Skip to main content

Advertisement

Log in

Challenges of pediatric pharmacotherapy: A narrative review of pharmacokinetics, pharmacodynamics, and pharmacogenetics

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

Purpose

Personalized pharmacotherapy, including for the pediatric population, provides optimal treatment and has emerged as a major trend owing to advanced drug therapeutics and diversified drug selection. However, it is essential to understand the growth and developmental characteristics of this population to provide appropriate drug therapy. In recent years, clinical pharmacogenetics has accumulated knowledge in pediatric pharmacotherapy, and guidelines from professional organizations, such as the Clinical Pharmacogenetics Implementation Consortium, can be consulted to determine the efficacy of specific drugs and the risk of adverse effects. However, the existence of a large knowledge gap hinders the use of these findings in clinical practice.

Methods

We provide a narrative review of the knowledge gaps in pharmacokinetics (PK) and pharmacodynamics (PD) in the pediatric population, focusing on the differences from the perspective of growth and developmental characteristics. In addition, we explored PK/PD in relation to pediatric clinical pharmacogenetics.

Results

The lack of direct and indirect biomarkers for more accurate assessment of the effects of drug administration limits the current knowledge of PD. In addition, incorporating pharmacogenetic insights as pivotal covariates is indispensable in this comprehensive synthesis for precision therapy; therefore, we have provided recommendations regarding the current status and challenges of personalized pediatric pharmacotherapy. The integration of clinical pharmacogenetics with the health care system and institution of educational programs for health care providers is necessary for its safe and effective implementation. A comprehensive understanding of the physiological and genetic complexities of the pediatric population will facilitate the development of effective and personalized pharmacotherapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rieder M (2019) Pharmacy and pediatric drug therapy: the key to safe and effective treatment for children. Am J Health Syst Pharm 76:1452–1453. https://doi.org/10.1093/ajhp/zxz171

    Article  PubMed  Google Scholar 

  2. Meyers RS, Thackray J, Matson KL et al (2020) Key potentially inappropriate drugs in pediatrics: the KIDs list. J Pediatr Pharmacol Ther 25:175–191. https://doi.org/10.5863/1551-6776-25.3.175

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205. https://doi.org/10.1001/jama.279.15.1200

    Article  PubMed  CAS  Google Scholar 

  4. Giardina C, Cutroneo PM, Mocciaro E et al (2018) Adverse drug reactions in hospitalized patients: results of the FORWARD (Facilitation of Reporting in Hospital Ward) study. Front Pharmacol 9:350. https://doi.org/10.3389/fphar.2018.00350

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tripathy R, Das S, Das P et al (2021) Adverse drug reactions in the pediatric population: findings from the adverse drug reaction monitoring center of a teaching hospital in Odisha (2015–2020). Cureus 13:e19424. https://doi.org/10.7759/cureus.19424

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smyth RMD, Gargon E, Kirkham J et al (2012) Adverse drug reactions in children–a systematic review. PLoS ONE 7:e24061. https://doi.org/10.1371/journal.pone.0024061

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  7. Phan M, Cheng C, Dang V et al (2023) Characterization of pediatric reports in the US Food and Drug Administration Adverse Event Reporting System from 2010–2020: a cross-sectional study. Ther Innov Regul Sci. https://doi.org/10.1007/s43441-023-00542-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Currie GM (2018) Pharmacology, Part 2: introduction to pharmacokinetics. J Nucl Med Technol 46:221–230. https://doi.org/10.2967/jnmt.117.199638

    Article  PubMed  Google Scholar 

  9. van den Anker J, Reed MD, Allegaert K, Kearns GL (2018) Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol 58(Suppl 10):S10–S25. https://doi.org/10.1002/jcph.1284

    Article  PubMed  CAS  Google Scholar 

  10. Currie GM (2018) Pharmacology, Part 1: introduction to pharmacology and pharmacodynamics. J Nucl Med Technol 46:81–86. https://doi.org/10.2967/jnmt.117.199588

    Article  PubMed  Google Scholar 

  11. Star K, Edwards IR, Choonara I (2014) Valproic acid and fatalities in children: a review of individual case safety reports in VigiBase. PLoS ONE 9:e108970. https://doi.org/10.1371/journal.pone.0108970

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  12. Nine JS, Rund CR (2006) Fatality from diphenhydramine monointoxication: a case report and review of the infant, pediatric, and adult literature. Am J Forensic Med Pathol 27:36–41. https://doi.org/10.1097/01.paf.0000188093.45675.ee

    Article  PubMed  Google Scholar 

  13. Stigler KA, Potenza MN, Posey DJ, McDougle CJ (2004) Weight gain associated with atypical antipsychotic use in children and adolescents: prevalence, clinical relevance, and management. Paediatr Drugs 6:33–44. https://doi.org/10.2165/00148581-200406010-00003

    Article  PubMed  Google Scholar 

  14. Giglia TM, Massicotte MP, Tweddell JS et al (2013) Prevention and treatment of thrombosis in pediatric and congenital heart disease: a scientific statement from the American Heart Association. Circulation 128:2622–2703. https://doi.org/10.1161/01.cir.0000436140.77832.7a

    Article  PubMed  Google Scholar 

  15. Hoshitsuki K, Fernandez CA, Yang JJ (2021) Pharmacogenomics for drug dosing in children: current use, knowledge, and gaps. J Clin Pharmacol 61(Suppl 1):S188–S192. https://doi.org/10.1002/jcph.1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Verbelen M, Weale ME, Lewis CM (2017) Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J 17:395–402. https://doi.org/10.1038/tpj.2017.21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Keeling NJ, Rosenthal MM, West-Strum D et al (2019) Preemptive pharmacogenetic testing: exploring the knowledge and perspectives of US payers. Genet Med 21:1224–1232. https://doi.org/10.1038/gim.2017.181

