Academia.eduAcademia.edu
Steel construction manual american institute of steel construction fourteenth edition AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page i 1 Dimensions and Properties 2 General Design Considerations 3 Design of Flexural Members 4 Design of Compression Members 5 Design of Tension Members 6 Design of Members Subject to Combined Forces 7 Design Considerations for Bolts 8 Design Considerations for Welds 9 Design of Connecting Elements AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page ii AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page iii 10 Design of Simple Shear Connections 11 Design of Partially Restrained Moment Connections 12 Design of Fully Restrained Moment Connections 13 Design of Bracing Connections and Truss Connections 14 Design of Beam Bearing Plates, Col. Base Plates, Anchor Rods, and Col. Splices 15 Design of Hanger Connections, Bracket Plates, and Crane-Rail Connections 16 Specifications and Codes 17 Miscellaneous Data and Mathematical Information Index and General Nomenclature AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page iv AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page v STEEL CONSTRUCTION MANUAL AMERICAN INSTITUTE OF STEEL CONSTRUCTION FOURTEENTH EDITION AISC_Prelims_14th Ed._February 25, 2013 14-11-10 9:30 AM Page vi (Black plate) vi AISC © 2011 by American Institute of Steel Construction ISBN 1-56424-060-6 All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher. The AISC logo is a registered trademark of AISC. The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Institute of Steel Construction or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use. Caution must be exercised when relying upon other specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The Institute bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition. Printed in the United States of America First Printing: March 2011 Second Printing: February 2012 Third Printing: February 2013 Fourth Printing: February 2015 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page vii vii FOREWORD The American Institute of Steel Construction, founded in 1921, is the nonprofit technical standards developer and trade organization for the fabricated structural steel industry in the United States. AISC is headquartered in Chicago and has a long tradition of service to the steel construction industry providing timely and reliable information. The continuing financial support and active participation of Members in the engineering, research and development activities of the Institute make possible the publishing of this Steel Construction Manual. Those Members include the following: Full Members engaged in the fabrication, production and sale of structural steel; Associate Members, who include erectors, detailers, service consultants, software developers and steel product manufacturers; Professional Members, who are structural or civil engineers and architects, including architectural and engineering educators; Affiliate Members, who include general contractors, building inspectors and code officials; and Student Members. The Institute’s objective is to make structural steel the material of choice, by being the leader in structural-steel-related technical and market-building activities, including specification and code development, research, education, technical assistance, quality certification, standardization and market development. To accomplish this objective, the Institute publishes manuals, design guides and specifications. Best known and most widely used is the Steel Construction Manual, which holds a highly respected position in engineering literature. The Manual is based on the Specification for Structural Steel Buildings and the Code of Standard Practice for Steel Buildings and Bridges. Both standards are included in the Manual for easy reference. The Institute also publishes technical information and timely articles in its Engineering Journal, Design Guide series, Modern Steel Construction magazine, and other design aids, research reports and journal articles. Nearly all of the information AISC publishes is available for download from the AISC web site at www.aisc.org. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page viii viii PREFACE This Manual is the 14th Edition of the AISC Steel Construction Manual, which was first published in 1927. It replaces the 13th Edition Manual originally published in 2005. The following specifications, codes and standards are printed in Part 16 of this Manual: • 2010 AISC Specification for Structural Steel Buildings • 2009 RCSC Specification for Structural Joints Using High-Strength Bolts • 2010 AISC Code of Standard Practice for Steel Buildings and Bridges The following resources supplement the Manual and are available on the AISC web site at www.aisc.org: • AISC Design Examples, which illustrate the application of tables and specification provisions that are included in this Manual. • AISC Shapes Database V14.0 and V14.0H. • Background and supporting literature (references) for the AISC Steel Construction Manual. The following major changes and improvements have been made in this revision: • All tabular information and discussions have been updated to comply with the 2010 Specification for Structural Buildings and the standards and other documents referenced therein. • Shape information has been updated to ASTM A6-09 throughout the Manual, including a new HP shape series. • Eccentrically loaded weld tables have been revised to indicate the strongest weld permitted by the three methods listed in Chapter J of the specification and supplemented to provide strengths for L-shaped welds loaded from either side. • The procedure for the design of bracket plates in Part 15 has been revised. • In Part 10, the procedure for the design of conventional single plate shear connections has been revised to accommodate the increased bolt shear strengths of the 2010 Specification for Structural Steel Buildings. • In Part 10, for extended single plate shear connections, information is provided to determine if stiffening plates (stabilizers) are required. In addition, many other improvements have been made throughout this Manual and the number of accompanying design examples has been expanded. By the AISC Committee on Manuals and Textbooks, William A. Thornton, Chairman Mark V. Holland, Vice-Chairman Abbas Aminmansour Charles J. Carter Harry A. Cole Brad Davis Robert O. Disque Bo Dowswell Edward M. Egan Marshall T. Ferrell Lanny J. Flynn Patrick J. Fortney Louis F. Geschwindner W. Scott Goodrich Christopher M. Hewitt W. Steven Hofmeister AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page ix ix Bill R. Lindley, II Ronald L. Meng Larry S. Muir Thomas M. Murray Charles R. Page Davis G. Parsons, II Rafael Sabelli Clifford W. Schwinger William N. Scott William T. Segui Victor Shneur Marc L. Sorenson Gary C. Violette Michael A. West Ronald G. Yeager Cynthia J. Duncan, Secretary The committee gratefully acknowledges the contributions made to this Manual by the AISC Committee on Specifications and the following individuals: Leigh C. Arber, Areti Carter, Janet T. Cummins, Amanuel Gebremeskel, Kurt Gustafson, Richard C. Kaehler, Daniel J. Kaufman, Rostislav Kucher, Brent L. Leu, Margaret A. Matthew, Frederick J. Palmer, Vijaykumar Patel, Elizabeth A. Rehwoldt, Thomas J. Schlafly, Zachary W. Stutts and Sriramulu Vinnakota. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page x x SCOPE The specification requirements and other design recommendations and considerations summarized in this Manual apply in general to the design and construction of steel buildings and other structures. The design of seismic force resisting systems also must meet the requirements in the AISC Seismic Provisions for Structural Steel Buildings, except in the following cases for which use of the AISC Seismic Provisions is not required: • Buildings and other structures in seismic design category (SDC) A • Buildings and other structures in SDC B or C with R = 3 systems [steel systems not specifically detailed for seismic resistance per ASCE/SEI 7 Table 12.2-1 (ASCE, 2010)] • Nonbuilding structures similar to buildings with R = 11/2 braced-frame systems or R = 1 moment-frame systems; see ASCE/SEI 7 Table 15.4-1 • Nonbuilding structures not similar to buildings (see ASCE/SEI 7 Table 15.4-2), which are designed to meet the requirements in other standards entirely Conversely, use of the AISC Seismic Provisions is required in the following cases: • Buildings and other structures in SDC B or C when one of the exemptions for steel seismic force resisting systems above does not apply • Buildings and other structures in SDC B or C that use composite seismic force resisting systems (those containing composite steel-and-concrete members and those composed of steel members in combination with reinforced concrete members) • Buildings in SDC D, E or F • Nonbuilding structures in SDC D, E or F when the exemption above does not apply The AISC Seismic Design Manual provides guidance on the use of the AISC Seismic Provisions. The Manual consists of seventeen parts addressing various topics related to steel building design and construction. Part 1 provides the dimensions and properties for structural products commonly used. For proper material specifications for these products, as well as general specification requirements and other design considerations, see Part 2. For the design of members, see Parts 3 through 6. For the design of connections, see Parts 7 through 15. For AISC Specifications and Codes, see Part 16. For other miscellaneous information, see Part 17. REFERENCE ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, American Society of Civil Engineers, Reston, VA. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 4/1/11 9:20 AM Page 1 1–1 PART 1 DIMENSIONS AND PROPERTIES SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3 STRUCTURAL PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3 W-, M-, S- and HP-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4 Structural Tees (WT-, MT- and ST-Shapes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5 Hollow Structural Sections (HSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5 Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6 Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6 Double Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7 W-Shapes and S-Shapes with Cap Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7 Plate Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8 Raised-Pattern Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Crane Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Other Structural Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 STANDARD MILL PRACTICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Hot-Rolled Structural Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Hollow Structural Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9 Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10 Plate Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10 PART 1 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11 TABLES OF DESIGN DIMENSIONS, DETAILING DIMENSIONS, AND AXIAL, STRONG-AXIS FLEXURAL, AND WEAK-AXIS FLEXURAL PROPERTIES . . . . 1–12 Table 1-1. W-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12 Table 1-2. M-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–30 Table 1-3. S-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32 Table 1-4. HP-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34 Table 1-5. C-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–36 Table 1-6. MC-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38 Table 1-7. Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1–2 1/20/11 7:25 AM Page 2 DIMENSIONS AND PROPERTIES Table 1-7A. Workable Gages in Angle Legs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–48 Table 1-7B. Compactness Criteria for Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–49 Table 1-8. WT-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–50 Table 1-9. MT-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–70 Table 1-10. ST-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–72 Table 1-11. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74 Table 1-12. Square HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–92 Table 1-12A. Rectangular and Square HSS Compactness Criteria . . . . . . . . . . . . .1–95 Table 1-13. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–96 Table 1-14. Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101 Table 1-15. Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–102 Table 1-16. 2C-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–110 Table 1-17. 2MC-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–111 Table 1-18. Weights of Raised-Pattern Floor Plates . . . . . . . . . . . . . . . . . . . . . . 1–113 Table 1-19. W-Shapes with Cap Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–114 Table 1-20. S-Shapes with Cap Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–116 Table 1-21. Crane Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–118 Table 1-22. ASTM A6 Tolerances for W-Shapes and HP-Shapes . . . . . . . . . . . 1–119 Table 1-23. ASTM A6 Tolerances for S-Shapes, M-Shapes and Channels . . . . 1–121 Table 1-24. ASTM A6 Tolerances for WT-, MT- and ST-Shapes . . . . . . . . . . . 1–122 Table 1-25. ASTM A6 Tolerances for Angles, 3 in. and Larger . . . . . . . . . . . . 1–123 Table 1-26. ASTM A6 Tolerances for Angles, < 3 in. . . . . . . . . . . . . . . . . . . . . 