
ESSENTIALS

GUIDE
WITH
YOUR Raspberry Pi

TAKE PICTURES AND CAPTURE VIDEO

CAMERA
MODULE
THE

Curated by Phil King

ALSO AVAILABLE:

LEARN | CODE | MAKE

ESSENTIALS

From the makers of the
official Raspberry Pi magazine

ESSENTIALS

> CONQUER THE COMMAND LINE

> EXPERIMENT WITH SENSE HAT

> MAKE GAMES WITH PYTHON

> CODE MUSIC WITH SONIC PI

> LEARN TO CODE WITH SCRATCH

> �HACK & MAKE IN MINECRAFT

> ELECTRONICS WITH YOUR PI

> LEARN TO CODE WITH C

OUT NOW
ONLY £4/$7
raspberrypi.org/magpi

GET THEM
DIGITALLY:

IN PRINT

https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
http://raspberrypi.org/magpi
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

4

ne of the most popular add-ons for
the Raspberry Pi, the official Camera
Module turns your favourite single-

board computer into a powerful digital camera.
Launched back in 2013, the original Camera
Module was succeeded by the higher-spec v2
in April 2016. Even the tiny Pi Zero now has
a camera connector, enabling the creation of
even more amazing projects. In this book we’ll
show you how to get started with the Camera
Module, taking photos and videos from the
command line and writing Python programs
to automate the process. We’ll reveal how to
create time-lapse and slow-motion videos,
before moving on to exciting projects including
a Minecraft photo booth, spy camera, and bird
box viewer. There are just so many things you
can do with a Raspberry Pi and Camera Module!
Phil King
Contributing Editor

WELCOME TO
THE CAMERA
MODULE GUIDE
O

4 [Chapter One]

EDITORIAL
Head of Publishing: Russell Barnes
Contributing Editor: Phil King
Contributors: Dan Aldred, Wesley Archer, Richard Hayler
& family, Lorna Lynch, James Singleton, Rob Zwetsloot &
the Raspberry Pi Foundation education team

DESIGN
Critical Media: criticalmedia.co.uk
Head of Design: Dougal Matthews
Designers: Lee Allen, Mike Kay

This book is published by Raspberry Pi (Trading) Ltd., 30 Station Road, Cambridge, CB1 2JH. The
publisher, editor, and contributors accept no responsibility in respect of any omissions or errors
relating to goods, products or services referred to or advertised in this product. Except where
otherwise noted, content in this magazine is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0). ISBN: 978-1-912047-03-1

GET IN TOUCH magpi@raspberrypi.orgFIND US ONLINE raspberrypi.org/magpi

In print, this product is made using paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave, London
EC1A 9PT | +44 (0)207 429 4000

THE MAGPI SUBSCRIPTIONS
Select Publisher Services Ltd
PO Box 6337, Bournemouth
BH1 9EH | +44 (0)1202 586 848
magpi.cc/Subs1

http://criticalmedia.co.uk
http://magpi@raspberrypi.org
http://raspberrypi.org/magpi
http://magpi.cc/Subs1
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

 [MASTER THE CAMERA MODULE]

5[Don’t Panic] 5[Contents]

CONTENTS

ESSENTIALS

41 [CHAPTER SEVEN]
FLASH PHOTOGRAPHY
USING AN LED
Shoot images in low light

48 [CHAPTER EIGHT]
MAKE A MINECRAFT
PHOTO BOOTH
Take selfies in Minecraft Pi

53 [CHAPTER NINE]
BUILD A SPY CAMERA
Set up a motion-activated camera

58 [CHAPTER TEN]
TAKE YOUR CAMERA
UNDERWATER
Explore the underwater world

68 [CHAPTER ELEVEN]
LIVE-STREAM VIDEO & STILLS
View them on a remote computer

78 [CHAPTER TWELVE]
SET UP A SECURITY CAMERA
Protect your home using motionEyeOS

84 [CHAPTER THIRTEEN]
INSTALL A BIRD BOX CAMERA
Observe nesting birds with a Pi NoIR

94 [CHAPTER FOURTEEN]
QUICK REFERENCE
A guide to the camera, commands,
and Picamera Python library

06 [CHAPTER ONE]
GETTING STARTED
Connect your camera

10 [CHAPTER TWO]
PRECISE CAMERA CONTROL
How to use options and effects

16 [CHAPTER THREE]
TIME-LAPSE PHOTOGRAPHY
Create time-lapse sequences

22 [CHAPTER FOUR]
HIGH-SPEED PHOTOGRAPHY
Make dazzling slow-motion clips

27 [CHAPTER FIVE]
CONTROL THE CAMERA
WITH PYTHON
Start writing Python programs

35 [CHAPTER SIX]
STOP-MOTION AND SELFIES
Wire up a physical push button

[PHIL KING]

Phil King is a
Raspberry Pi
enthusiast and
regular contributor
to The MagPi
magazine.
Growing up in the
‘golden era’ of
8-bit computers in
the 1980s, he leapt
at the chance to
write about them
in magazines such
as CRASH and
ZZAP!64. When
consoles took over
the video games
world, he missed
the opportunity
to program… until
the Raspberry Pi
came along. Phil
is now an avid
coder, electronics
dabbler, and
photographer. He
loves to work on
projects with his
seven-year‑old
son – which may
explain the photos
of Playmobil and
Lego you’ll find in
this book!

6

ESSENTIALS

[Chapter One]6

[CHAPTER ONE]

ESSENTIALS

6 [Chapter One]

STARTED
Introducing the Camera Module – find out how to
connect it, enable it, and take your first shots

GETTING

7

 [MASTER THE CAMERA MODULE]

7

n this chapter, we show you how to connect the Camera Module
to your Raspberry Pi using the supplied ribbon cable, then enable
it in Raspbian, before entering some commands in a terminal

window to start shooting photos and video. Let’s get started…

>STEP-01
Connecting the camera
With the Pi switched off, locate its camera port. On most models, it’s
the one furthest away from the micro USB power connector, labelled
‘CAMERA’ or ‘CSI’; on a Pi Zero 1.3 or W, it’s at the end next to the power
port. Take hold of both ends of its plastic slider and pull it away from
the Pi gently but firmly; it will move up a short distance, opening up the
connector. Insert the ribbon cable, with its blue side (or white tab on
a Pi Zero cable) facing the plastic slider. Push the slider back down,
putting pressure on both sides, so that it gently clicks into place.

[Getting Started]

I

The top of the camera is
at the other end of the
ribbon cable connection

The metal contacts on the ribbon
cable should face away from the
Ethernet socket

8

ESSENTIALS

[Chapter One]8

>STEP-02
Camera software
Plug the Raspberry Pi back in and turn it on. Once it has booted into
the desktop, click on the Menu (top left) and go down to Preferences.
Here you’ll find the Raspberry Pi Configuration menu, which you
should now click on. On the tab called Interfaces, you’ll find an option
to enable the camera; if this isn’t set to Enabled, do so now. Raspbian
doesn’t have the camera enabled by default, so this is required. Now
reboot your Pi.

>STEP-03
First shots
Point your camera at something interesting, then open a terminal
window and type in the following:

raspistill -o firstpic.jpg

You’ll see a red light on the Camera Module, followed by an image
of whatever the camera is pointing at appearing on the screen for
a moment. If it’s you, you can use the screen to arrange your best
smile during the five‑second pause before the picture is taken. Once
snapped, the image can be found in the home directory: /home/pi.

>STEP-04
Find the image
You can open the picture and view it from the File Manager, but if you
don’t have a Pi 2 or Pi 3, you may want to avoid the unnecessary
overhead of running that. Just enter this into the terminal window:

gpicview firstpic.jpg

If it looks rather blurry, check that you remembered to peel the
protective plastic from the Camera Module’s lens!

>STEP-05
More advanced commands
The raspistill command has a list of options so long that it borders
on the intimidating. Have no fear, though: you won’t need to learn

[Chapter One]

9

 [MASTER THE CAMERA MODULE] [LEARN TO CODE WITH C]

them all, but there are a few that might be useful to you, such as:

raspistill -t 15000 -o newpic.jpg

The -t option changes the delay before the picture is taken, from the
default five seconds to whatever time you give it in milliseconds – in
this case, you have a full 15 seconds to get your shot arranged perfectly
after you press ENTER. You can explore more camera options in the
next chapter, or by referring to chapter 14.

>STEP-06
A quick fix
One of the problems with a camera at the end of a ribbon cable is
getting it positioned properly. You may end up with the camera
upside down or slightly askew. Upside-down Camera Modules can
be commanded to flip the picture the right way up with --vflip, or
-vf for short. --hflip (or -hf) handles horizontal flipping, should
you need a mirror image. And if your camera is lying on its side, use
--rotation, or -rot, followed by the number of degrees: 90 or 270.

[Getting Started]

For shooting video, raspivid is what you need. It can record up to

1080p video at 30fps, a fast enough frame rate for cinema, and 720p

at 60fps if you want something smoother. You can do this with:

raspivid -t 10000 -o testvideo.h264

This records a ten-second video (10,000 milliseconds) at the

default 1920 × 1080 resolution. You can also shoot slow-mo video

at 640 × 480 by using:

raspivid -w 640 -h 480
-fps 90 -t 10000 -o
test90fps.h264

Use omxplayer in the command line to play the videos back!

[SHOOTING VIDEO]

10

ESSENTIALS

[Chapter One]10

[CHAPTER TWO]

ESSENTIALS

10 [Chapter Two]

Use command-line switches to access
numerous camera options and effects

PRECISE
CAMERA
CONTROL

11

 [MASTER THE CAMERA MODULE]

o, you’ve connected your Camera Module to the Raspberry
Pi and learned how to take still photos and shoot videos
from the command line. Now let’s explore the raspistill

and raspivideo commands further, including the many switches
and options available. We’ll also take a look at the raspistillyuv
command, which sends its unencoded YUV or RGB output directly from
the camera component to a file.

>STEP-01
Preview mode
When taking stills or shooting video, one of the first things you might
want to alter is the preview window that appears by default on the
screen. First of all, if it’s upside-down, just add -rot 180 to your
raspistill or raspivid command to rotate it. As mentioned in
chapter 1, -hf and -vf will flip the image horizontally and/or vertically.

Using the -p switch, you can set the window’s on-screen position,
along with its height and width. The -p switch takes four parameters:
x coordinate, y coordinate, width, and height. So, for example:

raspistill -o image.jpg -p 100,100,300,200

…would place the preview window’s top-left corner at coordinate
(100,100), with a width of 300 pixels and height of 200 pixels.

S

The preview can be resized and positioned manually, and can also have its opacity adjusted

[Precise Camera Control]

12

ESSENTIALS

[Chapter One]12

Note that if you only want to see a preview without taking a shot,
you can simply omit the -o image.jpg part. The -t switch sets the
duration of the preview: to exit at any point, just press CTRL+C.

If you want a full-screen preview, this is easily achieved using the
-f switch. The -op switch can be used to adjust the preview’s opacity,
from 0 (invisible) to 255 (solid). If you want to disable the preview
window completely, use the -n switch.

>STEP-02
Camera control options
Like most dedicated digital cameras, the Camera Module offers a range
of options to adjust aspects such as brightness (-br, from 1 to 100),
contrast (-co, -100 to 100), sharpness (-sh, -100 to 100), saturation
(-sa, -100 to 100), ISO (-ISO, 100 to 800), and EV compensation
(-ev, -10 to 10).

In addition, there are numerous options for exposure mode for
shooting in certain scenarios, akin to the ‘scenes’ found on most
digital cameras. Just use the -ex switch followed by one of the
following terms: auto, night, nightpreview, backlight, spotlight,
sports, snow, beach, verylong (long exposure), fixedfps (for video
only), antishake, or fireworks.

Similarly, automatic white balance can be adjusted by following the
-awb switch with one of the following: off, auto, sun, cloud, shade,
tungsten, fluorescent, incandescent, flash, or horizon.

You can set the shutter speed in microseconds with the -ss switch;
the upper limit depends on the exposure mode and other settings. The
metering mode – used for preview and capture – can be set with -mm to
one of the following: average, spot, backlit, or matrix.

There’s also the option of restricting the region of interest to only
part of the sensor, using -roi with parameters for x and y coordinates
(from top left), width, and height. For example, to set a ROI halfway
across and down the sensor, with quarter-size width and height, you’d
use: -roi 0.5,0.5,0.25,0.25.

>STEP-03
Keypress mode
If you’d like to take a still photo at an exact time, rather than having to
wait for the -t switch delay time to elapse, keypress mode is your friend.

[Chapter Two]

13

 [MASTER THE CAMERA MODULE]

Just add the -k switch to your raspistill command, then press the
ENTER key to take the shot: it acts like a shutter button. To exit the
procedure, press X followed by ENTER.

By adding %04d to the end of your file name in the command, you
can save every shot you have taken before aborting:

raspistill -o keypress%04d.jpg -k

Each shot will have a four-digit sequential number added to
its file name, so you’ll get keypress0000.jpg, keypress0001.jpg,
keypress0002.jpg etc. This is a useful technique for time-lapses using
the -tl switch, too: see chapter 3 for more details.

>STEP-04
Image effects
A whole bunch of effects can be added to the camera in real-time,
shown in the preview window. This is achieved by using the -ifx
switch followed by one of the following terms: none, negative,

A multitude of real-
time effects may be
added to images,
including emboss,
as shown here

[Precise Camera Control]

1414

ESSENTIALS

solarise, posterise, sketch, denoise, emboss, oilpaint, hatch,
gpen (graphite sketch effect), pastel, watercolour, film, blur,
saturation (adjust colour saturation of the image), colorswap,
washedout, colorpoint, colorbalance, or cartoon.

If you’d like to take monochrome images, you can use the -cfx
(colour effect) switch to achieve this, using the following setting:
-cfx 128:128.

To increase contrast between dark and light areas using DRC
(dynamic range compression), use the -drc switch to turn it on/off
(it’s off by default).

>STEP-05
Still options
Now let’s take a look at some options that are specific to the
raspistill command. As already mentioned, we use -o followed

[Chapter Two]

The posterise effect is
shown here; just use

-ifx posterise in
your command

15

 [MASTER THE CAMERA MODULE]

by a file name to output to a file, and the -t switch sets the shutter
delay in milliseconds. For example, to save a photo taken after two
seconds, use:

raspistill -t 2000 -o image.jpg

You can set the width and height of the image with -w and -h, each
followed by a value – up to 2592 and 1944 respectively on the original
Camera Module, or 3280 and 2464 on the v2.

You can also set the quality of the JPEG image, using -q, from 0 to
100 – the latter is almost completely uncompressed. Alternatively, to
save it as a lossless PNG (slower than using JPG), use -e (encoding)
followed by png:

raspistill -o image.png –e png

For a full list of raspistill options, see chapter 14. The
raspistillyuv command works in a similar fashion and offers most
of the same options, apart from adding EXIF tags, but sends its YUV or
RGB output directly from the camera component to file. To use RGB,
add the -rgb switch.

>STEP-06
Shooting video
The raspivid command is used to shoot video. In this case, the -t
switch sets the duration in milliseconds. The bitrate is set using -b,
with a maximum of 25Mbps (-b 25000000), while -fps sets the
frame rate – up to 90fps depending on the resolution, which can be
set manually using the -w and -h switches. For example, to shoot five
seconds of video at the default 1080p (1920 × 1080), with a bitrate of
15Mbps and frame rate of 30fps, use:

raspivid -t 5000 -b 15000000 -fps 30 -o video.h264

See chapter 4 for information on how to shoot slow-motion
footage. Many other video options are available, including time
delays, keypress mode, and segmenting a stream into multiple files.
For full details, see chapter 14.

[Precise Camera Control]

16

ESSENTIALS

[Chapter One]16

[CHAPTER THREE]

ESSENTIALS

16 [Chapter Three]

Make a device to capture photographs at regular intervals,
then turn these images into a video

TIME-LAPSE
PHOTOGRAPHY

17

 [MASTER THE CAMERA MODULE]

ime-lapse photography reveals exciting things about the world
which you wouldn’t otherwise be able see. These are things
that happen too slowly for us to perceive: bread rising and

plants growing; the clouds, sun, moon, and stars crossing the sky;
shadows moving across the land. In this chapter, we’ll be making a
Raspbian-based device that lets you watch things that are too slow
to observe with the naked eye. To do this, we will capture lots of still
photographs and combine these frames into a video with FFmpeg/
libav, which can then be accessed via a web browser.