    Article  Google Scholar 

  18. Klingmann V, Linderskamp H, Meissner T et al (2018) Acceptability of multiple uncoated minitablets in infants and toddlers: a randomized controlled trial. J Pediatr 201:202-207.e1. https://doi.org/10.1016/j.jpeds.2018.05.031

    Article  PubMed  Google Scholar 

  19. Freerks L, Sucher W, Tarnow M-J et al (2022) Vehicles for drug administration to children: results and learnings from an in-depth screening of FDA-recommended liquids and soft foods for product quality assessment. Pharm Res 39:497–509. https://doi.org/10.1007/s11095-022-03208-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Simšič T, Nolimal B, Minova J et al (2021) A straw for paediatrics: how to administer highly dosed, bitter tasting paracetamol granules. Int J Pharm 602:120615. https://doi.org/10.1016/j.ijpharm.2021.120615

    Article  PubMed  CAS  Google Scholar 

  21. Al Fayez N, Böttger R, Ghosh S et al (2022) Development of a child-friendly oral drug formulation using liposomal multilamellar vesicle technology. Int J Pharm 625:122107. https://doi.org/10.1016/j.ijpharm.2022.122107

    Article  PubMed  CAS  Google Scholar 

  22. Nerli G, Gonçalves LMD, Cirri M et al (2023) Design, evaluation and comparison of nanostructured lipid carriers and chitosan nanoparticles as carriers of poorly soluble drugs to develop oral liquid formulations suitable for pediatric use. Pharmaceutics 15(4):1305. https://doi.org/10.3390/pharmaceutics15041305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Özakar E, Sevinç-Özakar R, Yılmaz B (2023) Preparation, characterization, and evaluation of cytotoxicity of fast dissolving hydrogel based oral thin films containing pregabalin and methylcobalamin. Gels 9(2):147. https://doi.org/10.3390/gels9020147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Batchelor HK, Marriott JF (2015) Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol 79:395–404. https://doi.org/10.1111/bcp.12267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yu G, Zheng Q-S, Li G-F (2014) Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. AAPS J 16:1162–1166. https://doi.org/10.1208/s12248-014-9652-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Taylor SN, Basile LA, Ebeling M, Wagner CL (2009) Intestinal permeability in preterm infants by feeding type: mother’s milk versus formula. Breastfeed Med 4:11–15. https://doi.org/10.1089/bfm.2008.0114

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mooij MG, de Koning BAE, Huijsman ML, de Wildt SN (2012) Ontogeny of oral drug absorption processes in children. Expert Opin Drug Metab Toxicol 8:1293–1303. https://doi.org/10.1517/17425255.2012.698261

    Article  PubMed  CAS  Google Scholar 

  28. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    PubMed  CAS  Google Scholar 

  29. Neal-Kluever A, Fisher J, Grylack L et al (2019) Physiology of the neonatal gastrointestinal system relevant to the disposition of orally administered medications. Drug Metab Dispos 47:296–313. https://doi.org/10.1124/dmd.118.084418

    Article  PubMed  CAS  Google Scholar 

  30. Ihekweazu FD, Versalovic J (2018) Development of the pediatric gut microbiome: impact on health and disease. Am J Med Sci 356:413–423. https://doi.org/10.1016/j.amjms.2018.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weersma RK, Zhernakova A, Fu J (2020) Interaction between drugs and the gut microbiome. Gut 69:1510–1519. https://doi.org/10.1136/gutjnl-2019-320204

    Article  PubMed  CAS  Google Scholar 

  32. Robertson RC, Manges AR, Finlay BB, Prendergast AJ (2019) The human microbiome and child growth - first 1000 days and beyond. Trends Microbiol 27:131–147. https://doi.org/10.1016/j.tim.2018.09.008

    Article  PubMed  CAS  Google Scholar 

  33. Kumbhare SV, Patangia DVV, Patil RH et al (2019) Factors influencing the gut microbiome in children: from infancy to childhood. J Biosci 44

  34. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  35. Hollister EB, Riehle K, Luna RA et al (2015) Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3:36. https://doi.org/10.1186/s40168-015-0101-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ringel-Kulka T, Cheng J, Ringel Y et al (2013) Intestinal microbiota in healthy U.S. young children and adults—a high throughput microarray analysis. PLoS One 8:e64315. https://doi.org/10.1371/journal.pone.0064315

  37. Arboleya S, Sánchez B, Milani C et al (2015) Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr 166:538–544. https://doi.org/10.1016/j.jpeds.2014.09.041

    Article  PubMed  CAS  Google Scholar 

  38. Wang C, Zhao S, Xu Y et al (2022) Integrated microbiome and metabolome analysis reveals correlations between gut microbiota components and metabolic profiles in mice with methotrexate-induced hepatoxicity. Drug Des Devel Ther 16:3877–3891. https://doi.org/10.2147/DDDT.S381667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Walsh J, Gheorghe CE, Lyte JM et al (2020) Gut microbiome-mediated modulation of hepatic cytochrome P450 and P-glycoprotein: impact of butyrate and fructo-oligosaccharide-inulin. J Pharm Pharmacol 72:1072–1081. https://doi.org/10.1111/jphp.13276

