a vector that you specify (cells
$D$4:$D$8), and returns a genotype for the individual given in the vector $A$5:$A$8.
(A vector is a single row or column of values). The result of this function is that geno-
types are assigned to individuals in exactly the numbers that you specified in cells
C5–C8.

Examine your first 10 genotypes. They should all be T1P1. To see how the function
works, change cell C5 to 1. Now examine the genotypes of your first 10 individuals.
The first male should be T1P1, but the rest of the males should be T1P2. When you feel
you have a handle on how this function works, return cell C5 to 250. 

Enter the formula =LOOKUP(A22,$F$4:$F$8,$A$5:$A$8) in cell C22. Copy your for-
mula down to cell C1021.
The formula for females works in the same way as that for males, using the female
tallies.

3. Enter 0 in cells D4 and
F4. 

4. In cell D5–D8, enter for-
mula to tally the male
genotypes.

5. Set up the tally for
females in cells F5–F8.

6. Set up new spreadsheet
headings as shown in
Figure 5. 

7. Set up a linear series
from 0 to 999 in cells
A22–A1021.

8. In cells B22–B1021, use
the LOOKUP function to
assign genotypes to the
males.

9. In cells C22–C1021,
enter a formula to assign
genotypes to the females.

10. Save your work.

B. Set up the mating
preferences and mate
selection probabilities. 

1. Set up new column
headings as shown in
Figure 6.

2. Enter the female mate
selection preferences
shown in cells I5–L8. 
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Cells H5–H8 represent the genotypes of females, and cells I4–L4 represent the geno-
type of a female’s potential mate. The entries in cells I5–L8 establish the female’s mat-
ing preferences. Thus, a female with genotype T1P1 has the “no preference for tail length
gene,” so her preferences are identical for all four male genotypes. A female with geno-
type T1P2 or T2P2 has the P2 “preference for long tailed males gene,” so she will prefer
to mate with males that have a genotype T2P1 or T2P2, but will not prefer males with
genotypes T1P1 or T1P2. Note that the probabilities in each row in this table must sum
to 1! 

Enter the formula =I5*C5/(I5*C5+J5*C6+K5*C7+L5*C8) in cell I14.
Although female mating preferences have been established, mating probabilities must
also consider the number of males of each genotype in the population. The formula in
cell I14 makes this adjustment and computes the probability that a T1P1 female will
mate with a T1P1 male. The formula multiplies the preference for T1P1 males by the
number of T1P1 males in the population, then adjusts this result by dividing by prefer-
ence × number for all of the genotypes in the population.

Double-check your formulae against Figure 7.

3. In cell I14, enter a for-
mula to compute the prob-
ability that a mating
between the specified
genotypes will take place.

4. Enter formulae to com-
pute the remaining mate
selection probabilities. 
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

G H I J K L

T1P1 T1P2 T2P1 T2P2

T1P1 0.25 0.25 0.25 0.25

Female T1P2 0 0 0.5 0.5

genotype T2P1 0.25 0.25 0.25 0.25

T2P2 0 0 0.5 0.5

T1P1 T1P2 T2P1 T2P2

Survival => 1 1 1 1

T1P1

Female T1P2

genotype T2P1

T2P2

Male genotype

MATE SELECTION PREFERENCES

MATE SELECTION PROBABILITIES

Male genotype

Figure 6

14
15
16
17

K L
=K5*C7/(I5*C5+J5*C6+K5*C7+L5*C8) =L5*C8/(I5*C5+J5*C6+K5*C7+L5*C8)

=K6*C7/(I6*C5+J6*C6+K6*C7+L6*C8) =L6*C8/(I6*C5+J6*C6+K6*C7+L6*C8)

=K7*C7/(I7*C5+J7*C6+K7*C7+L7*C8) =L7*C8/(I7*C5+J7*C6+K7*C7+L7*C8)

=K8*C7/(I8*C5+J8*C6+K8*C7+L8*C8) =L8*C8/(I8*C5+J8*C6+K8*C7+L8*C8)

14
15
16
17

I J
=I5*C5/(I5*C5+J5*C6+K5*C7+L5*C8) =J5*C6/(I5*C5+J5*C6+K5*C7+L5*C8)

=I6*C5/(I6*C5+J6*C6+K6*C7+L6*C8) =J6*C6/(I6*C5+J6*C6+K6*C7+L6*C8)

=I7*C5/(I7*C5+J7*C6+K7*C7+L7*C8) =J7*C6/(I7*C5+J7*C6+K7*C7+L7*C8)

=I8*C5/(I8*C5+J8*C6+K8*C7+L8*C8) =J8*C6/(I8*C5+J8*C6+K8*C7+L8*C8)

Figure 7



Double-check your results as well. Since there are currently equal numbers of male
genotypes in the population, the mate selection probabilities should be the same as the
mate selection preferences (Figure 8).

Enter the number 1 in cells I13–L13.
Currently the survival probability is set to 1 so that all male genotypes have equal
survival. Later in the exercise, you will be able to change these values so that males
with long tails have a lower probability of survival.

Our goal is to have the spreadsheet look up the genotype of female parents (in column
C) and match their genotype to genotypes listed in cells H14–H17. Ultimately, we want
to determine the genotype of the female’s selected mate, listed in cells I12–L12. To
choose mates according to the probabilities given, we will use four different functions:
MATCH, INDEX, RAND, and IF. The combination of these formulae will allow us to
generate the genotype of a mate for each female in the population in column J. 

The MATCH formula returns the relative position of an item in a table that matches the
condition you specify. The MATCH function has the syntax MATCH (lookup_
value,lookup_array,match_type), where lookup_value is the value you use to find
the value you want in a table,  lookup_array is a contiguous range of cells containing
possible lookup values, and match_type tells the spreadsheet how to match the lookup
value to the lookup array (by not specifying match-type, the default is used). In cell D22,
the formula =MATCH(C22,$H$14:$H$17) tells the spreadsheet to find the genotype
listed in cell C22, and return the relative position of that genotype in the $H14–$H17 table.
For example, the genotype of female 1 in the spreadsheet is T1P1. Excel returns the value
1 to indicate that T1P1 individuals occupy the first position in our table. If female 1 had
the genotype T2P2, the program would return the number 4 (fourth position).

The INDEX formula returns the value of an element in a table, once you identify the
row and column number that should be returned. The INDEX formula has the syntax:
INDEX(array,row_num,column_num), where array is a range of cells in a table;
row_num selects the row in the table from which to return a value, and column_num

5. Enter a survival proba-
bility for males in cells
I13–L13. 

6. Save your work.

C. Simulate parental
matings. 

1. Set up new headings as
shown in Figure 9.

2. In cell D22, enter the for-
mula =MATCH(C22,$H$14:
$H$17).

3. In cell E22, enter the for-
mula =INDEX($H$14:
$L$17,D22,2).
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T1P1 T1P2 T2P1 T2P2

Survival => 1 1 1 1

T1P1 0.25 0.25 0.25 0.25

Female T1P2 0 0 0.5 0.5

genotype T2P1 0.25 0.25 0.25 0.25

T2P2 0 0 0.5 0.5
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selects the column in table from which to return a value. In cell E22, the formula
=INDEX($H$14:$L$17,D22,2) tells the spreadsheet to examine the range of cells in
H14–L17 and go to the row designated in cell D22 (derived from your MATCH for-
mula) and column 2 (which indicates the probability of mating with an T1P1 male). The
spreadsheet will then return the value associated with this row and column intersec-
tion. Your result should be 0.25. 

Enter the formula =INDEX($H$14:$L$17,D22,3) in cell F22.
Enter the formula =INDEX($H$14:$L$17,D22,4) in cell G22.
Enter the formula =INDEX($H$14:$L$17,D22,5) in cell  H22.
These four formulae simply generate the appropriate mating probabilities for each indi-
vidual in the population.

Enter =RAND() in cell I22.
This formula randomly determines the genotype of the mate for each individual in the
population. When you press F9, the calculate key, you generate a new set of random
numbers.

Enter the formula =IF(I22<=E22,$I$12,(IF(I22<=E22+F22,$J$12,
(IF(I22<=E22+F22+G22,$K$12,$L$12))))) in cell J22.
The formula in cell J22 looks complicated but really it’s not. The formula is simply four
nested IF statements. The formula tells the spreadsheet to examine cell I22 (the ran-
dom number). If I22 is less than or equal to the value in cell E22 (<=E22), then return
the genotype in cell $I$12; otherwise walk through the next IF statement. The next state-
ment examines cell I22, and if its value is less than or equal to the values in cells E22 +
F22 (<=E22+F22),  then return the genotype in cell $J$12; otherwise walk through the
third  IF statement. The third statement examines cell I22, and if its value is less than
or equal to the sum of E22, F22, and G22 (<=E22+F22+G22), return the genotype in cell
$K$12, otherwise return the value in cell $L$12.

This will establish the selected mate’s genotype for each female in the population.
Review your spreadsheet entries and results for the first five individuals and make sure
you understand how mates were determined for the females.

We set up the spreadsheet so that selection against a particular genotype occurs after
female mating probabilities have been established. Thus, selection against a genotype
does not influence the mating probabilities themselves. For now, each genotype has a
survival probability of 1 (given in cells I13–L13), indicating that there is no “cost” to
having a long tail. If we wished to impose selection against long-tailed males, we would
alter the survival probabilities in cells I13–L13.

Enter the formula =IF(RAND()<HLOOKUP(J22,$I$12:$L$13,2),J22,”.”) in cell K22.
Copy the formula down to cell K1021.
The formula uses an HLOOKUP function to find the genotype of the selected mate for
female 1 (J22) in the table of cells I12–L13, and finds that male’s survival probability
in the second row of the table. The RAND() function draws a random number between
0 and 1. The IF function determines whether this random number is less than the appro-
priate survival probability. If the random number is less than the survival probability,

4. Use the INDEX function
to index the T1P2, T2P1,
and T2P2 genotypes in
cells F22–H22.

5. In cell I22, use the
RAND function to gener-
ate a random number
between 0 and 1.

6. In cell J22, enter a for-
mula to establish the geno-
type of that female’s
selected mate.

7. Select cells D22–J22, and
copy and the formula
down to row 1021

8. Save your work.

D. Impose natural selec-
tion on males. 

1. Set up new headings as
shown in Figure 10.

2. In cells K22–K1021 enter
a formula to compute
which males survive to
breed and produce off-
spring.
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the male lives and his genotype (J22) is returned. If the random number is greater than
the survival probability, the male dies and a period (“.”) is returned, indicating a death.

Enter the formula =IF(K22=“.”,”.”,C22&J22) in cell L22.
If the male in cell K22 is dead, the formula returns a missing value (.). If the male is not
dead, the spreadsheet returns the combination of cells C22 and J22; the & function sim-
ply concatenates the two cells. 

Enter the formula =IF(RAND()<0.5,MID(L22,1,2),MID(L22,5,2))
&IF(RAND()<0.5,MID(L22,3,2),MID(L22,7,2)) in cells M22 and N22.
Our goal is to generate male and female offspring that have a single T allele and a sin-
gle P allele. We’ll let meiosis occur with random segregation of alleles.

The MID function returns a specific number of characters from a text string, starting
at the position you specify, and based on the number of characters you specify. It has
the syntax MID(text,start_num,num_chars) The first part of the formula,
IF(RAND()<0.5,MID(L22,1,2),MID(L22,5,2), tells the spreadsheet to draw a random
number between 0 and 1. If that random number is <0.5, return the value associated
with MID(L22,1,2), otherwise returns the value associated with MID(L22,5,2). The
MID(L22,1,2) portion of the formula tells the spreadsheet to examine cell L22 and, start-
ing at the first character, return 2 characters. The MID(L22,5,2) portion of the formula
examines cell L22, and starting at the fifth character, returns 2 characters. This portion
of the formula returns a randomly selected T allele. The second IF statement is analo-
gous and randomly selects the P allele for each offspring. The two alleles are joined
by the & symbol.

3. Save your work.

E. Establish offspring
genotypes and allele 
frequencies.

1. Set up new column
headings as shown  in
Figure 11.

2. In cell L22, enter a formu-
la to combine the female’s
haploid genotype with her
mate’s haploid genotype to
produce a diploid offspring
(only if the male survived
to breed).

3. In cells M22 and N22,
use the IF, RAND, and
MID functions to generate
the genotypes of haploid
inviduals. 

4. Select cells L22–N22 and
copy their formulae down
to row 1021.

5. Set up new column
headings as shown in
Figure 12.
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Double-check your formulae against Figure 13.

Double-check your formulae against Figure 14.

The macro needs to perform the following steps:
•Paste the genotype numbers of the offspring into the parental population cells.
•Press the calculate key to simulate mate selection, natural selection, and breed-

ing.
•Record the offspring’s allele frequencies in the cells O4–V18.

There are many ways to write a macro to conduct these steps. We suggest one way, but
you may see other (perhaps easier) steps. Put your macro function in the “record macro”
mode and assign a shortcut key (see Exercise 2). Record the following operations:

6. In cells C12–C15 and
D12–D15, use the COUN-
TIF function to count the
number of offspring male
and female genotypes,
respectively. Sum the
totals in cells C16 and
D16.

7. In cells E12–F16, com-
pute the male and female
offspring genotype fre-
quencies.

8. Save your work.

F. Track genotype fre-
quencies over time.

1. Set up new headings as
shown in Figure 15, but
extend your generations to
15. 

2. Open Tools | Options |
Calculation and set the cal-
culation key to manual.

3. Write a macro to track
allele frequencies over
time.
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=COUNTIF($M$22:$M$1021,A12) =COUNTIF($N$22:$N$1021,A12)

=COUNTIF($M$22:$M$1021,A13) =COUNTIF($N$22:$N$1021,A13)

=COUNTIF($M$22:$M$1021,A14) =COUNTIF($N$22:$N$1021,A14)

=COUNTIF($M$22:$M$1021,A15) =COUNTIF($N$22:$N$1021,A15)

=SUM(C12:C15) =SUM(D12:D15)

Genotype numbers
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=C12/$C$16 =D12/$D$16

=C13/$C$16 =D13/$D$16

=C14/$C$16 =D14/$D$16

=C15/$C$16 =D15/$D$16

=SUM(E12:E15) =SUM(F12:F15)

Genotype frequencies
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•Press F9, the calculate key, to generate new random numbers (and hence new
matings and offspring for the parental population).

•Select cells E12–E15. Copy.
•Select cell O3.
•Open Edit | Find. The dialog box in Figure 16 will appear. Leave the Find What

box blank and Search By Columns. Select Find Next and then Close. Your cursor
should move down to the next blank cell. 

•Open Edit | Paste Special and select the Paste Values and Transpose options. Click
OK.

•Select cells F12–F15. Copy.
•Select cell S3.
•Open Edit | Find.
•Click on Find Next and then Close.
•Open Edit | Paste Special,and select the Paste Values and Transpose options.
•Select cells C12–C15. Copy.
•Select cell C5. 
•Open Edit | Paste Special and select the Paste Values option.
•Select cells D12–D15. Copy.
•Select cell E5.
•Open Edit | Paste Special and select the Paste Values option.

Stop recording. Now when you press your shortcut key, your macro will record the
allele frequencies of the various genotypes for males and females.

Use the line graph option and label your axes fully. Your graphs should resemble Fig-
ures 17 and 18.
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4. Run the macro 15 times
(i.e., over 15 generations).

5. Save your work.

G. Create graphs.

1. Graph the allele fre-
quencies of males and
females over time. Make a
separate graph for each
sex.

Figure 16



QUESTIONS

1. Interpret your model results. For each sex, explain how the genotypes (T1P1,
T1P2, T2P1, T2P2) evolve (change in frequency) from one generation to the next.
Which genotypes went extinct; which genotypes persisted? Did this differ for
males and females? If so, why? What mechanism allows for the evolution of the
T and P alleles? 

2. In your model, females with the P2 allele mate only with the T2 males—no
exceptions. In reality, perhaps not all females will be able to mate with T2 males,
and so some P2 females will mate with T1 males. Change the choice parameters

2. Save your work. 
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in cells I6–L6 and I8–L8 to 0.1, 0.1, 0.4, and 0.4. Reset your genotype numbers in
cells C5–C8 and E5–E8 to 250. Clear your old macro results, and run your
macro again. How does the “strength” of sexual selection influence the change
in allele frequencies from one generation to the next? 

3. How does natural selection influence the evolution of the T2 trait even when P2
females have full preference for T2 male? Return the mate selection preferences
to their original values as shown:

Decrease the survival probabilities of T2 males in cells K13–L13 by increments
of 0.1. With each incremental decrease in survival, run your macro again (clear
your old results, and make sure to reset the initial genotype numbers to 250 in
cells C5–C8 and E5–E8). What level of natural selection “puts the brakes” on
sexual selection? 