1–124 Table 1-27. Tolerances for Rectangular and Square HSS . . . . . . . . . . . . . . . . . 1–125 Table 1-28. Tolerances for Round HSS and Pipe . . . . . . . . . . . . . . . . . . . . . . . . 1–126 Table 1-29. Rectangular Sheared Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–127 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 3 STRUCTURAL PRODUCTS 1–3 SCOPE The dimensions and properties for structural products commonly used in steel building design and construction are given in this Part. Although the dimensions and properties tabulated in Part 1 reflect “commonly” used structural products, some of the shapes listed are not commonly produced or stocked. These shapes are usually only produced to order, and will likely be subject to mill production schedules and minimum order quantities. For availability of shapes, go to www.aisc.org. For torsional and flexural-torsional properties of rolled shapes see AISC Design Guide 9, Torsional Analysis of Structural Steel Members (Seaburg and Carter, 1997). For surface areas, box perimeters and areas, W/D ratios and A/D ratios, see AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003). STRUCTURAL PRODUCTS W-, M-, S- and HP-Shapes Four types of H-shaped (or I-shaped) members are covered in this Manual: • W-shapes, which have essentially parallel inner and outer flange surfaces. • M-shapes, which are H-shaped members that are not classified in ASTM A6 as W-, Sor HP-shapes. M-shapes may have a sloped inside flange face or other cross-section features that do not meet the criteria for W-, S- or HP-shapes. • S-shapes (also known as American standard beams), which have a slope of approximately 162/3% (2 on 12) on the inner flange surfaces. • HP-shapes (also known as bearing piles), which are similar to W-shapes except their webs and flanges are of equal thickness and the depth and flange width are nominally equal for a given designation. These shapes are designated by the mark W, M, S or HP, nominal depth (in.) and nominal weight (lb/ft). For example, a W24×55 is a W-shape that is nominally 24 in. deep and weighs 55 lb/ft. The following dimensional and property information is given in this Manual for the W-, M-, S- and HP-shapes covered in ASTM A6: • Design dimensions, detailing dimensions, axial properties and flexural properties are given in Tables 1-1, 1-2, 1-3 and 1-4 for W-, M-, S- and HP-shapes, respectively. • SI-equivalent designations are given in Table 17-1 for W-shapes and in Table 17-2 for M-, S- and HP-shapes. Tabulated decimal values are appropriate for use in design calculations, whereas fractional values are appropriate for use in detailing. All decimal and fractional values are similar with one exception: Because of the variation in fillet sizes used in shape production, the decimal value, kdes, is conservatively presented based on the smallest fillet used in production, and the fractional value, kdet, is conservatively presented based on the largest fillet used in production. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. When appropriate, this Manual presents tabulated values for the workable gage of a section. The term workable gage refers to the gage for fasteners in the flange that provides for entering and tightening clearances and edge distance and spacing requirements. When AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 4 1–4 DIMENSIONS AND PROPERTIES the listed value is footnoted, the actual size, combination, and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. Other gages that provide for entering and tightening clearances and edge distance and spacing requirements can also be used. Channels Two types of channels are covered in this Manual: • C-shapes (also known as American standard channels), which have a slope of approximately 162/3% (2 on 12) on the inner flange surfaces. • MC-shapes (also known as miscellaneous channels), which have a slope other than 162/3% (2 on 12) on the inner flange surfaces. These shapes are designated by the mark C or MC, nominal depth (in.) and nominal weight (lb/ft). For example, a C12×25 is a C-shape that is nominally 12 in. deep and weighs 25 lb/ft. The following dimensional and property information is given in this Manual for the channels covered in ASTM A6: • Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Tables 1-5 and 1-6 for C- and MC-shapes, respectively. • SI-equivalent designations are given in Table 17-3. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. Angles Angles (also known as L-shapes) have legs of equal thickness and either equal or unequal leg sizes. Angles are designated by the mark L, leg sizes (in.) and thickness (in.). For example, an L4×3×1/2 is an angle with one 4-in. leg, one 3-in. leg, and 1/2-in. thickness. The following dimensional and property information is given in this Manual for the angles covered in ASTM A6: • Design dimensions, detailing dimensions, and axial, flexural and flexural-torsional properties are given in Table 1-7. The effects of leg-to-leg and toe fillet radii have been considered in the determination of these section properties. The Sz value that is given in Table 1-7 is based on the largest perpendicular distance measured from the z-axis to the center of the thickness at the tip of the angle toe(s) or heel. Additional properties of single angles are provided in the digital shapes database available at www.aisc.org. These properties are used for calculations involving z and w principal axes. For unequal leg angles, the database includes I, and values of S at the toe of the short leg, the heel, and the toe of the long leg, for the w and z principal axes. For equal leg angles, the database includes I, and values of S at the toe of the leg and the heel, for w and z principal axes. • Workable gages on angle legs are tabulated in Table 1-7A. • Compactness criteria for angles are tabulated in Table 1-7B. • SI-equivalent designations are given in Table 17-4. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 5 STRUCTURAL PRODUCTS 1–5 Structural Tees (WT-, MT- and ST-Shapes) Three types of structural tees are covered in this Manual: • WT-shapes, which are made from W-shapes • MT-shapes, which are made from M-shapes • ST-shapes, which are made from S-shapes These shapes are designated by the mark WT, MT or ST, nominal depth (in.) and nominal weight (lb/ft). WT-, MT- and ST-shapes are split (sheared or thermal-cut) from W-, M- and S-shapes, respectively, and have half the nominal depth and weight of that shape. For example, a WT12×27.5 is a structural tee split from a W-shape (W24×55), is nominally 12 in. deep and weighs 27.5 lb/ft. Although off-center splitting or splitting on two lines can be obtained by special order, the resulting nonstandard shape is not covered in this Manual. The following dimensional and property information is given in this Manual for the structural tees cut from the W-, M- and S-shapes covered in ASTM A6: • Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Tables 1-8, 1-9 and 1-10 for WT-, MT- and ST-shapes, respectively. • SI-equivalent designations are given in Table 17-5 for WT-shapes and in Table 17-6 for MT- and ST-shapes. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. Hollow Structural Sections (HSS) Three types of HSS are covered in this Manual: • Rectangular HSS, which have an essentially rectangular cross section, except for rounded corners, and uniform wall thickness, except at the weld seam(s) • Square HSS, which have an essentially square cross section, except for rounded corners, and uniform wall thickness, except at the weld seam(s) • Round HSS, which have an essentially round cross section and uniform wall thickness, except at the weld seam(s) In each case, ASTM A500 covers only electric-resistance-welded (ERW) HSS with a maximum periphery of 64 in. The coverage of HSS in this Manual is similarly limited. Rectangular HSS are designated by the mark HSS, overall outside dimensions (in.), and wall thickness (in.), with all dimensions expressed as fractional numbers. For example, an HSS10×10×1/2 is nominally 10 in. by 10 in. with a 1/2-in. wall thickness. Round HSS are designated by the term HSS, nominal outside diameter (in.), and wall thickness (in.) with both dimensions expressed to three decimal places. For example, an HSS10.000×0.500 is nominally 10 in. in diameter with a 1/2-in. nominal wall thickness. Per AISC Specification Section B4.2, the wall thickness used in design, tdes, is taken as 0.93 times the nominal wall thickness, tnom. The rationale for this requirement is explained in the corresponding Specification Commentary Section B4.2. In calculating the tabulated b/t and h/t ratios, the outside corner radii are taken as 1.5tdes for rectangular and square HSS, per AISC Specification Section B4.1. In other tabulated design dimensions, the corner radii are taken as 2tdes. In the tabulated workable flat dimenAMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 1–6 7:25 AM Page 6 DIMENSIONS AND PROPERTIES sions of rectangular (and square) HSS, the outside corner radii are taken as 2.25tnom. The term workable flat refers to a reasonable flat width or depth of material for use in making connections to HSS. The workable flat dimension is provided as a reflection of current industry practice, although the tolerances of ASTM A500 allow a greater maximum corner radius of 3tnom. The following dimensional and property information is given in this Manual for the HSS covered in ASTM A500, A501, A618 or A847: • Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis flexural, torsional, and flexural-torsional properties are given in Tables 1-11 and 1-12 for rectangular and square HSS, respectively. • Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Table 1-13 for round HSS. • SI-equivalent designations are given in Tables 17-7, 17-8 and 17-9 for rectangular, square and round HSS, respectively. • Compactness criteria of rectangular and square HSS are given in Table 1-12A. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. Pipe Pipes have an essentially round cross section and uniform thickness, except at the weld seam(s) for welded pipe. Pipes up to and including NPS 12 are designated by the term Pipe, nominal diameter (in.) and weight class (Std., x-Strong, xx-Strong). NPS stands for nominal pipe size. For example, Pipe 5 Std. denotes a pipe with a 5-in. nominal diameter and a 0.258-in. wall thickness, which corresponds to the standard weight series. Pipes with wall thicknesses that do not correspond to the foregoing weight classes are designated by the term Pipe, outside diameter (in.), and wall thickness (in.) with both expressed to three decimal places. For example, Pipe 14.000×0.375 and Pipe 5.563×0.500 are proper designations. Per AISC Specification Section B4.2, the wall thickness used in design, tdes, is taken as 0.93 times the nominal wall thickness, tnom. The rationale for this requirement is explained in the corresponding Specification Commentary Section B4.2. The following dimensional and property information is given in this Manual for the pipes covered in ASTM A53: • Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Table 1-14. • SI-equivalent designations are given in Table 17-10. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. Double Angles Double angles (also known as 2L-shapes) are made with two angles that are interconnected through their back-to-back legs along the length of the member, either in contact for the full length or separated by spacers at the points of interconnection. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 7 STRUCTURAL PRODUCTS 1–7 These shapes are designated by the mark 2L, the sizes and thickness of their legs (in.), and their orientation when the angle legs are not of equal size (LLBB or SLBB).1 For example, a 2L4×3×1/2 LLBB has two angles with one 4-in. leg and one 3-in. leg and the 4-in. legs are back-to-back; a 2L4×3×1/2 SLBB is similar, except the 3-in. legs are back-to-back. In both cases, the legs are 1/2-in. thick. The following dimensional and property information is given in this Manual for the double angles built-up from the angles covered in ASTM A6: • Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis flexural, torsional, and flexural-torsional properties are given in Table 1-15 for equalleg, LLBB and SLBB angles. In each case, angle separations of zero in., 3/ 8 in. and 3 /4 in. are covered. The effects of leg-to-leg and toe fillet radii have been considered in the determination of these section properties. For workable gages on legs of angles, see Table 1-7A. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. Double Channels Double channels (also known as 2C- and 2MC-shapes) are made with two channels that are interconnected through their back-to-back webs along the length of the member, either in contact for the full length or separated by spacers at the points of interconnection. These shapes are designated by the mark 2C or 2MC, nominal depth (in.), and nominal weight per channel (lb/ft). For example, a 2C12×25 is a double channel that consists of two channels that are each nominally 12 in. deep and each weigh 25 lb/ft. The following dimensional and property information is given in this Manual for the double channels built-up from the channels covered in ASTM A6: • Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weakaxis flexural properties are given in Tables 1-16 and 1-17 for 2C- and 2MC-shapes, respectively. In each case, channel separations of zero, 3/ 8 in. and 3/ 4 in. are covered. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. W-Shapes and S-Shapes with Cap Channels Common combined sections made with W- or S-shapes and channels (C- or MC-shapes) are tabulated in this Manual. In either case, the channel web is interconnected to the W-shape or S-shape top flange, respectively, with the flange toes down. The interconnection of the two elements must be designed for the horizontal shear, q, where q= VQ I (1-1) 1 LLBB stands for long legs back-to-back. SLBB stands for short legs back-to-back. Alternatively, the orientations LLV and SLV, which stand for long legs vertical and short legs vertical, respectively, can be used. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 2/17/12 1–8 7:10 AM Page 8 DIMENSIONS AND PROPERTIES where I = moment of inertia of the combined cross section, in.4 Q = first moment of the channel area about the neutral axis of the combined cross section, in.3 V = vertical shear, kips q = horizontal shear, kips/in. The effects of other forces, such as crane horizontal and lateral forces, may also require consideration, when applicable. The following dimensional and property information is given in this Manual for combined sections built-up from the W-shapes, S-shapes and cap channels covered in ASTM A6: • Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weakaxis flexural properties of W-shapes with cap channels are given in Table 1-19. • Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weakaxis flexural properties of S-shapes with cap channels are given in Table 1-20. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual. Plate Products Plate products may be ordered as sheet, strip or bar material. Sheet and strip are distinguished from structural bars and plates by their dimensional characteristics, as outlined in Table 2-3 and Table 2-5. The historical classification system for structural bars and plates suggests that there is only a physical difference between them based upon size and production procedure. In raw form, flat stock has historically been classified as a bar if it is less than or equal to 8 in. wide and as a plate if it is greater than 8 in. wide. Bars are rolled between horizontal and vertical rolls and trimmed to length by shearing or thermal cutting on the ends only. Plates are generally produced using one of two methods: 1. Sheared plates are rolled between horizontal rolls and trimmed to width and length by shearing or thermal cutting on the edges and ends; or 2. Stripped plates are sheared or thermal cut from wider sheared plates. There is very little, if any, structural difference between plates and bars. Consequently, the term plate is becoming a universally applied term today and a PL1/2 in.×41/2 in.×1ft 3 in., for example, might be fabricated from plate or bar stock. For structural plates, the preferred practice is to specify thickness in 1/16-in. increments up to 3/ 8-in. thickness, 1/8-in. increments over 3/ 8-in. to 1-in. thickness, and 1/4-in. increments over 1-in. thickness. The current extreme width for sheared plates is 200 in. Because mill practice regarding plate widths vary, individual mills should be consulted to determine preferences. For bars, the preferred practice is to specify width in 1/4-in. increments, and thickness and diameter in 1/8-in. increments. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 9 STANDARD MILL PRACTICES 1–9 Raised-Pattern Floor Plates Weights of raised-pattern floor plates are given in Table 1-18. Raised-pattern floor plates are commonly available in widths up to 120 in. For larger plate widths, see literature available from floor plate producers. Crane Rails Although crane rails are not listed as structural steel in the AISC Code of Standard Practice Section 2.1, this information is provided because some fabricators may choose to provide crane rails. Crane rails are designated by unit weight in lb/yard. Dimensions and properties for the crane rails shown are given in Table 1-21. Crane rails can be either heat treated or end hardened to reduce wear. For additional information or for profiles and properties of crane rails not listed, manufacturer’s catalogs should be consulted. For crane-rail connections, see Part 15. Other Structural Products The following other structural products are covered in this Manual as indicated: • High-strength bolts, common bolts, washers, nuts and direct-tension-indicator washers are covered in Part 7. • Welding filler metals and fluxes are covered in Part 8. • Forged steel structural hardware items, such as clevises, turnbuckles, sleeve nuts, recessed-pin nuts, and cotter pins are covered in Part 15. • Anchor rods and threaded rods are covered in Part 14. STANDARD MILL PRACTICES The production of structural products is subject to unavoidable variations relative to the theoretical dimensions and profiles, due to many factors, including roll wear, roll dressing practices and temperature effects. Such variations are limited by the dimensional and profile tolerances as summarized below. Hot-Rolled Structural Shapes Acceptable dimensional tolerances for hot-rolled structural shapes (W-, M-, S- and HPshapes), channels (C- and MC-shapes), and angles are given in ASTM A6 Section 12 and summarized in Tables 1-22 through 1-26. Supplementary information, including permissible variations for sheet and strip and for other grades of steel, can also be found in literature from steel plate producers and the Association of Iron and Steel Technology. Hollow Structural Sections Acceptable dimensional tolerances for HSS are given in ASTM A500 Section 11, A501 Section 12, A618 Section 8, or A847 Section 10, as applicable, and summarized in Tables 1-27 and 1-28, for rectangular and round HSS, respectively. Supplementary information AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 1–10 7:25 AM Page 10 DIMENSIONS AND PROPERTIES can also be found in literature from HSS producers and the Steel Tube Institute, such as Recommended Methods to Check Dimensional Tolerances on Hollow Structural Sections (HSS) Made to ASTM A500. Pipe Acceptable dimensional tolerances for pipes are given in ASTM A53 Section 10 and summarized in Table 1-28. Supplementary information can also be found in literature from pipe producers. Plate Products Acceptable dimensional tolerances for plate products are given in ASTM A6 Section 12 and summarized in Table 1-29. Note that plate thickness can be specified in inches or by weight per square foot, and separate tolerances apply to each method. No decimal edge thickness can be assured for plate specified by the latter method. Supplementary information, including permissible variations for sheet and strip and for other grades of steel, can also be found in literature from steel plate producers and the Association of Iron and Steel Technology. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 11 PART 1 REFERENCES 1–11 PART 1 REFERENCES Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of Structural Steel Framing, Design Guide 19, AISC, Chicago, IL. Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members, Design Guide 9, AISC, Chicago, IL. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 12 1–12 DIMENSIONS AND PROPERTIES Table 1-1 W-Shapes Dimensions Web Flange Shape Area, A Depth, d W44×335 c ×290 c ×262 c ×230 c,v in.2 98.5 85.4 77.2 67.8 in. 44.0 44 43.6 435/8 43.3 431/4 42.9 427/8 in. in. in. 1/2 1.03 1 15.9 16 7/16 15.8 157/8 0.865 7/8 0.785 13/16 7/16 15.8 15 3/4 0.710 11/16 3/8 15.8 153/4 W40×593 h ×503 h ×431h ×397 h ×372 h ×362 h ×324 ×297 c ×277 c ×249 c ×215 c ×199 c 174 148 127 117 110 106 95.3 87.3 81.5 73.5 63.5 58.8 43.0 42.1 41.3 41.0 40.6 40.6 40.2 39.8 39.7 39.4 39.0 38.7 43 42 411/4 41 405/8 401/2 401/8 397/8 393/4 393/8 39 385/8 1.79 1.54 1.34 1.22 1.16 1.12 1.00 0.930 0.830 0.750 0.650 0.650 113/16 19/16 15/16 11/4 13/16 11/8 1 15/16 13/16 3/4 5/8 5/8 W40×392 h 116 ×331h 97.7 ×327 h 95.9 ×294 86.2 ×278 82.3 ×264 77.4 ×235 c 69.1 ×211c 62.1 ×183 c 53.3 ×167 c 49.3 ×149 c,v 43.8 41.6 40.8 40.8 40.4 40.2 40.0 39.7 39.4 39.0 38.6 38.2 415/8 403/4 403/4 403/8 401/8 40 393/4 393/8 39 385/8 381/4 1.42 1.22 1.18 1.06 1.03 0.960 0.830 0.750 0.650 0.650 0.630 17/16 11/4 13/16 11/16 1 15/16 13/16 3/4 5/8 5/8 5/8 c h v Thickness, tw tw ᎏ 2 15/16 13/16 11/16 5/8 5/8 9/16 1/2 1/2 7/16 3/8 5/16 5/16 3/4 5/8 5/8 9/16 1/2 1/2 7/16 3/8 5/16 5/16 5/16 Width, bf Distance Thickness, tf kdes kdet in. 1.77 13/4 1.58 19/16 1.42 17/16 1.22 11/4 in. 2.56 2.36 2.20 2.01 in. 25/8 27/16 21/4 21/16 Workable Gage in. in. in. 15/16 383/4 51/2 11/4 13/16 13/16 k k1 T 16.7 16.4 16.2 16.1 16.1 16.0 15.9 15.8 15.8 15.8 15.8 15.8 163/4 16 3/8 161/4 161/8 161/8 16 157/8 157/8 157/8 153/4 153/4 153/4 3.23 2.76 2.36 2.20 2.05 2.01 1.81 1.65 1.58 1.42 1.22 1.07 31/4 23/4 23/8 23/16 21/16 2 113/16 15/8 19/16 17/16 11/4 11/16 4.41 3.94 3.54 3.38 3.23 3.19 2.99 2.83 2.76 2.60 2.40 2.25 41/2 4 35/8 31/2 35/16 31/4 31/16 215/16 27/8 211/16 21/2 25/16 21/8 34 2 17/8 113/16 113/16 13/4 111/16 111/16 15/8 19/16 19/16 19/16 71/2 12.4 12.2 12.1 12.0 12.0 11.9 11.9 11.8 11.8 11.8 11.8 123/8 121/8 121/8 12 12 117/8 117/8 113/4 113/4 113/4 113/4 2.52 2.13 2.13 1.93 1.81 1.73 1.58 1.42 1.20 1.03 0.830 21/2 21/8 21/8 115/16 113/16 13/4 19/16 17/16 13/16 1 13/16 3.70 3.31 3.31 3.11 2.99 2.91 2.76 2.60 2.38 2.21 2.01 313/16 33/8 33/8 33/16 31/16 3 27/8 211/16 21/2 25/16 21/8 115/16 34 113/16 113/16 13/4 13/4 111/16 15/8 19/16 19/16 19/16 11/2 71/2 Shape is slender for compression with Fy = 50 ksi. Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 13 DIMENSIONS AND PROPERTIES 1–13 Table 1-1 (continued) W-Shapes Properties W44-W40 Nominal Wt. Compact Section Criteria Axis X-X Axis Y-Y rts I in.4 1200 1040 923 796 S in.3 150 132 117 101 r in. 3.49 3.49 3.47 3.43 Z in.3 236 205 182 157 in. 4.24 4.20 4.17 4.13 Cw in. 42.2 42.0 41.9 41.7 in.4 74.7 50.9 37.3 24.9 in.6 535000 461000 405000 346000 335 290 262 230 4.50 5.02 5.57 6.45 38.0 45.0 49.6 54.8 593 503 431 397 372 362 324 297 277 249 215 199 2.58 2.98 3.44 3.66 3.93 3.99 4.40 4.80 5.03 5.55 6.45 7.39 19.1 22.3 25.5 28.0 29.5 30.5 34.2 36.8 41.2 45.6 52.6 52.6 50400 41600 34800 32000 29600 28900 25600 23200 21900 19600 16700 14900 2340 1980 1690 1560 1460 1420 1280 1170 1100 993 859 770 17.0 16.8 16.6 16.6 16.5 16.5 16.4 16.3 16.4 16.3 16.2 16.0 2760 2320 1960 1800 1680 1640 1460 1330 1250 1120 964 869 2520 2040 1690 1540 1420 1380 1220 1090 1040 926 803 695 302 249 208 191 177 173 153 138 132 118 101 88.2 3.80 3.72 3.65 3.64 3.60 3.60 3.58 3.54 3.58 3.55 3.54 3.45 481 394 328 300 277 270 239 215 204 182 156 137 4.63 4.50 4.41 4.38 4.33 4.33 4.27 4.22 4.25 4.21 4.19 4.12 39.8 39.3 38.9 38.8 38.6 38.6 38.4 38.2 38.1 38.0 37.8 37.6 445 277 177 142 116 109 79.4 61.2 51.5 38.1 24.8 18.3 997000 789000 638000 579000 528000 513000 448000 399000 379000 334000 284000 246000 392 331 327 294 278 264 235 211 183 167 149 2.45 2.86 2.85 3.11 3.31 3.45 3.77 4.17 4.92 5.76 7.11 24.1 28.0 29.0 32.2 33.3 35.6 41.2 45.6 52.6 52.6 54.3 29900 24700 24500 21900 20500 19400 17400 15500 13200 11600 9800 1440 1210 1200 1080 1020 971 875 786 675 600 513 16.1 15.9 16.0 15.9 15.8 15.8 15.9 15.8 15.7 15.3 15.0 1710 1430 1410 1270 1190 1130 1010 906 774 693 598 803 644 640 562 521 493 444 390 331 283 229 130 106 105 93.5 87.1 82.6 74.6 66.1 56.0 47.9 38.8 2.64 2.57 2.58 2.55 2.52 2.52 2.54 2.51 2.49 2.40 2.29 212 172 170 150 140 132 118 105 88.3 76.0 62.2 3.30 3.21 3.21 3.16 3.13 3.12 3.11 3.07 3.04 2.98 2.89 39.1 38.7 38.7 38.5 38.4 38.3 38.1 38.0 37.8 37.6 37.4 172 105 103 76.6 65.0 56.1 41.3 30.4 19.3 14.0 9.36 306000 241000 239000 208000 192000 181000 161000 141000 118000 99700 80000 h ᎏ tw Z in.3 1620 1410 1270 1100 J I S in.4 in.3 31100 1410 27000 1240 24100 1110 20800 971 b ᎏf lb/ft 2tf r in. 17.8 17.8 17.7 17.5 ho Torsional Properties AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 14 1–14 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Area, A Shape Depth, d in.2 W36×652 h 192 ×529 h 156 ×487 h 143 ×441h 130 ×395 h 116 ×361h 106 ×330 96.9 ×302 89.0 ×282 c 82.9 ×262 c 77.2 ×247 c 72.5 ×231c 68.2 in. 41.1 41 39.8 393/4 39.3 393/8 38.9 387/8 38.4 383/8 38.0 38 37.7 375/8 37.3 373/8 37.1 371/8 36.9 367/8 36.7 365/8 36.5 361/2 W36×256 ×232 c ×210 c ×194 c ×182 c ×170 c ×160 c ×150 c ×135 c,v 37.4 37.1 36.7 36.5 36.3 36.2 36.0 35.9 35.6 75.3 68.0 61.9 57.0 53.6 50.0 47.0 44.3 39.9 h 373/8 371/8 363/4 361/2 363/8 361/8 36 357/8 351/2 Thickness, tw Flange tw ᎏ 2 in. in. in. 1.97 2 1 17.6 175/8 13/16 17.2 171/4 1.61 15/8 3/4 1.50 11/2 17.1 171/8 11/16 17.0 17 1.36 13/8 5/8 1.22 11/4 16.8 167/8 9/16 16.7 163/4 1.12 11/8 1/2 1.02 1 16.6 165/8 0.945 15/16 1/2 16.7 165/8 7/16 16.6 165/8 0.885 7/8 0.840 13/16 7/16 16.6 161/2 0.800 13/16 7/16 16.5 161/2 3/8 0.760 3/4 16.5 161/2 0.960 0.870 0.830 0.765 0.725 0.680 0.650 0.625 0.600 15/16 1/2 7/8 7/16 13/16 7/16 3/4 3/8 3/4 11/16 3/8 3/8 5/8 5/16 5/8 5/16 5/8 11/4 5/16 5/8 W33×387 114 ×354 h 104 ×318 93.7 ×291 85.6 ×263 77.4 ×241c 71.1 ×221c 65.3 ×201c 59.1 36.0 35.6 35.2 34.8 34.5 34.2 33.9 33.7 36 351/2 351/8 347/8 341/2 341/8 337/8 335/8 1.26 1.16 13/16 1.04 11/16 0.960 15/16 0.870 7/8 0.830 13/16 0.775 3/4 0.715 11/16 3/8 3/8 W33×169 c ×152 c ×141c ×130 c ×118 c,v 33.8 33.5 33.3 33.1 32.9 337/8 331/2 331/4 331/8 327/8 0.670 0.635 0.605 0.580 0.550 11/16 3/8 5/8 5/16 5/8 5/16 9/16 5/16 9/16 5/16 c h v 49.5 44.9 41.5 38.3 34.7 Width, bf 5/8 9/16 1/2 7/16 7/16 Distance k Thickness, tf kdes kdet in. 3.54 39/16 2.91 215/16 2.68 211/16 2.44 27/16 2.20 23/16 2.01 2 1.85 17/8 1.68 111/16 1.57 19/16 1.44 17/16 1.35 13/8 1.26 11/4 in. 4.49 3.86 3.63 3.39 3.15 2.96 2.80 2.63 2.52 2.39 2.30 2.21 in. 413/16 43/16 4 33/4 37/16 35/16 31/8 3 27/8 23/4 25/8 29/16 in. 23/16 2 17/8 17/8 113/16 13/4 13/4 111/16 15/8 15/8 15/8 19/16 k1 Workable Gage in. in. 313/8 71/2 T 12.2 12.1 12.2 12.1 12.1 12.0 12.0 12.0 12.0 121/4 121/8 121/8 121/8 121/8 12 12 12 12 1.73 1.57 1.36 1.26 1.18 1.10 1.02 0.940 0.790 13/4 19/16 13/8 11/4 13/16 11/8 1 15/16 13/16 2.48 2.32 2.11 2.01 1.93 1.85 1.77 1.69 1.54 25/8 27/16 25/16 23/16 21/8 2 115/16 17/8 111/16 15/16 321/8 11/4 11/4 13/16 13/16 13/16 11/8 11/8 11/8 51/2 16.2 16.1 16.0 15.9 15.8 15.9 15.8 15.7 161/4 161/8 16 157/8 153/4 157/8 153/4 153/4 2.28 2.09 1.89 1.73 1.57 1.40 1.28 1.15 21/4 21/16 17/8 13/4 19/16 13/8 11/4 11/8 3.07 2.88 2.68 2.52 2.36 2.19 2.06 1.94 33/16 215/16 23/4 25/8 27/16 21/4 21/8 2 17/16 295/8 13/8 15/16 15/16 11/4 11/4 13/16 13/16 51/2 11.5 11.6 11.5 11.5 11.5 111/2 115/8 111/2 111/2 111/2 1.22 11/4 1.06 11/16 0.960 15/16 0.855 7/8 0.740 3/4 1.92 1.76 1.66 1.56 1.44 21/8 115/16 113/16 13/4 15/8 13/16 295/8 11/8 11/8 11/8 11/8 51/2 Shape is slender for compression with Fy = 50 ksi. Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 15 DIMENSIONS AND PROPERTIES 1–15 Table 1-1 (continued) W-Shapes Properties W36-W33 Nominal Wt. Compact Section Criteria Axis X-X 652 529 487 441 395 361 330 302 282 262 247 231 2.48 2.96 3.19 3.48 3.83 4.16 4.49 4.96 5.29 5.75 6.11 6.54 16.3 19.9 21.4 23.6 26.3 28.6 31.4 33.9 36.2 38.2 40.1 42.2 I in.4 50600 39600 36000 32100 28500 25700 23300 21100 19600 17900 16700 15600 256 232 210 194 182 170 160 150 135 3.53 3.86 4.48 4.81 5.12 5.47 5.88 6.37 7.56 33.8 37.3 39.1 42.4 44.8 47.7 49.9 51.9 54.1 16800 15000 13200 12100 11300 10500 9760 9040 7800 895 809 719 664 623 581 542 504 439 387 354 318 291 263 241 221 201 3.55 3.85 4.23 4.60 5.03 5.66 6.20 6.85 23.7 25.7 28.7 31.0 34.3 35.9 38.5 41.7 24300 22000 19500 17700 15900 14200 12900 11600 1350 1240 1110 1020 919 831 759 686 14.6 14.5 14.5 14.4 14.3 14.1 14.1 14.0 169 152 141 130 118 4.71 5.48 6.01 6.73 7.76 44.7 47.2 49.6 51.7 54.5 9290 8160 7450 6710 5900 549 487 448 406 359 13.7 13.5 13.4 13.2 13.0 b ᎏf lb/ft 2tf h ᎏ tw S in.3 2460 1990 1830 1650 1490 1350 1240 1130 1050 972 913 854 r in. 16.2 16.0 15.8 15.7 15.7 15.6 15.5 15.4 15.4 15.3 15.2 15.1 Axis Y-Y Z in.3 2910 2330 2130 1910 1710 1550 1410 1280 1190 1100 1030 963 14.9 1040 14.8 936 14.6 833 14.6 767 14.5 718 14.5 668 14.4 624 14.3 581 14.0 509 I in.4 3230 2490 2250 1990 1750 1570 1420 1300 1200 1090 1010 940 S in.3 367 289 263 235 208 188 171 156 144 132 123 114 r in. 4.10 4.00 3.96 3.92 3.88 3.85 3.83 3.82 3.80 3.76 3.74 3.71 rts ho J Z in.3 581 454 412 368 325 293 265 241 223 204 190 176 in. 4.96 4.80 4.74 4.69 4.61 4.58 4.53 4.53 4.50 4.46 4.42 4.40 in. 37.6 36.9 36.6 36.5 36.2 36.0 35.9 35.6 35.5 35.5 35.4 35.2 2.65 137 2.62 122 2.58 107 2.56 97.7 2.55 90.7 2.53 83.8 2.50 77.3 2.47 70.9 2.38 59.7 3.24 3.21 3.18 3.15 3.13 3.11 3.09 3.06 2.99 35.7 35.5 35.3 35.2 35.1 35.1 35.0 35.0 34.8 4.49 4.44 4.40 4.34 4.31 4.29 4.25 4.21 33.7 33.5 33.3 33.1 32.9 32.8 32.6 32.6 3.03 3.01 2.98 2.94 2.89 32.6 32.4 32.3 32.2 32.2 528 468 411 375 347 320 295 270 225 86.5 77.2 67.5 61.9 57.6 53.2 49.1 45.1 37.7 1560 1420 1270 1160 1040 940 857 773 1620 1460 1290 1160 1040 933 840 749 200 181 161 146 131 118 106 95.2 3.77 3.74 3.71 3.68 3.66 3.62 3.59 3.56 629 559 514 467 415 310 273 246 218 187 53.9 47.2 42.7 37.9 32.6 2.50 2.47 2.43 2.39 2.32 312 282 250 226 202 182 164 147 84.4 73.9 66.9 59.5 51.3 Torsional Properties AMERICAN INSTITUTE OF STEEL CONSTRUCTION in.4 593 327 258 194 142 109 84.3 64.3 52.7 41.6 34.7 28.7 52.9 39.6 28.0 22.2 18.5 15.1 12.4 10.1 7.00 148 115 84.4 65.1 48.7 36.2 27.8 20.8 17.7 12.4 9.70 7.37 5.30 Cw in.6 1130000 846000 754000 661000 575000 509000 456000 412000 378000 342000 316000 292000 168000 148000 128000 116000 107000 98500 90200 82200 68100 459000 408000 357000 319000 281000 251000 224000 198000 82400 71700 64400 56600 48300 AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 16 1–16 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Shape Area, A Depth, d Thickness, tw in.2 W30×391 h 115 ×357 h 105 ×326 h 95.9 ×292 86.0 ×261 77.0 ×235 69.3 ×211 62.3 ×191 c 56.1 ×173 c 50.9 in. 33.2 331/4 32.8 323/4 32.4 323/8 32.0 32 31.6 315/8 31.3 311/4 30.9 31 30.7 305/8 30.4 301/2 W30×148 c ×132 c ×124 c ×116 c ×108 c ×99 c ×90 c,v 43.6 38.8 36.5 34.2 31.7 29.0 26.3 30.7 30.3 30.2 30.0 29.8 29.7 29.5 305/8 301/4 301/8 30 297/8 295/8 291/2 0.650 0.615 0.585 0.565 0.545 0.520 0.470 W27×539 h 159 ×368 h 109 ×336 h 99.2 ×307 h 90.2 ×281 83.1 ×258 76.1 ×235 69.4 ×217 63.9 ×194 57.1 ×178 52.5 ×161c 47.6 ×146 c 43.2 32.5 30.4 30.0 29.6 29.3 29.0 28.7 28.4 28.1 27.8 27.6 27.4 321/2 303/8 30 295/8 291/4 29 285/8 283/8 281/8 273/4 275/8 273/8 1.97 1.38 1.26 1.16 1.06 0.980 0.910 0.830 0.750 0.725 0.660 0.605 W27×129 c ×114 c ×102 c ×94 c ×84 c 27.6 27.3 27.1 26.9 26.7 275/8 271/4 271/8 267/8 263/4 0.610 0.570 0.515 0.490 0.460 37.8 33.6 30.0 27.6 24.7 Flange tw ᎏ 2 Width, bf in. in. in. 11/16 15.6 155/8 1.36 13/8 5/8 1.24 11/4 15.5 151/2 9/16 15.4 153/8 1.14 11/8 1/2 1.02 1 15.3 151/4 0.930 15/16 1/2 15.2 151/8 0.830 13/16 7/16 15.1 15 3/8 0.775 3/4 15.1 151/8 0.710 11/16 3/8 15.0 15 5/16 15.0 15 0.655 5/8 5/8 5/16 5/8 5/16 9/16 5/16 9/16 5/16 9/16 5/16 1/2 1/4 1/2 1/4 2 1 11/16 13/8 5/8 11/4 13/16 5/8 11/16 9/16 1/2 1 15/16 1/2 13/16 7/16 3/4 3/8 3/4 3/8 11/16 3/8 5/8 5/16 5/8 5/16 9/16 5/16 1/2 1/4 1/2 1/4 7/16 1/4 Distance k Thickness, tf kdes kdet in. 2.44 2 7/16 2.24 21/4 2.05 21/16 1.85 17/8 1.65 15/8 1.50 11/2 1.32 15/16 1.19 13/16 1.07 11/16 in. 3.23 3.03 2.84 2.64 2.44 2.29 2.10 1.97 1.85 in. 33/8 31/8 215/16 23/4 29/16 23/8 21/4 21/16 2 in. 11/2 17/16 13/8 15/16 15/16 11/4 13/16 13/16 11/8 k1 Workable Gage in. in. 261/2 51/2 T 10.5 10.5 10.5 10.5 10.5 10.5 10.4 101/2 101/2 101/2 101/2 101/2 101/2 103/8 1.18 13/16 1.00 1 0.930 15/16 0.850 7/8 0.760 3/4 0.670 11/16 0.610 5/8 1.83 1.65 1.58 1.50 1.41 1.32 1.26 21/16 17/8 113/16 13/4 111/16 19/16 11/2 11/8 261/2 11/8 11/8 11/8 11/8 11/16 11/16 51/2 15.3 14.7 14.6 14.4 14.4 14.3 14.2 14.1 14.0 14.1 14.0 14.0 151/4 145/8 141/2 141/2 143/8 141/4 141/4 141/8 14 141/8 14 14 3.54 2.48 2.28 2.09 1.93 1.77 1.61 1.50 1.34 1.19 1.08 0.975 3 9/16 21/2 21/4 21/16 115/16 13/4 15/8 11/2 15/16 13/16 11/16 1 4.33 3.27 3.07 2.88 2.72 2.56 2.40 2.29 2.13 1.98 1.87 1.76 47/16 33/8 33/16 3 213/16 211/16 21/2 23/8 21/4 21/16 2 17/8 113/16 235/8 51/2 g 11/2 51/2 17/16 17/16 13/8 15/16 15/16 11/4 13/16 13/16 13/16 11/8 10.0 10.1 10.0 10.0 10.0 10 101/8 10 10 10 1.10 11/8 0.930 15/16 0.830 13/16 0.745 3/4 0.640 5/8 1.70 1.53 1.43 1.34 1.24 2 113/16 13/4 15/8 19/16 11/8 235/8 11/8 11/16 11/16 11/16 51/2 Shape is slender for compression with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 17 DIMENSIONS AND PROPERTIES 1–17 Table 1-1 (continued) W-Shapes Properties W30-W27 Nominal Wt. Compact Section Criteria b ᎏf lb/ft 2tf h ᎏ tw 391 357 326 292 261 235 211 191 173 3.19 3.45 3.75 4.12 