    Article  PubMed  CAS  Google Scholar 

  40. Bodé S, Dreyer M, Greisen G (2004) Gastric emptying and small intestinal transit time in preterm infants: a scintigraphic method. J Pediatr Gastroenterol Nutr 39:378–382. https://doi.org/10.1097/00005176-200410000-00014

    Article  PubMed  Google Scholar 

  41. Allegaert K, van den Anker J (2015) Neonatal drug therapy: the first frontier of therapeutics for children. Clin Pharmacol Ther 98:288–297. https://doi.org/10.1002/cpt.166

    Article  PubMed  CAS  Google Scholar 

  42. Bonner JJ, Vajjah P, Abduljalil K et al (2015) Does age affect gastric emptying time? A model-based meta-analysis of data from premature neonates through to adults. Biopharm Drug Dispos 36:245–257. https://doi.org/10.1002/bdd.1937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Maharaj AR, Edginton AN (2016) Examining small intestinal transit time as a function of age: is there evidence to support age-dependent differences among children? Drug Metab Dispos 44:1080–1089. https://doi.org/10.1124/dmd.115.068700

    Article  PubMed  CAS  Google Scholar 

  44. Johnson TN, Bonner JJ, Tucker GT et al (2018) Development and applications of a physiologically-based model of paediatric oral drug absorption. Eur J Pharm Sci 115:57–67. https://doi.org/10.1016/j.ejps.2018.01.009

    Article  PubMed  CAS  Google Scholar 

  45. Kearns GL, Abdel-Rahman SM, Alander SW et al (2003) Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167. https://doi.org/10.1056/NEJMra035092

    Article  PubMed  CAS  Google Scholar 

  46. Van Den Abeele J, Rayyan M, Hoffman I et al (2018) Gastric fluid composition in a paediatric population: age-dependent changes relevant for gastrointestinal drug disposition. Eur J Pharm Sci 123:301–311. https://doi.org/10.1016/j.ejps.2018.07.022

    Article  PubMed  CAS  Google Scholar 

  47. Man AL, Bertelli E, Rentini S et al (2015) Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci 129:515–527. https://doi.org/10.1042/CS20150046

    Article  CAS  Google Scholar 

  48. Bezerra JA, Thompson SH, Morse M et al (1990) Intestinal permeability to intact lactose in newborns and adults. Biol Neonate 58:334–342. https://doi.org/10.1159/000243288

    Article  PubMed  CAS  Google Scholar 

  49. Ekawidyani KR, Abdullah M (2023) Diet, nutrition and intestinal permeability: a mini review. Asia Pac J Clin Nutr 32:8–12. https://doi.org/10.6133/apjcn.202303_32(1).0002

    Article  PubMed  CAS  Google Scholar 

  50. Giorgio V, Margiotta G, Stella G et al (2022) Intestinal permeability in children with functional gastrointestinal disorders: the effects of diet. Nutrients 14(9):1578. https://doi.org/10.3390/nu14081578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brouwer KLR, Aleksunes LM, Brandys B et al (2015) Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther 98:266–287. https://doi.org/10.1002/cpt.176

    Article  PubMed  CAS  Google Scholar 

  52. Mooij MG, de Koning BEA, Lindenbergh-Kortleve DJ et al (2016) Human intestinal PEPT1 transporter expression and localization in preterm and term infants. Drug Metab Dispos 44:1014–1019. https://doi.org/10.1124/dmd.115.068809

    Article  PubMed  CAS  Google Scholar 

  53. Mooij MG, Nies AT, Knibbe CAJ et al (2016) Development of human membrane transporters: drug disposition and pharmacogenetics. Clin Pharmacokinet 55:507–524. https://doi.org/10.1007/s40262-015-0328-5

    Article  PubMed  CAS  Google Scholar 

  54. Mooij MG, van de Steeg E, van Rosmalen J et al (2016) Proteomic analysis of the developmental trajectory of human hepatic membrane transporter proteins in the first three months of life. Drug Metab Dispos 44:1005–1013. https://doi.org/10.1124/dmd.115.068577

    Article  CAS  Google Scholar 

  55. Cheung KWK, van Groen BD, Burckart GJ et al (2019) Incorporating ontogeny in physiologically based pharmacokinetic modeling to improve pediatric drug development: what we know about developmental changes in membrane transporters. J Clin Pharmacol 59(Suppl 1):S56–S69. https://doi.org/10.1002/jcph.1489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. van Groen BD, van de Steeg E, Mooij MG et al (2018) Proteomics of human liver membrane transporters: a focus on fetuses and newborn infants. Eur J Pharm Sci 124:217–227. https://doi.org/10.1016/j.ejps.2018.08.042

    Article  PubMed  CAS  Google Scholar 

  57. Paine MF, Khalighi M, Fisher JM et al (1997) Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 283:1552–1562

    PubMed  CAS  Google Scholar 

  58. Kiss M, Mbasu R, Nicolaï J et al (2021) Ontogeny of small intestinal drug transporters and metabolizing enzymes based on targeted quantitative proteomics. Drug Metab Dispos 49:1038–1046. https://doi.org/10.1124/dmd.121.000559

    Article  PubMed  CAS  Google Scholar 

  59. Brussee JM, Yu H, Krekels EHJ et al (2018) Characterization of intestinal and hepatic CYP3A-mediated metabolism of midazolam in children using a physiological population pharmacokinetic modelling approach. Pharm Res 35:182. https://doi.org/10.1007/s11095-018-2458-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. DeGorter MK, Kim RB (2009) Hepatic drug transporters, old and new: pharmacogenomics, drug response, and clinical relevance. Hepatology 50:1014–1016