4. How do starting allele frequencies affect the outcome of a simulation? The ini-
tial genotypes we used to build the spreadsheet are admittedly very unusual;
before sexual selection for tail length begins, it is much more likely that at least
one (if not both) of the alleles T2 and P2 will be new and very rare mutations.
That is, either there will be variety in tail length (long and short tails both occur
with some regularity) when a mutation causes one female (or a few sisters) to
prefer long tails, or there will already be a preference for a trait that does not yet
exist, and mutation will create that trait in one male (or a few brothers). We can
use this spreadsheet model to test both of these initial conditions.

Set the genotype survivals back to 1 and set the initial genotype numbers as
shown below: 

In this population, half the males have long tails and half have short, but none
of the males carry the allele for preferring long tails. Approximately half the
females carry the allele for long tails, but by some unusual chance, 10 sisters in
this generation all received a mutated gene that causes them to mate exclusive-
ly with long-tailed males. Clear your previous results from cells O4–V18 and
run your macro to see what happens to genotype frequencies over 15 genera-
tions. Do these initial conditions result in runaway sexual selection?
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G H I J K L

T1P1 T1P2 T2P1 T2P2

T1P1 0.25 0.25 0.25 0.25

Female T1P2 0 0 0.5 0.5

genotype T2P1 0.25 0.25 0.25 0.25

T2P2 0 0 0.5 0.5

Male genotype

MATE SELECTION PREFERENCES

3
4
5
6
7
8

A B C D E F
Tally Tally

Genotype Male 0 Female 0

T1P1 Short tail, no preference 500 500 500 500

T1P2 Short tail, preference 0 500 0 500

T2P1 Long tail, no preference 500 1000 490 990

T2P2 Long tail, preference 0 1000 10 1000
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5. Set the initial genotype frequencies to those shown below:

In this population, 10% of the females would prefer to mate with a long-tailed
male, although almost the entire population consists of short-tailed males.
Approximately 10% of the males also carry the allele for preference, even
though they do not express it, but almost all the males have short tails. One
lone male has mutated to have a tail that is longer than the others.

To make these initial conditions a little more plausible, we need to allow that
the P2 allele does not confer absolute preference—otherwise the females that car-
ried it up to this generation would not have mated, and the allele would have
been lost. Resetting the mate selection preferences as shown below will give us
females who would strongly prefer long-tailed males but who will settle for
short-tailed males in a pinch.

Clear your previous results from cells O4–V18 and run your macro to see what
happens to genotype frequencies over 15 generations. Do these initial condi-
tions result in runaway sexual selection?

6. Can runaway sexual selection occur when P2 = 0? Set your initial conditions so
that all females and 995 males in the population have the genotype T1P1 and 5
males have the genotype T2P1. Then set the mate selection preferences as shown
below:

2
3
4
5
6
7
8

A B C D E F

Tally Tally

Genotype Male 0 Female 0

T1P1 Short tail, no preference 900 900 900 900

T1P2 Short tail, preference 99 999 100 1000

T2P1 Long tail, no preference 0 999 0 1000

T2P2 Long tail, preference 1 1000 0 1000

PARENTAL GENOTYPE NUMBERS

2
3
4
5
6
7
8

G H I J K L

T1P1 T1P2 T2P1 T2P2

T1P1 0.25 0.25 0.25 0.25

Female T1P2 0.01 0.01 0.49 0.49

genotype T2P1 0.25 0.25 0.25 0.25

T2P2 0.01 0.01 0.49 0.49

Male genotype

MATE SELECTION PREFERENCES

2
3
4
5
6
7
8

G H I J K L

T1P1 T1P2 T2P1 T2P2

T1P1 0.3 0 0.7 0

Female T1P2 0 0 0 0

genotype T2P1 0.3 0 0.7 0

T2P2 0 0 0 0

Male genotype

MATE SELECTION PREFERENCES
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Clear your previous results from cells O4–V18 and run your macro to see what
happens to genotype frequencies over 15 generations. Analyze your model out-
puts and explain how this might occur in nature.

7. Genetic drift can also influence changes in allele frequencies over time. To
examine the effects of genetic drift on this model of sexual selection, we are
going to manipulate the population size by running the model using different
initial genotype numbers. For example, instead of having 1000 individuals of
each sex, start with 500 individuals of each. As with our initial conditions, sim-
ply start with equal numbers of each genotype (so in this case, each genotype
number will be 125). Clear your results from your last simulation, set the mate
selection preferences in cells I5–L8 back to their initial values, and run your
model. Record your results and then run the model a few more times, each time
changing the total genotype numbers (but make sure there are equal numbers
of each genotype). What effect does changing the population size have on the
outcome of the model? 
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EVOLUTIONARILY STABLE 
STRATEGIES AND GROUP 
VERSUS INDIVIDUAL SELECTION39

Objectives

• Understand the concept of game theory.
• Set up a spreadsheet model of simple game theory 

interactions.
• Explore the effects of different strategies on animal fitnesses.
• Understand the concept of an evolutionarily stable strategy.
• See how the concept of an evolutionarily stable strategy is a

strong argument against group selection.

INTRODUCTION
Evolutionary biologists have long been interested in behavioral interactions
between animals and how these interactions affect evolutionary fitness. One
approach has been to model interactions using game theory. Game theory in its
broadest sense is the mathematical analysis of conflict, and it has been applied to
interactions between countries, business firms, individual humans, and animals.
This exercise follows John Maynard Smith’s (1976) model of behavioral interac-
tions between animals and leads to his concept of an evolutionarily stable strat-
egy (ESS). We will apply this model to the question of individual selection ver-
sus group selection—that is, the question of whether natural selection can act on
groups as well as on individuals.

In our context, we will imagine that animals engage in contests over resource
items, such as food, nest sites, or mates. We will assume that in each contest,
there is only one winner, and the winner takes all of the contested resource item.
Bear in mind, however, that animals engage in repeated contests, and any given
animal may win on one occasion and lose on another. Our model makes several
assumptions:

• We assume that winning a resource item increases an animal’s fitness (in
the evolutionary sense) by some amount, which we will symbolize as V
(for victory).

• We assume that if an animal sustains an injury in a contest, that reduces
its fitness by some amount, symbolized as W (for wound).

• Finally, we assume that if a contest continues too long, it costs both partic-
ipants some amount of fitness, T (for time), representing the metabolic
energy expended during the contest, and forgone opportunities to garner
other resource items.

 



We will also assume, at least to begin with, that each animal always employs the same
behavioral strategy in these contests. We will relax this assumption later.

Doves versus Hawks
By calling these behaviors “strategies,” we do not necessarily imply any conscious deci-
sion-making by the animals. The word strategy in this context simply means a rigid,
predictable set of behaviors that always occur in response to certain stimuli. To make
this clear, we will define two strategies, called “Dove” and “Hawk” (Maynard Smith
1976). A Dove begins a contest by making a threat display but never backs up its threat
with real violence. If its opponent displays, a Dove continues to display, but if its oppo-
nent attacks, a Dove retreats immediately. A Hawk wastes no time on display, but
attacks immediately.

A contest between two Doves becomes a drawn-out battle of displays, with no injuries
but much wasted time. In a contest between a Dove and a Hawk, the Dove retreats
immediately when the Hawk attacks, and thus loses the resource item, but avoids injury.
A contest between two Hawks is a violent affair, in which one party is always injured
and retreats from the fray, leaving the resource item to the uninjured victor.

We can translate these descriptions into mathematical expressions using the fitness
values defined above. A Dove contesting with another Dove will win half the contests
and lose half, but it will always pay the time cost, T, of extended display. Thus, on aver-
age, the payoff to Doves contesting with other Doves will be (V/2 ) – T. A Dove con-
testing with a Hawk will always lose, but will not spend time or suffer injury. Thus,
the mean payoff to Doves contesting with Hawks is zero. A Hawk will always win imme-
diately against a Dove, and so the mean payoff to Hawks contesting with Doves is V.
Finally, a Hawk fighting a Hawk will win half the time, and enjoy a fitness payoff of V,
but it will also lose half the time, at a cost of W. So, the mean payoff to Hawks fighting
Hawks is (V/2 ) – (W/2), which we can simplify to (V – W )/2.

We can conveniently represent these outcomes in a payoff matrix in which we show
all possible encounters and the fitness implications for the participants (Table 1). The

payoffs are for the player on the left.
We want to know which strategy confers higher fitness. To find out, we need to cal-

culate the mean fitness of Doves and Hawks in a mixed population. Let us represent the
frequency of Hawks by H, and the frequency of Doves by D. These are relative fre-
quencies, and therefore lie between 0 and 1, and sum to 1 (i.e., H + D = 1). 

Let us assume that encounters occur at random. If we consider all the encounters of
an average Dove, the proportion of them that will involve another Dove will be D, and
the proportion that will involve a Hawk will be H, or 1 – D. The frequencies of encoun-
ters will be the same for the average Hawk.

To calculate the mean fitness of Doves, we must weight the payoffs of each kind of
encounter by its frequency: the mean fitness of Doves is

Equation 10 2H V T D+ −
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Table 1. Payoff matrix for Hawks versus Doves.

Hawk Dove

Hawk V

Dove 0 V T2 −

V W−
2



By the same logic, the mean fitness of Hawks is 

Equation 2

If we start with a population consisting of some mixture of Hawks and Doves, which
strategy will prevail? The answer is not obvious. Hawks always win encounters with
Doves, but Doves are never injured. We can approach the question by determining
whether Hawk or Dove is an evolutionarily stable strategy, or ESS. An evolutionarily
stable strategy is one that cannot be successfully invaded by any of the other strategies
in the game.

Let us imagine a population consisting entirely of Doves. Could Hawks success-
fully invade? The concept of invasion in this context includes not only immigration, but
also the appearance of mutations within the population. In other words, Hawks may
move into the Dove population, or a genetic mutation may cause some Dove offspring
to behave as Hawks.

In either case, a few invading Hawks would mean that D ≈ 1 and H ≈ 0. The mean
fitness of Doves, Equation 1, would then be approximately

or  

Analogously, the mean fitness of Hawks, Equation 2, would be approximately

or   V

Provided V and T are both greater than 0 (which is implicit in the definitions), V will
be greater than (V/2) – T, and Hawks will increase in numbers. This is a successful
invasion, and therefore Dove is not an evolutionarily stable strategy against Hawk.

PROCEDURES

But is Hawk an evolutionarily stable strategy against Dove? Could a few Doves suc-
cessfully invade a population of Hawks? We will find the answer using a spreadsheet
model, and it may surprise you. As always, save your work frequently to disk.

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

V W V−



 +2 0 1( ) ( )

V T2 −0 0 2 1( ) ( )+ −





V T

V W H VD−



 +2

INSTRUCTIONS

A. Game Theory Model

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 1. Enter only the
text items for now.
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Evolutionarily Stable Strategies

Based on John Maynard Smith's model of Hawks and Doves

All costs and benefits are expressed in "fitness points."

Model assumes that the probability of winning a fair encounter (i.e., Hawk vs. Hawk or Dove vs. Dove) is 0.50.

It also assumes that a Hawk always wins against a Dove.

Outcome Fitness points Payoff matrix (payoffs  to player on  left) Equilibrium mix

Victory 0.50 Hawk Dove Proportion of Doves

Wound 1.00 Hawk Proportion of Hawks

Time 0.10 Dove

Fitness matrix

Population composition Mean fitness

Doves Hawks Doves Hawks Population All Hawks

0.0 1.0 All Doves

0.1 0.9 Equilibrium mix

0.2 0.8

Proportion Fitness

Figure 1



In cells B8, B9, and B10 enter the values 0.50, 1.00, and 0.10, respectively. These are the
values in fitness points of victory, a wound, and time lost.

In cell E9, enter the formula =0.5*(B8-B9). This corresponds to (V – W)/2,  the payoff
to a Hawk in an encounter with another Hawk.
In cell E10, enter the value 0. This is the payoff to a Dove in an encounter with a Hawk.
In cell F9, enter the formula =B8. This is the payoff to a Hawk in an encounter with a
Dove. Use a formula rather than entering the value V, so that when you change V in
cell B8, the change will automatically occur in cell F9 as well.
In cell F10, enter the formula =0.5*B8-B10. This corresponds to (V /2) – T, the payoff
to a Dove in an encounter with another Dove.

In cell A14 enter the value 0.
In cell A15 enter the formula =A14+0.1. Copy the formula into cells A16 through A24.

In cell B14 enter the formula =1-A14. Copy the formula into cells B15 through B24.
Note that the frequency of Doves plus the frequency of Hawks must equal 1.

In cell C14 enter the formula =$E$10*B14+$F$10*A14.
This corresponds to, Equation 1

and calculates the mean fitness of Doves in a population having the proportion of Doves
and Hawks shown to the left in the same row.

We include $E$10*B14 (i.e., 0H) in the formula in case you want to change the payoff
in cell E10 later in the exercise.

In cell D14 enter the formula =$E$9*B14+$F$9*A14.
This corresponds to Equation 2

and calculates the mean fitness of Hawks in a population with the same proportion of
Doves and Hawks.

Copy the formulae from cells C14 and D14 into cells C15 through D24.

Select cells B14 through D24 and make an XY graph. Edit your graph for readability.
It should resemble the one in Figure 2.

V W H VD−



 +2

0 2H V T D+ −





2. Enter the values shown
in Figure 1 for V, W, and T.

3. Enter formulae to calcu-
late values of the payoff
matrix.

4. Create a series in col-
umn A to represent vari-
ous frequencies of Doves
in the population.

5. Create a series in col-
umn B to represent vari-
ous frequencies of Hawks
in the population.

6. Calculate the mean fit-
ness of Doves in a popula-
tion of all Hawks.

7. Calculate the mean fit-
ness of Hawks in a popu-
lation of all Hawks.

8. Calculate the mean fit-
nesses of Doves and
Hawks at each of the pop-
ulation ratios in columns
A and B. Save your work.

9. Graph the mean fitness
of Doves and Hawks
against the proportion of
Hawks in the population.

10. Answer questions 1–5
at the end of the chapter.
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Equilibrium Solutions
In answering questions 1–5 at the end of the chapter, you should have discovered that
if V < W, neither strategy is an ESS, and the equilibrium population will consist of a mix-
ture of Hawks and Doves. In the first section of this exercise, we spoke of these strate-
gies as being fixed patterns of behavior. However, the model may still apply even if
behavior is not so rigid. We may suppose that a given animal behaves as a Hawk in
some encounters and as a Dove in others. This changes our interpretation of the equi-
librium result somewhat. Now we may conceive of the equilibrium as representing
the optimal split in each animal’s behavior. For example, if the equilibrium is 0.60 Dove
and 0.40 Hawk, that would indicate that an animal achieves the greatest fitness by act-
ing like a Dove in 60% of its encounters, and like a Hawk in 40%.

As you discovered graphically above, if wounds cost more than victory pays (i.e., if
W > V), then neither Hawk nor Dove is an ESS. In such cases, the equilibrium popula-
tion will consist of some mixture of Hawks and Doves. Can we determine what this
equilibrium mixture will be?

We can, if we begin with an insight from Figure 2, our graph of fitness of Hawks
and Doves at various frequencies of the two strategies. When the two strategies are at
their equilibrium frequencies, their mean fitnesses are equal. This must be so, because
if either strategy had a higher mean fitness, its frequency would increase, and there-
fore the population would not be at equilibrium.

So, if we represent the equilibrium frequency of Hawks as Heq and the equilibrium
frequency of Doves as Deq, we can write

Because Heq and Deq are relative frequencies, they must add up to 1. Therefore, we
can rewrite Heq as 1 – Deq, and substitute:

If we eliminate the zero term on the left, and multiply both sides by 2, we get

(V – 2T)Deq = (V – W)(1 – Deq) + 2VDeq

0 1 2 2 1( ) ( )− + −



 = −



 − +D V T D V W D VDeq eq eq eq

0 2 2H V T D V W H VDeq eq eq eq+ −



 = −



 +
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Carrying out the multiplications gives us

VDeq – 2TDeq = V + WDeq – W – VDeq + 2VDeq

Canceling and rearranging terms yields

–2TDeq = V + WDeq – W

Collecting terms, we get

Deq(2T + W) = W – V

and dividing both sides by (2T + W) gives us the solution

Equation 3

This equation agrees with our graphical analysis: If W = V, then the equilibrium fre-
quency of Doves is zero; if W > V, then Deq is between 0 and 1. In the numerator W
has a positive number (V) subtracted from it, and in the denominator it has a positive
number (2T) added to it, so Deq must always be less than 1. Therefore, Dove is not an
ESS against Hawk, regardless of the values of V, W, and T—as long as all are greater
than zero.