>STEP-01
Connect the Camera Module
First, with the Raspberry Pi turned off, connect the Camera Module to
the Pi with the included ribbon cable. As mentioned in chapter 1, you
need to locate the correct camera socket on the Raspberry Pi, labelled
‘CAMERA’ or ‘CSI’. Carefully lift up its plastic slider and pull it away from

T

Image courtesy of NASA

[Time-lapse Photography]

18

ESSENTIALS

[Chapter One]18

the Pi gently but firmly; it will move up a short distance, opening up the
connector. Insert the ribbon cable into the socket, with the blue side – or
white tab on a Pi Zero camera cable – facing the plastic slider (and the
metal contacts facing the other way). Finally, hold the ribbon cable in
position and push the slider back down to clamp the cable firmly in place.

>STEP-02
Enable and test the camera
Power the Raspberry Pi up. You now have a choice: boot to the
command line, open a terminal window, or establish a secure shell
(SSH) connection (to access it from a remote computer). Enable the
camera by running this command from a terminal window to launch
the Raspberry Pi configuration tool:

sudo raspi-config

Then select the ‘Enable Camera’ option. You can test the camera by
running the following command:

[Chapter Three]

[OTHER
VIDEO
FORMATS]
WebM is an
open video
format that can
be displayed
directly in
most browsers.
However, other
video formats
are available.

Another amazing
example of what’s

possible with time-
lapse photography

19

 [MASTER THE CAMERA MODULE]

raspistill -o testimage.jpg

If you are using an original v1 Camera Module, its LED should light
up for five seconds and a JPEG image will be saved to the current
directory. If the camera is mounted upside down, you can use the rotate
command-line switch (-rot 180) to account for this.

>STEP-03
Install and configure software
Install a web server to access your images remotely. Run this command
to install Apache:

sudo apt-get install apache2

Remove the default page to see the contents of the directory:

sudo rm /var/www/index.html

Visit the IP address of your Pi (e.g. http://192.168.1.45
– you can find this by using ifconfig) and you should see an empty
directory listing. If you run the following command and refresh the
page, you should see an image file listed. You run this as a superuser
so you can write to the directory.

sudo raspistill -o /var/www/testimage.jpg

Click on the file link and you’ll see the image in your browser.

Shell running the
rendering process on
the Raspberry Pi. This
will take some time,
so you may prefer to
use a faster machine

[Time-lapse Photography]

20

ESSENTIALS

[Chapter One]20

>STEP-04
Capture the images
Set up your scene and check the positioning of the camera.

sudo raspistill -w 1920 -h 1080 -o /var/www/
testimageFullHD.jpg

The width and height have been changed to capture a smaller image
in 16:9 aspect ratio. This makes things easier later. The top and bottom
are cropped, so make sure that your subject is in frame. Run this
to start the capture:

sudo raspistill -w 1920 -h 1080 -t 10800000 -tl 10000 -o
/var/www/frame%04d.jpg &

This takes a photograph every ten seconds (10,000 milliseconds) for
three hours (10,800,000 milliseconds). The ampersand (&) at the end
runs the process in the background.

Some bread dough ready to prove. Watch it rise in your video. Be careful not to move the bowl or camera during filming

[Chapter Three]

21

 [MASTER THE CAMERA MODULE]

>STEP-05
Prepare to make the video
You can render the video on the Raspberry Pi, but it’ll be very slow.
A better way is to transfer the files to a more powerful computer.
Whichever method you decide to use, you will need to install the tools
on the rendering machine; for the Pi, enter:

sudo apt-get install libav-tools

This installs a fork of FFmpeg, but you can also use the original
FFmpeg. To copy the images to a remote machine, you can download
them from the web server using wget or curl. For example:

wget -r -A jpg http://192.168.1.45

Or if you don’t have wget…

curl http://192.168.1.45/frame [0001-0766].jpg -O

Change the IP address and numbers accordingly.

>STEP-06
Make the video
The final step is to make the video. Run this command to start the
rendering process:

sudo avconv -i /var/www/frame%04d.jpg -crf 4 -b:v 10M /
var/www/video.webm &

When the rendering process has finished, you’ll be able to view the
video in your browser. The default frame rate is 25fps. This compresses
three hours of images taken at ten-second intervals to about 40
seconds of video. You can adjust this with the -framerate command-
line option. The bitrate (-b) has been set high, and the Constant Rate
Factor (-crf) has been kept low, to produce a good-quality video.

[Time-lapse Photography]

[MAKE AN
ANIMATED
GIF]
Instead of
video, make
an animated
GIF with
ImageMagick.
Use smaller
images,
captured less
frequently.

sudo
convert
/var/www/
frame*.jpg
/var/www/
anim.gif &

22

ESSENTIALS

[Chapter One]22

[CHAPTER FOUR]

ESSENTIALS

22

All you need to make dazzling slow-motion clips of exciting events
is your Pi and the Camera Module!

HIGH-SPEED
PHOTOGRAPHY

[Chapter Four]

23

 [MASTER THE CAMERA MODULE]

t first glance it seems counter-intuitive, but in order to
create a smooth slow-motion movie, you need a high-speed
camera. Essentially, a movie is just a collection of still photos,

or frames, all played one after the other at a speed that matches the
original action. A slow-motion clip is produced by recording more
frames than are normally needed and then playing them back at a
reduced speed. Normal film is typically recorded at 24 frames per
second (fps), with video frame rates varying between 25 and 29fps
depending on which format/region is involved. So if you record at
50fps and play back at 25fps, the action will appear to be taking place
at half the original speed. It’s actually a little more complicated than
that with the use of interlaced frames, but you don’t really need to
consider them here.

Clips can now be recorded at up to 90fps
The original software for the Camera Module was limited in terms of
the frame rates it could cope with, but a subsequent update added new
functionality so that clips can now be recorded at up to 90fps. There is
one slight limitation: the high frame rates are achieved by combining
pixels from the camera sensor, so you have to sacrifice resolution. So,
although the Camera Module can record at a resolution of 2592 × 1944
(3280 × 2464 on v2 camera), a high-speed mode of 90fps is only possible
at 640 × 480 (and 1280 × 720 on v2). This is still good enough to capture
decent-quality images, though, and it’s perfect for sharing online.

A quick way of getting started is to pick some everyday objects and
record them in motion. How about a dropped egg hitting a table top?
A pull-back toy car crashing through some Lego blocks? Or even the old
favourite of a water balloon bursting? It’s best to do the last one outside!

Pick some everyday objects and record them in motion
Once you’ve chosen your subject, you’ll need a way of holding and
angling the camera, and some way of lighting the scene. Neither
needs to be sophisticated: a normal desk lamp works fine for extra
illumination indoors, while a ‘helping-hand’ work aid is brilliant for
keeping the camera stable at tricky angles. You might also want to
invest in a longer cable for the camera. You can get a 30 cm ribbon
cable for less than £2 or if you want to go even longer, a set of special
adaptors allows you to extend using a standard HDMI cable.

A

[High-speed Photography]

24

ESSENTIALS

[Chapter One]24

Avoid unwanted reflections, and fine-tune
your video specifications
If you are using a v1 Camera Module, its red LED will
illuminate when recording is taking place. This can cause
some undesirable reflections if the camera is positioned
close to an object (e.g. a wall of Lego bricks). You can just
block the light from the LED off with a blob of modelling
clay, or you can turn it off completely by adding the line
disable_camera_led=1 to your /boot/config.txt file.

The command for capturing video with the Raspberry Pi
camera is raspivid, and this is best run from a terminal
window. There are a number of command options that you
need to specify:

-fps sets the frame rate.

-w and -h specify the width and height of the frames. For
the fastest frame rates, set this to 640 and 480 respectively.

-t allows you to set how long to record for. If you’re working
by yourself, the easiest way to avoid missing any of the
action is to begin filming for a predefined period, giving
yourself plenty of time to start things off manually.

-o specifies the file name to use for the saved movie.

-n disables preview mode.

So, putting all of that together, the following commands
would capture a five-second clip at 60fps and save the
resulting movie in the file test.h264:

raspivid -n -w 640 -h 480 -fps 60 -t 5000 -o
test.h264

Right: now that you’ve recorded your movie clip, how can
you play it back? One easy way is to use the free VLC player,
which you can install with the following command:

[Chapter Four]24

25

 [MASTER THE CAMERA MODULE]

sudo apt-get install vlc

The Pi version has some handy features which can be accessed by
checking the ‘Advanced Controls’ option under the View menu. These
include the extremely useful ‘Frame by Frame’ button. You can also
alter the playback speed to slow things down even further.

To extend the project, how about connecting a break-beam IR sensor
pair via the GPIO pins and using these to trigger the camera recording?
The Python Picamera library provides full access to the camera’s
functions and could be used with your code.

CAPTURING THE CLIP
>STEP-01
Lights
Get your scene lined up and test how it looks by using the camera
preview mode for five seconds:

raspistill -w 640 -h 480 -t 5000

[High-speed Photography]

26

ESSENTIALS

[Chapter One]26

>STEP-02
Camera
Type the command, ready for execution (but don’t press ENTER yet):

raspivid -w 640 -h 480 -fps 90 -t 7000 -o myvid1.h264

Once triggered, this will capture a seven-second clip.

>STEP-03
Action
When everything is ready, hit ENTER and then release the car/drop the
egg/burst the balloon. You’ll have footage before and after the event,
which can be trimmed with some post-production editing.

[Chapter Four]

27

 [MASTER THE CAMERA MODULE]

[CHAPTER FIVE]

ESSENTIALS

CONTROL
THE CAMERA
FROM PYTHON

Use the Picamera library to access
the camera in Python programs

28

ESSENTIALS

[Chapter One]28

o far, we’ve looked at using the Camera Module from the
command line. This is all very well and good, but what if you
want to control it from a Python program? This is where the

Picamera library comes in, enabling you to access all the Camera
Module’s features in Python. In this chapter, we’ll take a look at how
to use it to take stills, shoot videos, alter settings, and add effects.

>STEP-01
Getting started
Since the Picamera library doesn’t come pre-installed in Raspbian,
you’ll need to install it manually. In a terminal window, enter:

sudo apt-get update
sudo apt-get install python-picamera python3-picamera

With your Camera Module already connected and enabled in
Raspberry Pi Configuration, open Programming > Python 3 (IDLE)
from the Raspbian desktop menu. Create a new file by clicking
File > New file. Save it with File > Save, naming it ch5listing1.py.
Note: Never name a file picamera.py, as this is the file name for the
Picamera library itself!

S
The camera preview

can be resized
and positioned to

your liking

[Chapter Five]

29

 [MASTER THE CAMERA MODULE]

Now enter the code from ch5listing1.py. Save it with CTRL+S and
run with F5. The full-screen camera preview should be shown for ten
seconds, and then close. Move the camera around to preview what
the camera sees. Note that you can only see the preview on a monitor
connected to the Pi, not by using a remote access method like SSH or VNC.

If the preview appears upside-down, add the line camera.rotation
= 180 just above camera.start_preview(). Other possible rotation
values are 90 and 270.

You can alter the transparency level of the preview by entering an
alpha value – from 0 to 255 – within the latter command’s brackets.
For example: camera.start_preview(alpha=200).

It’s also possible to change the position and size of the preview. For
example, to place its top corner 100 pixels right and 150 down, and
resize it to 1024 × 768:

camera.start_preview(fullscreen=False, window = (100,150,1024,768))

>STEP-02
Take a photo
Now let’s take a still photo. We can do this by adding the line:

 camera.capture('/home/pi/Desktop/image.jpg')

…just after the sleep in our code, so it looks like ch5listing2.py. Run the
code and after a preview of five seconds (as set by sleep), it’ll capture a
photo as image.jpg. You may the preview adjust to a different resolution
momentarily as the picture is taken. In this example, the resulting image
file will appear on the desktop; double-click its icon to open it.

You can alter the file name and directory path in the code, along
with the sleep time. Remember, though, that it should be at least five
seconds, to give the camera sensor enough time to adjust its light levels.

>STEP-03
Make a loop
The great thing about using Python with the Picamera library is that
it makes it easy to use a loop to take a sequence of photos. In Python 3
(IDLE), create a new file and enter the code from ch5listing3.py.

[Control the Camera from Python]

30

ESSENTIALS

[Chapter One]30

After initiating the camera preview, we add a for loop with a range of
5, so it will run five times to take five photos. The sleep command sets
the time between shots, captured using the line:

camera.capture('/home/pi/Desktop/image%s.jpg' % i)

Here, the %s token is replaced by whatever we add after the %
following the file name – in this case, the variable i set by our for
loop. Note that i will range from 0 to 4, so the images will be saved as
image0.jpg, image1.jpg, and so on. Once they’re all taken, the preview
will close. In this example, you’ll see the five files on your desktop;
double-click to open them.

You can also use a for loop to alter camera setting levels such as
brightness over time. For more details, see step 4.

>STEP-04
Control camera settings
Brightness is just one of numerous settings available for the Camera
Module. Here’s a list of the main options, along with their default
values (and ranges where applicable):

camera.brightness = 50 (0 to 100)
camera.sharpness = 0 (-100 to 100)
camera.contrast = 0 (-100 to 100)
camera.saturation = 0 (-100 to 100)
camera.iso = 0 (automatic) (100 to 800)
camera.exposure_compensation = 0 (-25 to 25)
camera.exposure_mode = 'auto'
camera.meter_mode = 'average'
camera.awb_mode = 'auto'
camera.rotation = 0
camera.hflip = False
camera.vflip = False
camera.crop = (0.0, 0.0, 1.0, 1.0)

The resolution of the capture is also configurable. For example:

camera.resolution = (1024, 768)

[Chapter Five]

31

 [MASTER THE CAMERA MODULE]

By default, it’s set to the resolution of your monitor, but the
maximum resolution for photos is 3280 × 2464 (v2) or 2592 × 1944
(v1). Note that you may need to increase gpu_mem in /boot/config.txt to
achieve full resolution operation with the v2 Camera Module.

>STEP-05
Add image effects
Just as when you are using the command line, a wide range of effects
can be added to the camera in real-time, shown in the preview window.
The camera.image_effect command is used to apply a particular
image effect. The options are: none (the default), negative, solarize,
sketch, denoise, emboss, oilpaint, hatch, gpen (graphite sketch
effect), pastel, watercolor, film, blur, saturation, colorswap,
washedout, posterise, colorpoint, colorbalance, cartoon,
deinterlace1, and deinterlace2.

For instance, to take an image with a colourswap effect, enter the
code from ch5listing4.py and run it.

You can also run the code from ch5listing5.py to loop through
the various image effects in a preview. Note that this uses the
camera.annotate_text command to add a text message to the
preview; this can also be applied to captured images (when using the
sensor’s full field of view).

A variety of image
effects are available;
here we’ve used
colorswap to alter
the colours

[Control the Camera from Python]

32

ESSENTIALS

[Chapter One]32

For more details on these effects and other settings, see chapter 14
or the official Picamera documentation at picamera.readthedocs.io.

>STEP-06
Shoot a video
To shoot video, we replace the camera.capture() command with
camera.start_recording(), and use camera.stop_recording()
to stop. Enter the example code from ch5listing6.py.

When you run the code, it records ten seconds of video before closing
the preview. To play the resulting file, open a terminal window from
the desktop and enter:

omxplayer video.h264

Note that it may well play faster than the original frame rate. It’s
possible to convert videos to MP4 format and adjust the frame rate using
the MP4Box utility (installed with sudo apt-get install gpac), like so:

MP4Box -add video.h264:fps=30 video.mp4

All of the image effects and most of the camera settings can be
applied while shooting video. You can also turn on video stabilisation,
which compensates for camera motion, by adding the following line to
your Python program:

camera.video_stabilization = True

Using the
ch5listing5.py code,

you can view a loop of
all the effects on offer

[Chapter Five]

33

 [MASTER THE CAMERA MODULE]

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pWtY9lfrom picamera import PiCamera

from time import sleep

camera = PiCamera()

camera.start_preview()
sleep(10)
camera.stop_preview()

ch5listing1.py

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
sleep(5)
camera.capture('/home/pi/Desktop/image.jpg')
camera.stop_preview()

ch5listing2.py

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
for i in range(5):
 sleep(5)
 camera.capture('/home/pi/Desktop/image%s.jpg' % i)
camera.stop_preview()

ch5listing3.py

[Control the Camera from Python]

34

ESSENTIALS

[Chapter One]34 [Chapter Five]

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
camera.image_effect = 'colorswap'
sleep(5)
camera.capture('/home/pi/Desktop/colorswap.jpg')
camera.stop_preview()

ch5listing4.py

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
for effect in camera.IMAGE_EFFECTS:
 camera.image_effect = effect
 camera.annotate_text = "Effect: %s" % effect
 sleep(5)
camera.stop_preview()

ch5listing5.py

from picamera import PiCamera
from time import sleep

camera = PiCamera()

camera.start_preview()
camera.start_recording('/home/pi/video.h264')
sleep(10)
camera.stop_recording()
camera.stop_preview()

ch5listing6.py

35

 [MASTER THE CAMERA MODULE]

[CHAPTER SIX]

ESSENTIALS

STOP-MOTION
AND

Wire up a physical push button
to take photos

SELFIES

36

ESSENTIALS

[Chapter One]36

ave you been reading the last few chapters and thinking you’d
like to take a picture with a Raspberry Pi Camera Module with
less hassle? In this tutorial we’ll show you how to take a photo

with a click of a button, just like a real camera. This could be useful
for many projects (for example, time-lapse photography), but in this
chapter we are focusing on stop-motion animation. We also show how
to create your own selfie stick!