    Article  PubMed  CAS  Google Scholar 

  61. Mooij MG, Schwarz UI, de Koning BAE et al (2014) Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos 42:1268–1274. https://doi.org/10.1124/dmd.114.056929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lam J, Baello S, Iqbal M et al (2015) The ontogeny of P-glycoprotein in the developing human blood-brain barrier: implication for opioid toxicity in neonates. Pediatr Res 78:417–421. https://doi.org/10.1038/pr.2015.119

    Article  PubMed  CAS  Google Scholar 

  63. Streekstra EJ, Kiss M, van den Heuvel J et al (2022) A proof of concept using the Ussing chamber methodology to study pediatric intestinal drug transport and age-dependent differences in absorption. Clin Transl Sci 15:2392–2402. https://doi.org/10.1111/cts.13368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Friis-Hansen B (1971) Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 47:Suppl 2:264+

  65. Allegaert K, Cossey V, van den Anker JN (2015) Dosing guidelines of aminoglycosides in neonates: a balance between physiology and feasibility. Curr Pharm Des 21:5699–5704. https://doi.org/10.2174/1381612821666150901110659

    Article  PubMed  CAS  Google Scholar 

  66. Van Overmeire B, Touw D, Schepens PJ et al (2001) Ibuprofen pharmacokinetics in preterm infants with patent ductus arteriosus. Clin Pharmacol Ther 70:336–343

    Article  PubMed  Google Scholar 

  67. Allegaert K, de Hoon J, Verbesselt R et al (2007) Maturational pharmacokinetics of single intravenous bolus of propofol. Paediatr Anaesth 17:1028–1034. https://doi.org/10.1111/j.1460-9592.2007.02285.x

    Article  PubMed  Google Scholar 

  68. Health Organization W (2016) Report of the commission on ending childhood obesity. https://apps.who.int/iris/bitstream/handle/10665/204176/?sequence=1. Accessed 9 Jul 2023

  69. Skinner AC, Ravanbakht SN, Skelton JA et al (2018) Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics 141(3):e20173459. https://doi.org/10.1542/peds.2017-3459

    Article  PubMed  Google Scholar 

  70. Brill MJE, Diepstraten J, van Rongen A et al (2012) Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 51:277–304. https://doi.org/10.2165/11599410-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  71. Bruno CD, Harmatz JS, Duan SX et al (2021) Effect of lipophilicity on drug distribution and elimination: influence of obesity. Br J Clin Pharmacol 87:3197–3205. https://doi.org/10.1111/bcp.14735

    Article  PubMed  CAS  Google Scholar 

  72. Gerhart JG, Balevic S, Sinha J et al (2022) Characterizing pharmacokinetics in children with obesity-physiological, drug, patient, and methodological considerations. Front Pharmacol 13:818726. https://doi.org/10.3389/fphar.2022.818726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hervé F, Urien S, Albengres E et al (1994) Drug binding in plasma. A summary of recent trends in the study of drug and hormone binding. Clin Pharmacokinet 26:44–58. https://doi.org/10.2165/00003088-199426010-00004

    Article  PubMed  Google Scholar 

  74. Sethi PK, White CA, Cummings BS et al (2016) Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr Res 79:409–415. https://doi.org/10.1038/pr.2015.237

    Article  PubMed  CAS  Google Scholar 

  75. McNamara PJ, Alcorn J (2002) Protein binding predictions in infants. AAPS PharmSci 4:E4. https://doi.org/10.1208/ps040104

    Article  PubMed  Google Scholar 

  76. Frymoyer A, Van Meurs KP, Drover DR et al (2020) Theophylline dosing and pharmacokinetics for renal protection in neonates with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia. Pediatr Res 88:871–877. https://doi.org/10.1038/s41390-020-01140-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tesseromatis C, Alevizou A (2008) The role of the protein-binding on the mode of drug action as well the interactions with other drugs. Eur J Drug Metab Pharmacokinet 33:225–230. https://doi.org/10.1007/BF03190876

    Article  PubMed  CAS  Google Scholar 

  78. Stutman HR, Parker KM, Marks MI (1985) Potential of moxalactam and other new antimicrobial agents for bilirubin-albumin displacement in neonates. Pediatrics 75:294–298

    Article  PubMed  CAS  Google Scholar 

  79. Dong Y, Gong L, Lu X et al (2020) Changes of transporters and drug-metabolizing enzymes in nephrotic syndrome. Curr Drug Metab 21:368–378. https://doi.org/10.2174/1389200221666200512113731

    Article  PubMed  CAS  Google Scholar 

  80. Oshikoya KA, Sammons HM, Choonara I (2010) A systematic review of pharmacokinetics studies in children with protein-energy malnutrition. Eur J Clin Pharmacol 66:1025–1035. https://doi.org/10.1007/s00228-010-0851-0

    Article  PubMed  CAS  Google Scholar 

  81. Schijvens AM, de Wildt SN, Schreuder MF (2020) Pharmacokinetics in children with chronic kidney disease. Pediatr Nephrol 35:1153–1172. https://doi.org/10.1007/s00467-019-04304-9

    Article  PubMed  Google Scholar 

  82. Nau R, Sörgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883. https://doi.org/10.1128/CMR.00007-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  PubMed  CAS  Google Scholar 

  84. Takashima T, Yokoyama C, Mizuma H et al (2011) Developmental changes in P-glycoprotein function in the blood–brain barrier of nonhuman primates: PET study with R-11C-Verapamil and 11C-Oseltamivir. J Nucl Med 52:950–957. https://doi.org/10.2967/jnumed.110.083949