If W < V, then the equation appears to predict a negative equilibrium frequency for
Doves. This makes no sense, so we interpret it to mean that the frequency of Doves
will decline (from any starting value) until it reaches zero. In other words, if W < V, then
Hawk is an ESS against Dove.

For the sake of completeness, we can calculate the equilibrium frequency of Hawks
as 1 – Deq, or

Substituting for 1 gives us

Combining the fractions, we get

Equation 4

Although it is not as obvious, this equation makes the same predictions as Equation
3. That is, if W = V, then Hawk is an ESS against Dove; if W > V, Hawk is not an ESS
against Dove (but remember, Dove is never an ESS).

Group Selection versus Individual Selection
These equilibrium solutions may not seem very interesting in themselves, but we can
use them to arrive at some interesting conclusions. People often argue that some phys-
ical or behavioral trait exists because it benefits the species (or the population, or some
other group). For instance, it is often said that humans (and many other animals) dis-
play cooperative behavior because cooperative groups are better at gathering food or
fending off predators, or for other reasons have higher odds of survival. Such argu-
ments are called group selection arguments, because they claim that natural selection
operates on the group as a whole. Group selection argues that natural selection will
favor a trait that confers higher fitness on the group, even if it reduces the fitness of the
individuals that make it up. 

The contrasting position, individual selection, claims that natural selection operates
on individuals, not groups. Individual selection arguments predict that natural selec-

H T V
T Weq = +

+
2
2

H T W W V
T Weq = + − +

+
2

2

H T W
T W

W V
T Weq = +

+ − −
+

2
2 2

2
2
T W
T W

+
+

H W V
T Weq = − −

+1 2

D W V
T Weq = −

+2
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tion will favor a trait that confers higher fitness on individuals, even if it reduces the fit-
ness of the group to which they belong. 

We will use the equations for mean fitness of Doves and Hawks, and their equilibrium
solutions, to investigate the contrast between group selection and individual selection. We
will show that if a population consisted entirely of Doves, it would have a higher mean
fitness than a population consisting entirely of Hawks or of any mixture of Hawks and
Doves. A group selectionist would therefore expect the frequency of Doves in a popula-
tion to increase, because that would benefit the group. However, as we will see, individ-
ual Hawks have higher fitness than individual Doves (at least when Hawks are rare). An
individual selectionist would therefore expect natural selection to favor Hawks over Doves
(at least when Hawks are rare), even if that reduces the fitness of the group as a whole.

PROCEDURES

Our strategy to test these ideas has five components:
• Calculate the mean fitness of the entire population, across the range of all mix-

tures of Hawks and Doves, from D = 0 and H = 1 to D = 1 and H = 0.
• Graphically estimate the mixture of Hawks and Doves that produces the maxi-

mum mean population fitness.
• Calculate the equilibrium mix of Doves and Hawks.
• Calculate the mean fitness of a population consisting of the equilibrium mix.
• Compare the maximum possible mean fitness of the population to its mean fit-

ness at equilibrium.

We will repeat these steps for various values of V, W, and T, and compare the calcu-
lated values of mean fitness. We will see that this game theory model supports indi-
vidual selection.

As always, save your work frequently to disk.

ANNOTATION

Enter these values into cells B8, B9, and B10, respectively.

In cell E13 enter the label “Population.”

In cell E14 enter the formula =C14*A14+D14*B14. Copy this formula into cells E15–E24.
This formula multiplies the mean fitness of Doves by their frequency and the mean fit-
ness of Hawks by their frequency, then adds the two products together. When you have
finished, your spreadsheet should resemble Figure 3.

INSTRUCTIONS

B. Group selection ver-
sus individual selection.

1. On the spreadsheet you
prepared earlier (see
Figure 1), change the val-
ues of V and W to 1, and
the value of T to 0.

2. Add a column heading
for mean fitness of the
entire population.

3. Calculate the mean fit-
ness of the entire popula-
tion for each mixture of
Doves and Hawks in cells
A14 through B24.
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These are all literals, so just select the appropriate cells and type them in.

In cell I8, enter the formula =IF((B9-B8)/(2*B10+B9)>0,(B9-B8)/(2*B10+B9),0).
In this formula, (B9-B8)/(2*B10+B9) corresponds to Equation 3:

However, this equation can predict negative equilibrium frequencies for Doves, given
some parameter values. We use the IF() function to restrict Dove frequencies to non-
negative values. If Deq is negative, we set it to zero.

In cell I9, enter the formula =1-I8.
This is the spreadsheet equivalent of 1 – Deq. Because Heq + Deq = 1, we do not need to
use Equation 4 to calculate the equilibrium frequency of Hawks. You can, if you pre-
fer, enter the spreadsheet equivalent of Equation 4; it should yield the same result.

D W V
T Weq = −

+2

4. Set up labels in column
H and in cell I12, as
shown in Figure 4.

5. Calculate equilibrium
frequencies of Doves and
Hawks.
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A B C D E F
Outcome Fitness points Payoff matrix (payoffs  to player on  left)

Victory 1.00 Hawk Dove

Wound 1.00 Hawk 0.00 1.00

Time 0.00 Dove 0.00 0.50

Doves Hawks Doves Hawks Population

0.0 1.0 0.000 0.000 0.000

0.1 0.9 0.050 0.100 0.095

0.2 0.8 0.100 0.200 0.180

0.3 0.7 0.150 0.300 0.255

0.4 0.6 0.200 0.400 0.320

0.5 0.5 0.250 0.500 0.375

0.6 0.4 0.300 0.600 0.420

0.7 0.3 0.350 0.700 0.455

0.8 0.2 0.400 0.800 0.480

0.9 0.1 0.450 0.900 0.495

1.0 0.0 0.500 1.000 0.500

Proportion Fitness

Figure 3
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All hawks
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Figure 4



In cell I13 enter the formula =E9.
In an all-Hawk population, all encounters will be Hawk against Hawk. Therefore, all
members of the population will receive the same payoff, (V – W)/2, which is calculated
in cell E9.
You can arrive at the same result using Equation 2 to calculate the mean fitness of
Hawks, bearing in mind that H = 1 and D = 0.

In cell I14 enter the formula =F10.
In an all-Dove population, all encounters will be Dove against Dove. Therefore, all
members of the population will receive the same payoff, (V/2) –T, which is calculated
in cell F10. 
You can arrive at the same result using Equation 1 for mean fitness of Doves, bearing
in mind that H = 0 and D = 1.

In cell I15 enter the formula =$E$9*I9+$F$9*I8.
This is the spreadsheet version of Equation 2 for the mean fitness of Hawks, this time
using the equilibrium values of D and H, as calculated in cells I8 and I9. Remember
that, at equilibrium, the mean fitnesses of Hawks and Doves are equal, so this is equiv-
alent to calculating the mean fitness of all members of the population, regardless of
strategy.

Select the graph by clicking once anywhere in it and selecting Open Chart | Add Data. In
the dialog box that appears, enter the cell addresses E13– E24. Be sure to include the
label in cell E13, so that it will appear in the figure legend. Edit your graph for read-
ability. It should resemble Figure 5.

6. Calculate mean fitness
of a population consisting
entirely of Hawks.

7. Calculate mean fitness
of a population consisting
entirely of Doves.

8. Calculate mean fitness
of a population consisting
of the equilibrium mixture
of Hawks and Doves.

9. Add the data for popu-
lation fitness to your exist-
ing graph.

10. Answer questions 6
and 7 at the end of the
chapter.
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Conclusions
The upshot of this part of the exercise is strong support for individual selection. In every
case where group and individual selection hypotheses predict different outcomes, the
model produces the individual selection outcome.

One may argue, however, that this result does not prove that group selection cannot
occur, only that it does not operate in this model. On the other hand, it is clearly the case
that a pure population of Doves has the highest fitness in most scenarios, and yet Doves
are displaced by Hawks. The matter comes down to the problem of cheaters. If every-
one in the population “agrees” to behave as a Dove, the group as a whole will benefit.
But if anyone “cheats” on the pact, and behaves as a Hawk, he or she will reap greater
benefits than anyone behaving as a Dove. Hawkish behavior will spread through the
population, either by genetic heritage, or by other Doves defecting as they see cheaters
prospering. As the frequency of Hawks goes up, the fitness of each drops, because there
are fewer Doves left to exploit. Even so, it still pays better to be a Hawk than a Dove.
The result will be a population of Hawks, but each with lower fitness than he or she
would have enjoyed if only everyone had remained a Dove. The language of “agree-
ing” and “cheating” should be understood metaphorically; there need be no conscious
decision-making involved.

Another way to state the problem is in terms of individual interests versus group
interests. If the interests of the individual are opposed to the interests of the group, indi-
vidual interests are likely to dominate. Most evolutionary biologists are convinced that
group selection, if it operates at all, can have noticeable effects only under very narrowly
circumscribed conditions.

QUESTIONS

1. Is Dove an ESS against Hawk?

2. In the Introduction, we found the same answer without giving explicit values to
V, W, or T. We implied that Dove was not an ESS against Hawk with any val-
ues of V, W, or T, as long as all are greater than zero. Can you support this con-
clusion using your spreadsheet?

3. Is Hawk an ESS against Dove?

4. Are there values of V, W, and T that would make Hawk an ESS against Dove?

5. Can you find what relationship among these parameters is necessary to make
Hawk an ESS?

6. With the given parameter values, what is the equilibrium mixture of Hawks
and Doves?

7. What does this result imply about individual versus group selection? Is this
conclusion general, or does it depend on choosing parameter values carefully?
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MATING SYSTEMS AND 
PARENTAL CARE40

INTRODUCTION
You are well aware by now that there are fundamental differences between males
and females of all species. From an evolutionary perspective, the goal is to pro-
duce as many offspring as possible that will, in turn, produce offspring. Males
and females may have different strategies for doing this (Trivers 1972). Females,
the egg producers, tend to invest a lot of energy in the production of gametes,
while males invest much less in gamete production. In short, eggs are more
“expensive” than sperm. For example, a human female typically produces only
a few hundred viable eggs in her lifetime, whereas a human male can produce
literally billions of sperm cells.

For many species, the production and propagation of gametes is the only
parental investment. The  fertilized egg, or zygote, is left to “sink or swim” on its
own. But many other species nurture embryos through gestation and birth (almost
exclusively the role of the female, though there are exceptions), and the offspring
may require additional parental care in order to survive to reproductive age.

In some environments, both parents are needed to successfully rear young, while
in other environments little or no care is needed. In cases where a single parent suf-
fices to raise offspring, a male will maximize his fitness by fertilizing as many
eggs as possible, leaving the parental care of his offspring to females. But if there
are opportunities to mate with other, superior, males, a female should leave parental
care to males to maximize her fitness! In situations where the young must be cared
for, this sets up a “conflict” between the sexes because males and females differ with
respect to behaviors that maximize fitness. All other things being equal, parents
should maximize their fitness by fertilizing or producing as many eggs as possible,

Objectives

• Develop a game theory model of parental care and mating
systems. 

• Determine the environmental and biological conditions that
lead to monogamy, polygyny, and polyandry.

• Examine which model parameters have significant impact
on reproductive output for males and females.

• Verify the four evolutionarily stable strategies derived by
Maynard Smith (1977).

Suggested Preliminary Exercise: Evolutionarily Stable
Strategies



but if parental care enhances offspring survival, parents may maximize their fitness by
providing care at the expense of additional matings. How can this conflict be resolved?

Mating Strategies
Mating strategies are often linked to the kind of parental care system that species
employ. Monogamy is a mating system in which males and females form pair bonds,
and often both care for the offspring. Polygyny is a mating system in which a male
mates with several females. The female usually cares for the young while the male
attempts to maximize his fitness by mating with as many females as possible. Polyandry
is a mating system in which a female mates with several males. Males may care for the
young while females attempt to maximize their fitness by mating with as many males
as possible. And finally, promiscuity is a mating system free-for-all, in which either sex
may care for the young and both males and females mate with many different indi-
viduals (Vehrencamp and Bradbury 1978; Alcock 2001).

Which mating system should be used to maximize fitness for males? Which mat-
ing system should be used to maximize fitness for females? Should parental care be
given to the offspring? The answers to the questions depend, in large part, on the eco-
logical conditions of a given environment, which affects how many parents are needed
to ensure offspring survival, and how likely an individual will find another mate. But
the strategy employed by a male or female also depends on the strategy adopted by
the partner. For example, if the female cares for the young, and only a single parent is
needed to raise offspring, the male may enhance his fitness by finding new females to
mate with. But if the female does not care for the young, the male may enhance his
fitness by attending the young himself. This type of conflict can be evaluated by game
theory models, in which the different strategies played by the male and female collec-
tively determine the evolutionary fitness gain. 

A useful game theory model to resolve such conflict was developed by John Maynard
Smith (1977). The model consists of two strategies: care for young (1) or desert young (0),
that are chosen by both males and females. Thus, four “games” can be played: (1) both
males and females care for young; (2) both males and females desert young; (3) the female
cares for young and the male deserts; (4) the male cares for the young and  the female
deserts. Which of these games should be played depends on several parameters: 

• P0 = the probability of survival of eggs that are not cared for.
• P1 = the probability of survival of eggs when one parent cares for young.
• P2 = the probability of survival of eggs when two parents care for young.
• p = the probability of a deserter male finding a new mate.
• p′ = the probability of a caring male finding a new mate.
• V = the number of eggs laid by a female deserter.
• v = the number of eggs laid by a female who cares for her young.

Thus, the model considers the value of parental care by one or two parents; the chance
that males mate again; and how parental care affects the number of eggs the female can
lay. We will assume that P0 ≤ P1 ≤ P2, so that the probability of survival of eggs with
parental care is never less than the probability of survival without parental care. We
will also assume that V ≥ v, so that females that care have less energy to allocate towards
clutch size. Our final assumption is that p and p′ do not depend on a male’s parentage
for a given clutch. Given these parameters, the fitness payoff for males and females can
be determined as shown in Table 1.

For example, when both males and females care for the offspring, the female has a
reproductive output equal to the number of eggs laid by a caring female (v) times the
probability of young surviving when two parents offer care (P2). But when a female cares
but the male deserts, she has a reproductive output equal to the number of eggs laid per
caring female (v) times the probability of young surviving when a single parent offers
care (P1). When both parents care for young, males have a reproductive output (fit-
ness) equal that of the female (v × P2), but with the added benefits of remating with
another female while still providing care to his first clutch (v × P2 × p′). The equation v
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× P2+ v × P2 × p′ can be rewritten as v × P2 × (1+ p′). When the female cares but the male
deserts, his fitness is equal to that of a single-parent female (v × P1) plus the added ben-
efits of remating with another female by deserting his clutch (v × P1 × p). The equation
v × P1+ v × P1 × p can be rewritten as v × P1 × (1 + p).

Evolutionarily Stable Mating Strategies
How do the two sexes resolve their conflicts? In this exercise, you’ll set up a spread-
sheet version of Maynard Smith’s model and use it to explore the conditions in which
different parental care systems are likely to evolve. There are four conditions that lead
to a particular type of system. When these conditions are met, the strategy is called an
evolutionarily stable strategy (ESS for short). In this case, the strategy played by the
sexes is either “care” or “desert.” A strategy is evolutionarily stable when, if all mem-
bers of a population adopt it, then a mutant strategy could not invade the population
and increase in frequency by natural selection (Maynard Smith 1982).

In order to arrive at ESS conditions, it’s useful to first think about how the frequency
of a particular strategy may change over time. We will let

• r = frequency of caring strategists (C). 
• s = 1 – r = frequency of deserter strategists (D). 
• W(C), W(D) = fitness of caring and deserter strategists, respectively.
• E(C,C) = payoff to an individual adopting C (care) while the mate adopts C.
• E(C,D) = payoff to an individual adopting C while the mate adopts D (desert).
• E(D,D) = payoff to an individual adopting D while the mate adopts D.
• E(D,C) = payoff to an individual adopting D while the mate adopts C.