>STEP-01
Wire up the button
If you haven’t already switched your Raspberry Pi off, do so now. Next,
connect the button to the Pi via a jumper lead, as shown in Fig 1. One
side of the button will be connected to ground (GND); the other is
connected to GPIO pin 14 (but you can choose your favourite pin). We
used a breadboard for our stop-motion animation project, but you
could wire the button directly to the pins (as you’ll be doing for the
selfie stick later).

H

One button leg is wired to a
GPIO pin (we used GPIO14);
the other to GND

[YOU’LL NEED]

> �Camera
Module

> �Push button

> �Breadboard
(optional)

> �Jumper wires

> �Pi case with
a hole for the
camera cable
(selfie stick)

> �Long wires
(selfie stick)

> �A stick,
slim metal
pole etc.
(selfie stick)

You can add the push button
to a breadboard or wire it
directly to the GPIO pins

[Chapter Six]

Fig 1 Connect the button

37

 [MASTER THE CAMERA MODULE]

>STEP-02
Install Picamera
That’s all the hardware done. Now it’s time for the software. If you
haven’t done so already in chapter 5, you’ll need to install the Picamera
library. In a terminal window, enter:

sudo apt-get update
sudo apt-get install python-picamera python3-picamera

If for some reason you don’t have GPIO Zero already installed
(it has come pre-installed in Raspbian for some time), do so with:

sudo apt-get install python-gpiozero python3-gpiozero

>STEP-03
Stop-motion software
Because we’re focusing on stop-motion for our first project, we’re
using the camera’s preview mode so that we can set up our shot

You can use a
breadboard for a
small button, or
connect your jumper
wires directly to the
pins on a bigger one

[Stop-motion and Selfies]

38

ESSENTIALS

[Chapter One]38

before we take it, to ensure everything is in the frame. Then, only
when the button is pressed do we save an image file. Each image file
will have a different name based on the date and time at which it is
taken. This makes it easy to assemble all the images from the shoot
for post-processing.

The wonderful GPIO Zero library is used to capture the button
activity; we simply define a function that is run whenever the button
is pressed. This function uses the Picamera Python library which
allows us to control the camera through code, making all the normal
command-line operations available.

Download or type up the code from ch6listing1.py and either
run it through IDLE or the command line. To quit the program,
press CTRL+C.

>STEP-04
Other variations
You should be able to use this code as a template to create a program
for whatever photography project you have in mind. For example,

Create your stop-
motion scene and
use the button to

trigger the camera
to take pictures

and save them to
timestamped file

[Chapter Six]

39

 [MASTER THE CAMERA MODULE]

you could alter the code so that the camera takes continuous photos
while the button is held down. Or you could add extra buttons to make
a variety of photography modes available.

With this sort of build, you can also start thinking about building
a complete, portable, wirelessly connected Pi camera. For this,
you can use a case into which you can fit a portable mobile phone
battery charger, along with a screen to attach to the Pi. With a bit of
modification of the code, you can have it always show the preview of
the camera on the screen. Want to record video? More modification of
the code will allow for video capturing. The only issue you might have
with both of these projects is the lack of a flash or built-in light source,
so a well-lit subject would be essential.

>STEP-05
Selfie stick
Next, we’ll look at making a selfie stick. A lot of people roll their eyes
and complain about vanity when it comes to the art of the selfie, but
we all know it’s nothing like that. New outfit? New glasses? Eyeliner
wings perfectly symmetrical today? Why not chronicle it? It’s a great
confidence boost.

Our Pi-powered selfie stick will use a similar hardware and software
setup to the stop-motion animation project. As before, we’re wiring up
a push button to GPIO14 and GND pins on the Pi, but this time we need
to attach the jumpers to longer wires to put the button at the end of
the ‘stick’ – we used a spatula, but anything long will do.

The Pi itself needs to be near to the Camera Module (unless
you’ve got an extra-long ribbon cable). Attach the Pi in a
case to one end of the stick with whatever means you
see fit (glue, adhesive putty, string, etc.) and then
attach the button.

Our test selfie stick is very DIY,
but you can use anything as

long as you can attach the Pi
and have a long enough wire

[Stop-motion and Selfies]

#importing the necessary modules
from datetime import datetime
from gpiozero import Button
import picamera
import time

b=Button(14)
pc=picamera.PiCamera()
running = True
#pc.resolution = (1024, 768)
#use this to set the resolution if you dislike the default values
timestamp=datetime.now()
def picture():
	 pc.capture('pic'+str(timestamp)+'.jpg') #taking the picture

pc.start_preview() #running the preview
b.when_pressed=picture
try:
	 while running:
		 print('Active')#displaying 'active' to the shell
			 time.sleep(1)
#we detect Ctrl+C then quit the program
except KeyboardInterrupt:
	 pc.stop_preview()
	 running = False

ch6listing1.py

40

ESSENTIALS

[Chapter One]40

>STEP-06
Add the code
Since the principle is the same – pressing a button to take a photo – we
can use the same code, ch6listing1.py, as for the stop-motion project.
This time we don’t need the camera preview, so you can comment out
the line pc.start_preview() if you like, by adding a # to the start of it.

Try running the code. Pressing the button will take a photo, but you’ll
need to practise your aim so you can get yourself in the frame. As before,
we add a timestamp to each picture, which helps to organise your
pictures later and also results in a slight pause in the code, which at least
means you won’t take too many pictures with a slip of the button.

[Chapter Six]

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pWilzu

41

 [MASTER THE CAMERA MODULE]

[CHAPTER SEVEN]

ESSENTIALS

FLASH
PHOTOGRAPHY
USING AN LED

Add an LED flash to shoot images
in low light

42

ESSENTIALS

[Chapter One]42

he Raspberry Pi Camera Module works really well in good
lighting conditions, but what if there’s less light available?
Here we show you how to set up a simple LED flash, which will

be triggered each time you take a photo, using the Picamera Python
library. We also take a look at how to shoot better images in low light
when you are not using a flash.

>STEP-01
Download device tree source
Before we can wire up a flash, we need to configure a GPIO pin to use for
it. This will then be triggered each time we capture a still using Picamera
with the flash mode set to on. To do this, we need to edit the VideoCore
GPU default device tree source. First, install device tree compiler with:

sudo apt-get install device-tree-compiler

Then grab a copy of the default device tree source with:

wget https://raw.githubusercontent.com/raspberrypi/
firmware/master/extra/dt-blob.dts

T

[YOU’LL NEED]

> �Camera
Module

> White LED

> �Resistor

The resistor limits
the current flowing
through the LED

The longest leg of the IR
LED is the anode: connect
it to GPIO 17

[Chapter Seven]

Fig 1 Connect a white LED

43

 [MASTER THE CAMERA MODULE]

>STEP-02
Edit the device tree source
Edit the file using your favourite text editor, such as nano:

sudo nano dt-blob.dts

You’ll need to find the correct part of the code for the Raspberry
Pi model you’re using; for instance, the part for the Pi 3 v1.2 is found
under pins_3b2 {.

Here you’ll find pin_config and pin_defines sections. In the
pin_config section, add a line to configure the GPIO pin (we’re using
BCM 17) that you want to use for the flash:

pin@p17 { function = "output"; termination = "pull_down"; };

>STEP-03
Enable flash
Next, we need to associate the pin we added with the flash enable
function by editing it in the pin_define section. We simply change
absent to internal and add a line with the pin number, so it looks
like the following (overleaf):

You need to edit the device tree source to enable a GPIO pin for the flash

[Flash Photography using an LED]

44

ESSENTIALS

[Chapter One]44

pin-define@FLASH_0_ENABLE {
 type = "internal";
 number = <17>;
};

Note that it’s the FLASH_0 section that you need to alter: FLASH_1 is
for an optional privacy LED to come on after taking a picture, but we
won’t bother with that.

>STEP-04
Compile the blob
With the device tree source updated, we now need to compile it into a
binary blob, using the following command in a terminal window:

dtc -q -I dts -O dtb dt-blob.dts -o dt-blob.bin

This should output nothing. Next, you need to place the new binary
on the first partition of the SD card. In the case of non-NOOBS
Raspbian installs, this is generally /boot, so use:

sudo cp dt-blob.bin /boot/

In you installed Raspbian via NOOBS, however, you’ll need to do the
following instead:

sudo mkdir /mnt/recovery
sudo mount /dev/mmcblk0p1 /mnt/recovery
sudo cp dt-blob.bin /mnt/recovery
sudo umount /mnt/recovery
sudo rmdir /mnt/recovery

To activate the new device tree configuration, reboot the Raspberry Pi.

>STEP-05
Wire up the LED
Connect a white LED – we used a 5mm one – to your Raspberry Pi as
in Fig 1. The LED’s anode (long leg) is connected to our flash-enabled
GPIO pin, BCM 17. To be sure of the LED not burning out from excess

[Chapter Seven]

45

 [MASTER THE CAMERA MODULE]

current, you should add a low-ohmage resistor (such as 100Ω) between
the LED’s cathode (short leg) and Raspberry Pi’s GND pin. Depending
on the maximum forward voltage of your LED (ours was 3.5V), you may
be able to get away without using one, but it’s best to be safe.

If you want to use higher-powered or multiple LEDs, you’ll have
to think about powering them via a suitable driver circuit, with a
transistor wired to the flash pin. You may also need a separate power
supply. Note that, due to the Camera Module’s rolling shutter, only
an LED or equivalent flash is suitable: you can’t use a xenon flash.
Alternative flash/lighting methods include NeoPixel sticks and the
LISIPAROI light ring.

>STEP-06
Test it out
With the LED connected, we can now test out our flash with a short
Python program. In Python 3 (IDLE), create a new file and enter the
code from ch7listing1.py. The camera.flash_mode = 'on' line sets
the flash to trigger when we issue the capture command below; the

Wire the white LED to
GPIO 17 and GND, with
optional resistor

[Flash Photography using an LED]

46

ESSENTIALS

[Chapter One]46

LED will light up briefly before
the image capture, to enable the
camera to set the correct exposure
level for the extra illumination,
before the flash proper
is triggered.

If you want the flash to trigger
automatically only when it’s
dark enough, you can change the
penultimate line of the code to
camera.flash_mode = 'auto'.

>STEP-07
Low-light photography
In low-light scenarios where you don’t want to use a flash, you can
improve capture of images using a few tricks. By setting a high gain
combined with a long exposure time, the camera is able to gather the
maximum amount of light. Note that since the shutter_speed attribute
is constrained by the camera’s frame rate, we need to set a very slow
framerate. The code in ch7listing2.py captures an image with a six-
second exposure time: this is the maximum time for the v1 Camera
Module; if you have a v2 Camera Module, it can be extended to ten
seconds. The frame rate is set to a sixth of a second, while we set the
ISO to 800 for greater exposure. A pause of 30 seconds gives the camera
enough time to set gains and measure AWB (auto white balance).

Even a single LED can
provide illumination

for close-up
photography

Using a long
exposure, you can
shoot stills in very

dark settings

[Chapter Seven]

47

 [MASTER THE CAMERA MODULE]

Try running the script in a very dark setting: it may take some
time to run, including the 30-second pause and about 20 seconds for
the capture itself. Note: if you’re getting a timeout error, you may
need to do a full Raspbian upgrade with sudo apt-get update and
sudo apt-get dist-upgrade.

The particular camera settings in this script are only useful for very
low light conditions: in a less dark environment, the image produced
will be heavily overexposed, so you may need to increase the frame rate
and lower the shutter speed accordingly.

If your image has a green cast, you’ll need to alter the white balance
manually. Turn AWB off with camera.awb_mode = 'off'. Then set the
red/blue gains manually, such as with camera.awb_gains = (1.5, 1.5).

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pWtlwL

import picamera

with picamera.PiCamera() as camera:
 camera.flash_mode = 'on'
 camera.capture('foo.jpg')

from picamera import PiCamera
from time import sleep
from fractions import Fraction
Set a framerate of 1/6fps, then set shutter
speed to 6s and ISO to 800
camera = PiCamera(resolution=(1280, 720), framerate=Fraction(1, 6))
camera.shutter_speed = 6000000
camera.iso = 800
Give the camera a good long time to set gains and
measure AWB (you may wish to use fixed AWB instead)
sleep(30)
camera.exposure_mode = 'off'
Finally, capture an image with a 6s exposure. Due
to mode switching on the still port, this will take
longer than six seconds
camera.capture('dark.jpg')

ch7listing2.py

ch7listing1.py

[Flash Photography using an LED]

48

ESSENTIALS

[Chapter One]48

[CHAPTER EIGHT]

ESSENTIALS

48 [Chapter Eight]

Create a photo booth in Minecraft that takes photos of the real world.
What will you see on your travels?

MAKE A
MINECRAFT
PHOTO BOOTH

49

 [MASTER THE CAMERA MODULE]

ot only is Minecraft Pi great fun to play around with, you can
also use Python programming to manipulate the Minecraft
world and create various structures within it. Going beyond

this, you can even have it intereact with the real world. In this chapter,
we’ll be getting Minecraft to trigger the Camera Module with code
when the player enters a virtual photo booth.

The first thing you need to do is import the Minecraft API
(application programming interface). This enables you to connect
to Minecraft and program it with Python. You also need to import
Picamera’s PiCamera class to control the camera, and the time module
to add a small delay between taking each photo.

Open Minecraft from the applications menu, then enter an existing
world or create a new one. Move the Minecraft window to one side of
the screen. You’ll need to use the TAB key to take your mouse’s focus
away from the Minecraft window to move it. This will be needed later
when you switch between the Minecraft and Python windows.

Open Python 3 from the applications menu. This will open up the
Python IDLE code editor which you’ll use to write the photo booth
program; click New > Window to open a new window.

Enter the code from ch8listing1.py, or download it. Save with
CTRL+S and run the program with F5. You should see the message

N

[Make a Minecraft Photo Booth]

50

ESSENTIALS

[Chapter One]50

‘Find the photobooth’ appear in the Minecraft world. This is the first
part of the code. Stop the program running using CTRL+C, and we can
explain the rest.

Camera tests
Next, we’ll make sure the camera is set up. We’ve set the camera to
show a two-second preview, so that you can strike your pose and smile
before the picture is taken. The image is stored as a file called selfie.jpg
in your home directory.

Now, you need to create a photo booth in the Minecraft environment.
This is done manually, and the booth can be built wherever you want
to locate it. Using any block type, build your photo booth. It can be any

Steve is your ‘shutter’
in the Minecraft world:
move him to the booth
to take a photo

Construct your photo
booth however you wish;
just make sure the code
knows where it lives

Place the booth anywhere in your
world. Give it a special room in
your house, or use it as a trap to
see if someone is in your world

[Chapter Eight]

51

 [MASTER THE CAMERA MODULE]

shape you like, but it should have at least one block width of free
space inside so that the player can enter.

Once you have created your photo booth, you need to be able to move
your player inside and onto the trigger block. This is the block that the
player stands on to run the function that you wrote in the first step,
which will then trigger the camera. In the Minecraft environment,
your position is given in reference to the x, y, and z axes. Look at the
top-right of the window and you’ll see the x, y, and z coordinates of
your player – for example, 10.5, 9.0, -44.3. Assuming you are still in
the photo booth, then these are also the x, y, and z coordinates of the
trigger block in your booth.