    Article  PubMed  CAS  Google Scholar 

  85. Schmitt G, Parrott N, Prinssen E, Barrow P (2017) The great barrier belief: the blood-brain barrier and considerations for juvenile toxicity studies. Reprod Toxicol 72:129–135. https://doi.org/10.1016/j.reprotox.2017.06.043

    Article  PubMed  CAS  Google Scholar 

  86. van der Marel CD, Anderson BJ, Pluim MAL et al (2003) Acetaminophen in cerebrospinal fluid in children. Eur J Clin Pharmacol 59:297–302. https://doi.org/10.1007/s00228-003-0622-2

    Article  PubMed  CAS  Google Scholar 

  87. Sullins AK, Abdel-Rahman SM (2013) Pharmacokinetics of antibacterial agents in the CSF of children and adolescents. Paediatr Drugs 15:93–117. https://doi.org/10.1007/s40272-013-0017-5

    Article  PubMed  Google Scholar 

  88. Blake MJ, Abdel-Rahman SM, Pearce RE et al (2006) Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatr Res 60:717–723. https://doi.org/10.1203/01.pdr.0000245909.74166.00

    Article  PubMed  CAS  Google Scholar 

  89. Leeder JS, Kearns GL, Spielberg SP, van den Anker J (2010) Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol 50:1377–1387. https://doi.org/10.1177/0091270009360533

    Article  PubMed  Google Scholar 

  90. Linakis MW, Cook SF, Kumar SS et al (2018) Polymorphic expression of UGT1A9 is associated with variable acetaminophen glucuronidation in neonates: a population pharmacokinetic and pharmacogenetic study. Clin Pharmacokinet 57:1325–1336. https://doi.org/10.1007/s40262-018-0634-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yokoi T (2009) Essentials for starting a pediatric clinical study (1): pharmacokinetics in children. J Toxicol Sci 34 Suppl 2:SP307–12. https://doi.org/10.2131/jts.34.sp307

  92. Calvier EAM, Krekels EHJ, Johnson TN et al (2019) Scaling drug clearance from adults to the young children for drugs undergoing hepatic metabolism: a simulation study to search for the simplest scaling method. AAPS J 21:38. https://doi.org/10.1208/s12248-019-0295-0

    Article  PubMed  CAS  Google Scholar 

  93. Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118:250–267. https://doi.org/10.1016/j.pharmthera.2008.02.005

    Article  PubMed  CAS  Google Scholar 

  94. Thakur A, Parvez MM, Leeder JS, Prasad B (2021) Ontogeny of drug-metabolizing enzymes. Methods Mol Biol 2342:551–593. https://doi.org/10.1007/978-1-0716-1554-6_18

    Article  PubMed  CAS  Google Scholar 

  95. van Groen BD, Nicolaï J, Kuik AC et al (2021) Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev 73:597–678. https://doi.org/10.1124/pharmrev.120.000071

  96. Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:89–104. https://doi.org/10.1007/s00210-003-0819-z

    Article  PubMed  CAS  Google Scholar 

  97. Rakhmanina NY, van den Anker JN (2006) Pharmacological research in pediatrics: from neonates to adolescents. Adv Drug Deliv Rev 58:4–14. https://doi.org/10.1016/j.addr.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  98. Stevens JC, Hines RN, Gu C et al (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307:573–582. https://doi.org/10.1124/jpet.103.054841

    Article  PubMed  CAS  Google Scholar 

  99. Stevens JC, Marsh SA, Zaya MJ et al (2008) Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos 36:1587–1593. https://doi.org/10.1124/dmd.108.021873

    Article  PubMed  CAS  Google Scholar 

  100. Upreti VV, Wahlstrom JL (2016) Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol 56:266–283. https://doi.org/10.1002/jcph.585

    Article  PubMed  CAS  Google Scholar 

  101. Ward RM, Tammara B, Sullivan SE et al (2010) Single-dose, multiple-dose, and population pharmacokinetics of pantoprazole in neonates and preterm infants with a clinical diagnosis of gastroesophageal reflux disease (GERD). Eur J Clin Pharmacol 66:555–561. https://doi.org/10.1007/s00228-010-0811-8

    Article  PubMed  CAS  Google Scholar 

  102. Leeder JS, Kearns GL (2012) Interpreting pharmacogenetic data in the developing neonate: the challenge of hitting a moving target. Clin Pharmacol Ther 92:434–436. https://doi.org/10.1038/clpt.2012.130

    Article  PubMed  CAS  Google Scholar 

  103. Allegaert K, Van der Marel CD, Debeer A et al (2004) Pharmacokinetics of single dose intravenous propacetamol in neonates: effect of gestational age. Arch Dis Child Fetal Neonatal Ed 89:F25–F28. https://doi.org/10.1136/fn.89.1.f25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kamata M, Tobias JD (2016) Remifentanil: applications in neonates. J Anesth 30:449–460. https://doi.org/10.1007/s00540-015-2134-5

    Article  PubMed  Google Scholar 

  105. Miyagi SJ, Collier AC (2011) The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos 39:912–919. https://doi.org/10.1124/dmd.110.037192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Miyagi SJ, Milne AM, Coughtrie MWH, Collier AC (2012) Neonatal development of hepatic UGT1A9: implications of pediatric pharmacokinetics. Drug Metab Dispos 40:1321–1327. https://doi.org/10.1124/dmd.111.043752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Miyagi SJ, Collier AC (2007) Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4. Drug Metab Dispos 35:1587–1592. https://doi.org/10.1124/dmd.107.015214