Because how well one sex fares depends on the strategies played by the opposite sex,
we need to consider the fitnesses of each sex separately, while taking into account the
frequency of C and D strategists in the opposite sex. Thus, calculations are needed for
both sexes. For females, the fitness of players that engage in parental care is

W(C) = [rm × E(C,C)] + [sm × E(C,D)]                      Equation 1

where rm and sm is the frequency of males that care and desert, respectively. The fitness
of females that desert is

W(D) = [rm × E(D,C)] + [sm × E(D,D)]                     Equation 2

Thus, you can see that the fitness of females depends on the strategies that males play
as well as the frequency of each kind of strategist. The same equations work for males,
except that we need to consider the frequencies of the female strategists in the popu-
lation. To be clear, let’s walk through an example. If we are interested in the fitness of
a male that cares, we need to determine what his fitness is when he adopts a caring
strategy and his mate also cares, E(C,C), and we need to determine what his fitness is
when he adopts a caring strategy and his mate deserts, E(C,D). Suppose that 10% of
females provide care to young while the remaining 90% desert. Thus, rf = 0.1 and sf =
0.9. If E(C,C) = 5 and E(C,D) = 3, then the fitness of caring males in the population is

W(C) = [0.10 × 5] + [0.90 × 3] = 3.2
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Table 1. Fitness Payoff Parameters for Males and Females 

Female Fitness Male Fitness

Female Female Female Female 
cares deserts cares deserts

Male cares v × P2 V × P1 v × P2 + v × P2 × p′ V × P1 + V × P1 × p′
Male deserts v × P1 V × P0 v × P1 + v × P1 × p V × P0 + V × P0 × p



If a male adopts a deserting strategy, then we need to determine what his fitness is
when he deserts and his mate also deserts, E(D,D), and we need to determine what his
fitness is when he deserts but his mate cares, E(D,C). If E(D,D) = 0 and E(D,C) = 3, then
the fitness of deserting males in the population is

W(D) = [0.10 × 3] + [0.90 × 0] = 0.3

In this example, males that provide care have higher fitnesses since W(C) > W(D), but how
much this strategy increases in the next generation depends on the proportion of males
playing each strategy. If a lot of individuals are playing the more successful strategy,
then the trait will increase more quickly. We can calculate the mean fitness for males as

Equation 3

and the mean fitness of females as

Equation 4

Once we understand Equations 1–4, we can compute the frequency of a given strategy
for a given sex in the next generation as

Equation 5

and we can show the change in the frequency with which each strategy is played for
both males and females over time.

PROCEDURES

As Table 2 shows, there are four possible evolutionarily stable conditions (Maynard
Smith 1982). The mating strategies that evolve depend on

• the value of parental care by one or two parents
• the chance that males mate again 
• how parental care affects the number of eggs the female can lay

We will explore these conditions thoroughly in the exercise and try to make sense of
their logic. The goal of this exercise is to develop a spreadsheet version of Maynard
Smith’s model and use it to explore the conditions in which different parental care sys-
tems are likely to evolve. As always, save your work frequently to disk.

r r W
W

s s W
W

' ( ) ' ( )= × = ×C and D

W r W s W= ×[ ] + ×[ ]f fC D( ) ( )

W r W s W= ×[ ] + ×[ ]m mC D( ) ( )
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Table 2. Conditions for the Four Evolutionarily Stable  
Mating Strategies of Maynard Smith (1982)

Strategy Description Conditionsa

ESS 1 Female cares when vP2 > VP1
Monogamy Male cares when P2(1 + p′) > P1(1 + p)

ESS 2 Female deserts when VP1 > vP2
Polyandry Male cares when P1(1 + p′) > P0(1 + p)

ESS 3 Female cares when vP1 > VP0
Polygyny Male deserts when P1(1 + p) > P2(1 + p′)
ESS 4 Female deserts when VP0 > vP1
Promiscuity Male deserts when P0(1 + p) > P1(1 + p′)
aConditions for an ESS are met when the inequality for the male and the
female are both true.



ANNOTATION

The variables in the model include
• the probability of survival of eggs that are not cared for (P0)
• the probability of survival of eggs cared for by a single parent (P1)
• the probability of survival of eggs cared for by two parents (P2)

(Remember that probabilities range from 0 to 1.)
For males, we also include

• the probability of mating again when the male deserts a nest (p)
• the probability of mating again when the male guards a nest (p′)

For females, we must include
• the number of eggs laid per female when the female deserts the nest (V)
• the number of eggs laid per female when she cares for her young (v)

Use the XY scatter graph option and label your axes fully. Your graph should resemble
Figure 2.

INSTRUCTIONS

A. Set up the model and
payoff parameters.

1. Open a new spreadsheet
and enter headings as
shown in Figure 1.

2. Enter the variable val-
ues shown in cells C5–C7,
C10–C11, and C14–C15. 

3. Graph the relationship
between probability of
survival of eggs as a func-
tion of the number of car-
ing adults.
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Males and females can both employ one of two strategies: care or desert. Thus there
are four fitness scenarios for each sex, depending on what strategy the mate plays.
Cell I6 gives the fitness payoff for females that care when males also provide care, or
E(C,C). Cell J6 gives the fitness payoff for females that desert while the male provides
care, or E(D,C). Similarly, cell I11 gives the payoff for males that care when females
also provide care, or E(C,C). Cell J12 gives the payoff to males that desert when their
mates also desert, or E(D,D). 

Remember that the payoffs depend on which strategy is played by its partner. For a
female that cares whose mate also cares, her payoff is the number of eggs laid per car-
ing females × the probability of survival when both parents care for the young, or v
× P2. The payoff formulae are given in Table 1, and the following formulae are based
on the Table 1 equations.
Females:

• I6 =C11*C7
• I7 =C11*C6
• J6 =C10*C6
• J7 =C10*C5

Males:
• I11 =C11*C7+C11*C7*C15 or =I6+I6*C15
• J11 =C10*C6+C10*C6*C15 or =J6+J6*C15
• I12 =C11*C6+C11*C6*C14 or =I7+I7*C14
• J12 =C10*C5+C10*C5*C14 or =J7+J7*C14

We will track the fitnesses of males and females, as well as the frequencies in which
individuals care (r) and desert (s) over a 20-year period, and determine which strat-
egy evolves over time.

4. Set up new headings as
shown in Figure 3.

5. Enter formulae to com-
pute the fitness payoffs for
females in cells I6–J7 and
males in cells I11–J12. Use
the information in Table 1
to construct your formula.

6. Save your work.

B. Calculate initial
female and male fitnesses.

1. Set up fitness computa-
tions for females and
males as shown in Figures
4 and 5, respectively.
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Enter 0 in cell A25. Enter =1+A25 in cell A26.
Select cell A26, and copy its formula down to cell A45.

Remember that r = frequency of caring (C) strategists and  s = (1 – r) = frequency of
deserter (D) strategists. For now, enter the values shown in the figures. You will be able
to change these starting frequencies later in the exercise. Cells B25–C25 give the fre-
quency of male strategists at time 0. We need to know these frequencies in order to
compute female fitness. Cells F25–G25 give the frequency of the female strategists at
time 0. We need to know these frequencies in order to compute male fitness.

In cell D25 enter the formula =$I$6*B25+$I$7*C25.
In cell E25 enter the formula =$J$6*B25+$J$7*C25.
For the basis of these formulae, recall from Equation 1 that the fitness of females that
care can be computed as

W(C) = [rm × E(C,C)] + [sm × E(C,D)]

where rm and sm are the frequencies of males that care and desert, respectively. The
fitness of females that desert (Equation 2) is

W(D) = [rm × E(D,C)] + [sm × E(D,D)]

Your spreadsheet should now look like Figure 6.

In cell H25 enter the formula =$I$11*F25+$J$11*G25.
In cell I25 enter the formula =$I$12*F25+$J$12*G25.
Your spreadsheet should now look like Figure 7.

2. Set up a linear series
from 0 to 20 in cells
A25–A45.

3. Enter the starting fre-
quencies of caring (r)
males and deserting (s)
males in cells B25–C25 as
shown in Figure 4. Enter
the starting frequencies of
caring (r) and deserting (s)
females in cells F25–G25
as shown in Figure 5. 

4. For year 0, enter formu-
lae in cells D25 and E25 to
compute the fitness, W, of
females that care and
desert. Refer to Equations 1
and 2 in the Introduction.

5. For year 0, enter formu-
lae in cells H25 and I25 to
compute the fitness, W, of
males that care and desert. 

6. Save your work.
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We entered the formula =(B25*H25)/(B25*H25+C25*I25) in cell B26. 
The frequency of a caring strategy in the following generation is denoted by r′. Remem-
ber from Equation 5 that r′ is calculated as

which is simply the fitness of males that care times the frequency of males that care
divided by the mean fitness for males. Mean fitness of males, in turn, is calculated as

In cell C26, enter the formula =1-B26.
The frequency of the deserting strategy in the following generation in denoted by s′.
It can be computed as simply 1 – r ′.

Your spreadsheet should now look like Figure 8.
In cell F26 enter the formula =(F25*D25)/(F25*D25+G25*E25).

In cell G26 enter the formula =1-F26.

W r W s W= ×[ ] + ×[ ]m mC D( ) ( )

r r W
W

' ( )= × C

C. Compute changes in
fitnesses over time.

1. In cell B26, enter a for-
mula to compute the fre-
quency of a male caring
strategy, r ′, in Year 1 for
males. Refer to Equation 5
in the Introduction.

2. In cell C26, enter a for-
mula to compute the fre-
quency of a male deserting
strategy in year 1 for
males.

3. Select cells D25–E25,
and copy their formulae
down 1 row. 

4. In cell F26, enter a for-
mula to compute r ′, the
frequency of the caring
strategy in year 1 for
females. 

5. In cell G26, enter a for-
mula to compute s′, the
frequency of the deserting
strategy in year 1 for
females.

6. Select cells H25–I25, and
copy their formulae down
1 row. 

7. Select cells B26–I26, and
copy their formulae down
to row 45. 

8. Save your work.
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Your spreadsheet should now look like Figure 9.

Use the line graph option and label your axes fully. Your graph should resemble Figure 10.
Use the line graph option and label your axes fully. Your graph should resemble 
Figure 11.

Finally, we are able to evaluate the inequalities provided in Table 2 to determine
the conditions in which an evolutionarily stable strategy evolves. Remember, the
inequalitites for both the female and male must be true in order for a given mating
system to evolve as an evolutionarily stable strategy. We will enter formulae in cells
B19–E20 to reflect the inequalities in Table 2. If the condition is true, we will have
the spreadsheet return the word TRUE; if the inequality is false, we will have the
spreadsheet return the word FALSE. 

D. Create graphs. 

1. Graph the fitness of
females that care and
desert as a function of
time (cells D24–E45).

2. Graph the fitness of
males that care and desert
as a function of time (cells
H24–I45).

3. Save your work.
Interpret your results.
Why did a two-parent car-
ing system evolve? Play
around with the model
and see if you can get
another kind of mating
system to evolve. (Change
cells C5–C7, C10–C11,
and/or C14–C15.)

E. Compute the ESS
inequalities.
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In cell B19 enter the formula =IF(C11*C7>C10*C6,TRUE). An IF formula has three
parts. The first part tells the spreadsheet to evaluate a condition. In our case, the con-
dition is the ESS inequality derived by Maynard Smith (1982) for females that care for
offspring. Females will care for offspring when vP2 > VP1. The second part tells the pro-
gram what value to return if the condition is true. Since the word TRUE is entered,
the spreadsheet will evaluate the inequality and return TRUE if the inequality is in fact
true. Note that we left the third part off of this equation, which normally tells the spread-
sheet what value to return if the condition is false. If the third part is not specified, the
program will return the word FALSE by default. 

Double-check your results with ours. The formulae we used are:
• B20 =IF(C7*(1+C15)>C6*(1+C14),TRUE)
• C19 =IF(C10*C6>C11*C7,TRUE)
• C20 =IF(C6*(1+C15)>C5*(1+C14),TRUE)
• D19 =IF(C11*C6>C10*C5,TRUE)
• D20 =IF(C6*(1+C14)>C7*(1+C15),TRUE)
• E19 =IF(C10*C5>C11*C6,TRUE)
• E20 =IF(C5*(1+C14)>C6*(1+C15),TRUE)

This table provides you a way to quickly determine if the inequalities for both males
and females are true, and hence which parental care system is an ESS.

QUESTIONS

1. Fully interpret your graphical results and explain how the parental care system
evolved. Is the system an ESS? 

2. What parameter conditions are likely to lead to single-parent care (either social
polyandry or polygamy)? Enter various values in your model and explore the
outcomes. 

3. What parameter conditions are likely to lead to social promiscuity? 

4. Enter the following values in your spreadsheet.

1. Set up new headings as
shown in Figure 12.

2. In cell B19, set up a for-
mula to evaluate whether
the inequality for females
for ESS 1 is true or false

3. Complete the table
given in cells B19–E20 by
entering formulae analo-
gous to that in Step 2.
Refer to Table 2 as you
enter formulae. 

4. Save your work.
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Which parental care system evolves? Evaluate the conditions in cells B19–E20.
You should see that two ESSs are possible. Does the initial frequencies of r and s
determine which parental care system is ultimately the most successful? 

5. How does the environment affect P0, P1, P2? How does the environment or
characteristics of the population itself affect V, v, p, and p′?

6. The model you have built assumes that P2 > P1 > P0. Why did we assume that 
V ≥ v? Are these assumptions valid? Discuss the concept of trade-offs and con-
straints in your answer.
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INBREEDING, OUTBREEDING, AND
RANDOM MATING41
Objectives

• Determine how nonrandom breeding affects allele and
genotype frequencies in a population.

• Determine the effects of inbreeding on genotypic and phe-
notypic variation.

• Determine the effects of outbreeding on genotypic and phe-
notypic variation.

• Examine how assortative mating affects allele frequencies in
a population.

• Explore inbreeding levels and the F statistic under various
mating strategies.

Suggested Preliminary Exercise: Hardy-Weinberg Equlibrium

INTRODUCTION
One of the assumptions of the Hardy-Weinberg principle is that individuals in a
population mate at random. In this exercise, you’ll explore how violating this
assumption affects the evolution of a population. Random mating occurs when
individuals in the population pair off at random. That is, every individual has the
same chance of breeding with any other individual in the population. Inbreed-
ing, on the other hand, occurs when mated pairs are more similar in genotypes than
if they were chosen at random. Because individuals of similar phenotypes will
usually be somewhat similar in their genotypes, assortative mating (preferentially
mating with an individual of similar phenotype) is generally thought to have the
same consequences as inbreeding (Crow and Kimura 1970). Outbreeding, the flip
side of inbreeding, occurs when mated pairs are less similar in genotypes than if
they were chosen at random. 

In this exercise, we will focus on how nonrandom mating affects the allele fre-
quencies and genotype frequencies at a single locus. Keep in mind, however, that
when organisms tend to mate nonrandomly, the entire genome is affected. Non-
random breeding does one of two things: it either decreases the heterozygosity
in the population (inbreeding) or it increases the heterozygosity of the population
(outbreeding). You might think that nonrandom mating will also change the allele
frequencies in the population. In fact, nonrandom mating without selection does
not change the allele frequencies in a population at all. This will become appar-
ent as you work through the exercise.

 



Because nonrandom mating affects heterozygosity levels, it is useful to “quantify”
the level of nonrandom mating by comparing the heterozygosity observed in a popu-
lation to the levels expected by Hardy-Weinberg. You might recall that if there are only
two alleles, A1 and A2, in the population at a given locus, the frequencies of the alleles
are given by p and q, where p is the frequency of one kind of allele (A1) and q is the fre-
quency of the second kind of allele (A2). For genes that have only two alleles,

p + q = 1 Equation 1

For example, assume that the A locus has allele frequencies of p = A1 = 0.6 and q = A2
= 0.4. Given the allele frequencies for a population, the Hardy-Weinberg principle allows
us to predict the genotype frequencies of a population, assuming that the population
is large and that mating occurs at random, and that there is no gene flow, natural selec-
tion, or mutation acting on the population. The predicted genotypes of a population in
Hardy-Weinberg equilibrium are p2:2pq:q2, where p2 is the frequency of the A1A1 geno-
type, 2pq is the frequency of the A1A2 genotype, and q2 is the frequency of the A2A2
genotype. The sum of the genotype frequencies, as always, will sum to 1. In this exam-
ple, a population in Hardy-Weinberg equilibrium will have roughly the following geno-
type frequencies:

• Freq (A1A1) = p2 = p × p = 0.6 × 0.6 = 0.36
• Freq (A1A2) = 2 × p × q = 2 × 0.6 × 0.4 = 0.48
• Freq (A2A2) = q2 = 0.4 × 0.4 = 0.16.

Note that the genotype frequencies add to 1:

p2 + 2pq + q2 = 1 Equation 2

Thus, approximately 48% of the individuals are expected to be heterozygous if the pop-
ulation is in Hardy-Weinberg equilibrium. 