Walk into your photo booth
Note down all three coordinates of your camera trigger block. When
you’re playing Minecraft, your program will need to verify that you
are inside the photo booth. If you are, then it will trigger the take_
the_pic function and take a picture with the camera. To do this,
Minecraft needs to know where you are in the world.

In order to find your position, you use the code x, y, x =
mc.player.getPos(). This saves the x, y, and z position of your player
into the variables x, y, and z. You can then use print(x) to print the
x value, or print(x, y, z) to see them all if you wish, by adding it to
the code. Now you know the position of the player, you can test to see
if they’re in the photo booth.

At this point we have a photo booth, the coordinates of the trigger
block, and code to control the Camera Module and take a picture.
The next part of the code is to test whether the program knows when
you’re in the photo booth. To do this, we create a loop which checks if
your player’s coordinates match the trigger block coordinates. If they
do, then you’re standing in the photo booth. For this, we use a simple
if statement, which is known as a conditional.

Change the if line in the code to ensure the coordinates you enter
are those of your photo booth. Save and run your code to test it: walk
into your photo booth and you should see the message ‘You are in the
photobooth!’ in the Minecraft window.

You will note that the if statement checks if the x value is greater
than or equal to 10.5: this is to ensure that it picks up the block, as it
could have a value of 10.6. Remember to replace the x, y, and z values

[Make a Minecraft Photo Booth]

52

ESSENTIALS

[Chapter One]52

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pWGyFA

with those from your photo booth. After the message is printed,
the same preview and camera snap will happen as before the while
loop. The loop then resets itself so you can enter it again and take
another photo!

from mcpi.minecraft import Minecraft
from picamera import PiCamera
from time import sleep

mc = Minecraft.create()
camera = PiCamera()

mc.postToChat("Find the photo booth")

camera.start_preview()
sleep(2)
camera.capture('/home/pi/selfie.jpg')
camera.stop_preview()

while True:
	 x, y, z = mc.player.getPos()

	 sleep(3)

	 if x >= 10.5 and y == 9.0 and z == -44.3:
		 mc.postToChat("You're in the photo booth!")
		 sleep(1)
		 mc.postToChat("Smile!")
		 sleep(1)
		 camera.start_preview()
		 sleep(2)
		 camera.capture('/home/pi/selfie.jpg')
		 camera.stop_preview()

	 sleep(3)

ch8listing1.py

[Chapter Eight]

53

 [MASTER THE CAMERA MODULE]

[CHAPTER NINE]

ESSENTIALS

MAKE A
SPY CAMERA

Set up a motion-activated spy
camera in your room

54

ESSENTIALS

[Chapter One]54

e’ve all been there. You’ve gone out for the day and you know
you closed your bedroom door but you come back and it’s
slightly ajar. Who’s been in there? Were they friend or foe? In

this chapter we’ll use the Camera Module as a spy camera that takes a
picture when anyone’s presence is detected by a passive infrared (PIR)
sensor. Here we’re using a Pi Zero v1.3 – which is easier to hide away due
to its size – with a camera adapter cable, but you can use any Raspberry
Pi model. Unless you want to power it from the mains, you’ll also need a
portable power supply such as a mobile phone battery pack.

>STEP-01
Getting started
First, connect your Camera Module to the Pi. Note that if you’re using a
Pi Zero, you’ll need a special adapter cable since its camera connector
is smaller: the cable’s silver connectors should face the Pi circuit
board. You’ll also need to have enabled the camera in Raspberry Pi
Configuration, as explained in chapter 1.

W

[YOU’LL NEED]

> �Camera
Module

> �PIR sensor
magpi.cc/
2gCQKPjD

> �Pi Zero
camera cable
adapter
(optional)
magpi.cc/
2gT2KwE

> �Portable
power supply
(optional)

> �Jumper wires

Jumper wires are used to
connect the PIR’s pins to the
Pi’s GPIO, either to the pins of a
header or to the hole contacts if
none has been attached

The passive infrared (PIR)
sensor will detect the
presence of anyone nearby

[Chapter Nine]

Fig 1 Connect a PIR sensor

55

 [MASTER THE CAMERA MODULE]

We’ll be using the Picamera Python library to trigger our spy camera,
so if you haven’t yet installed it, open a terminal window and enter:

sudo apt-get update
sudo apt-get install python-picamera python3-picamera

>STEP-02
Wire up the circuit
The circuit for this is fairly simple, especially as the PIR does not need a
resistor as part of its setup. The PIR comes with three connection pins:
VCC, GND, and OUT. If you can’t find their labels on the bottom of the
sensor, lift off the plastic golf-ball-like diffuser and you should see them
on the top of the board. VCC needs to be connected to a 5V power pin,
GND needs to go to a ground pin, and then there’s the OUT wire which will
be our input. We’re connecting it to GPIO 14.

If your Pi Zero has GPIO pins attached, you can use female-to-female
jumper wires to make the connections, as shown in Fig 1. Otherwise you
can loop the wire around the GPIO holes and use a bit of putty to keep
them in place, or a dab of glue from a glue gun on a low setting. Soldering
is an option if you want to create a permanent spy camera device.

>STEP-03
Write the code
Now we’ve got it all wired up, it’s time to start coding our spy
camera. In Python 3 (IDLE), create a new file, and enter the code
from ch9listing1.py. This script uses two libraries: GPIO Zero and the
standard Picamera library. GPIO Zero can be used to get a reading from
the PIR motion sensor very easily, which can then be tied into the
Picamera code so it takes a photo when motion is detected.

At the top, we import MotionSensor from GPIO Zero and PiCamera
from Picamera. Since we’ll be giving each photo a timestamp, we also
import datetime, along with sleep from the time library.

In a never-ending while True: loop, we use GPIO Zero’s handy
wait_for_motion function to pause the code until the PIR detects any
motion. When it does, we set the photo file name to the current time and
date, then take the picture. To enable the PIR to settle, we sleep for five
seconds before returning to the top of the loop to wait for motion again.

[Make a Spy Camera]

56

ESSENTIALS

[Chapter One]56

>STEP-04
Final preparations
You can run the code first to give it a test. You might want to change
the sensitivity and/or trigger time, which you can do by adjusting the
little orange potentiometer screws on the side of the PIR board: Sx
adjusts sensitivity, while Tx alters the trigger time.

Once that’s done, we’ll get the program to start automatically
whenever we boot up the Raspberry Pi. To do so, open up a terminal
window and edit the profile config file with sudo nano /etc/profile.
To the bottom of the file, add this line:

sudo python spy.py

In addition, to get the Raspberry Pi to boot up slightly faster and,
more importantly, to use a little less power so your battery lasts
longer, it’s best to get it to boot directly to the command line rather
than booting to the desktop. The easiest way to change this is to open
Preferences > Raspberry Pi Configuration from the desktop; in the
default System tab, change Boot to the ‘To CLI’ option. Alternatively,
open a terminal window and enter sudo raspi-config to open the
Configuration Tool; select Boot Options > Desktop / CLI and option B2 –
Console Autologin Text console.

Camouflaged against
Yoshi, the camera

will take candid
snaps of anyone who
comes close to your

game collection

[Chapter Nine]

57

 [MASTER THE CAMERA MODULE]

#!/usr/bin/env python

from gpiozero import MotionSensor
from picamera import PiCamera
from datetime import datetime
from time import sleep

sensor = MotionSensor(14)
camera = PiCamera()

while True:
 sensor.wait_for_motion()
 filename = datetime.now().strftime("%H.%M.%S_%Y-%m-%d.jpg")
 camera.capture(filename)
 sleep(5)

>STEP-05
Hide your camera
Now you need to find a good place to hide your camera. The default
cable for the camera is limited by length, while the PIR can have its
wires lengthened, so keep that in mind when building your system.
Alternatively, you could get a camera extender (magpi.cc/2ioVgFu) to
link your cable to a standard-width one. Longer standard-width cables
– of up to 2m – are also available if you are not using a Pi Zero.

Hiding the Pi and battery behind a plush toy or photo frame can work
well (you could even put a dummy photo up and cut a hole in it for the
camera to look through). The PIR has quite a wide range, so put it up
high where people are unlikely to look.

>STEP-06
Check for intruders
All you need to do now is plug in the power supply and the Pi Zero will
turn on and automatically run the script. Do some tests to make sure
the camera is facing the right way. Leave it running during the day and
then when you get back, plug it into a monitor, stop the script, and run
startx to get the GUI up. From here you can see the pictures it has
taken: crucial evidence to catch your dog or sibling red-handed.

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pWmGT5

ch9listing1.py

[Make a Spy Camera]

58

ESSENTIALS

[Chapter One]58

[CHAPTER TEN]

ESSENTIALS

58 [Chapter Ten]

Explore the underwater world with a Camera Module

TAKE YOUR
CAMERA
UNDERWATER

59

 [MASTER THE CAMERA MODULE]

here are plenty of underwater sports cameras available, but
they can be quite expensive, especially if you want to be able
to control them remotely. In this chapter we’re going to use

readily available Raspberry Pi add-ons to make a cheaper, customisable
camera unit. There are lots of options and alternative sources of
components for a project like this. For example, the Pimoroni Enviro
pHAT is a really useful option that can report back information about
the environment in which the camera is operating, especially how
much light is available. There is a fair bit of software configuration
involved, but example config files are available in the GitHub repo for
this chapter (magpi.cc/2pWo5Jz).

>STEP-01
Find a suitable container
Naturally, to protect the electronics inside it, the container for the
Raspberry Pi and camera needs to be watertight and to have at least a
see-through lid. You can find food container boxes with a very tight seal,
but these tend to be translucent rather than transparent. The size of box
will probably determine your choice of Pi model and power source. Pi
Zeros are great as they are so small, but unless you have a Zero W then

T

[YOU’LL NEED]

> �Camera
Module

> �Transparent,
waterproof
box –
magpi.cc/
2e8beBX

> �Portable
power source

> �hostapd and
dnsmasq
packages

> �Python Flask
library

> �WiFi dongle
(if not using
a Pi 3)

> �Enviro pHAT
(optional) –
magpi.cc/
29NHB3T

> �ZeroView
(optional) –
magpi.cc/
2e89hWt

You can save space by
using a LiPo battery (via a

boost regulator) instead
of a power bank

[Take your Camera Underwater]

60

ESSENTIALS

[Chapter One]60

you’ll need a WiFi dongle and shim, or a special micro-USB dongle
(magpi.cc/2ilhcyN). You can also save space by using a LiPo battery
instead of a power bank (although you’ll need a boost regulator too,
such as the Pimoroni Zero LiPo).

>STEP-02
Configure your Pi to be a WiFi access point
Start from a fresh Raspbian Jessie Lite SD card. Open up a terminal
window and enter the following commands to update the APT database
and install the required packages:

sudo apt-get update
sudo apt-get install -y dnsmasq hostapd python3 python3-
dev python3-flask python3-picamera

You’ll still have to get
pretty close to the

water yourself

[Chapter Ten]

61

 [MASTER THE CAMERA MODULE]

First, configure your wireless interface to have a static IP address
by editing the /etc/network/interfaces file:

sudo nano /etc/network/interfaces.

Then set it to not use DHCP by adding the following line to the end
of your /etc/dhcpcd.conf file:

denyinterfaces wlan0

Next, create the /etc/hostapd/hostapd.conf file using the example in
this tutorial’s GitHub repository as a template. Change the interface,
SSID, and passphrase parameters as needed.

Finally, edit /etc/dnsmasq.conf, ensuring that the IP addresses are
consistent with your settings in /etc/network/interfaces. Then reboot
your Raspberry Pi.

>STEP-03
Add the Enviro pHAT
Pimoroni’s add-on board enables you to send back environmental data
from the camera. You can either solder the Enviro pHAT directly onto
the Pi’s GPIO pins, or you can use the supplied female header if you
want to reuse it in other projects. After that, install the Python library
and dependencies using the following command:

curl -sS https://get.pimoroni.com/envirophat | bash

The Enviro pHAT’s library comes with some example programs; you
should run these to test that everything is working correctly.

Note: If you are not using an Enviro pHAT, you’ll need to comment
out some of the related code in the main ch10listing1.py script.

>STEP-04
Fitting everything into your container
To cut down on reflections and obtain the best possible images, the
camera should be as close to the transparent side of your container as
possible. The ZeroView from the Pi Hut is a clever mounting plate that
uses suction cups and will also hold your Pi Zero securely. Alternatively,

[Take your Camera Underwater]

62

ESSENTIALS

[Chapter One]62

you could make a mount out of
cardboard and glue this to the
inside of the container. Velcro tape
can be a good solution for power
sources (which normally need to be
removable for recharging).

>STEP-05
Add some code, HTML and CSS
Clone the project’s GitHub
repository onto your Pi. In a
terminal window, enter:

git clone https://github.
com/themagpimag/essentials-
cameraCh10

Then use the desktop File
Manager to move the Flask folder
within essentials-cameraCh10 to
the Pi’s home directory (or use the
mv command in a terminal window).

Flask is a small web framework
written in Python; it allows you
to create simple web services – in
this case, a webpage that allows

us to see data from the Enviro pHAT and the latest captured images. To
see the webpage from another computer, you just have to open a web
browser and enter your Pi’s static IP address.

Using the on-screen buttons, we can also switch between recording
modes (video or continuous still frames) or take photos on demand – by
selecting QuickSnap and then clicking the Take button. This control of
the camera is achieved via the Picamera library, which is used for the
three main functions – timelapse, video, and snapstart – defined in
our Python script. You could enhance the project by adding additional
exposure and shutter speed controls to your interface if you want.

Note: To see the latest image taken, you need to reload the webpage. If
you are using Chrome, you may need to hold SHIFT and press R to refresh.

The web
interface shows

environmental
information and
lets you control

the camera

[Chapter Ten]

63

 [MASTER THE CAMERA MODULE]

>STEP-06
Set the code to run at boot
Naturally, we’ll want the code to run automatically whenever the
Raspberry Pi boots up. To do so, add this line to your /etc/rc.local file,
immediately above the exit 0 line:

python3 /home/pi/Flask/ch10listing1.py &

It is also a good idea to configure the Raspberry Pi to only boot to the
command line rather than the desktop, as this uses a little less power
and prolongs battery life. The easiest way to change this is to open
Preferences > Raspberry Pi Configuration from the desktop; in the
default System tab, change Boot to the ‘To CLI’ option. Alternatively,
open a terminal window and enter sudo raspi-config to open the
Configuration Tool; select Boot Options > Desktop / CLI and option B2 –
Console Autologin Text console.

Now go and find somewhere wet! You might want to run a few tests
in the bath before venturing further afield.