    Article  PubMed  CAS  Google Scholar 

  108. Cook SF, Stockmann C, Samiee-Zafarghandy S et al (2016) Neonatal maturation of paracetamol (Acetaminophen) glucuronidation, sulfation, and oxidation based on a parent-metabolite population pharmacokinetic model. Clin Pharmacokinet 55:1395–1411. https://doi.org/10.1007/s40262-016-0408-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Court MH, Zhang X, Ding X et al (2012) Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 42:266–277. https://doi.org/10.3109/00498254.2011.618954

    Article  PubMed  CAS  Google Scholar 

  110. Ladumor MK, Bhatt DK, Gaedigk A et al (2019) Ontogeny of hepatic sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831. https://doi.org/10.1124/dmd.119.086462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lu H, Rosenbaum S (2014) Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther 19:262–276. https://doi.org/10.5863/1551-6776-19.4.262

    Article  PubMed  PubMed Central  Google Scholar 

  112. Solhaug MJ, Bolger PM, Jose PA (2004) The developing kidney and environmental toxins. Pediatrics 113:1084–1091

    Article  PubMed  Google Scholar 

  113. Arant BS Jr (1978) Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 92:705–712. https://doi.org/10.1016/s0022-3476(78)80133-4

    Article  PubMed  CAS  Google Scholar 

  114. Smeets NJL, IntHout J, van der Burgh MJP et al (2022) Maturation of GFR in term-born neonates: an individual participant data meta-analysis. J Am Soc Nephrol 33:1277–1292. https://doi.org/10.1681/ASN.2021101326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hayton WL (2000) Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci 2:E3. https://doi.org/10.1208/ps020103

    Article  PubMed  CAS  Google Scholar 

  116. Thompson LE, Joy MS (2022) Endogenous markers of kidney function and renal drug clearance processes of filtration, secretion, and reabsorption. Curr Opin Toxicol 31:100344. https://doi.org/10.1016/j.cotox.2022.03.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Pottel H, Björk J, Courbebaisse M et al (2021) Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med 174:183–191. https://doi.org/10.7326/M20-4366

    Article  PubMed  Google Scholar 

  118. Pervez S, Anjum M, Bibi S et al (2022) Correlation of glomerular filtration rate (GFR) estimation formulae with measured GFR in pediatric oncology patients. J Ayub Med Coll Abbottabad 34(Suppl 1):S964–S968. https://doi.org/10.55519/JAMC-04-S4-10133

  119. Zhou G, Jiang M, Liu X et al (2022) Measurement and estimation of glomerular filtration rate in children with neurogenic bladder: a prospective study. Urology 170:174–178. https://doi.org/10.1016/j.urology.2022.08.004

    Article  PubMed  Google Scholar 

  120. Cantú TG, Ellerbeck EF, Yun SW et al (1992) Drug prescribing for patients with changing renal function. Am J Hosp Pharm 49:2944–2948. https://doi.org/10.1093/ajhp/49.12.2944

    Article  PubMed  Google Scholar 

  121. Ivanyuk A, Livio F, Biollaz J, Buclin T (2017) Renal drug transporters and drug interactions. Clin Pharmacokinet 56:825–892. https://doi.org/10.1007/s40262-017-0506-8

    Article  PubMed  CAS  Google Scholar 

  122. Jahnukainen T, Chen M, Berg U, Celsi G (2001) Antenatal glucocorticoids and renal function after birth. Semin Neonatol 6:351–355. https://doi.org/10.1053/siny.2001.0070

    Article  PubMed  CAS  Google Scholar 

  123. Mahmood I (2022) Prediction of total and renal clearance of renally secreted drugs in neonates and infants (≤3 months of age). Transl Res 8:445–452

    CAS  Google Scholar 

  124. Holford N (2010) Dosing in children. Clin Pharmacol Ther 87:367–370. https://doi.org/10.1038/clpt.2009.262

    Article  PubMed  CAS  Google Scholar 

  125. Kearns GL, Artman M (2015) Functional biomarkers: an approach to bridge pharmacokinetics and pharmacodynamics in pediatric clinical trials. Curr Pharm Des 21:5636–5642. https://doi.org/10.2174/1381612821666150901105337

    Article  PubMed  CAS  Google Scholar 

  126. Connelly MA, Brown JT, Kearns GL et al (2014) Pupillometry: a non-invasive technique for pain assessment in paediatric patients. Arch Dis Child 99:1125–1131. https://doi.org/10.1136/archdischild-2014-306286

    Article  PubMed  Google Scholar 

  127. Goulooze SC, de Kluis T, van Dijk M et al (2022) Quantifying the pharmacodynamics of morphine in the treatment of postoperative pain in preverbal children. J Clin Pharmacol 62:99–109. https://doi.org/10.1002/jcph.1952

    Article  PubMed  CAS  Google Scholar 

  128. Okada T, Sasaki F, Asaka M et al (2005) Delay of gastric emptying measured by 13C-acetate breath test in neurologically impaired children with gastroesophageal reflux. Eur J Pediatr Surg 15:77–81. https://doi.org/10.1055/s-2004-830357

    Article  PubMed  CAS  Google Scholar 

  129. Jones BL, Kearns G, Neville KA et al (2013) Variability of histamine pharmacodynamic response in children with allergic rhinitis. J Clin Pharmacol 53:731–737. https://doi.org/10.1002/jcph.93

    Article  PubMed  PubMed Central  Google Scholar 

  130. van Haandel L, Goldman JL, Pearce RE, Leeder JS (2014) Urinary biomarkers of trimethoprim bioactivation in vivo following therapeutic dosing in children. Chem Res Toxicol 27:211–218. https://doi.org/10.1021/tx4003325