A population that mates nonrandomly will deviate from the Hardy-Weinberg expec-
tation. This deviation is often quantified through the F statistic, also called the inbreed-
ing coefficient:

Equation 3

where H0 is the heterozygosity level predicted by Hardy-Weinberg, and H is the
observed level of heterozygosity. From an inbreeding perspective, the F statistic takes
on values from 0 to 1. If the observed level of H is equal to H0, the numerator of Equa-
tion 3 is 0, and thus F is 0, indicating a randomly breeding population. When H is less
than H0, there is a deficiency of heterozygotes in the population (due to inbreeding).
Thus, positive F values indicate some level of inbreeding. The F statistic will be 1 (com-
plete inbreeding) when the population consists of only homozygotes. 

Let’s walk through an example. Suppose a population has the frequencies A1 = 0.6 and
A2 = 0.4. As we calculated earlier, the expected frequency of heterozygotes is 0.48. Assume
that this population, however, consists of 0 heterozogotes. The F statistic would be

This population has the highest possible F statistic, suggesting that the population is
highly inbred. If the population consisted instead of 48% heterozygotes, as predicted
by Hardy-Weinberg, the F statistic would be

Although the F statistic is intended to measure inbreeding, it also measures out-
breeding as well, and takes on negative values when the observed level of heterozy-
gosity is larger than that expected by Hardy-Weinberg. The F statistic can also be cal-
culated through pedigree analysis (Hartl 2000). Inbreeding may affect an organism’s

F = − = =0 48 0 48
0 48

0
0 48 0. .

. .

F = − =0 48 0
0 48 1.
.

F
H H

H=
−0

0
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fitness, or it may not. For example, average yield in hybrid corn decreases as F increases
(Neal 1935), but low levels of heterozygosity in cheetahs (Acinonyx jubatus) do not appear
to compromise their survival (Merola 1994). 

When nonrandom mating occurs in a population, the Hardy-Weinberg genotype fre-
quencies p2, 2pq, and q2 are not expected. However, if we know F, we can predict the fre-
quencies of the A1A1, A1A2, and A2A2 genotypes (Hartl 2000). Let’s start with the fre-
quency of the A1A2 genotype. Remember that H is the observed genotype frequency of
the heterozygotes in the population, so all we need to do is solve for H:

Multiply both sides of the equation by H0 to give

H0 × F = H0 – H Equation 4

Then subtract H0 from both sides:

– H0 + H0 × F = – H Equation 5

Then multiply both sides of the equation by –1 and rewrite the equation so that H
appears on the left side:

H = H0 – H0 × F Equation 6

And finally, since 2pq is the same thing as H0, or the heterozygosity expected under
Hardy-Weinberg equilibrium, we can calculate H as a function of p, q, and F:

H = 2pq – 2pqF Equation 7

Thus, if you know F, Equation 7 can predict the frequency of the A1A2 heterozygotes
in a population. The frequency of the A1A1 and A2A2 homozygotes can also be predicted
if you know F. Recall that the frequency of the A1 allele (p) in a population is simply
the frequency of the homozygotes (A1A1) plus half the frequency of the heterozygotes
(A1A2). For simplicity, let’s call the frequency of the A1A1 homozygotes D:

p = D + (H/2) Equation 8

So now we need to solve for D, the frequency of the A1A1 homozygotes:

D = p – (H/2) Equation 9

Since we know H from Equation 7, we can substitute in Equation 9 and simplify:

The 2 divides out, and substracting 2pq and 2pqF from p gives us

D = p – pq + pqF Equation 11

Now we can group the first two terms and factor out a p:

D = p(1 – q) + pqF Equation 12

And finally, because 1 – q is the same thing as p, we arrive at

D = p2 + pqF Equation 13

The same logic will allow you to calculate the frequency of the A2A2 homozygotes,
which we’ll call R:

R = q2 + pqF Equation 14

Thus, Equations 7, 13, and 14 allow you to predict the genotype frequencies of a pop-
ulation where p, q, and F are known. 

D p
pq pqF

= −
−2 2
2

F
H H

H=
−0

0
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PROCEDURES

In this exercise, you will set up a spreadsheet model to explore the effects of inbreed-
ing and outbreeding on a population. Your population will consist of 1000 individu-
als that select mates according to probabilities that you assign. We will consider the
effects the inbreeding and outbreeding on the allele frequencies at a single locus. This
locus has two alleles, A1 and A2. The basic model will be fairly easy to construct, but
the fun will start when you begin to change mating partners and see how mate selec-
tion and breeding system affect allele and genotype frequencies.

As always, save your work frequently to disk.

ANNOTATION

We will start with a population whose genotype frequencies are given in cells B5–B7.
Our population will consist solely of A1A2 heterozygotes since the frequency in cell
B6 is 1. 

INSTRUCTIONS

A. Set up the population
parameters

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 1.

2. Enter values shown in
cells B5–B7. 
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Enter =B5 in cell C5. 
Enter =SUM($B$5:B6) in cell C6. Copy cell C6 into cell C7. 
The running tally is necessary to assign genotypes to individuals in the population. It
also will help you quickly verify that your genotype frequencies add to 1. Note that
cell C7 must always equal 1. If it does not equal 1, it means that the frequencies entered
in cells B5–B7 don’t add to 1 (adjust accordingly).

Enter 1 in cell A22. 
Enter = 1+A22 in cell A23. Copy this formula down to cell A1021.
You have now established a population of 1000 individuals. Save your work.

Enter =RAND(). When you press F9, the calculate key, the spreadsheet generates new
random numbers. 

In cell C22, enter the formula =LOOKUP(B22,$C$4:$C$7,$A$5:$A$7). Copy your for-
mula down to cell C1021.
The LOOKUP function looks up a value (the random number in cell B22) in a vector
that you specify (cells $C$4:$C$7) and returns a genotype associated with that random
number in the vector $A$5:$A$7. (Remember that a vector is a single row or column
of values.) This function is handy for assigning genotypes to individuals because if
LOOKUP can’t find the exact lookup value (the random number given in cell B22), it
matches the largest value in the lookup vector (cells $C$4:$C$7) that is less than or equal
to lookup_value. The result is that genotypes are assigned to individuals in approxi-
mately the proportions that you specified. Examine your first 10 genotypes. They should
all be A1A2 if the LOOKUP function worked properly. To see how the function works,
change cells B5 and B7 to 0.5, and set cell B6 to 0. (Remember that the final tally of geno-
type frequencies must equal 1 in cell C7.) Now examine the genotypes of your first 10
individuals. The genotypes should be either A1A1 or A2A2. When you feel you have a
handle on how this function works, return cells B5 and B7 to 0, and return cell B6 to 1.

Use the Paste Function key to guide you through the formulae. The COUNTIF for-
mula counts the number of cells within a range that meet the given criteria. It has the
syntax COUNTIF(range,criteria), where range is the range of cells you want to exam-
ine, and criteria defines what you want to count. 

• E9 =COUNTIF($C$22:$C$1021,E8)
• F9 =COUNTIF($C$22:$C$1021,F8)
• G9 =COUNTIF($C$22:$C$1021,G8)

3. Create a “running tally”
in cells C4–C7

4. Set up a linear series
from 1–1000 in cells
A22–A1021.

5. In cells B22–B1021, gen-
erate random numbers
between 0 and 1.

6. Use the LOOKUP func-
tion to assign genotypes to
each of the 1000 individu-
als based on the frequen-
cies you entered in cells
B5–B7 and the tally of
genotype frequencies in
cells C4–C7. Save your
work.

B. Compute allele and
genotype frequencies of
the population. 

1. Set up new column
headings as shown in
Figure 2:

2. In cells E9–G9, use the
COUNTIF formula to
count the number of A1A1,
A1A2, and A2A2 genotypes
in the population. 

Inbreeding, Outbreeding, and Random Mating 525

1

2
3

4

5
6

7
8

9

10

11
12

D E F G H I

A1 A2 Total F

Initial allele frequencies:

F1 allele frequencies:

A1A1 A1A2 A2A2 Total

Initial genotype numbers:

Initial genotype frequencies:

F1 genotype numbers:

F1 genotype frequencies:

Computed frequencies

Figure 2



Enter =SUM(E9:G9). Your result should be 1000. 

Remember that frequencies range from 0 to 1. To calculate the frequency of the A1A1
genotype in the population, write a formula that counts the number of A1A1 genotypes,
divided by the total number of individuals in the population.
In cell E10 enter the formula =E9/$H$9.
In cell F10 enter the formula =F9/$H$9.
In cell G10 enter the formula =G9/$H$9.

In cell H10 enter the formula =SUM(E10:G10).
The genotype frequencies calculated in cells C9–F9 should add to 1. If they don’t, dou-
ble-check your formulae.

In cell F5 enter the formula =(E9*2+F9)/(2*H9).
In cell G5 enter the formula =1-F5.
Since our population consists of 1000 individuals, there are 2000 “gene copies” pres-
ent. In order to compute frequencies we need to determine how many of those gene
copies are A1 and how many are A2. To calculate the frequency of the A1 allele, we mul-
tiply the number of A1A1 homozygotes by 2 (because each individual carries two copies
of this allele) and add to this number the number of heterozygotes (each heterozygote
carries one copy of this allele). This sum is then divided by the total number of gene
copies in the population (2N) to generate the frequency of the A1 allele. Since there are
only two alleles present, and since p + q = 1, we can obtain the frequency of the A2 allele
by subtraction. 

Enter the formula =SUM(F5:G5).

Now we will let our population mate and produce offspring. 
The parental genotypes are listed in cells E15–E17. The genotype of a potential mate
is given in cells F14–H14.
Cells F15–H17 give the probabilities of mating with a particular genotype. These cells
are shaded in Figure 3 to indicate that you directly enter values into these cells. For exam-
ple, cell F15 gives the probability that an A1A1 genotype will mate with another A1A1
genotype. Cell G15 gives the probability that an A1A1 genotype will mate with a het-
erozygous genotype, and cell H15 gives the probability that an A1A1 genotype will mate
with an A2A2 genotype. Note that the sum of the probabilities across rows must equal 1.

3. In cell H9, use the SUM
function to sum cells
E9–G9.

4. In cells E10–G10, enter
formulae to calculate
genotype frequencies.

5. In cell H10, use the
SUM function to sum the
genotype frequencies.

6. In cells F5 and G5, enter
formulae to calculate allele
frequencies.

7. In cell H5, use the SUM
function to sum the allele
frequencies. Save your
work.

C. Select mates.

1. Set up new column
headings as shown in
Figure 3.

2. Enter values shown  in
cells F15–H17. 
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For now, enter the probabilities shown. All individuals will therefore mate with an indi-
vidual of an identical genotype.

Our goal is to have the spreadsheet look up the genotype of individual 1 and match it
to genotypes listed in cells E15–E17. Then we want to determine the genotype of indi-
vidual 1’s mate, listed in cells F14–H14. To choose mates according to the probabili-
ties given, we will use four different functions in: MATCH, INDEX, RAND, and IF.
Used in combination, these formulae will allow us to generate the genotype of a mate
for each individual in the population. Note that if a preferred genotype is not present
in the population, the individual does not reproduce, and a rare genotype that is pres-
ent and preferred can mate more than once.

In cell D22, enter the formula =MATCH(C22,$E$15:$E$17).
The MATCH formula  returns the relative position of an item in a table that matches
the condition you specify. It has the syntax MATCH(lookup_value,lookup_array).
The formula in cell D22 tells the spreadsheet to find the genotype listed in cell C22, and
return the relative position of that genotype in the table $E$15:$E$17. For example, the
genotype of individual 1 in our program is A1A2. The program returns the value 2, to
indicate that A1A2 individuals occupy the second  position in our array. If individual
1 had the genotype A1A1, it would return the number 1, and if individual 1 had the
genotype A2A2, it  would return the number 3. Copy this formula down for the remain-
ing 999 individuals, and make sure your MATCH values are correct. Since your pop-
ulation consists solely of heterozygotes, the match values should all be equal to 2.

In cell E22, enter the formula =INDEX($E$15:$H$17,D22,2).
Our second trick is the INDEX formula. This formula returns the value of an element
in a table, once you identify the row and column number that should be returned. The
INDEX formula has the syntax INDEX(array,row_num,column_num), where array is
a range of cells in a table; row_num selects the row in the table from which to return a
value, and column_num selects the column in table from which to return a value.

The formula in cell E22 tells the spreadsheet to examine the range of cells E15–H17, and
to go to the row designated in cell D22 (derived from the MATCH formula entered in
Step 4) and column 2 (which indicates the probability of mating with an A1A1 indi-
vidual). The program will then return the value associated with this row and column
intersection. Fill this formula down for the remaining 999 individuals in the popula-
tion. Make sure you understand what is going on.

In cell F22 enter the formula =INDEX($E$15:$H$17,D22,3).
In cell G22 enter the formula =INDEX($E$15:$H$17,D22,4).

The three INDEX formulae generate the appropriate mating probabilities for each indi-
vidual in the population. Figure 5 shows the genotypes of the first four individuals in
our population, their match values, and index values.

3. Set up column headings
as shown in Figure 4.

4. In cell D22, enter a
MATCH formula and
copy the formula down to
cell D1021.

5. In cell E22, enter an
INDEX formula and copy
this formula down to cell
E1021.

6. In cells F22 and G22,
enter analogous INDEX
formulae to generate the
probability of mating with
heterozygote and A2A2
homozygote, respectively.
Copy your formulae down
to cells F1021 and G1021. 
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In cell H22 enter the formula =RAND().
The RAND function generates a random number between 0 and 1. We will use this for-
mula to determine the genotype of the mate for each individual in the population. When
you press F9, the calculate key, the spreadsheet generates a new set of random numbers.

In cell I22 enter the formula =IF(H22<=E22,$F$14,IF(H22<=E22+F22,$G$14,$H$14)).
Copy the formula down cell I1021 to obtain preferred mates for the remaining indi-
viduals in the population.

Our final step in selecting the genotype of the mate is to use two nested IF functions.
Remember that an IF statement returns one value if a condition you specify is true and
another value if the condition you specify is false. IF statements have the form IF(log-
ical_test,value_if_true,value_if_false).

The first portion of the IF formula in I22, =IF(H22<=E22,$F$14, tells the spreadsheet 
to examine cell H22 (the random number associated with individual 1). If that val-
ue is less than or equal to the value in cell E22 (the first index number), return the 
value in cell F14 (A1A1). Otherwise, go through the second IF statement,
IF(H22<=E22+F22,$G$14,$H$14). This statement tells the program to examine the ran-
dom number in cell H22. If that value is less than the sum of the values in cells E22 and
F22 (the first and second index numbers), return the value in cell G14 (A1A2). Other-
wise, return the value in cell H14 (A2A2).

Enter the formula =IF(VLOOKUP(I22,$A$5:$B$7,2)>0,I22,"."). Although we have estab-
lished the mating preferences, we now need to ensure that an individual with the pre-
ferred genotype actually exists in the population for mating. The formula in cell J22 is
a VLOOKUP function nested within an IF function. It tells the spreadsheet to look up
the preferred mate’s genotype given in cell I22 in the table of cells A5–B7 and return
the associated value in the second column, which is the frequency of the preferred geno-
type. If the frequency of the preferred genotype is greater than 0, preferred individu-
als exist in the population for mating, and the spreadsheet returns the genotype listed
in cell I22. If the preferred genotype does not exist in the population, its genotype fre-
quency is 0, so the formula returns a period to indicate that the individual will not mate.

Take some time to make sure you can see how the formulae in cells I22 and J22 are
working. In the example shown in Figure 6, individual 1 (A1A2) prefers to mate with
an A1A2 genotype because its random number is greater than Index 1 (0) and less
than the sum of Index 1 and Index 2 (which is 1). Since the preferred genotype is pres-
ent in the population (its frequency is greater than 0), the actual mate genotype (A1A2)
is given in cell J22. 

7. In cell H22, generate a
random number between
0 and 1. Copy your formu-
la down to H1020.

8. In cell I22, enter a nest-
ed IF formula to select the
genotype of the preferred
mate. Copy your formula
down to cell I1021.

9. In cell J22, enter an IF
formula to generate the
actual mate genotype, and
copy this formula down to
cell J1021.
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In cell K22 enter the formula =IF(RAND()<0.5,LEFT(C22,2),RIGHT(C22,2))&IF(RAND
()<0.5,LEFT(J22,2),RIGHT(J22,2)).
You are already familiar with the RAND function. The LEFT and RIGHT functions
return either the leftmost or rightmost characters in a string of characters. For example,
LEFT(C22,2) returns the leftmost two characters listed in cell C22.