A makeshift handle to
lower the waterproof
box into the water

[Take your Camera Underwater]

64

ESSENTIALS

[Chapter One]64

from flask import Flask, render_template,request, redirect, url_for
from envirophat import light,weather
import time, os, shutil
from picamera import PiCamera
from datetime import datetime, timedelta
from threading import Thread

app = Flask(__name__)

def timelapse(): # continuous shooting
 cam = PiCamera()
 cam.resolution = (1640,922)
 for filename in cam.capture_continuous('img{timestamp:%Y%m%d-%H%M%S}.jpg'):
 print('snap taken')
 print(btn1,btn2)
 shutil.copyfile(filename,'/home/pi/Flask/static/latest.jpg')
 if btn1 != 's':
 break
 cam.close()
 print('timelapse thread stopped')

def video(): # record a video
 cam = PiCamera()
 t='{:%Y%m%d-%H%M%S}'.format(datetime.now())
 cam.resolution = (1920,1080)
 cam.start_recording('vid'+t+'.h264')
 while btn1 == 'v':
 print(btn1,btn2)
 pass
 cam.stop_recording()
 cam.close()
 print('video thread stopped')

def snapstart(): # take pictures on demand
 cam = PiCamera()
 cam.resolution = (1640,922)

ch10listing1.py

64 [Chapter One]64 [Chapter Ten]

65

 [MASTER THE CAMERA MODULE]

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pjHcRm print('entered snapshot mode')

 global btn2
 while btn1 == 'q':
 time.sleep(0.1)
 if btn2 == 'a':
 print('taken snap: btn2 =' + btn2)
 t='{:%Y%m%d-%H%M%S}'.format(datetime.now())
 filename = 'snap'+t+'.jpg'
 cam.capture(filename)
 shutil.copyfile(filename,'/home/pi/Flask/static/latest.jpg')
 btn2 = 'o'
 print('btn2 =' + btn2)

 cam.close()
 print('exiting snaphot mode')

we are able to make two different requests on our webpage
GET = we just type in the url
POST = some sort of form submission like a button

@app.route('/', methods = ['POST','GET'])
def hello_world():

 status = 'off'
 global btn1
 btn1 = 'o'
 global btn2
 btn2 = 'o'
 message = 'All good '

 # if we make a post request on the webpage aka press button then do stuff
 if request.method == 'POST':

 # if we press the turn on button
 if request.form['submit'] == 'Video':

65[Take your Camera Underwater]

66

ESSENTIALS

[Chapter One]6666 [Chapter One]66

 print('BP: Recording video')
 status = 'video'
 btn1 = 'v'
 t2 = Thread(target=video)
 t2.start()
 message = 'All good'
 elif request.form['submit'] == 'Video Off':
 print('BP: Video off')
 status = 'Idle'
 btn1 = 'o'
 message = 'All good'
 elif request.form['submit'] == 'Stills':
 print('BP: Recording stills')
 btn1 = 's'
 t1 = Thread(target=timelapse)
 t1.start()
 status = 'stills'
 message = 'All good'
 elif request.form['submit'] == 'Stills Off':
 print('BP: stills off')
 status = 'Idle'
 btn1 = 'o'
 message = 'All good'
 elif request.form['submit'] == 'QuickSnap':
 print('BP: QuickSnap')
 status = 'Ready to snap'
 btn1 = 'q'
 t3 = Thread(target=snapstart)
 t3.start()
 message = 'All good'
 elif request.form['submit'] == 'QuickSnap Off':
 print('BP:QuickSnap off')
 status = 'Idle'
 btn1 = 'o'
 message = 'All good'
 elif request.form['submit'] == 'Take':
 print('BP:Take')
 status = 'Snapshot mode'

[Chapter Ten]

67

 [MASTER THE CAMERA MODULE]

67

 btn1 = 'q'
 btn2 = 'a'
 message = 'All good'
 elif request.form['submit'] == '_Take_':
 print('BP:Take error')
 status = 'Error'
 message = 'Enable QuickSnap first'
 btn1 = 'o'
 else:
 pass

 temp = round(weather.temperature(),2) #temperature from Enviro pHat
 press = int(weather.pressure()) # pressure
 lux = light.light() # light levels
 df = os.statvfs('/') # check if we're running out of disk space
 df_size = df.f_frsize * df.f_blocks
 df_avail = df.f_frsize * df.f_bfree
 df_pc = round(100 -(100 * df_avail/df_size),1)
 print(btn1, btn2)

 # the default page to display will be our template with our template
variables
 return render_template('index2.html', message= message,
status=status, temp=temp, press=press, lux=lux, df_pc=df_pc, btn1 = btn1)

if __name__ == "__main__":

 # let's launch our webpage!
 # do 0.0.0.0 so that we can log into this webpage
 # using another computer on the same network later
 # specify port 80 rather than default 5000
 app.run(host='0.0.0.0',port=80,debug=True)

[Take your Camera Underwater]

68

ESSENTIALS

[Chapter One]68

[CHAPTER ELEVEN]

ESSENTIALS

68 [Chapter Eleven]

Stream video and regular stills to a remote computer

LIVE-STREAM
VIDEO
& STILLS

69

 [MASTER THE CAMERA MODULE]

ne of the drawbacks of using SSH or VNC to access your Camera
Module-equipped Pi remotely from another computer is that
you can’t view the camera preview via these methods. To get

around this, you’ll need to stream live video across the network. While
there are various methods available for doing this, in this chapter we’ll
show you how to create a client-server setup for video streaming using
the Picamera Python library. We’ll also explore how to send a stream of
stills over the network.

>STEP-01
Server-side script
Note: If you are using a Linux machine for playback of the video
stream, there is an easier method, explained in step 3.

First, we’ll write a Python server script, ch11listing1.py, for the
remote computer that will read the video stream (which we’ve yet to
write to the code to create) and pipe it to a media player. Note that you
can’t use a Raspberry Pi for playback, since neither VLC nor MPlayer is
capable of using the GPU for decoding. They thus attempt to perform
video decoding on the Pi’s CPU, which is not powerful enough for the
task. Therefore you will need to run this script on a faster machine,
although even an Atom-powered netbook should be quick enough for
the task at non-HD resolutions.

After importing the libraries required at the top of the script, we
start listening for connections on 0.0.0.0:8000, i.e. all IP addresses on
the local network. We then accept a single connection and make a file-
like object out of it.

In the try: block, we run a media player from the command line to
view it – if you want to use MPlayer instead of VLC, add a # to the start
of the cmdline = ['vlc… line to comment it out, and remove the #
from the cmdline = ['mplayer… line.

In the while True: loop, we repeatedly read 1kB of data from the
connection and write it to the selected media player’s stdin (standard
input) to display it.

Note: If you run this script on Windows or Mac OS X, you will
probably need to provide a complete path to the VLC or MPlayer
executable/app. If you run the script on Mac OS X, and are using Python
installed from MacPorts, please ensure you have also installed VLC or
MPlayer from MacPorts.

O[YOU’LL NEED]

> �Camera
Module

> �WiFi dongle
(if not using
a Pi 3)

> �Remote
computer

[Live-stream Video & Stills]

70

ESSENTIALS

[Chapter One]70

>STEP-02
Client-side script
Now we’ll create a client script, ch11listing2.py, on the Raspberry Pi
with the Camera Module equipped. This will connect to the network
socket of our server (playback) script to send a video stream to it.

After importing the required libraries at the top, we connect a client
socket to my_server:8000 – you’ll need to change my_server to the
host name of your server (the computer that will playing back the
stream). If you are using a Linux PC or Mac, just type hostname in a
terminal window to find it out; in Windows, it’s the Computer Name in
Control Panel > System.

We then create a file-like object from the network socket before
triggering the camera to start recording. In this example we’re using a
resolution of 640 × 480 with a frame rate of 24fps, but you can adjust
these numbers to your requirements. We’ve also set the camera to
record for 60 seconds with camera.wait_recording(60); again, you
can change this number to suit your preference.

Run the server script, then the client script. You should see the
video stream played in your chosen media player. You may notice some
latency; this is normal and due to buffering by the media player.

The remote server
script reads the video

stream and pipes it
to a media player

[Chapter Eleven]

71

 [MASTER THE CAMERA MODULE]

>STEP-03
Server-side script
As mentioned above, if you’re using a Linux PC for playback of the
video stream, there is a much quicker and easier way to achieve what
we’ve done in steps 1 and 2. On the server (playback) machine, enter
the following command into a terminal window:

nc -l 8000 | vlc --demux h264 -

Then, on the client – the Raspberry Pi with the Camera Module –
issue the following command:

raspivid -w 640 -h 480 -t 60000 -o - | nc my_server 8000

…replacing my_server with the server’s host name.

>STEP-04
Switch it around
An alternative method is to reverse the direction so that the Raspberry
Pi acts as a server. We can then get it to wait for a connection from the
client before streaming video. Enter the ch11listing3.py example on
the Pi and run it.

The big advantage of this method is that you then only need to use a
single command to initiate playback on the remote computer:

vlc tcp/h264://my_pi_
address:8000/

…replacing my_pi_
address with your Pi’s
IP address (discovered
using ifconfig).
Or, in VLC running on
the desktop, go to File
> Open Network and
enter the same address:
tcp/h264://my_pi_
address:8000/

An alternative is
to set the Pi as the
server and open
the network source
in VLC or another
media player

[Live-stream Video & Stills]

72

ESSENTIALS

[Chapter One]72

>STEP-05
Stream stills
So, we’ve streamed video over the network. Now let’s stream camera
stills taken at regular intervals in a variation on a standard time-lapse
setup. Entered on a remote computer (which could be another Pi), the
server script, ch11listing4.py, starts a socket to listen for a connection
from the Raspberry Pi with the camera. At the top, we import the
required libraries; here we’re using PIL to read JPEG files, but alternatives
include OpenCV and GraphicsMagick. The script then checks the image
length and, if it is not zero, constructs a stream to hold the image data
and then reads it from the connection. The image.show() command
will open each image in the default image viewer: it can create a lot of
windows if left going for a while! Now to create a client script…

>STEP-06
Stills client script
On the Raspberry Pi with the camera, the client script, ch11listing5.py,
sends a continual stream of images to the server. We’ll use a very simple
protocol for communication: first, the length of the image will be sent
as a 32-bit integer (in little-endian format), then this will be followed
by the bytes of image data. If the length is 0, this indicates that the
connection should be closed as no more images will be forthcoming. As
before, for connecting the socket, you should replace my_server in the

The stills are
streamed to the

remote computer (in
this case another Pi)

and displayed

[Chapter Eleven]

73

 [MASTER THE CAMERA MODULE]

script with the host name of the remote computer. We then make a
file-like object out of the connection. Before constructing the stream,
we start a preview to let the camera warm up for two seconds. Further
down, the line if time.time() - start > 30: limits the streaming
period to 30 seconds, though you can alter this to suit your needs.

Note that the server script should be run first to ensure there’s a
listening socket ready to accept a connection from the client script.

Taking it further, you may want to add a way of closing each image
window before the next is generated. Also, rather than simply showing
the images, you could use the numerous functions of PIL to process
them (see magpi.cc/2iiDgcC).

import socket
import subprocess
Start a socket listening for connections on 0.0.0.0:8000
(0.0.0.0 means all interfaces)
server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)
Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('rb')
try:
 # Run a viewer with an appropriate command line. Uncomment the mplayer
 # version if you would prefer to use mplayer instead of VLC
 cmdline = ['vlc', '--demux', 'h264', '-']
 #cmdline = ['mplayer', '-fps', '25', '-cache', '1024', '-']
 player = subprocess.Popen(cmdline, stdin=subprocess.PIPE)
 while True:
 # Repeatedly read 1k of data from the connection
 # and write it to the media player's stdin
 data = connection.read(1024)
 if not data:
 break
 player.stdin.write(data)
finally:
 connection.close()
 server_socket.close()
 player.terminate()

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pjD97G

ch11listing1.py

[Live-stream Video & Stills]

74

ESSENTIALS

[Chapter One]74

import socket
import time
import picamera

Connect a client socket to my_server:8000
(change my_server to the hostname of your server)
client_socket = socket.socket()
client_socket.connect(('my_server', 8000))

Make a file-like object out of the connection
connection = client_socket.makefile('wb')
try:
 camera = picamera.PiCamera()
 camera.resolution = (640, 480)
 camera.framerate = 24
 # Start a preview and let the camera warm up
 camera.start_preview()
 time.sleep(2)
 # Start recording, sending the output to the connection for 60
 # seconds, then stop
 camera.start_recording(connection, format='h264')
 camera.wait_recording(60)
 camera.stop_recording()
finally:
 connection.close()
 client_socket.close()

ch11listing2.py

import socket
import time
import picamera

camera = picamera.PiCamera()
camera.resolution = (640, 480)
camera.framerate = 24

ch11listing3.py

[Chapter Eleven]

75

 [MASTER THE CAMERA MODULE]

server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like
object out of it
connection = server_socket.accept()[0].makefile('wb')
try:
 camera.start_recording(connection, format='h264')
 camera.wait_recording(60)
 camera.stop_recording()
finally:
 connection.close()
 server_socket.close()

import io
import socket
import struct
from time import sleep
from PIL import Image

Start a socket listening for connections on 0.0.0.0:8000
(0.0.0.0 means all interfaces)
server_socket = socket.socket()
server_socket.bind(('0.0.0.0', 8000))
server_socket.listen(0)

Accept a single connection and make a file-like object out of it
connection = server_socket.accept()[0].makefile('rb')
try:
 while True:
 # Read the length of the image as a 32-bit unsigned int.
 # If the length is zero, quit the loop
 image_len = struct.unpack('<L', connection.read(struct.calcsize('<L')))[0]
 if not image_len:

ch11listing4.py

[Live-stream Video & Stills]

76

ESSENTIALS

[Chapter One]76

import io
import socket
import struct
import time
import picamera

Connect a client socket to my_server:8000
(change my_server to the hostname of your server)

client_socket = socket.socket()
client_socket.connect(('my_server', 8000))

Make a file-like object out of the connection

connection = client_socket.makefile('wb')
try:
 camera = picamera.PiCamera()
 camera.resolution = (640, 480)
 # Start a preview and let the camera warm up for
 camera.start_preview()
 time.sleep(2)

ch11listing5.py

 break
 # Construct a stream to hold the image data and read the image
 # data from the connection
 image_stream = io.BytesIO()
 image_stream.write(connection.read(image_len))
 # Rewind the stream, open it as an image with PIL
 # and show it in the default image viewer
 image_stream.seek(0)
 image = Image.open(image_stream)
 image.show()
finally:
 connection.close()
 server_socket.close()

[Chapter Eleven]

77

 [MASTER THE CAMERA MODULE]

 # Note the start time and construct a stream to
 # hold image data temporarily (we could write it
 # directly to connection but in this case we want
 # to find out the size of each capture first to keep
 # our protocol simple)

 start = time.time()
 stream = io.BytesIO()
 for foo in camera.capture_continuous(stream, 'jpeg'):

 # Write the length of the capture to the stream
 # and flush to ensure it actually gets sent

 connection.write(struct.pack('<L', stream.tell()))
 connection.flush()

 # Rewind the stream and send the image data over the wire

 stream.seek(0)
 connection.write(stream.read())

 # If we've been capturing for more than 30 seconds, quit

 if time.time() - start > 30:
 break

 # Reset the stream for the next capture

 stream.seek(0)
 stream.truncate()

 # Write a length of zero to the stream to signal we're done

 connection.write(struct.pack('<L', 0))
finally:
 connection.close()
 client_socket.close()

[Live-stream Video & Stills]

78

ESSENTIALS

[Chapter One]78

[CHAPTER TWELVE]

ESSENTIALS

78 [Chapter Twelve]

Protect your home using motionEyeOS

SET UP A
SECURITY
CAMERA

79

 [MASTER THE CAMERA MODULE]

[CHAPTER TWELVE]

he specialist motionEyeOS distro turns your Raspberry Pi and
Camera Module into a fully fledged security camera that can
stream a live view, detect motion, and capture video and stills. In

this chapter we’ll show you how to install it, get started using it, and even
send custom push notifications to your phone when motion is detected!

>STEP-01
Install motionEyeOS
motionEyeOS is a Linux distribution that turns a single-board computer
into a video surveillance system. To see the list of supported devices and
download the relevant distro image, go to magpi.cc/ 1UCw1Jk. Note that
there are three different versions for Raspberry Pi, so make sure you
download the correct one for your model.

With the image downloaded, you can write it to an SD card in a similar
fashion to Raspbian, by using dd or Etcher, for example. However,
motionEyeOS’s creator provides a write utility for Linux and Mac OS X.
The advantage of using this is that you can preconfigure the wireless
network connection so that you don’t have to connect the Pi to your
router via Ethernet at first. This is particularly useful if you are using a Pi
Zero, which lacks an Ethernet port. To download the utility and make it
executable, enter the following commands in a terminal window:

curl https://raw.githubusercontent.com/ccrisan/
motioneyeos/master/writeimage.sh
chmod 775 writeimage.sh

To write to the SD card and preconfigure the wireless connection, use:

./writeimage.sh -d /dev/yoursdcard -i "/path/to/
motioneyeos.img" -n 'yournet:yourkey'

…replacing the generic elements with your own details.

>STEP-02
Alternative wireless method
Another way of preconfiguring wireless connectivity, if you’re using a
standard card writing method, is to create a file called wpa_supplicant.
conf containing these lines (with your router’s SSID and password):

T[YOU’LL NEED]

> �Camera
Module

> �motionEyeOS

> �WiFi dongle
(if not using
a Pi 3)

> �Pushover app

> �Remote
computer

[Set up a Security Camera]

80

ESSENTIALS

[Chapter One]80

update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
 scan_ssid=1
 ssid="your_network"
 psk="your_password"
}

You will need to turn the file into an executable with chmod +x
wpa_supplicant.conf before moving it to the boot partition of your
SD card (alongside start.elf etc.). Note that you must do so before
attempting to boot it on the Pi for the first time.

>STEP-03
Remote access
Insert the SD card into your Pi and boot it. There is no need to attach
it to a monitor as it won’t show much and it’s intended to be run
headless. Assuming you’ve preconfigured the wireless connection, it
should connect to the router after a couple of minutes. If you have any
problems, check the wireless details you entered; if your router syncs
2.4GHz and 5GHz on the same SSID, you may need to split this into
separate SSIDs to get a connection. If you’re still having trouble, you
can connect to the router via an Ethernet cable and set up a wireless
connection from the remote web interface later.