    Article  PubMed  CAS  Google Scholar 

  131. Kielbasa W, Lobo E (2015) Pharmacodynamics of norepinephrine reuptake inhibition: modeling the peripheral and central effects of atomoxetine, duloxetine, and edivoxetine on the biomarker 3,4-dihydroxyphenylglycol in humans. J Clin Pharmacol 55:1422–1431. https://doi.org/10.1002/jcph.551

    Article  PubMed  CAS  Google Scholar 

  132. Dere WH, Suto TS (2009) The role of pharmacogenetics and pharmacogenomics in improving translational medicine. Clin Cases Miner Bone Metab 6:13–16

    PubMed  PubMed Central  Google Scholar 

  133. Oeffinger KC, Mertens AC, Sklar CA et al (2006) Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 355:1572–1582. https://doi.org/10.1056/NEJMsa060185

    Article  PubMed  CAS  Google Scholar 

  134. Elzagallaai AA, Greff M, Rieder MJ (2017) Adverse drug reactions in children: the double-edged sword of therapeutics. Clin Pharmacol Ther 101:725–735. https://doi.org/10.1002/cpt.677

    Article  PubMed  CAS  Google Scholar 

  135. Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR et al (2016) Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int J Mol Sci 17(9):1502. https://doi.org/10.3390/ijms17091502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Meaddough EL, Sarasua SM, Fasolino TK, Farrell CL (2021) The impact of pharmacogenetic testing in patients exposed to polypharmacy: a scoping review. Pharmacogenomics J 21:409–422. https://doi.org/10.1038/s41397-021-00224-w

    Article  PubMed  CAS  Google Scholar 

  137. Caudle KE, Dunnenberger HM, Freimuth RR et al (2017) Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med 19:215–223. https://doi.org/10.1038/gim.2016.87

    Article  PubMed  Google Scholar 

  138. Caudle KE, Sangkuhl K, Whirl-Carrillo M et al (2020) Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci 13:116–124. https://doi.org/10.1111/cts.12692

    Article  Google Scholar 

  139. Sindrup SH, Brøsen K (1995) The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 5:335–346. https://doi.org/10.1097/00008571-199512000-00001

    Article  PubMed  CAS  Google Scholar 

  140. Food and Drug Administration US (2017) FDA Drug Safety Communication: FDA restricts use of prescription codeine pain and cough medicines and tramadol pain medicines in children; recommends against use in breastfeeding women. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-restricts-use-prescription-codeine-pain-and-cough-medicines-and

  141. Lima JJ, Thomas CD, Barbarino J et al (2021) Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin Pharmacol Ther 109:1417–1423. https://doi.org/10.1002/cpt.2015

  142. Pavlovic S, Kotur N, Stankovic B et al (2020) Clinical application of thiopurine pharmacogenomics in pediatrics. Curr Drug Metab 21:53–62. https://doi.org/10.2174/1389200221666200303113456

    Article  PubMed  CAS  Google Scholar 

  143. Wagner JB, Abdel-Rahman S, Gaedigk A et al (2020) Impact of SLCO1B1 genetic variation on rosuvastatin systemic exposure in pediatric hypercholesterolemia. Clin Transl Sci 13:628–637. https://doi.org/10.1111/cts.12749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wagner JB, Abdel-Rahman S, Gaedigk R et al (2019) Impact of genetic variation on pravastatin systemic exposure in pediatric hypercholesterolemia. Clin Pharmacol Ther 105:1501–1512. https://doi.org/10.1002/cpt.1330

    Article  PubMed  CAS  Google Scholar 

  145. Wagner JB, Abdel-Rahman S, Van Haandel L et al (2018) Impact of SLCO1B1 genotype on pediatric simvastatin acid pharmacokinetics. J Clin Pharmacol 58:823–833. https://doi.org/10.1002/jcph.1080

    Article  PubMed  CAS  Google Scholar 

  146. Cooper-DeHoff RM, Niemi M, Ramsey LB et al (2022) The clinical pharmacogenetics implementation consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin-associated musculoskeletal symptoms. Clin Pharmacol Ther 111:1007–1021. https://doi.org/10.1002/cpt.2557

    Article  PubMed  CAS  Google Scholar 

  147. Chung W-H, Hung S-I, Hong H-S et al (2004) A marker for Stevens-Johnson syndrome. Nature 428:486–486. https://doi.org/10.1038/428486a

    Article  PubMed  ADS  CAS  Google Scholar 

  148. Manuyakorn W, Likkasittipan P, Wattanapokayakit S et al (2020) Association of HLA genotypes with phenytoin induced severe cutaneous adverse drug reactions in Thai children. Epilepsy Res 162:106321. https://doi.org/10.1016/j.eplepsyres.2020.106321

    Article  PubMed  CAS  Google Scholar 

  149. Ramsey LB, Ong HH, Schildcrout JS et al (2020) Prescribing prevalence of medications with potential genotype-guided dosing in pediatric patients. JAMA Netw Open 3:e2029411. https://doi.org/10.1001/jamanetworkopen.2020.29411

    Article  PubMed  PubMed Central  Google Scholar 

  150. Roberts TA, Wagner JA, Sandritter T et al (2021) Retrospective review of pharmacogenetic testing at an academic children’s hospital. Clin Transl Sci 14:412–421. https://doi.org/10.1111/cts.12895

    Article  PubMed  Google Scholar 

  151. Brown JT, Ramsey LB, Van Driest SL et al (2021) Characterizing pharmacogenetic testing among children’s hospitals. Clin Transl Sci 14:692–701. https://doi.org/10.1111/cts.12931