The formula in cell K22 draws a random number for individual 1; if the random num-
ber is less than or equal to 0.5, individual 1 contributes the “left” allele in its genotype
as a gamete; otherwise, it contributes the “right” allele in its genotype as a gamete. A
second IF statement is used to determine the gamete contributed by individual 1’s mate
in column J. The gamete from individual 1 and its mate are joined with an & symbol,
which produces the genotype of the offspring.

In cell L22, enter the formula =IF(K22=”A2A1”,”A1A2”,K22).
This formula is necessary because some of the heterozygous offspring will be listed as
A1A2 and some will be listed as A2A1. For simplicity, we will make all the heterozygotes
be listed as A1A2.

In cell E11 enter the formula =COUNTIF($L$22:$L$1021,E8).
In cell F11 enter the formula =COUNTIF($L$22:$L$1021,F8).
In cell G11 enter the formula =COUNTIF($L$22:$L$1021,G8).

Enter the formula =SUM(E11:G11). Double-check your formulae. Your results should
total to 1000.

10. Save your work.

D. Obtain genotypes of
offspring.

1. Set up column headings
as shown in Figure 7. 

2. In cell K22, enter a for-
mula that will produce an
“offspring” by randomly
combining a genotype
from each of the two par-
ents. Copy the formula
down to cell K1021.

3. Enter a formula so all
heterozygotes will be list-
ed as A1A2. Copy the for-
mula down to L1021.

4. Save your work.

E. Calculate the new
genotype and allele fre-
quencies and the F sta-
tistic.

1. In cells E11–G11, use the
COUNTIF formula  to
count the number of geno-
types in the offspring pop-
ulation.

2. In cell H11, sum the off-
spring genotypes.
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In cell E12 enter the formula =E11/$H$11.
In cell F12 enter the formula =F11/$H$11.
In cell G12 enter the formula =G11/$H$11.

Enter the formula =SUM(E12:G12). Your results should total to 1.

In cell F6 we entered the formula =(E11*2+F11)/(2*H11)
Remember that in a population of 1000 individuals, there are 2000 “gene copies” pres-
ent because each individual carries two alleles. We just need to know how many of
those gene copies are A1 and how many are A2.

In cell G6 enter the formula =1-F6.
Since there are only two alleles at the A locus, p + q = 1. Since you already calculated
p, q can be obtained by subtraction.

Now we are ready to calculate the inbreeding coefficient of our offspring population.
Remember that 

where H0 is the heterozygosity level predicted by Hardy-Weinberg, and H is the observed
level of heterozygosity. We used the formula =((2*F6*G6)-F12)/(2*F6*G6). Your result
should be close to 0, since the offspring population will consist of approximately 25%
A1A1, 50% A1A2, and 25% A2A2 genotypes, as predicted by Hardy-Weinberg. Take a
moment to consider your results.

Use a column graph. Select cells E10–G10 to graph the parental genotypes and cells
E12–G12 to graph the offspring genotypes. Your graph should resemble Figure 8.

Use a line graph and select cells F5 and F6. Label your graph fully. Your graph should
resemble Figure 9. Set the scale of the y-axis to range between 0 and 1.

F
H H

H=
−0

0

3. In cells E12–G12, calcu-
late genotype frequencies
of the offspring population.

4. In cell H12, sum the off-
spring genotype frequen-
cies. 

5. In cell F6, enter a formu-
la to calculate the frequen-
cy of the A1 allele in the
offspring population. 

6. In cell G6, calculate the
frequency of the A2 allele.

7. In cell I5, calculate F, the
inbreeding coefficient of the
offspring. Save your work.

F. Create graphs.

1. Graph the genotype fre-
quencies of the parental
population and the offp-
sring population.

2. Graph the allele fre-
quencies of the parental
population and the off-
spring population for the
A1 allele.

3. Save your work.
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QUESTIONS

1. How does the allele frequency change from the parental population to the off-
spring population? How does the genotype frequency change from the parental
population to the offspring population? Change the parental genotype frequen-
cies in cells B5–B7 to 0.33, 0.34, and 0.33. How did the allele frequency change
from the parental population to the offspring population? How did the genotype
frequency change from the parental population to the offspring population? 

2. Press F9, the calculate key, to generate new results. Why do your results vary
from trial to trial? 

3. Assume your offspring population will now breed and produce the next gener-
ation. How do F, p , and the genotype frequencies change over time with com-
plete inbreeding? Set up new column headings as shown. 

Enter the genotype frequencies of your parental population in cells K5–K7.
Enter the frequency of the A1 allele, p, in cell K8. Enter your genotype frequen-
cies of the offspring population in cells L5–L7. Enter p and F for the offspring
population in cells L8–L9. (Your values will likely be a bit different than shown.
If you copy and paste your results into the cells, make sure you choose paste
special | paste values). Now let the offspring genotypes be the parental geno-
types. Enter the offspring genotype values in cells B5–B7. Record the genotype
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frequencies of the new offspring population in cells M5–M7. Repeat until 5 gen-
erations have elapsed. How do F, p , and the genotype frequencies change over
time with complete inbreeding? Graph your results.

4. Set the initial genotype frequencies to 0.25, 0.5, and 0.25 (cells B5–B7). What is
the relationship between the probability of mating with the same genotype and
F? Set up new column headings as shown, where Probability is the probability
of mating with the same genotype:

You have already examined the case where p = 1. Enter the offspring p and F
values in cells L17–M17. Now change the mating probabilities in cells F15–H17.
Start with strict outbreeding, where the probability is 0. Enter 0 in cells F15,
G16, and H17. Set the other mating probabilities so that the probability of mat-
ing with a dissimilar genotype is the same for the two remaining alternative
genotypes (e.g., for Probability = 0, set the probability of mating with the other
two kinds of genotypes to 0.5 so that they have equal changes of being selected
for mating). For example, when the probability of mating with a similar geno-
type is 0.4, your spreadsheet should look like this:

Record p (the frequency of the A1 allele in the offspring population) and F in
cells L12 and M12. Repeat the process for the remaining probabilities. Graph the
relationship F and the probability of mating with the same genotype. Graph the
relationship between the frequency of the A1 allele in the offspring population
and the probability of mating with the same genotype. Interpret your results.

5. Assume that A1 is dominant to A2, and that individuals breed with the same
phenotype. Set the mating probabilities in cells F15–H17 accordingly (e.g., A1A1
individuals are equally likely to mate with A1A1 or A1A2 individuals, but are not
likely to mate with A2A2 individuals). How does assortative mating differ from
inbreeding effects on genotype and allele frequencies of the offspring popula-
tion? How does it differ from random mating? To simulate random mating,
enter the parental genotype frequencies in the cells; since mates are drawn at
random, an individual should encounter a random mate proportionally to the
parental frequencies.
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GENETIC DRIFT42
Objectives

• Set up a spreadsheet model of genetic drift.
• Determine the likelihood of allele fixation in a population of

10 individuals.
• Evaluate how initial allele frequencies in a population of 10

individuals affect probability of fixation.
• Compare the effects of genetic drift on small versus large

populations.

Suggested Preliminary Exercise: Hardy-Weinberg Equilibrium

INTRODUCTION
Random events play a strong role in evolution, especially in small populations.
Genetic drift is a random process; it is the chance fluctuations in allele frequen-
cies within a populations as a result of random sampling among gametes (Hartl
2000). To understand what genetic drift is, we start with a very brief refresher in
population genetics.

For diploid organisms such as vertebrates, each individual carries two alleles in
their genetic makeup at each locus (one allele was inherited from the mother and
one allele was inherited from the father). Let’s assume that there are two types of
allele, A1 and A2, for a given gene in a population. If the two alleles in an individ-
ual are of the same type, the individual is said to be homozygous (A1A1 or A2A2). If
the alleles are of different types, the individual is said to be heterozygous (A1A2).
Although individuals are either homozygous or heterozygous at a particular gene,
populations are described by their genotype frequencies and allele frequencies. The
word “frequency” in this case means the proportion of occurrence in a population.
To obtain the genotype frequencies of a population, simply count up the number
of each kind of genotype and divide by the total number of individuals in the pop-
ulation. For example, if we study a population of 55 individuals, and 8 individuals
are A1A1, 35 are A1A2, and 12 are A2A2, the genotype frequencies ( f ) are

f(A1A1) = 8/55 = 0.146

f(A1A2) = 35/55 = 0.636

f(A2A2) = 12/55 = 0.218

Total = 1.00

 



The sum of the genotype frequencies of a population always equals 1. 
Allele frequencies, in contrast, describe the proportion of all alleles in the population

that are of a specific type (Hartl 2000). For our population of 55 individuals, there are a
total of 110 gene copies present in the population (each of 55 individuals has 2 copies,
so 55 × 2 = 110). To calculate the allele frequencies of the population, we need to calcu-
late how many of those allele copies are of type A1 and how many are of type A2. To cal-
culate how many copies are A1, count the number of A1A1 homozygotes and multiply
that number by 2 (each homozygote has two A1 copies), then add to it the number of
A1A2 heterozygotes (each heterozygote has one A1 copy). The number of A1 alleles in
the population is then divided by the total number of gene copies in the population to
generate an allele frequency. Thus, the total number of A1 alleles in the population is (2
× 8) + (1 × 35) = 51. The frequency of A1 is calculated as 51/(2 × 55) = 51/110 = 0.464.
Similarly, the total number of A2 alleles in the population is (2 × 12) + (1 × 35) = 59. The
frequency of A2 is calculated as 59/(2 × 55) = 59/110 = 0.536. As with genotype fre-
quencies, the total of the allele frequencies of a population always equals 1. By conven-
tion, frequencies are designated by letters. If there are only two alleles in the population,
these letters are conventionally p and q, where p is the frequency of one kind of allele
and q is the frequency of the other. For genes that have only two alleles,

p + q = 1 Equation 1

If there were more than two kinds of alleles for a particular gene, we would calculate
allele frequencies for the other kinds of alleles in the same way. For example, if three
alleles were present, A1, A2, and A3, the frequencies would be p (the frequency of the
A1 allele), q (the frequency of the A2 allele) and r (the frequency of the A3 allele). No mat-
ter how many alleles are present in the population, the frequencies should always add
to 1. Note that when we describe a population in terms of its allele frequencies, we don’t
necessarily know the genetic makeup of individuals in the population. For instance, all
individuals can be homozygous (A1A1, A1A1, A2A2, A2A2, A2A2) or individuals can be a
mix of homozygous and heterozygous genotypes (A1A2, A1A2, A1A1, A2A2, A2A2); the
allele frequencies are the same in both situations.

In summary, for a population of N individuals, suppose the number of A1A1, A1A2,
and A2A2 genotypes are nA1A1, nA1A2, and nA2A2, respectively. If p represents the frequency
of the A1 allele, and q represents the frequency of the A2 allele, the estimates of the allele
frequencies in the population are

f(A1) = p = (2nA1A1 + nA1A2) / 2n Equation 2

f(A2) = q = (2nA2A2 + nA1A2) / 2n Equation 3

Genetic Drift and Evolution
Evolution is often described as a change in allele frequencies in a population over time
(Hartl 2000). For example, we may notice that the frequency of the A1 allele in our pop-
ulation changed from a value of 0.4 at time t to a value of 0.5 at time t + 1. There are
several evolutionary forces that could have produced this change, such as natural selec-
tion, mutation, and gene flow. Genetic drift, the change in allele frequencies in popu-
lations that occurs by chance, without direction, is another kind of evolutionary force
that can alter allele frequencies over time. Its impact is often greatest in small popula-
tions, and results in a loss of genetic diversity for a given (single) population.

Suppose, for example, that a population of 5 individuals has two alleles, A1 and A2,
at a given locus, with frequencies p and q, respectively. Suppose further that in a cer-
tain generation, p = q = 0.5 (in other words, the frequency of allele A1 is equal to the fre-
quency of allele A2). We will let this population mix and breed randomly to produce 5
new offspring that make up the next generation. Thus, the birth rates will remain low
in this population. We can simulate random breeding by using a random number gen-
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erator, where the random numbers 0, 1, 2, 3, and 4 represent the passing down of the A1
allele to the next generation, and random numbers 5, 6, 7, 8, and 9 represent the pass-
ing down of the A2 allele to the next generation.

Note that the two alleles are each represented by five numbers because the allele
frequencies are initially equal. By drawing 10 random numbers to represent the 10
alleles making up the “new” generation, we can assign genotypes to the 5 new offspring
and then calculate the new gene frequencies. For example, if the random numbers 0, 1,
5, 3, 9, 8, 3, 4, 8, and 2 are drawn, the 10 alleles in the next generation are A1, A1, A2, A1,
A2, A2, A1, A1, A2, and A1, with genotypes taken in the order A1A1, A2A1, A2A2, A1A1, and
A2A1. If you count how many alleles in this new population are A1 and how many are
A2 (out of 10 total alleles), you find that this new generation has allele frequencies of p
= 0.6 and q = 0.4. The population has evolved due to genetic drift.

We can continue this process for several generations to examine how the allele fre-
quencies will continue to fluctuate over time. We used this method to track the frequency
of the A1 allele in 5 different populations, each consisting of 10 individuals, as shown
below (Figure 1). In all populations, the frequency of A1 was 0.5 to begin with. Inspec-
tion of Figure 1 shows that the frequency of the A1 allele is 1 after 20 generations in
two populations (populations 2 and  5). This means, by definition, that the frequency of
the A2 allele is 0. In contrast, the frequency of the A1 allele is 0 after 20 generations in
two other populations (populations 1 and 3).

In the first situation, we say that the A1 allele has become fixed in the population, so
that its frequency is 1. In the second situation, the A2 allele has become fixed and the
A1 allele has been lost from the population. In both cases, allelic diversity has been lost
from the population because there is now only one allele where previously there were
two. Population 4 was also subjected to drift, but both the A1 and A2 alleles remained
present in the population for at least 20 generations.

The important point is that when populations are very small, and are kept small over
time, genetic drift tends to eliminate alleles from within a population, ultimately fixing
the population at a frequency of either p = 1 or q = 1. You’ll see how this happens as
you work through the exercise. We can also think of the effects of drift across all five pop-
ulations. Taking this larger view, genetic drift results in different populations becoming
genetically different from each other because by chance, different alleles will become
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Figure 1 In five populations of size N = 10, the initial frequencies of A1
and A2 were each 0.5. After 20 generations, allele A1 has become fixed in
populations 2 and 5 and lost in populations 1 and 3. Only in population 4
do both alleles still exist.



fixed in different populations. Some populations will be fixed at one allele, while another
population will be fixed at a different allele. 

The effects of drift become less important as population size increases. Figure 2 shows
five populations, each consisting of 200 individuals and with an initial frequency of 0.5
for the A1 allele. For the larger population sizes, drift is still apparent, but in no case
did the A1 or A2 allele become fixed.

PROCEDURES

In this exercise, you’ll set up a spreadsheet model to explore the effects of genetic drift.
In doing so, you should learn why drift occurs and how it affects genetic diversity.

As always, save your work frequently to disk.

ANNOTATIONINSTRUCTIONS

A. Set up the population
parameters.

1. Open a new spreadsheet
and set up headings as
shown in Figure 3.

538 Exercise 42

Frequency of A1 across Generations, N = 200

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8
0.9

1

1 3 5 7 9 11 13 15 17 19

Generation

F
re

q
u

en
cy

o
f

A
1

Pop 1

Pop 2

Pop 3

Pop 4

Pop 5

Figure 2 The effects of genetic drift are less dramatic when N is large
(population size is large).
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Set the initial population’s allele frequencies in cell B4 (frequency of the A1 allele) and
B5 (frequency of the A2 allele). These frequencies are the gene frequencies of your ini-
tial generation, or generation 1. 

Enter 1 in cell A10.
Enter =1+A10 in cell A11. Copy your formula down to cell A19.

In cell B10 enter the formula  =RAND(). Copy the formula down to cell B19.
Press F9, the calculate key, to generate new random numbers. These random num-
bers will be used to assign an allele that is inherited by the next generation in the next
step.

In cell C10, enter the formula =IF(B10<$B$4,”A1”,”A2”). Copy the formula down to
cell C19.
The initial population of 5 individuals mates randomly and produce 5 new offspring
that will make up generation 2. Each offspring in the population will inherit 2 alleles
at the locus. The first offspring in generation 2 will inherit alleles given in cells A10–A11.
The second offspring in generation 2 will inherit alleles given in cells A12–A13, and
so on. The formula in C10 uses an IF function to determine whether the random num-
ber is associated with the A1 allele or the A2 allele. The formula tells the spreadsheet
to evaluate cell B10; if the random number in cell B10 is less than the frequency of the
A1 allele designated in cell B4, then allele number 1 in the next generation will be an A1
allele. Otherwise, allele number 1 in the next generation will be an A2 allele. 