Find the IP address
of the motionEyeOS

Pi by visiting your
router’s homepage

[Chapter Twelve]

81

 [MASTER THE CAMERA MODULE]

Either way, to find the Pi’s IP address, just visit your router’s
homepage (e.g. 192.168.1.254) and view the list of attached devices;
your Pi will appear as meye- followed by a hex number. Enter the
IP address for it in a web browser on a remote computer. You will
be presented with a login screen: just enter the default admin user
name without a password. You can add a password later, as well as
a standard user.

>STEP-04
Camera features
Once you’re logged in, you will be able to see the live view from the
camera, which you can also expand. Open the options menu on the left
(the icon is three horizontal parallel lines) to access numerous options;
change Layout Columns to 1 to enlarge the standard camera view.

Turning on Advanced Settings reveals a host of additional options.
These include camera settings such as video resolution and rotation.
You can also adjust motion detection settings and options for capturing
stills and movies, which can be viewed via the icons shown on the
camera view after you click on it.

The Motion Notifications panel enables you to send yourself an email
whenever motion is detected, or call a web hook, or run a command.
This last option is what we’ll be using for our custom notifications
using the Pushover service…

>STEP-05
Create Pushover app
Pushover has a great, easy-to-use
API. Before we start, we need to
register an application with it. Click
on Register Application under the
Your Applications heading on the
Pushover website (pushover.net).
Give your app a name – something
like RaspiMotion – and then
make sure the type is Application.
Give your app a quick description
(e.g. ‘Push notifications sent by
my Raspberry Pi’) and, if you are

Intruder alert! Any
change in the camera
view will be detected,
triggering stills or
video capture

[Set up a Security Camera]

82

ESSENTIALS

[Chapter One]82

feeling creative, upload a custom icon which will show in your Pushover
client app whenever a notification is sent.

Once you have created your application, you should have access to an
API token/key. This is a unique combination of numbers and letters: keep
it a secret! You’ll also need your user key, which is shown once you log
into Pushover’s website. Now you have an app and your API and user keys.
The next thing is to write a Python script to tell your Raspberry Pi to work
its magic once the script is called upon by motionEyeOS.

>STEP-06
Write Python script
You’ll need to SSH into the Pi from a terminal window on a remote
computer (or PuTTY on Windows) to do this, using ssh admin@IP-
address. The default user is admin, with no password. Our script needs to
live in the data folder, so go there and create ch12listing1.py using nano:

cd /data
nano ch12listing1.py

Once here, you’ll need to type in the code listing, while also
including your API token and user key where required. As with any
script, we need to make sure it can be executed, otherwise it’s nothing
more than a fancy collection of text! From the command line, make
sure you’re in the data folder and then type:

chmod +x ch12listing1.py

Or, if you are using WinSCP, select the ch12listing1.py file in the
data folder, then press F9. In the window that appears, change the
permissions to 0755 and then click ‘OK’ to confirm.

>STEP-07
Trigger the script
Now that we have our script, we need to tell motionEyeOS to use it when
it detects motion. To do this, log in, go to the Motion Notifications menu
and turn on the ‘Run A Command’ option. You then need to specify which
command to run, which will be the Python script you just created – this is
/data/ch12listing1.py. Then click on Apply to confirm the changes.

[Chapter Twelve]

83

 [MASTER THE CAMERA MODULE]

To test it out, you’ll need the Pushover app installed on your
smartphone or tablet. Wave your hand in front of your camera (or you
can do a dance if you’re feeling energetic!) and then shortly afterwards
you should receive a notification via Pushover, warning you that
motion has been detected. Feel free to experiment with the script to
customise the message displayed and sound played in Pushover.

In the Motion Notifications menu, set Run A Command to the path of your script

import httplib, urllib

conn = httplib.HTTPSConnection("api.pushover.net:443")
conn.request("POST", "/1/messages.json",
 urllib.urlencode({
 "token": "APP_TOKEN", # Insert app token here
 "user": "USER_TOKEN", # Insert user token here
 "html": "1", # 1 for HTML, 0 to disable
 "title": "Motion Detected!", # Title of the message
 "message": "Front Door camera!", # Content of the message
 "url": "http://IP.ADD.RE.SS", # Link to be included in message
 "url_title": "View live stream", # Text for the link
 "sound": "siren", # Define the sound played	
 }), { "Content-type": "application/x-www-form-urlencoded" })
conn.getresponse()

Language
>PYTHON 3

DOWNLOAD:
magpi.cc/2pjKhB1

ch12listing1.py

[Set up a Security Camera]

84

ESSENTIALS

[Chapter One]84

[CHAPTER THIRTEEN]

ESSENTIALS

84 [Chapter Thirteen]

Observe nesting birds without disturbing them

INSTALL A
BIRD BOX
CAMERA

85

 [MASTER THE CAMERA MODULE]

hile it’s simple enough to set up a Camera Module in a
weatherproof box to observe wildlife in your garden, for this
project we’ll be installing a camera inside a bird box. Since it’ll

be dark inside, and we can’t use a standard light source, we’ll need
to use a Pi NoIR Camera Module. ‘NoIR’ stands for ‘no infrared’, as it
omits the IR filter found in the standard camera. This enables you to
use an infrared light source to see in the dark. Note that we’ll need to
adjust the fixed focus of the camera by unscrewing the lens.

>STEP-01
Set up the Pi NoIR
We can’t use a standard light source inside the bird box, since this
could attract insects and predators, and so would deter any birds from
nesting there. So we need to use a Pi NoIR Camera Module. Apart from
the omission of an infrared filter, this works exactly the same way as
the standard camera, so you can connect it up to your Raspberry Pi as
in chapter 1 and use all the same terminal commands. So, for instance,
you can obtain a video preview with:

raspivid -t 0

You’ll notice that everything looks a little strange; this is because
you’re looking at a combination of visible light and infrared light. To
test it out in darkness, turn the lights off, aim a TV remote control

W

[YOU’LL NEED]

> �Pi NoIR
Camera
Module

> �Bird box

> �IR LED

> �Female-
to-female
jumper wires

> �Sharp tool
and tweezers

> �Power source

> �WiFi dongle
(if not using
a Pi 3) or
Ethernet
cable

The longest leg of the
IR LED is the anode:
connect it to a 5V pin

The 222-ohm resistor
limits the current flowing
through the LED

[Install a Bird Box Camera]

Fig 1 Connect an infrared LED

86

ESSENTIALS

[Chapter One]86

at your face and press the buttons to produce an IR light source. You
should see your face illuminated in the darkness. The image will be
black and white (greyscale), because there are no wavelengths of light
from the visible spectrum being detected. However, a black and white
image is good enough to allow you to watch what’s happening inside a
bird box, and it doesn’t disturb or interfere with the birds in any way.
Press CTRL+C to exit the preview.

>STEP-02
Wire up an IR LED
We’ll need a suitable infrared light source in the bird box. In this
example we’re using a single IR LED, but alternatives include small
IR lamps and the IR version of the LISIPAROI (lisiparoi.com). Our
890nm IR LED is an identical component to the ones found inside TV
remote controls; the only difference is that we’re going to keep it on
constantly when shooting video or stills in the bird box.

As usual, you should turn off the Raspberry Pi before connecting
anything up to it. If you’ve wired up an LED to the Pi GPIO pins before,
then please note that this LED needs to be done slightly differently.
Since an infrared LED requires more current than the GPIO pins can
provide, it needs to be connected directly to the 5V supply of the Pi
with a 220‑ohm resistor inline; without the resistor, the current will be
too high and the LED will burn out after about ten seconds.

Fig 1 (page 85) shows how the LED should be wired up. You’ll notice
that the LED has two legs, one slightly longer than the other. The
longer of the two is called the anode and the shorter is the cathode. The
LED needs power to flow into the anode and out of the cathode; if you
get the polarity wrong then nothing will happen.

Use a couple of female-to-female jumper wires to make the
following connections. Connect the anode (long leg) to 5V, which is
the first pin on the outside row on the Pi. Connect the cathode (short
leg) to the 220-ohm resistor. Connect the other side of the resistor to
ground, which is the third pin in on the outside row on the Pi

>STEP-03
Test the LED
With everything wired up correctly, turn the Pi back on. You’ll notice
that the infrared LED doesn’t appear to be working, but in fact it is.

[Chapter Thirteen]

87

 [MASTER THE CAMERA MODULE]

Your human eyes can’t see it, but the Pi NoIR camera can. Turn on
the camera preview again with raspivid -t 0. Hold the LED in front
of the camera and you should see that it is lit. If not, then you may have
mixed up the polarity of the anode and cathode. Double-check your
wiring against the Fig 1 diagram. Try turning out the lights and aiming
the LED at yourself; don’t look directly into it, however, as infrared
light can still cause harm to your eyes. You’ll see from the Pi NoIR
camera preview that it will illuminate you quite well. Press CTRL+C
when you want to exit.

>STEP-04
Remove lens glue
By default, the Pi NoIR Camera Module has a fixed focal length of
50cm and depth of field of 50cm to infinity. This means that objects
will only appear in focus if they’re at least 50cm away from the lens
of the camera. The bird box which we are using in this example has an
interior height of 18cm, and yours may be similar, so we’ll definitely
need to know how to shorten the focal length.

Like the standard Camera Module, the Pi NoIR has a lens that
can rotate to adjust the focus. It’s held in place by three blobs of
glue, however, marked as A, B, and C in Fig 2. With the camera

Fig 2 The three blobs
of glue securing the
lens are found at
positions A, B, and C

[Install a Bird Box Camera]

A B

C

88

ESSENTIALS

[Chapter One]88

disconnected, you’ll need to dig these out using a sharp tool like a
needle, scalpel, or a dental pick, as in Fig 3. It’s easier than it sounds
and only takes about five minutes, but be careful not to cut your
fingers. Children should only do this under adult supervision for
safety, especially if a scalpel is being used.

The orange connector with the word SUNNY printed on it can pop out
when you’re scraping the glue away; don’t worry, though, because it
pops right back in. While the camera may look a bit scruffy afterwards,
it’s unlikely that you’ll damage it unless you’re very heavy-handed, in
which case it’s your own responsibility!

>STEP-05
Adjust the focus
Once you’re satisfied that you have removed all of the glue, use a pair
of tweezers or jewellery pliers to grip the inner section of the camera
as shown in Fig 4; you should then be able to turn it. Carefully rotate
it anticlockwise a few times; be careful not to rotate the lens too far,
otherwise it will pop out, and it can be a bit tricky to get it back in and
on the thread. If this does happen, though, just put it back in gently

Fig 3 Be careful
not to damage the

lens, or your fingers,
while scraping away

the glue

[Chapter Thirteen]

89

 [MASTER THE CAMERA MODULE]

and rotate clockwise until it catches. You won’t need to re-glue the
lens after adjusting it, as it should stay in place.

Now connect the camera back up to the Raspberry Pi. Place a test
object with some fine detail – such as a watch or business card – in
the bottom of the bird box, then remove its roof (remove the screw),
hold the camera at the approximate height of the roof, and look at the
camera preview. You may wish to put something under the object at
this point to simulate the height of a nest, to make doubly sure that
the birds will be in focus. Remember that once birds move in, you can’t
come back and adjust the camera if the focus is wrong.

>STEP-06
Install the camera
Place your finger on the roof, approximately above the centre of the
main body of the bird box. Lift up the roof and place your thumb
directly below your finger, so that you’re pinching the lid as shown
in Fig 5 (overleaf). Your thumb is now where the camera needs to
be. Take a pen and mark this spot with a cross. Cut out a rectangle of
cardboard approximately 4cm × 2cm (1.5˝ × 0.75˝) and fold it in half

Fig 4 Use tweezers
to rotate the lens
anticlockwise
a few times

[Install a Bird Box Camera]

90

ESSENTIALS

[Chapter One]90

lengthways. Use some tape to secure
it to the underside of the roof so
that it’s a few millimetres below
the cross. This is going to be used to
compensate for the angle of the roof,
so that the camera points directly
into the middle of the bird box.

Next, take the Pi NoIR and slide
the flexible cable down between
the roof hinge and the back wall of
the box as shown in Fig 6. Do this
with the tin connectors facing away
from the back wall. In our example,
we removed the two middle staples
holding the hinge in place, as this
enabled the flex to exit the bird box
more neatly.

Take some tape and put it across
the top of the Pi NoIR board: do not
cover the camera lens! Secure the
camera in place so that the central
lens is directly over the cross that you
drew earlier. The camera should sit
at an angle as in Fig 7. Close the lid
and inspect the camera angle from
the side: it needs to point directly at
the centre of the base of the box. If it
doesn’t look right, go back and adjust
it until you’re happy. An alternative
to taping it in place would be to use
the four mounting holes to screw it to
the lid using a wedge of wood instead
of the cardboard.

>STEP-07
Add the LED
Secure the infrared LED to the
underside of the roof. Don’t attach

Fig 5 Pinch the lid and then use a pen to mark a cross where your
thumb is

Fig 6 Slide the camera cable between the roof hinge and the back
wall of the box

Fig 7 When taped in place, the camera
should sit at an angle to compensate for
the roof slope

[Chapter Thirteen]

91

 [MASTER THE CAMERA MODULE]

it too close to the camera, or you’ll see a lot of glare on the video. The
LED can go anywhere, but it can help to bend its legs by 90 degrees, as
shown in Fig 8, and secure it to the roof that way. You may also wish to
blank off the end of the LED with correction fluid or by filing it down
with a nail file. This will prevent any spotlight effect on the video and
give a more diffuse light.

>STEP-08
Test it again
Now reconnect the Raspberry Pi and test the focus once again. We
recommend connecting the camera flex coming from the back of the
bird box to the Pi first. Then connect the LED and resistor, followed by
the screen, keyboard, and finally the power supply. When testing this
setup, it can be helpful to rest the Raspberry Pi upside-down on the
roof of the bird box, but do whatever works best for you.

Boot up the Raspberry Pi as usual and then start the video preview with
raspivid -t 0. With the roof of the bird box closed, you should be
able to see the inside in black and white. This shows that the infrared
illumination is working; you should even be able to cover the hole and
still see the inside. It will look similar to Fig 9 (overleaf), but will be

Fig 8 The IR LED
is taped to the
underside of the
roof, not too close
to the camera

[Install a Bird Box Camera]

92

ESSENTIALS

[Chapter One]92

Fig 9 Make sure that
the test object is

raised up slightly and
the text is in focus

slightly more zoomed in. This is because this image was taken using
the raspistill command and not raspivid. If you can’t see anything
at all, then it’s likely the LED is not wired up correctly: double-check
the wiring and the polarity of the anode and cathode.

It’s now helpful to use an object with some black-on-white text
inside the bird box to verify the focus, which is where the watch or
business card comes in. Ensure that the text is in focus and readable;
adjust the camera focus again as necessary before continuing.
Remember to compensate for the nest height. Press CTRL+C when
you want to stop the camera preview.

>STEP-09
Turn off red LED
Another aspect to consider is the red LED on the (v1) camera. By
default, it comes on whenever the camera is on. This will be a huge
deterrent to birds moving in, so you should disable it. This can be done
by editing the Raspberry Pi configuration file. Enter the command:

sudo nano /boot/config.txt

[Chapter Thirteen]

93

 [MASTER THE CAMERA MODULE]

Add the following line to the end of the file:

disable_camera_led=1

Press CTRL+X, then Y and ENTER to save and quit. The changes will
only take effect after a reboot: sudo reboot.

>STEP-10
Weatherproof it
While you can attach the Raspberry Pi directly to the outside of the bird
box, an alternative is to use a longer camera cable. Either way, you’ll
need to put the Pi inside a weatherproof box. Preventing water getting
into the bird box should also be a priority. The roof could be sealed
using silicone sealant, which is often used to seal the edges of windows
and bathroom sinks. Choosing a site which is beneath the overhang of
an existing roof will help a lot, as this means that the bird box will not
be rained on directly.

Lastly, you need to consider how you will get power and an internet
connection to the bird box? You could use a wireless USB dongle, or the
built-in wireless LAN of a Raspberry Pi 3, but Ethernet is more reliable
for streaming video, especially in built-up areas that have a lot of
wireless traffic.

>STEP-11
Obtain images
With everything installed, connected, and powered up, you can SSH
into your Pi from another computer (see magpi.cc/1GULmTr for
details) to control it remotely. You are then able to enter standard
terminal commands such as raspistill and raspivid to obtain stills
(including time-lapses – see chapter 3) and video footage. You could
also write one or more Python scripts using the Picamera library.