    Article  PubMed  Google Scholar 

  152. Ceyhan-Birsoy O, Murry JB, Machini K et al (2019) Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq project. Am J Hum Genet 104:76–93. https://doi.org/10.1016/j.ajhg.2018.11.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Pereira S, Smith HS, Frankel LA et al (2021) Psychosocial effect of newborn genomic sequencing on families in the BabySeq project: a randomized clinical trial. JAMA Pediatr 175:1132–1141. https://doi.org/10.1001/jamapediatrics.2021.2829

    Article  PubMed  Google Scholar 

  154. All of Us Research Program Investigators, Denny JC, Rutter JL et al (2019) The “all of us” research program. N Engl J Med 381:668–676. https://doi.org/10.1056/NEJMsr1809937

    Article  Google Scholar 

  155. Gill PS, Yu FB, Porter-Gill PA et al (2021) Implementing pharmacogenomics testing: single center experience at Arkansas children’s hospital. J Pers Med 11(5):394. https://doi.org/10.3390/jpm11050394

    Article  PubMed  PubMed Central  Google Scholar 

  156. Green DJ, Mummaneni P, Kim IW et al (2016) Pharmacogenomic information in FDA-approved drug labels: application to pediatric patients. Clin Pharmacol Ther 99:622–632. https://doi.org/10.1002/cpt.330

    Article  PubMed  CAS  Google Scholar 

  157. Cicali EJ, Weitzel KW, Elsey AR et al (2019) Challenges and lessons learned from clinical pharmacogenetic implementation of multiple gene-drug pairs across ambulatory care settings. Genet Med 21:2264–2274. https://doi.org/10.1038/s41436-019-0500-7

    Article  PubMed  PubMed Central  Google Scholar 

  158. Van Driest SL, McGregor TL (2013) Pharmacogenetics in clinical pediatrics: challenges and strategies. Per Med 10(7). https://doi.org/10.2217/pme.13.70. https://doi.org/10.2217/pme.13.70

  159. Rahawi S, Naik H, Blake KV et al (2020) Knowledge and attitudes on pharmacogenetics among pediatricians. J Hum Genet 65:437–444. https://doi.org/10.1038/s10038-020-0723-0

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zierhut HA, Campbell CA, Mitchell AG et al (2017) Collaborative counseling considerations for pharmacogenomic tests. Pharmacotherapy 37:990–999. https://doi.org/10.1002/phar.1980

    Article  PubMed  Google Scholar 

  161. Botkin JR (2016) Ethical issues in pediatric genetic testing and screening. Curr Opin Pediatr 28:700–704. https://doi.org/10.1097/MOP.0000000000000418

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zhu Y, Moriarty JP, Swanson KM et al (2021) A model-based cost-effectiveness analysis of pharmacogenomic panel testing in cardiovascular disease management: preemptive, reactive, or none? Genet Med 23:461–470. https://doi.org/10.1038/s41436-020-00995-w

    Article  PubMed  CAS  Google Scholar 

  163. Haidar CE, Crews KR, Hoffman JM et al (2022) Advancing pharmacogenomics from single-gene to preemptive testing. Annu Rev Genomics Hum Genet 23:449–473. https://doi.org/10.1146/annurev-genom-111621-102737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Mulot C, Stücker I, Clavel J et al (2005) Collection of human genomic DNA from buccal cells for genetics studies: comparison between cytobrush, mouthwash, and treated card. J Biomed Biotechnol 2005:291–296. https://doi.org/10.1155/JBB.2005.291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Caudle KE, Gammal RS, Whirl-Carrillo M et al (2016) Evidence and resources to implement pharmacogenetic knowledge for precision medicine. Am J Health Syst Pharm 73:1977–1985. https://doi.org/10.2146/ajhp150977

    Article  PubMed  CAS  Google Scholar 

  166. Huddart R, Sangkuhl K, Whirl-Carrillo M, Klein TE (2019) Are randomized controlled trials necessary to establish the value of implementing pharmacogenomics in the clinic? Clin Pharmacol Ther 106:284–286. https://doi.org/10.1002/cpt.1420

    Article  PubMed  Google Scholar 

  167. Luzum JA, Petry N, Taylor AK et al (2021) Moving pharmacogenetics into practice: it’s all about the evidence! Clin Pharmacol Ther 110:649–661. https://doi.org/10.1002/cpt.2327

    Article  PubMed  Google Scholar 

  168. Wang K, Jiang K, Wei X et al (2021) Physiologically based pharmacokinetic models are effective support for pediatric drug development. AAPS PharmSciTech 22:208. https://doi.org/10.1208/s12249-021-02076-w

    Article  PubMed  Google Scholar 

  169. Cristea S, Krekels EHJ, Allegaert K et al (2021) Estimation of ontogeny functions for renal transporters using a combined population pharmacokinetic and physiology-based pharmacokinetic approach: application to OAT1 3. AAPS J 23:65. https://doi.org/10.1208/s12248-021-00595-9

Download references

Acknowledgements

The authors gratefully acknowledge Editage (www.editage.com) for the English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: Hirofumi Watanabe; Supervision: Nobuhiko Nagano, Yasuhiro Tsuji, Nobutaka Noto, Mamoru Ayusawa, and Ichiro Morioka.

Corresponding author

Correspondence to Hirofumi Watanabe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H., Nagano, N., Tsuji, Y. et al. Challenges of pediatric pharmacotherapy: A narrative review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Eur J Clin Pharmacol 80, 203–221 (2024). https://doi.org/10.1007/s00228-023-03598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-023-03598-x

Keywords

Navigation