The genotypes of our 5 offspring (Figure 4) were A2A2, A1A1, A2A1, A2A2, and A1A2.
Your genotypes will likely be different than ours. Press F9, the calculate key, to gener-
ate new random numbers, and hence new offspring genotypes.

2. Enter 0.5 in cells B4 and
B5. 

3. Set up a linear series
from 1 to 10 in cells
A10–A19. 

4. In cells B10–B19, use the
RAND function to gener-
ate a random number
between 0 and 1.

5. In cells C10–C19, use
the IF function to simulate
which alleles are passed
down from the parental
generation as a result of
random mating.

6. Note the genotypes of
the 5 offspring in genera-
tion 2. 
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Enter the formula =COUNTIF(C10:C19,”A1”)/10 in cell F5.
The COUNTIF function counts the number of cells within a range that meet the given
criteria. It has the syntax COUNTIF(range,criteria), where range is the range of cells
you want to examine, and criteria is the item that will be counted. Since you entered
=COUNTIF(C10:C19,”A1”), the program will examine cells C10–C19 and count the
number of times A1 appears. This number, when divided by the total alleles in the pop-
ulation, /10, gives the new A1 allele frequency p for generation 2.

In cell G5 enter the formula =COUNTIF(C10:C19,”A2”)/10. This equation is analogous
to the one in Step 7. 
After these formulas have been entered, each time you press F9 the spreadsheet will
generate a new set of random numbers and will automatically compute the new allele
frequencies in cells F5 and G5. We obtained allele frequencies of p = 0.4 and 
q = 0.6 for generation 2 (see Figure 4; you probably obtained different results; that’s fine). 

Your frequencies will change each time the spreadsheet is calculated. By entering the
frequencies in cells F6 and G6 by hand, you are “fixing” the frequencies for future gen-
erations.

Now we’ll repeat the entire process over time by letting generation 2 grow and repro-
duce 5 new individuals that will make up generation 3. To simulate the third genera-
tion, set up a new set of alleles, random numbers, and allele identifications in columns
E, F, and G, as you did for generation 2.

Enter the number 1 in cell E10.
Enter the formula =1+E10 in cell E11. Copy the formula down to cell E19.

Enter =RAND() in cells F10–F19 to assign a random number to each allele in genera-
tion 3.

In cell G10 enter the formula =IF(F10<$F$6,”A1”,”A2”). Copy your formula down to
cell G19.
This IF formula tells the spreadsheet to examine the random number in cell F10 and
assign it a value of A1 if it is less than the allele frequency designated in F6. If the ran-
dom number is greater than the allele frequency designated in F6, the program assigns
it an A2 allele.

We determine the results of random mating in generation 2 by assigning an allele (A1
or A2) to each new random number in generation 3. Remember that the assignment of
random numbers now depends on the allele frequencies in the second generation (listed
in F6 and G6), and no longer depend on the initial population.

In cell F22 enter the formula  =COUNTIF(G10:G19,”A1”)/10 to compute the frequency
of the A1 allele. 
In cell G22 enter the formul =COUNTIF(G10:G19,”A2”)/10 to compute the frequency
of the A2 allele. 
As before, we use the COUNTIF formula to count the total number of A1 and A2 alleles.. 

In our version of the exercise, generation 1 had initial allele frequencies of p = 0.5 and
q = 0.5; generation 2 had allele frequencies of p = 0.4 and q = 0.6; and generation 3 had
0.4 and 0.6 (given in cells B4 and B5). You will almost certainly obtain different results
from your own spreadsheet, and that’s fine!

7. In cell F5, use the
COUNTIF function to
count the number of A1
alleles in the second gen-
eration (labeled G2), and
calculate the new frequen-
cy of the A1 allele (p).

8. In cell G5, enter a
COUNTIF formula to cal-
culate the new frequency
of the A2 allele (q).

9. Manually type whatever
frequencies you obtained
in cells F5 and G5 into
cells F6 and G6. Save your
work.

B. Project allele frequen-
cies to generation 3. 

1. Set up a linear series
from 1 to 10 in cells
E10–E19. 

2. In cells F10–F19, gener-
ate a random number
between 0 and 1.

3. In cells G10–G19, use an
IF formula to determine
whether the first allele in
generation 3 is A1 or A2.

4. In cells F22 and G22,
calculate the new allele
frequencies inherited by
the third generation.

5. Examine the change in
allele frequencies over
generations 1–3.
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You can quickly obtain the allele frequencies for generation 4 by copying the frequen-
cies of generation 3 in cells F22 and G22 and pasting these values into cells F6 and G6,
replacing the frequencies you used for generation 2. (This is why in Figure 3, this cell
is labeled generation N, or G(N) for short.) So you can:

• Copy cells F22–G22.
• Select cells F6–G6.
• Open Edit | Paste Special. Select Paste Values and OK.
• Press F9 to automatically calculate new allele frequencies for generation 4 in

cells F22 and G22.

What happened? Because of the way you typed in formulas for designating allele types
in cells G10-G19, your assignment of alleles to the next generation depends on the
parental generation that preceded it. Now the frequencies from generation 4 have been
automatically counted in cells F22 and G22.

Ultimately, you will track the fate of the frequencies of the A1 and A2 alleles over 20
generations. We will start again with generation 1, which has allele frequencies of p =
0.5 and q = 0.5. 

The values in cells F6 and G6 now represent the allele frequencies for G(1), or genera-
tion 1. We can now track how these frequencies change over 20 generations. 

From the menu, open Tools | Options | Calculations and select Manual Calculation. Then
open the Macro function (see Exercise 2) to Record and assign a shortcut key. Perform
the following steps:

• Press F9 to generate a new set of random numbers.
• Highlight cells F22 and G22, the new gene frequencies for the second genera-

tion. 
• Go to Edit | Copy.
• Select cell K2, then go to Edit | Find | Find What. Leave the Find What cell complete-

ly blank, but make sure the Search by Columns option is selected.

6. Obtain allele frequencies
for generation 4.

7. Save your work.

C. Track allele frequen-
cies over time.

1. Set up some new head-
ings as shown in Figure 5,
but extend your genera-
tions to 20. 

2. Enter 0.5 in cells K3 and
K4. 

3. Enter 0.5 in cells F6 and
G6. 

4. Write a macro to track
allele frequencies for 20
generations.
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• Select Find Next. The first blank cell in column K should be highlighted. Close
the Find box.

• Open Edit | Paste Special, and paste in Values.
• Select cells F6 and G6
• Open Edit | Repeat Paste Special. This action will paste the new frequencies into

cells F6 and G6, and will ensure that the spreadsheet uses these new frequen-
cies to assign allele types to the offspring that make up the next, new genera-
tion. 

Stop recording. Press your shortcut key until you have obtained allele frequencies for
20 generations. 

Use the Line Graph option and make sure your axes are clearly labeled. Your graph
should resemble Figure 6.

How likely is it that a given allele would become fixed in your population? To know
the probability of fixation in your population of 5 with initial gene frequencies of p =
0.5 and q = 0.5, you will need to repeat your entire simulation a minimum of 100 times
(more would be better) and examine the outcomes of a variety of different simulations. 

Open Tools | Options | Calculation and select Automatic.

5. Save your work.

D. Create graphs.

1. Graph the frequencies
of the A1 and A2 allele
over time.

2. Save your work.
Answer Question 1 at the
end of the exercise before
proceeding.

E. Run 100 trials.

1. Make sure you are in
the automatic calculation
mode.

2. Set up your spreadsheet
as shown in Figure 7, but
allow for 20 generations
and 100 trials (extend your
generations to cell U28
and your trials to cell
A128).
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You’ve run 1 “trial” so far, with the results listed in cells K3–K22. We need to put
those values into cells B29–U29. 

Highlight cells K3–K22.
Open Edit | Copy. Select cell B29.
Open Edit | Paste Special | Paste Values, and select Paste Transpose. The transpose option
will paste in the allele frequencies in row 29, automatically filling in the frequency of
the A1 allele across generations.

Open Tools | Options | Calculation, and select Manual.

Try writing this macro on your own. If you get stuck, here are the steps we recorded
to perform the task:

• Enter 0.5 in cells F6–G6. This will re-set the initial allele frequencies to 0.5 in
generation 1.

• Press F9 to generate a new set of random numbers. The spreadsheet automati-
cally calculates the new frequencies listed in cells F22 and G22.

• Use your mouse to highlight cells K4–L22. 
• Press the delete key. The results of generation 2–20 from your first trial will be

wiped out. 
• Press the shortcut key (usually <Control> + some key) that runs your first

macro (Step 4 in Section C), until you have generated allele frequencies for 20
generations.

• Select cells K3 to K22, and open Edit | Copy.
• Select cell B28, and go to Edit | Find. At the Find What prompt, leave the cell com-

pletely blank. 
• Select the Search by Columns option. Select Find Next and then Close. This action

will move your cursor to the next open cell in Column B. 
• Open Edit | Paste Special. Select the Paste Values and Transpose options. 

Stop recording. Press your shortcut key until you have run a minimum of 100 trials.

Now that you have run a number of trials, you can determine how likely it is that an
allele would become fixed in the population after 20 generations. First, we’ll count
the number of times the A1 allele went “extinct” (the frequency of the A1 allele = 0, and
the A2 allele was fixed at 1). Then we’ll count the number of times the A1 allele was
fixed at 1 (the A2 allele went extinct). 

Open Tools | Options | Calculation and select Automatic.

Enter the formula =IF(U29=0,1,0) in cell V29. Copy this formula down to cell V128.
The IF statement in V29 tells the spreadsheet to examine the contents of cell U29 (the
allele frequency of the twentieth generation in trial 1). If cell U29 = 0, then assign it a
value of 1; otherwise assign it a value of 0. Thus, if the A1 allele went extinct in the
course of 20 generations for a particular trial, the value in column V is scored as 1. 

3. Copy results from Trial
1 (cells K3–K22, the fre-
quency of A1 over 20 gen-
erations) into cells
B29–U29. 

4. Switch to manual calcu-
lation.

5. Develop a new macro to
run 100 trials.

F. Calculate probability
of fixation.

1. Return to automatic cal-
culation.

2. Set up column labels as
shown in Figure 8.

3. In cells V29–V128, use
the IF function to calculate
how many times the A1
allele went extinct.
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Enter the formula =IF(U29=1,1,0) in cell W29. Copy this formula down to cell W128.
The spreadsheet will return a “1” if the A1 allele became fixed at 1 (and thus the A2 allele
went extinct). 

Enter the formula =SUM(V29:V128) in cell V129.
Enter the formula =SUM(W29:W128) in cell W129. 
In this step you simply add the number of times the A1 allele went extinct (p = 0) and
the number of times the A1 allele became fixed at p = 1 for your trials.

We entered the formula =(V129+W129)/100 in cell V130.
Now you can estimate the probability of fixation of an allele for a population of size 5
with initial gene frequencies of p = 0.5 and q = 0.5. These probabilities are simply the
total number of times the A1 allele went extinct or became fixed at 1, divided by the
total number of trials you ran.

QUESTIONS

1. Trace the fate of the frequency of the A1 allele over time. Did it vary dramatical-
ly? What was its frequency in the 20th generation? Was the frequency of the A1
allele ever 1 or 0 at any time during your simulation? If so, did it bounce back
to a new frequency, or did it remain fixed at a given level over time? Why?

2. How do the initial frequencies in the population affect the probability of extinc-
tion or of fixation? Change your initial allele frequencies to p = 0.8, q = 0.2. Set
cell K3 to 0.8, and cell L3 to 0.2. Open Tools | Macro | Macros, then edit your Trials
macro. You should see the Visual Basic for Applications Code that Excel
“wrote” as you recorded your macro. Modify the values from 0.5 to 0.8 and 0.2.
Close out of the edit box and return to your spreadsheet. Clear the results of
your 100 trials, then run your 100 trials again. Graph and explain your results.

4. In cells W29–W128, use
the IF function to calculate
how many times the A2
allele went extinct.

5. Sum the number of
times the A1 allele went
extinct in cell V129. Sum
the number of times the A1
allele was fixed in cell
W129.

6. In cell V130, enter a for-
mula to calculate the prob-
ability of fixation as the
probability that either the
A1 or A2 allele will be
fixed in the population.
Label this value in U130.

7. Save your work.
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*3. (Advanced) What are the effects of genetic drift in a much larger population
(say N = 50 or N = 100), where the initial allele frequencies are p = 0.5 and q =
0.5? Expand your model to compare the results of the effects of drift on small
versus large populations. Copy the entire spreadsheet to a new page, and make
your modifications on the new sheet. 

4. What are some possible consequences of drift in populations, particularly if
drift leads to fixation of alleles? Should this be of concern to wildlife managers?
Could you use your model to estimate the minimum population size required
to minimize the effects of drift?
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EFFECTIVE POPULATION SIZE
In collaboration with Allan Strong

43
Objectives

• Explore how allele frequencies drift over time with stable
populations of different sizes.

• Explore how allele frequencies drift over time when popula-
tion sizes fluctuate.

• Calculate and interpret the effective population size of the
population.

Suggested Preliminary Exercises: Hardy-Weinberg
Equilibrium; Genetic Drift

INTRODUCTION
The Hardy-Weinberg principle states that when populations are infinitely large,
mate randomly, and experience no selection, mutation, or gene flow, both the
allele and genotype frequencies can be predicted for the next generation. From a
genetic perspective, infinitely large Hardy-Weinberg populations are consid-
ered “ideal” populations. That is, the number of males and females are equal,
mating occurs randomly, all individuals contribute more or less equally to the
next generation, and population size is large and does not vary over time. Thus,
in a population with N number of breeding individuals, each parent has a 1/N
probability of producing a gamete that will be incorporated into future offspring.

But most, if not all, populations violate at least some of these assumptions. Pop-
ulation numbers fluctuate over time, have unequal sex ratios, or have mating sys-
tems where only a few dominant individuals breed, or disperse in such a way that
not all individuals contribute equally to the next generation’s genetic makeup. In
other words, all of these “violations” can influence the way gametes are passed
down to future generations. 

How can we characterize populations that are not ideal? It is useful to directly
compare the actual censused population size, Nt, to its effective population size,
Ne. The effective population size tells you how large the observed population is
based on its genetic behavior. Because all populations have a finite size, they will
experience some degree of genetic drift and inbreeding, even if the population is
ideal in every other sense. The degree of drift and inbreeding in an ideal  popula-
tion with a finite size can be used as a baseline to which other, nonideal popula-
tions can be compared. You might recall from the preceding exercise that genetic
drift is the change in allele frequency over generations that occurs because, by

 



chance, alleles are not passed down to subsequent generations as predicted by Hardy-
Weinberg. The smaller the population, the more drift occurs and the more likely alleles
will become fixed. Figure 1 shows how much drift occurs over 5 generations in popu-
lations ranging in size from 1000 down to 5 individuals. 

The concept of effective population relates directly to the concepts of genetic drift and
inbreeding (Wright 1931). The effective size of a population, Ne, is the number of indi-
viduals that will contribute genes equally to the next generation. For example, sup-
pose we count 270 turtles in a population (the censused population), and would like to
know how those 270 turtles “behave” from a genetic standpoint. The effective popula-
tion size tells us that number. If Ne for this population equals 50, that means that our tur-
tle population (Nt = 270) behaves or experiences changes in its genetic makeup like an
“ideal” population of 50 individuals (that is, a population where mating is random,
sex ratios are even, individuals contribute gametes equally to the next generation, and
population size does not vary over time, but that nonetheless experiences drift and
inbreeding because the population is not infinite).

Often Ne is less than Nt, suggesting that many natural populations behave genetically
like a smaller population. A fluctuation in population size from year to year is one way
that effective population size is reduced in nature. For example, suppose a population
consists of 1000 individuals in generation 1, 10 individuals in generation 2, and 1000
individuals in generation 3. Generation 2 is considered a “bottleneck” generation for the
population because only a handful of individuals actually survived through that period.
Although we can count 1000 individuals in generation 3, the effective population size
will be less than 1000 because the bottleneck has made the 1000 individuals in genera-
tion 3 more genetically related than the 1000 individuals in generation 1. In fact, this
population will behave genetically more like an “ideal” population of 29 individuals 
(Ne = 29). Therefore, the number of individuals contributing genetically to the next gen-
eration is less than the actual population size.