Note that you can’t view the live camera preview via SSH (or VNC).
However, you are able to live-stream video from the bird box. This
could be achieved using a client-server setup, as described in chapter
11, to pipe the output to a video player on the client computer.
Alternatively, you could make use of an internet video service
offering live streaming, such as YouTube (see magpi.cc/2j8rWnv
for details).

[Install a Bird Box Camera]

94

ESSENTIALS

[Chapter One]94

[CHAPTER FOURTEEN]

ESSENTIALS

94 [Chapter Fourteen]

To help you get to grips with the Camera Module, here’s a reference
guide to the hardware, commands, and the Picamera Python library

QUICK
REFERENCE

95

 [MASTER THE CAMERA MODULE]

01. �CAMERA
HARDWARE
Find out all about the Camera Module hardware and its
sensor input modes

he first thing to note about the Raspberry Pi Camera Module is
that it’s akin to a smartphone camera, most notably because
it features a rolling shutter. So, when capturing an image,

it reads out the pixels from the sensor one row at a time. Unlike the
global shutter on a DSLR camera, it also lacks a physical shutter that
covers the sensor when not in use.

In addition, the Camera Module acts more like a video camera than
a stills camera, as it is rarely idle. Once initialised, it is constantly
streaming rows of frames down the ribbon cable to the Raspberry Pi
for processing. Numerous background tasks include automatic gain
control, exposure time, and white balance. That’s why it’s best to give
it a couple of seconds or more once activated, to adjust the exposure
levels and gains before capturing an image.

For more details on how the camera hardware works, see the
Picamera documentation at magpi.cc/2kdHDql.

T

The Camera Module has a fixed focal length of 50cm and depth of

field of 50cm to infinity. This means that objects will only appear

in focus if they’re at least 50cm away from the lens of the camera.

However, it is possible to alter this by carefully scraping away the

blobs of glue holding the lens in place and then unscrewing it

slightly to shorten the focal length – this is done at your own risk!

See steps 4 and 5 in chapter 13 for more details.

[FIXED FOCUS]

[Quick Reference]

96

ESSENTIALS

[Chapter One]96

Camera Module versions
The original Camera Module features a 5MP OmniVision sensor, while
the later v2 has an 8MP Sony IMX29. Here are the key specs for both…

	 Camera Module v1	 Camera Module v2

Sensor	 OmniVision OV5647	 Sony IMX219

Sensor resolution	 2592 × 1944 pixels (5MP)	 3280 × 2464 pixels (8MP)

Sensor image area	 3.76 × 2.74 mm	 3.69 × 2.81 mm

Pixel size	 1.4 µm × 1.4 µm	 1.12 µm × 1.12 µm

Optical size	 1/4	 1/4

Video modes	 1920 × 1080, up to 30fps 	 1920 × 1080, up to 30fps

	 1280 × 720, up to 60fps	 1280 × 720, up to 90fps

	 640 × 480, up to 90fps	 640 × 480, up to 90fps

Sensor input modes
By default, the camera switches automatically between sensor input
modes according to parameters of the raspistill or raspivid
command given. However, you can force the sensor into any of seven

Fig 1 Fig 2

[Chapter Fourteen]

97

 [MASTER THE CAMERA MODULE]

discrete modes, as shown below for each Camera Module version, by
using the -md switch (or sensor_mode constructor in Picamera).

Note that you’ll still need to specify the resolution and frame rate
manually, which should be within the stated range. Modes with a
partial field of view are captured from the centre of the sensor, as
shown in Fig 1 and Fig 2 for Camera Module v1 and v2 respectively.

Camera Module v1

Mode	 Resolution	 Aspect Ratio	 Framerates	 Video	 Image	 FoV	 Binning

1	 1920 × 1080	 16:9	 1-30fps	 •	 	 Partial	 None

2	 2592 × 1944	 4:3	 1-15fps	 •	 •	 Full	 None

3	 2592 × 1944	 4:3	 0.1666-1fps	 •	 •	 Full	 None

4	 1296 × 972	 4:3	 1-42fps	 •	 	 Full	 2 × 2

5	 1296 × 730	 16:9	 1-49fps	 •	 	 Full	 2 × 2

6	 640 × 480	 4:3	 42.1-60fps	 •	 	 Full	 4 × 4

7	 640 × 480	 4:3	 60.1-90fps	 •	 	 Full	 4 × 4

Camera Module v2

Mode	 Resolution	 Aspect Ratio	 Framerates	 Video	 Image	 FoV	 Binning

1	 1920 × 1080	 16:9	 0.1-30fps	 •	 	 Partial	 None

2	 3280 × 2464	 4:3	 0.1-15fps	 •	 •	 Full	 None

3	 3280 × 2464	 4:3	 0.1-15fps	 •	 •	 Full	 None

4	 1640 × 1232	 4:3	 0.1-40fps	 •	 	 Full	 2 × 2

5	 1640 × 922	 16:9	 0.1-40fps	 •	 	 Full	 2 × 2

6	 1280 × 720	 16:9	 40-90fps	 •	 	 Partial	 2 × 2

7	 640 × 480	 4:3	 40-90fps	 •	 	 Partial	 2 × 2

[Quick Reference]

98

ESSENTIALS

[Chapter One]98

02. �COMMAND-LINE
OPTIONS
A guide to the options available when controlling
the Camera Module from the command line

Common options
When using raspistill or raspivid from the command
line, you have access to an array of useful switches to change
numerous parameters…

Preview window settings

Preview position/size
--preview or -p (x,y,w,h)
Allows the user to define the size of the preview window (with w
and h values) and its location on the screen (x and y). Note that this
will be superimposed over the top of any other windows/graphics.
For instance, to set its top-left corner at (100, 100) and give it
dimensions of 300 × 200, use: -p 100,100,300,200.

Fullscreen preview mode
--fullscreen or -f
Forces the preview window to use the whole screen. Note that the
aspect ratio of the incoming image will be retained, so there may be
bars on some edges.

No preview window
--nopreview or -n
Disables the preview window completely. Note that even though the
preview is disabled, the camera will still be producing frames, so it
will be using power.

[Chapter Fourteen]

99

 [MASTER THE CAMERA MODULE]

Preview opacity
--opacity or -op
Sets the opacity of the preview window; 0 = invisible, 255 = fully opaque.

Camera control options

Image width
--width or -w
Sets the width of the resulting image or video. For stills, up to 2592
(Camera Module v1) or 3820 (v2). For video, up to 1920.

Image height
--height or -h
Sets the height of the resulting image or video. For stills, up to 1944
(Camera Module v1) or 2464 (v2). For video, up to 1080.

Image rotation
--rotation or -rot (0 to 359)
Sets the rotation of the preview and saved image. Note that only 0,
90, 180, and 270 degree rotations are supported (other values are
rounded down).

Horizontal flip
--hflip or -hf
Flips the preview and saved image horizontally.

Vertical flip
--vflip or -vf
Flips the preview and saved image vertically. Note: Using -hf and
-vf together is equivalent to a 180° rotation.

Output to file
--output or -o
Specifies the output file name. If this is not specified, no file is
saved. If the file name is ‘-’, then all output is sent to stdout, which
is handy when using another application that expects image or video
data through a standard input.

[Quick Reference]

100

ESSENTIALS

[Chapter One]100

Timeout
--timeout or -t
The program will run for this length of time; the default is five
seconds. If output is specified, it will then take a capture with
raspistill. If using raspivid, this is the length of the recording.

Verbose information
--verbose or -v
Outputs verbose debugging information during the run.

Sharpness
--sharpness or -sh (-100 to 100)
Sets the sharpness of the image. 0 is the default.

Contrast
--contrast or -co (-100 to 100)
Sets the contrast of the image. 0 is the default.

Brightness
--brightness or -br (0 to 100)
Sets the brightness of the image. 50 is the default. 0 is black, 100
is white.

Saturation
--saturation or -sa (-100 to 100)
Sets the colour saturation of the image. 0 is the default.

ISO
--ISO or -ISO (100 to 800)
Sets the ISO to be used for captures. In effect, this adjusts the light
sensitivity of the sensor.

EV compensation
--ev or -ev (-10 to 10)
Sets the EV compensation of the image. Default is 0.

[Chapter Fourteen]

101

 [MASTER THE CAMERA MODULE]

Exposure mode
--exposure or -ex
Sets the exposure mode to any of the following: auto, night,
nightpreview, backlight, spotlight, sports, snow, beach,
verylong (long exposure), fixedfps (for video only), antishake,
or fireworks.
Note that not all of these settings may be implemented, depending
on camera tuning.

Automatic white balance (AWB)
--awb or -awb
Set the AWB mode to any of the following: off, auto, sun, cloud,
shade, tungsten, fluorescent, incandescent, flash, or horizon.

Image effect
--imxfx or -ifx
Sets an effect to be applied to the image. Choose from the following:
none, negative, solarise, posterise, sketch, denoise,
emboss, oilpaint, hatch, gpen (graphite sketch effect), pastel,
watercolour, film, blur, saturation (colour saturate the image),
colourswap, washedout, colourpoint, colourbalance, or cartoon.

Colour effect
--colfx or -cfx (U:V)
The supplied U and V parameters (range 0 - 255) are applied to
the U and Y (colour) channels of the image. For example, --colfx
128:128 will result in a monochrome image.

Demo mode
--demo or -d
Cycles through the range of camera options. No capture is taken,
and the demo will end at the end of the timeout period. The time
between cycles should be specified in milliseconds.

Metering mode
--metering or -mm
Specifies the metering mode used for the preview and capture.
Choose from average, spot, backlit, or matrix.

[Quick Reference]

102

ESSENTIALS

[Chapter One]102

Sensor region of interest
--roi or -roi (x,y,w,h)
Allows the specification of the area of the sensor to be used as
the source for the preview and capture. This is defined as x,y for
the top-left corner, and a width and height, with all values in
normalised coordinates (0.0 to 1.0). So, to set a ROI at halfway
across and down the sensor, and a width and height of a quarter of
the sensor, use: -roi 0.5,0.5,0.25,0.25.

Shutter speed
--shutter or -ss
Sets the shutter speed to the specified value (in microseconds).
The upper limit is approximately 6000000µs (6000ms, 6s) for the
Camera Module v1, and 10000000µs (10000ms, 10s) for the v2.

Dynamic range compression (DRC)
--drc or -drc
DRC changes images by increasing the range of dark areas, while
decreasing the brighter areas. This can improve the image in low
light settings. Choose from: off (default), low, medium, or high.

Image statistics
--stats or -st
This displays the exposure, analogue and digital gains, and AWB
settings used.

AWB gains
--awbgains or -awbg
Sets red and blue gains (as floating point numbers) to be applied
when -awb off is set. For instance, -awbg 1.5,1.2.

Sensor input mode
--mode or -md
Sets a specified sensor mode, disabling the automatic selection. See
‘Camera Hardware’ section (page 97) for more details.

[Chapter Fourteen]

103

 [MASTER THE CAMERA MODULE]

Value	 Meaning	 Example Output

-a 4	 Time	 20:09:33

-a 8	 Date	 02/14/17

-a 12	 4+8=12 Show the date(4) and time(8)	 20:09:33 10/28/15

-a 16	 Shutter Settings

-a 32	 CAF Settings

-a 64	 Gain Settings

-a 128	 Lens Settings

-a 256	 Motion Settings

-a 512	 Frame Number

-a 1024	 Black Background

-a “ABC”	 Show some text	 ABC

-a 4 -a “ABC %Y-%m-%d %X”	 Show custom formatted date/time	 ABC 2017-02-17 20:09:33

-a 8 -a “ABC %Y-%m-%d %X”	 Show custom formatted date/time	 ABC 2017-02-17 20:09:33

Annotate flags/text
--annotate or -a
Adds some text and/or metadata to the image. Metadata is indicated
using a bitmask notation, so add them together to show multiple
parameters. For example, 12 will show time(4) and date(8), since
4+8=12. Text may include date/time placeholders by using the ‘%’
character, as used by strftime (magpi.cc/2kiJGt5).

Extra annotation parameters
--annotateex or -ae
Specifies annotation size, text colour, and background colour.
Colours are in hex YUV format. Size ranges from 6 to 160; default is
32. Asking for an invalid size should give you the default.

[Quick Reference]

104

ESSENTIALS

[Chapter One]104

Examples:
-ae 32,0xff,0x808000 -a "Text" gives size 32 white text on
black background.

-ae 10,0x00,0x8080FF -a "Text" gives size 10 black text on
white background.

Since the Raspberry Pi has only one CSI connector for a camera, the

use of two cameras is only possible with a Compute Module (see

magpi.cc/2klAggv). In this case, the following commands may be

used for stereoscopic images and video.

--camselect or -cs – Selects which camera to use. Use 0 or 1.

--stereo or -3d – Selects stereoscopic mode.

--decimate or -dec – Half width/height of stereo image.

--3dswap or -3dswap – Swaps camera order for stereoscopic.

[TWO CAMERAS]

Photo options
The following options are only available when using the raspistill
command (and most of them also when using raspiyuv).

Time-lapse mode
--timelapse or -tl
The specific value is the time between shots in milliseconds. Note
that you should specify %04d at the point in the file name where
you want a frame count number to appear. So, for example, the
following code will produce a capture every two seconds, over a total
period of 30 seconds, named image0001.jpg, image0002.jpg and so
on, through to image0015.jpg:

[Chapter Fourteen]

105

 [MASTER THE CAMERA MODULE]

-t 30000 -tl 2000 -o image%04d.jpg

If a time-lapse value of 0 is entered, the application will take
pictures as fast as possible. Note that there’s a minimum
enforced pause of 30ms between captures to ensure that exposure
calculations can be made.

Image quality
--quality or -q
Sets JPEG quality, from 0 to 100.

Raw data
--raw or -r
Adds raw Bayer data to JPEG metadata.

Link latest frame
--latest or -l
Links latest frame to file name specified.

Thumbnail parameters
--thumb or -th (x:y:quality)
Allows specification of the thumbnail image inserted into the JPEG
file. If not specified, defaults are a size of 64×48 at quality 35. If
--thumb none is specified, no thumbnail information will be placed
in the file; this reduces the file size slightly.

Encoding for output file
--encoding or -e
Valid options are jpg, bmp, gif, and png. Note that unaccelerated
image types (GIF, PNG, BMP) will take much longer to save than
JPG, which is hardware accelerated. Also, the file name suffix is
completely ignored when deciding the encoding of a file.

EXIF tag
--exif or -x (format as ‘key=value’)
Allows the insertion of specific EXIF tags into the JPEG image.
You can have up to 32 EXIF tag entries. This is useful for tasks like
adding GPS metadata. For example, to set the longitude to 5 degrees,

[Quick Reference]

106

ESSENTIALS

[Chapter One]106

10 minutes, 15 seconds, use:

--exif GPS.GPSLongitude=5/1,10/1,15/1

See EXIF documentation for more details on the range of tags
available. Setting --exif none will prevent any EXIF information
being stored in the file; this reduces the file size slightly.

Full preview mode
--fullpreview or -fp
Runs the preview window using the full-resolution capture mode.
Maximum frame rate in this mode is 15fps, and the preview will
have the same field of view as the capture. Captures should happen
more quickly, as no mode change is required.

Keypress mode
--keypress or -k
The camera is run for the requested time (-t), and a capture can be
initiated throughout that time by pressing the ENTER key. If you are
using raspivid, this will pause or resume shooting video.

Pressing X then ENTER will exit the application before the
timeout is reached. If the timeout is set to 0, the camera will run
indefinitely until exited.

With raspivid, the timeout value will be used to signal the end of
recording, but is only checked after each ENTER keypress.

Signal mode
--signal or -s
The camera is run for the requested time (-t), and a capture can
be initiated throughout that time by sending a USR1 signal to the
camera process; or, with raspivid, it toggles between paused and
recording. This can be done using the kill command:

kill -USR1 <process id of raspistill or raspivid>

To find the camera process ID, use pgrep raspistill or
pgrep raspivid.

[Chapter Fourteen]

107

 [MASTER THE CAMERA MODULE]

Burst mode
--burst or -bm
Enables burst capture mode, to capture a sequence of images
(using time-lapse, -tl) without switching back to preview mode
between them. This helps to prevent dropped frames when using
a short delay.

The raspiyuv command uses most of the same options as

raspistill. Unsupported ones are --exif, --encoding, --thumb,

--raw, and –quality.