You may ask, “How did we arrive at the number 29 in the above example?” The num-
ber 29 is the harmonic mean of the numbers 1000, 10, and 1000, or the reciprocal of the
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Figure 1 In all cases, the starting frequency of the A1 allele = 0.5. After 5
generations, the deviation in the allele frequency from 0.5 was recorded.
You can see that small populations experience a significant amount of
drift (change in allele frequency due to sampling error) compared to larg-
er populations. 



average of the reciprocals of these three numbers. In other words, one way of calculat-
ing Ne is to compute the harmonic mean (see Crow and Kimura 1970 for greater detail).
By using reciprocals to compute the harmonic mean, small numbers have a much greater
effect than larger numbers. If a = 10 and b = 2000, then a has much more influence on the
harmonic mean than b because 1/10 is much greater than 1/2000. Conceptually, this is
exactly why computations of Ne are based on harmonic means: The importance of
inbreeding and genetic drift is much greater when the population is small than when
it is large, so the smaller population numbers should be emphasized in any computa-
tion of Ne.

The harmonic mean, Ne, for populations that fluctuate in number can be calculated as

where t is the number of years under consideration, and N1, N2, …, Nt are the censused
population sizes over time. 

To be clear, let’s walk through an example. Suppose we censused a population for 6
consecutive years, and counted 1000, 5, 5, 1000, 5, and 1000 individuals over time. The
effective population size, Ne, is equal to the harmonic mean of 1000, 5, 5, 1000, 5, and
1000, and is calculated as

This means that although we can count 1000 individuals in year 6, genetically the pop-
ulation is behaving like an ideal population of size 10. 

In addition to fluctuating population size, effective population sizes are affected by
sex ratio, dispersal distances, and variation in offspring produced per female. It’s fairly
straightforward to understand how mating systems and sex ratio can affect Ne. If a
censused population of 100 individuals consists of only 2 female breeders and 10 male
breeders, the gametes that are passed down to the future generation are strongly influ-
enced by the genetic makeup of those breeders. Disperal distance affects Ne because it
determines how close or far siblings establish breeding sites from each other, which in
turn affects the probability of mating with relatives. And variation in the number of off-
spring produced affects Ne by altering which genes are incorporated into the next gen-
eration. For example, all females may breed in a given year, but if one or two females
have “boom” years (reproduce a lot) while others have “bust” years, the variance in
reproductive output is high. Obviously, these females do not contribute gametes equally
to the next generation. It is beyond the scope of this exercise to discuss all of these fac-
tors (see Crow and Kimura 1970), but you should be aware that the effective size of nat-
ural populations is influenced in a variety of ways.

PROCEDURES

The derivations for the various effective population size formulae are complicated, and
therefore this exercise is devoted less to the math and more to explaining the genetic
behavior of populations conceptually. In this exercise, we will simulate the effects of
changes in gene frequencies for a population over the course of 6 generations. The first
part of the exercise focuses on how much genetic drift occurs in populations with a
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constant size. In each generation, the genotypes of individuals will be drawn accord-
ing the Hardy-Weinberg theory, based on the genetic makeup of the parents in the pre-
ceding generation. We will assume that generations do not overlap and that individu-
als can self-fertilize—that is, the same parent can contribute both egg and sperm to
produce an offspring. We will then allow populations to fluctuate so that you can
observe the how much drift occurs when population sizes change over time. Addi-
tionally, we will construct a simple model to examine graphically the relationship
between Nt and Ne over 6 generations. This part of the exercise will enable us to eval-
uate the effect of bottlenecks in Nt on the effective populations size.

As always, save your work frequently to disk.

ANNOTATION

We’ll consider a population whose initial allele frequencies are p = frequency of the
A1 allele = 0.5 and q = frequency of the A2 allele = 0.5. Remember that p + q must equal
1 for loci that have only two alleles. 

The cells C4, E4, G4, I4, K4, and M4 give the population size over generations. The final
generation is given in cell M4. To begin, our population will have a constant size of 
Nt = 1000. Later in the exercise we will vary these numbers. Shade these cells to remind
you that they can be directly manipulated in the exercise. 

Cell D4 “controls” the maximum number of individuals from generation 1 that will sur-
vive and potentially produce offspring in generation 2. For example, generation 2
will consist of 1000 individuals, so up to 2000 randomly selected parents from gener-
ation 1 will produce them (i.e., 2000 gametes will be passed down from generation 1
to generation 2, and all 1000 individuals in generation 1 potentially contribute to the
next generation’s gene pool). If generation 2 consisted of only 10 individuals, we would
let only 20 randomly selected parents potentially produce them (the first 20 individu-
als listed in the spreadsheet). If generation 2 consisted of 4000 individuals (for exam-
ple), then all of the individuals in generation 1 would potentially produce offspring.
Cell F4 “controls” the number of individuals from generation 2 that will contribute off-
spring to generation 3, etc.

By copying the D4 formula over to cells F4, H4, J4, and L4, the maximum number of
parents will be determined by the population size in the next generation. Your formu-
lae in those cells should be:

• F4 =2*G4
• H4 =2*I4
• J4 =2*K4
• L4 =2*M4

INSTRUCTIONS

A. Set up the model pop-
ulation.

1. Open a new spreadsheet
and set up column head-
ings as shown in Figure 2.

2. Enter 0.5 in cells B5 and
B6. 

3. Enter the number 1000
in cells C4, E4, G4, I4, K4,
and M4. 

4. In cells D4, enter the
formula =2*E4. Enter anal-
ogous formulae into cells
F4, H4, J4, and L4. 
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Enter 1 in cell B14. 
Enter =1+B14 in cell B15. Copy this formula down to cell B1013. 
We will simulate the population dynamics over 6 generations. For any generation, the
maximum population size can be 1000 (assuming the environment’s carrying capacity
will support 1000 individuals). 

In cell C14 enter the formula =IF(B14<=$C$4,IF(RAND()<$B$5,$A$5,$A$6)
&IF(RAND()<$B$5,$A$5,$A$6),””). Copy the formula down to cell C1013

Use the IF function as you did in the Hardy-Weinberg exercise, with one IF function
nested within another to control the population size according to the value in cell
B14. Remember that the IF formula returns one value if a condition you specify is true,
and another value if the condition you specify is false. 

The first part of the formula in cell C14 tells the spreadsheet to determine if cell B14 
is less than or equal to (<=) the value in cell C4. If so, carry out the function
IF(RAND()<$B$5,$A$5,$A$6)&IF(RAND()<$B$5,$A$5,$A$6) to assign a genotype to
the individual. If cell B14 is greater than the value in cell C14, return a double quote mark,
“” (which will return as a blank cell). This portion of the formula controls the population
size. The genotype assignment is the same as you did in the Hardy-Weinberg exercise:
The function tells the program to choose a random number between 0 and 1 (the RAND()
part of the formula). If that random number is less than the value designated in cell B5
(the frequency of the A1 allele), then assign it an allele of A1; otherwise, assign it a value
of A2. Since all individuals have two alleles for a given locus, the formula is repeated
again and genotype is generated by joining the two alleles with an & symbol. Once you’ve
obtained genotypes for individual 1, copy this formula down to cell C1013 to obtain geno-
types for all 1000 individuals in the population in generation 1. 

In cell C9 enter the formula =COUNTIF(C14:C1013,”A1A1”).
In cell D9 enter the formula =COUNTIF(C14:C1013,”A1A2”)+COUNTIF(C14:C1013,
”A2A1”).
In cell E9 enter the formula  =COUNTIF(C14:C1013,”A2A2”).
You are using the COUNTIF function to count the various genotypes in generation 1.
Don’t forget that heterozygotes can be either A1A2 or A2A1. Double-check your results
in the next step.

In cell C12 enter the formula =SUM(C9:C11). Your result should be 1000.

In cell C5 enter the formula =(2*C9+C10)/(2*C12).
In cell C6 enter the formula =1-C5 or =(2*C11+C10)/(2*C12).
Remember from the Hardy-Weinberg exercise that you can compute the allele fre-
quencies easily if you know the genotype frequencies. The equations are freq(A1) = p
= (2NA1A1 + NA1A2) / 2N, where N is the total number of individuals in the population.
The frequency of the A2 allele can be computed either by subtraction (= 1 – p), or by
freq(A2) = q = (2NA2A2 + NA1A2) / 2N.

5. Save your work. 

6. Set up new headings as
shown in Figure 3.

7. Set up a linear series
from 1 to 1000 in cells
B14–B1013. 

8. In cells C14–C1013,
enter a formula to assign a
genotype to individual 1
in generation 1 based on
the frequencies given in
cells B5–B6. 

9. Enter a formula in cells
C9–C11 to count the num-
ber of individuals of each
genotype in generation 1. 

10. Sum the genotypes in
Generation 1 in cell C12. 

11. Enter formulae in cells
C5 and C6 to compute the
actual allele frequencies in
generation 1. 
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In cell D14 enter the formula =IF(B14<=$D$4,C14,””). Copy this formula down to cell
D1013.
The formula in cell D14 identifies the parents. The allele frequencies of this parental
population will be used to assign genotypes to individuals in generation 2. If cell B14
(individual 1) is less than or equal to the maximum number of parents in generation
1, the program will return individual 1’s genotype. Otherwise, it will return a blank
cell (the double-quote marks). 

This action will allow you to obtain genotype numbers and allele frequencies of the
parents in generation 1, as well as future generations and parents. The entries for future
generations will not make sense until you have completed the next step.

Follow the examples from generation 1, but make sure you update the formulae appro-
priately. Pay attention to absolute and relative references, and make sure that the new
generation is based on the allele frequencies of the parental generation preceding it.
Double-check your formulae.

We used the following formulae:
• Cell E14 =IF(B14<=$E$4,IF(RAND()<$D$5,$A$5,$A$6)&IF(RAND()<

$D$5,$A$5,$A$6),””)
• Cell F14 =IF(B14<=$F$4,E14,””)
• Cell G14 =IF(B14<=$G$4,IF(RAND()<$F$5,$A$5,$A$6)&IF(RAND()<

$F$5,$A$5,$A$6),””)
• Cell H14 =IF(B14<=$H$4,G14,””)
• Cell I14 =IF(B14<=$I$4,IF(RAND()<$H$5,$A$5,$A$6)&IF(RAND()<

$H$5,$A$5,$A$6),””)
• Cell J14 =IF(B14<=$J$4,I14,””)
• Cell K14 =IF(B14<=$K$4,IF(RAND()<$J$5,$A$5,$A$6)&IF(RAND()<

$J$5,$A$5,$A$6),””)
• Cell L14 =IF(B14<=$L$4,K14,””)

Review your formulae and double-check your work. Make sure you understand the
formulae (and model) before proceeding.

In cell M5 enter the formula =ABS(L5-B5). Enter a label for this value in cell N5 as
shown in Figure 4.
This is simply the absolute value of the difference between the initial and final fre-
quency of the A1 allele. It merely quantifies how far the A1 allele drifted—we don’t care
about which direction the allele drifted.

12. In cells D14–D1013,
enter a formula to select
the parents that can poten-
tially produce offspring in
the next generation.

13. Copy cells C5–C6 and
C9–C12 across to cells
L5–L6 and L9–L12.

14. In cells E14–L14, enter
formulae for the remain-
ing generations, and copy
your formulae down to
row 1013 of each column
as you go. Save your
work.

B. Compute changes in
A1 due to genetic drift.

1. In cell M5, compute the
deviation in the A1 allele
as the difference between
the initial frequency in cell
B5 and the final frequency
in cell L5.
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Remember that so far our population is ideal, except that it is finite—it consists of 1000
individuals over the generations. Any change in allele frequencies is due solely to
genetic drift because the model does not include gene flow, natural selection, mutation,
or nonrandom mating.

You should see that the level of drift varies each time you press F9, the calculate key.
This is because of the random way in which genotypes are assigned to individuals in
each generation based on the Hardy-Weinberg principle. In order to “quantify” the level
of drift, we will run 100 simulations, each time recording the deviation in frequency of
the A1 allele from the initial conditions. The average and standard deviation of these
simulations will give a better indication (quantification) of the level of drift the popu-
lation experienced after five generations and a constant population size of Nt = 1000.

Open the macro program and assign a shortcut key (refer to Exercise 2 for details on
building macros). In Record mode, perform the following steps:

• Press F9 to obtain a new set of random numbers, and hence a new set of geno-
types for the populations.

• Select cell M5, the change in frequency of the A1 allele due to drift, then open
Edit | Copy.

• Select cell P3, the column labeled “N = 1000”.
• Open Edit | Find. In the dialog box, leave the Find What box empty, searching by

columns and formulas, and then select Find Next and Close.
• Open Edit | Paste Special | Paste Values. Click OK.
• Open Tools | Macro | Stop Recording.

Now press your shortcut key until 100 simulations have been recorded.

In cell P104, enter the formula =AVERAGE(P4:P103).

In cell P105, enter the formula =STDEV(P4:P103).

For graphing purposes, we will divide the standard deviation by 2 so that when the
standard error bars are added to our graph (next section), half of the line will be above
the mean and half will be below it.

2. Press F9 to run a new
simulation. What level of
drift did the population
experience?

3. Set up new headings as
shown in Figure 5, except
extend your trials to 100
(cell O103). 

4. Develop a macro to
track drift over 100 simu-
lations – track your results
in cells P4–P103.

5. In cell P104, enter a for-
mula to compute the aver-
age deviation in the A1
allele due to drift. 

6. In cell P105, compute
the standard deviation of
the 100 simulations. 

7. In cell P106, enter
=P105/2.
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Now we will compare drift for a fixed population size of Nt = 10.

See Step 4.

This will generate means and standard deviations for this population, whose size is
fixed at 10 individuals across generations. 

Use the column graph option. Under the Series tab, select cells P3 and Q3 as x-axis
labels. Your graph should resemble Figure 7.

To add error bars to your graph, click once somewhere in one of the columns in your
graph. Go to Format | Selected Data Series. In the dialog box (Figure 8), select Y-Error Bars,
then select the Display Both option for displaying error bars. Under Error Amount, select
the Custom option. Select cells P106–Q106 in the + box, and repeat for the – box. Click
OK and error bars will be added to your graph.

8. Change your population
numbers so that each gen-
eration consists of 10 indi-
viduals, as in Figure 6. 

9. In column Q, develop a
new macro to record devi-
ations in the A1 allele for
this population.

10. Copy cells P104-P106
to cells Q104–Q106.

C. Create graphs.

1. Graph the average devi-
ation of the A1 allele due
to drift for the population
when N = 1000 versus N =
10.

2. Add error bars to your
graph. 

3. Save your work. We will
interpret your model
results and explore how
fluctuating population size
affects the level of drift in
a population in the
Questions section.
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QUESTIONS

1. Compare the drift in the A1 allele for the population of N = 1000 (constant over
time) and the population of N = 10 (constant over time). Which population
shows a greater level of drift? Why?

2. When populations fluctuate, they “behave” like smaller populations that have a
constant population in that they experience genetic drift in similar ways. Alter
your spreadsheet so that the population size for generations is

• Generation 1 = 1000
• Generation 2 = 5
• Generation 3 = 5
• Generation 4 = 1000
• Generation 5 = 5
• Final generation = 1000. 

The final generation consists of 1000 individuals, yet the effective population
size, as computed with the formula is 10:

This means that the fluctuating population will change in allele frequencies
through drift in a way a constant population of size 10 will. Prove this to your-
self by running a new macro (record the results in column R) and comparing
your results to the constant, small population size. Graph your results. 
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3. Directly compute Ne for your 6 generations. Set up the following new headings:

Enter formulae in cells T3–T8 to link population sizes given in cells C4, E4,…, M4.
Enter a formula in cells U3–U8 to compute 1/N. In cells V3–V8, enter formulae
to track the sum of 1/N as more generations are considered. Finally, enter a for-
mula in cell W3 to compute Ne. Refer back to the introduction for your compu-
tations. Graph how Ne and Nt change over time, and fully interpret your graph. 

4. Explore the spreadsheet function HARMEAN, which computes the harmonic
mean of a series of numbers directly in column X. For any given series of num-
bers, when is the harmonic mean the highest possible value? When is it the
lowest possible value? For any given series of numbers, under what conditions
is Ne > Nt? Explore you model by changing values of Nt, increasing and
decreasing the variation in numbers over time. Pay attention to how Ne is affect-
ed by bottlenecks both in the current generation and in subsequent generations. 
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S T U V W X
Generation Nt 1/Nt Sum 1/Nt Ne HARMEAN

1 1000 0.001 0.001 1000 1000
2 5

3 5

4 1000

5 5

6 1000