One extra option is --rgb or -rgb. This forces the image to be saved as

RGB data with 8 bits per channel, rather than YUV420.

Note that the image buffers saved in raspiyuv are padded to a

horizontal size divisible by 32, so there may be unused bytes at the end

of each line. Buffers are also padded vertically to be divisible by 16, and

in the YUV mode, each plane of Y,U,V is padded in this way.

[RASPIYUV OPTIONS]

Video options
The following options are specific to the raspivid command for
shooting video.

Bitrate
--bitrate or -b
Sets the bitrate for the video. Use bits per second, so 10Mbits/s
would be -b 10000000. For H.264, 1080p30 a high-quality
bitrate would be 15Mbits/s or more. Maximum bitrate is 25Mbits/s
(-b 25000000), but much over 17Mbits/s won’t show noticeable
improvement at 1080p30.

Frame rate
--framerate or -fps
Specifies the frames per second to record. This varies depending

Burst mode
--burst or -bm
Enables burst capture mode, to capture a sequence of images
(using time-lapse, -tl) without switching back to preview mode
between them. This helps to prevent dropped frames when using
a short delay.

[Quick Reference]

108

ESSENTIALS

[Chapter One]108

on the camera mode used. The maximum is 90fps, when using
a resolution of 640 × 480. See the Camera Hardware section
for more details.

Video stabilisation
--vstab or -vs
Turns on video stabilisation, which attempts to account for camera
shake when it is moving.

Preview after encoding
--penc or -e
Displays the preview after compression, to show any artefacts. In
normal operation, the preview will show the camera output prior to
being compressed.

Intra refresh period
--intra or -g
Sets the intra refresh period (GoP) rate for the recorded video. H.264
video uses a complete frame (I-frame) every intra refresh period,
from which subsequent frames are based. This option specifies the
number of frames between each I-frame. Larger numbers here will
reduce the size of the resulting video, while smaller numbers make
the stream less error-prone.

Quantisation
--qp or -qp
Sets the initial quantisation parameter for the stream. Varies
from approximately 10 to 40, and will greatly affect the quality
of the recording. Higher values reduce quality and decrease file
size. Combine this setting with a bitrate of 0 to set a completely
variable bitrate.

H.264 profile
--profile or -pf
Sets the H.264 profile to be used for the encoding. Options are:
baseline, main, or high.

[Chapter Fourteen]

109

 [MASTER THE CAMERA MODULE]

Insert PPS & SPS headers
--inline or -ih
Forces the stream to include PPS and SPS headers on every I-frame.
Needed for certain streaming cases, e.g. Apple HLS.

Timed pause/record periods
--timed or -td
Allows video capture to be paused and restarted at specified time
intervals. Two values are required: the on time (for recording) and
the off time (for paused). The total time of the recording is defined
by the timeout option. For example:

raspivid -o test.h264 -t 25000 -timed 2500,5000

…will record for a period of 25 seconds. The recording will be over a
time frame consisting of 2500ms (2.5s) segments with 5000ms (5s)
gaps, repeating over the 20s. So the entire recording will actually be
only ten seconds long.

Initial state on startup
--initial or -i
Defines whether the camera will start paused or will immediately
start recording (when using the -td option). Options are record
or pause.

Segment stream
--segment or -sg
Rather than creating a single file, the file is split into segments of
approximately the number of milliseconds specified. In order to
provide different file names, you should add %04d or similar at the
point in the file name where you want a segment count number to
appear. For example:

--segment 3000 -o video%04d.h264

…will produce video clips of approximately 3000ms (3s) long,
named video0001.h264, video0002.h264 etc.

[Quick Reference]

110

ESSENTIALS

[Chapter One]110

Maximum segment number
--wrap or -wr
When outputting segments, this sets the maximum the segment
number can reach before it’s reset to 1, giving the ability to keep
recording segments, but overwriting the oldest one. So, if set to
4 in the previous segment example, the files produced will be
video0001.h264, video0002.h264, video0003.h264, and video0004.
h264. Once video0004.h264 is recorded, the count will reset to 1,
and video0001.h264 will be overwritten.

Initial segment number
--start or -sn
When outputting segments, this is the initial segment number,
giving the ability to resume a previous recording from a given
segment. The default value is 1.

Circular buffer
--circular or -c
Runs encoded data through circular buffer until triggered,
then saves.

Inline motion vectors
--vectors or -x
Outputs inline motion vectors when used with -o.

Intra refresh type
--irefresh or -if
Sets intra refresh type: cyclic, adaptive, both, or cyclicrows.

Flush buffers
--flush or -fl
Flushes buffers in order to decrease latency.

Timestamps
--save-pts or -pts
Saves timestamps to file for mkvmerge.

[Chapter Fourteen]

111

 [MASTER THE CAMERA MODULE]

Codec
--codec or -cd
Specifies the codec to use: H264 (default) or MJPEG.

H.264 level
--level or -lev
Specifies H.264 level to use for encoding: 4, 4.1, or 4.2.

Raw video
--raw or -r
Outputs raw video to file when used with -o.

Raw format
--raw-format or -rf
Specifies output format for raw video: yuv, rgb, or gray.

03. �PICAMERA
PYTHON LIBRARY

Control the Camera Module from Python programs
using the Picamera library

PiCamera class
Here are some of the most commonly used methods and options of the
PiCamera class.

start_preview(**options)
Displays the preview overlay. Options include fullscreen (True or
False), window (x,y,w,h for position and size), layer, and alpha.

stop_preview()
Hides the preview overlay.

[Quick Reference]

112

ESSENTIALS

[Chapter One]112

capture(output, format=None, use_video_port=False,
resize=None, splitter_port=0, bayer=False, **options)
Captures an image from the camera and stores it in output. If the
latter is a string, it’s treated as the name of a file; if an object, it’s
treated as a file-like object and the image data is appended to it.

start_recording(output, format=None, resize=None,
splitter_port=1, **options)
Starts recording video from the camera, storing it in output. If the
latter is a string, it’s treated as the name of a file; if an object, it’s
treated as a file-like object and the video data is appended to it.

wait_recording(timeout=0, splitter_port=1)
Pauses recording for the number of seconds specified in timeout.
This method is recommended over the standard time.sleep(),
since it checks for errors during recording and will immediately
raise an exception.

stop_recording(splitter_port=1)
Stops recording video from the camera. The optional splitter_port
parameter specifies which port of the video splitter the encoder you
wish to stop is attached to. Valid values are 0 to 3 (default 1).

close()
Stops all recording and preview activities and releases all resources
associated with the camera; this is necessary to prevent GPU
memory leaks. It should always be called once you are finished with
the camera (e.g. in the finally section of a try…finally block).

capture_continuous(output, format=None, use_video_
port=False, resize=None, splitter_port=0, burst=False,
bayer=False, **options)
Captures images continuously from the camera as an infinite
iterator. If output is a string, each image is stored in a file named
after it with the substitution of two values: (counter) (a simple
incrementer starting at 1) or (timestamp). For example, setting
output to 'image(counter).jpg' would result in image1.jpg,
image2.jpg, image3.jpg, etc.

[Chapter Fourteen]

113

 [MASTER THE CAMERA MODULE]

capture_sequence(outputs, format='jpeg', use_video_
port=False, resize=None, splitter_port=0, burst=False,
bayer=False, **options)
Captures a sequence of consecutive images from the camera, as fast
as is possible.

record_sequence(outputs, format='h264', resize=None,
splitter_port=1, **options)
Records a sequence of video clips from the camera. The caller can
control how long to record to each item by only permitting the loop
to continue when ready to switch to the next output.

split_recording(output, splitter_port=1, **options)
Continues the recording in the specified output. When called, the
video encoder will wait for the next appropriate split point (an inline
SPS header), then will cease writing to the current output (and close
it, if it was specified as a file name), and continue writing to the
newly specified output.

add_overlay(source, size=None, **options)
Adds a static overlay to the preview output.

remove_overlay(overlay)
Removes a static overlay from the preview output. The overlay
parameter specifies the PiRenderer instance that was returned by
add_overlay().

request_key_frame(splitter_port=1)
Requests the encoder, running on the specified splitter_port,
to generate a key-frame (full-image frame) as soon as possible.

analog_gain
Retrieves the current analogue gain of the camera.

annotate_text
Retrieves or sets a text annotation for all output.

[Quick Reference]

114

ESSENTIALS

[Chapter One]114

awb_gains
Gets or sets the auto-white-balance gains of the camera, as a tuple
(red, blue) – values are between 0.0 and 8.0. This attribute only has
an effect when awb_mode is set to ‘off'.

awb_mode
Retrieves or sets the auto-white-balance mode of the camera.
Possible values are: 'off', 'auto' (default), ‘sunlight',
'cloudy', 'shade', 'tungsten', 'fluorescent', 'incandescent',
'flash', or 'horizon'.

brightness
Retrieves or sets the brightness setting of the camera, as an integer
between 0 and 100 (default 50).

color_effects
Retrieves or sets the current color effect applied by the camera, as a
(u, v) tuple – values are between 0 and 255. Default is None. When
set to (128, 128), it results in a black and white image.

contrast
Retrieves or sets the contrast setting of the camera, as an integer
between -100 and 100 (default 0).

digital_gain
Retrieves the current digital gain of the camera.

drc_strength
Retrieves or sets the dynamic range compression strength of
the camera. Valid values are: 'off' (default), 'low', 'medium',
or 'high'.

exposure_compensation
Retrieves or sets the exposure compensation level of the camera,
as an integer between -25 and 25 (default 0). Each increment
represents 1/6th of a stop.

[Chapter Fourteen]

115

 [MASTER THE CAMERA MODULE]

exposure_mode
Retrieves or sets the exposure mode of the camera. Valid values
are: 'off', 'auto' (default), 'night', 'nightpreview',
'backlight', 'spotlight', 'sports', 'snow', 'beach',
'verylong', 'fixedfps', 'antishake', or 'fireworks'.

exposure_speed
Retrieves the current shutter speed of the camera, in microseconds.
The default is 0 (auto).

flash_mode
Retrieves or sets the flash mode of the camera. Valid values are:
'off' (default), 'auto', 'on', 'redeye', 'fillin', or 'torch’.

Note: You must define which GPIO pin the camera is to use for flash
(and optional privacy indicator). This is done within the device tree
configuration, as detailed in chapter 7.

frame
Retrieves information about the current frame recorded from
the camera.

framerate
Retrieves or sets the frame rate at which video-port based image
captures, video recordings, and previews will run. It can be specified
as an int, float, or fraction. The default is 30.

Note: The actual sensor frame rate and resolution used by the
camera is influenced – but not directly set – by this property.

hflip
Retrieves or sets whether the camera’s output is horizontally
flipped. Default is False.

image_denoise
Retrieves or sets whether denoise will be applied to image captures.
Default is True.

[Quick Reference]

116

ESSENTIALS

[Chapter One]116

image_effect
Retrieves or sets the current image effect applied by the
camera. Valid values are: 'none' (default), 'negative',
'solarize', 'sketch', 'denoise', 'emboss', 'oilpaint',
'hatch', 'gpen', 'pastel', 'watercolor', 'film', 'blur',
'saturation', 'colorswap', 'washedout', 'posterise',
'colorpoint', 'colorbalance', 'cartoon', 'deinterlace1', or
'deinterlace2'.

image_effect_params
Retrieves or sets the parameters for the current effect, as a tuple of
numeric values up to six elements long.

iso
Retrieves or sets the apparent ISO setting of the camera, which
represents its sensitivity to light. Lower values tend to produce less
‘noisy’ images, but operate poorly in low light conditions. Valid
values are: 0 (auto), 100, 200, 320, 400, 500, 640, or 800.

led
Sets the state of the camera’s LED (v1 only) via GPIO. If the RPi.GPIO
library is available and the Python process is run as root via sudo,
this property can be used to set the state of the camera’s LED as a
Boolean value (True is on, False is off).

Note: This doesn’t work on the Raspberry Pi 3, due to a GPIO
reconfiguration.

meter_mode
Retrieves or sets the metering mode of the camera. Valid values are:
'average' (default), 'spot', 'backlit', 'matrix'.

recording
Returns True if the start_recording() method has been called,
and no stop_recording() call has been made yet.

[Chapter Fourteen]

117

 [MASTER THE CAMERA MODULE]

resolution
Retrieves or sets the resolution at which image captures, video
recordings, and previews will be captured. It can be specified as a
(width, height) tuple, a string formatted ‘WIDTHxHEIGHT’, or as a
string containing a commonly recognized display resolution name
(e.g. ‘VGA’, ‘HD’, ‘1080p’, etc). The camera must not be closed, and
no recording must be active when the property is set.

rotation
Retrieves or sets the current rotation of the camera’s image. Valid
values are: 0 (default), 90, 180, and 270.

saturation
Retrieves or sets the saturation setting of the camera, as an integer
between -100 and 100 (default 0).

sensor_mode
Retrieves or sets the input mode of the camera’s sensor. By default,
mode 0 is used, which allows the camera to automatically select an
input mode based on the requested resolution and framerate. Valid
values are currently between 0 and 7. See the Camera Hardware
section for more details on modes.

sharpness
Retrieves or sets the sharpness setting of the camera as an integer
between -100 and 100 (default 0).

shutter_speed
Retrieves or sets the shutter speed of the camera in microseconds.
Default is 0 (auto). Faster shutter times require greater amounts of
illumination and vice versa.

Note: In later firmwares, this attribute is limited by the value of the
framerate attribute. For example, if frame rate is set to 30fps, the
shutter speed cannot be slower than 33,333µs (1/fps).

timestamp
Retrieves the system time according to the camera firmware.

[Quick Reference]

118

ESSENTIALS

[Chapter One]118

vflip
Retrieves or sets whether the camera’s output is vertically flipped.
The default value is False.

video_denoise
Retrieves or sets whether denoise will be applied to video
recordings. The default value is True.

video_stabilization
Retrieves or sets the video stabilisation mode of the camera. The
default value is False.

Note: The built-in video stabilisation only accounts for vertical and
horizontal motion, not rotation.

zoom
Retrieves or sets the zoom applied to the camera’s input, as a
tuple (x, y, w, h) of floating point values ranging from 0.0 to 1.0,
indicating the proportion of the image to include in the output (the
‘region of interest’). The default value is (0.0, 0.0, 1.0, 1.0), which
indicates that everything should be included.

[Chapter Fourteen]

119

 [MASTER THE CAMERA MODULE]

[Quick Reference]

NOTES

120

ESSENTIALS

[Chapter One]120

NOTES

121

 [MASTER THE CAMERA MODULE]

122

ESSENTIALS

[Chapter One]122

PI ZERO W
Subscribe in print for 12
months today and receive:
	 A free Pi Zero W (the latest model)

	 Free Pi Zero W case with 3 covers

	 Free Camera Module connector

	 Free USB and HDMI converter cables

Other benefits:
	 Save up to 25% on the price

	 Free delivery to your door

	 Exclusive Pi offers & discounts

	 Get every issue first
(before stores)

FREE

SUBSCRIBE
TODAY AND
RECEIVE A

122

SAVE UP TO 25%

http://raspberrypi.org/magpi

123

 [MASTER THE CAMERA MODULE]

Get six issues:

£30 (UK)

£45 (EU)

$69 (USA)

£50 (Rest of World)

How to subscribe:
 magpi.cc/Subs-2 (UK / ROW)	 imsnews.com/magpi (USA)

 Call +44(0)1202 586848 (UK/ROW) 	 Call 800 428 3003 (USA)

Other benefits:
	 Save up to 25% on the price

	 Free delivery to your door

	 Exclusive Pi offers & discounts

	 Get every issue first
(before stores)

AND FREE CAMERA MODULE
CONNECTOR AND USB / HDMI
CONVERTER CABLES

123

Subscribe for a year:

£55 (UK)

£80 (EU)

$129 (USA)

£90 (Rest of World)

Get three issues:
£12.99 (UK) (Direct Debit) | $37.50 (US) (quarterly)

Pricing:

AN OFFICIAL
PI ZERO CASE
WITH 3 COVERS

PLUS

Search ‘The MagPi’
on your app store:

http://magpi.cc/Subs-2
http://imsnews.com/magpi
https://itunes.apple.com/gb/app/magpi-official-raspberry-pi/id972033560?mt=8
https://play.google.com/store/apps/details?id=com.raspberry.magpi&hl=en_GB

ESSENTIALS

raspberrypi.org/magpi

http://raspberrypi.org/magpi