4.59 5.02 5.74 6.35 7.04 19.7 21.6 23.4 26.2 28.7 32.2 34.5 37.7 40.8 148 132 124 116 108 99 90 4.44 5.27 5.65 6.17 6.89 7.80 8.52 41.6 43.9 46.2 47.8 49.6 51.9 57.5 539 368 336 307 281 258 235 217 194 178 161 146 2.15 2.96 3.19 3.46 3.72 4.03 4.41 4.71 5.24 5.92 6.49 7.16 12.1 17.3 18.9 20.6 22.5 24.4 26.2 28.7 31.8 32.9 36.1 39.4 129 114 102 94 84 4.55 5.41 6.03 6.70 7.78 39.7 42.5 47.1 49.5 52.7 Axis X-X I S in.4 in.3 20700 1250 18700 1140 16800 1040 14900 930 13100 829 11700 748 10300 665 9200 600 8230 541 Axis Y-Y rts ho J r in. 13.4 13.3 13.2 13.2 13.1 13.0 12.9 12.8 12.7 Z in.3 1450 1320 1190 1060 943 847 751 675 607 I in.4 1550 1390 1240 1100 959 855 757 673 598 S in.3 198 179 162 144 127 114 100 89.5 79.8 r in. 3.67 3.64 3.60 3.58 3.53 3.51 3.49 3.46 3.42 Z in.3 310 279 252 223 196 175 155 138 123 in. 4.37 4.31 4.26 4.22 4.16 4.13 4.11 4.06 4.03 in. 30.8 30.6 30.4 30.2 30.0 29.8 29.6 29.5 29.3 436 380 355 329 299 269 245 12.4 12.2 12.1 12.0 11.9 11.7 11.7 500 437 408 378 346 312 283 227 196 181 164 146 128 115 43.3 37.2 34.4 31.3 27.9 24.5 22.1 2.28 2.25 2.23 2.19 2.15 2.10 2.09 68.0 58.4 54.0 49.2 43.9 38.6 34.7 2.77 2.75 2.73 2.70 2.67 2.62 2.60 29.5 29.3 29.3 29.2 29.0 29.0 28.9 25600 1570 16200 1060 14600 972 13100 887 11900 814 10800 745 9700 677 8910 627 7860 559 7020 505 6310 458 5660 414 12.7 12.2 12.1 12.0 12.0 11.9 11.8 11.8 11.7 11.6 11.5 11.5 1890 1240 1130 1030 936 852 772 711 631 570 515 464 2110 1310 1180 1050 953 859 769 704 619 555 497 443 277 179 162 146 133 120 108 100 88.1 78.8 70.9 63.5 3.65 3.48 3.45 3.41 3.39 3.36 3.33 3.32 3.29 3.25 3.23 3.20 437 279 252 227 206 187 168 154 136 122 109 97.7 4.41 4.15 4.10 4.04 4.00 3.96 3.92 3.89 3.85 3.83 3.79 3.76 29.0 27.9 27.7 27.5 27.4 27.2 27.1 26.9 26.8 26.6 26.5 26.4 11.2 11.0 11.0 10.9 10.7 395 343 305 278 244 184 159 139 124 106 36.8 31.5 27.8 24.8 21.2 2.21 2.18 2.15 2.12 2.07 57.6 49.3 43.4 38.8 33.2 2.66 2.65 2.62 2.59 2.54 26.5 26.4 26.3 26.2 26.1 6680 5770 5360 4930 4470 3990 3610 4760 4080 3620 3270 2850 345 299 267 243 213 Torsional Properties AMERICAN INSTITUTE OF STEEL CONSTRUCTION in.4 173 134 103 75.2 54.1 40.3 28.4 21.0 15.6 14.5 9.72 7.99 6.43 4.99 3.77 2.84 496 170 131 101 79.5 61.6 47.0 37.6 27.1 20.1 15.1 11.3 11.1 7.33 5.28 4.03 2.81 Cw in.6 366000 324000 287000 250000 215000 190000 166000 146000 129000 49400 42100 38600 34900 30900 26800 24000 443000 255000 226000 199000 178000 159000 141000 128000 111000 98400 87300 77200 32500 27600 24000 21300 17900 AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 18 1–18 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Shape Area, A Depth, d in.2 W24×370 h 109 ×335 h 98.3 ×306 h 89.7 x279 h 81.9 ×250 73.5 ×229 67.2 ×207 60.7 ×192 56.5 ×176 51.7 ×162 47.8 ×146 43.0 ×131 38.6 ×117 c 34.4 ×104 c 30.7 in. 28.0 28 27.5 271/2 27.1 271/8 26.7 263/4 26.3 263/8 26.0 26 25.7 253/4 25.5 251/2 25.2 251/4 25.0 25 24.7 243/4 24.5 241/2 24.3 241/4 24.1 24 W24×103 c ×94 c ×84 c ×76 c ×68 c 24.5 24.3 24.1 23.9 23.7 Flange kdes kdet in. in. in. 3/4 1.52 11/2 13.7 135/8 11/16 13.5 131/2 1.38 13/8 5/8 1.26 11/4 13.4 133/8 1.16 13/16 5/8 13.3 131/4 1.04 11/16 9/16 13.2 131/8 0.960 15/16 1/2 13.1 131/8 7/16 13.0 13 0.870 7/8 0.810 13/16 7/16 13.0 13 3/8 0.750 3/4 12.9 127/8 0.705 11/16 3/8 13.0 13 5/16 12.9 127/8 0.650 5/8 5/16 12.9 127/8 0.605 5/8 0.550 9/16 5/16 12.8 123/4 1/4 0.500 1/2 12.8 123/4 in. 2.72 23/4 2.48 21/2 2.28 21/4 2.09 21/16 1.89 17/8 1.73 13/4 1.57 19/16 1.46 17/16 1.34 15/16 1.22 11/4 1.09 11/16 0.960 15/16 0.850 7/8 0.750 3/4 in. 3.22 2.98 2.78 2.59 2.39 2.23 2.07 1.96 1.84 1.72 1.59 1.46 1.35 1.25 in. 35/8 33/8 33/16 3 213/16 25/8 21/2 23/8 21/4 21/8 2 17/8 13/4 15/8 Workable Gage in. in. in. 19/16 203/4 51/2 11/2 17/16 17/16 13/8 15/16 11/4 11/4 13/16 13/16 11/8 11/8 11/8 11/16 0.980 1 0.875 7/8 0.770 3/4 0.680 11/16 0.585 9/16 1.48 1.38 1.27 1.18 1.09 17/8 13/4 111/16 19/16 11/2 11/8 203/4 11/16 11/16 11/16 11/16 tw ᎏ 2 0.550 0.515 0.470 0.440 0.415 9/16 5/16 1/2 1/4 1/2 1/4 7/16 1/4 7/16 1/4 W24×62 ×55 c,v 18.2 23.7 0.430 16.2 23.6 235/8 0.395 7/16 1/4 3/8 3/16 W21×201 ×182 ×166 ×147 ×132 ×122 ×111 ×101c 59.3 53.6 48.8 43.2 38.8 35.9 32.6 29.8 15/16 1/2 13/16 7/16 3/4 3/8 3/4 3/8 5/16 c 30.3 27.7 24.7 22.4 20.1 241/2 241/4 241/8 237/8 233/4 233/4 23.0 22.7 22.5 22.1 21.8 21.7 21.5 21.4 23 223/4 221/2 22 217/8 215/8 211/2 213/8 Distance Thickness, tf Thickness, tw 0.910 0.830 0.750 0.720 0.650 0.600 0.550 0.500 5/8 5/8 9/16 5/16 1/2 1/4 5/16 Width, bf 9.00 9.07 9.02 8.99 8.97 9 91/8 9 9 9 7.04 7 7.01 7 12.6 12.5 12.4 12.5 12.4 12.4 12.3 12.3 125/8 121/2 123/8 121/2 121/2 123/8 123/8 121/4 0.590 0.505 9/16 1.63 1.48 1.36 1.15 1.04 0.960 0.875 0.800 15/8 11/2 13/8 11/8 11/16 15/16 7/8 13/16 1/2 k k1 T 51/2 1.09 11/2 11/16 203/4 31/2 g 1.01 17/16 1 203/4 31/2 g 2.13 1.98 1.86 1.65 1.54 1.46 1.38 1.30 21/2 23/8 21/4 2 115/16 113/16 13/4 111/16 15/16 11/4 13/16 13/16 11/8 11/8 11/8 11/16 18 51/2 Shape is slender for compression with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 19 DIMENSIONS AND PROPERTIES 1–19 Table 1-1 (continued) W-Shapes Properties W24-W21 Nominal Wt. Compact Section Criteria Axis X-X 370 335 306 279 250 229 207 192 176 162 146 131 117 104 2.51 2.73 2.94 3.18 3.49 3.79 4.14 4.43 4.81 5.31 5.92 6.70 7.53 8.50 14.2 15.6 17.1 18.6 20.7 22.5 24.8 26.6 28.7 30.6 33.2 35.6 39.2 43.1 I in.4 13400 11900 10700 9600 8490 7650 6820 6260 5680 5170 4580 4020 3540 3100 103 94 84 76 68 4.59 5.18 5.86 6.61 7.66 39.2 41.9 45.9 49.0 52.0 3000 2700 2370 2100 1830 245 222 196 176 154 62 5.97 50.1 55 6.94 54.6 1550 1350 5310 4730 4280 3630 3220 2960 2670 2420 b ᎏf lb/ft 2tf 201 182 166 147 132 122 111 101 3.86 4.22 4.57 5.44 6.01 6.45 7.05 7.68 h ᎏ tw 20.6 22.6 25.0 26.1 28.9 31.3 34.1 37.5 Axis Y-Y S in.3 957 864 789 718 644 588 531 491 450 414 371 329 291 258 r Z in. in.3 11.1 1130 11.0 1020 10.9 922 10.8 835 10.7 744 10.7 675 10.6 606 10.5 559 10.5 511 10.4 468 10.3 418 10.2 370 10.1 327 10.1 289 10.0 9.87 9.79 9.69 9.55 I in.4 1160 1030 919 823 724 651 578 530 479 443 391 340 297 259 280 254 224 200 177 119 109 94.4 82.5 70.4 131 114 9.23 153 9.11 134 34.5 29.1 461 417 380 329 295 273 249 227 9.47 9.40 9.36 9.17 9.12 9.09 9.05 9.02 530 476 432 373 333 307 279 253 542 483 435 376 333 305 274 248 rts J Cw in. 25.3 25.0 24.8 24.6 24.4 24.3 24.1 24.0 23.9 23.8 23.6 23.5 23.5 23.4 in.4 201 152 117 90.5 66.6 51.3 38.3 30.8 23.9 18.5 13.4 9.50 6.72 4.72 in.6 186000 161000 142000 125000 108000 96100 84100 76300 68400 62600 54600 47100 40800 35200 23.5 23.4 23.3 23.2 23.1 7.07 5.26 3.70 2.68 1.87 16600 15000 12800 11100 9430 1.75 23.1 1.72 23.1 1.71 1.18 4620 3870 40.9 30.7 23.6 15.4 11.3 8.98 6.83 5.21 62000 54400 48500 41100 36000 32700 29200 26200 S in.3 170 152 137 124 110 99.4 88.8 81.8 74.3 68.4 60.5 53.0 46.5 40.7 r in. 3.27 3.23 3.20 3.17 3.14 3.11 3.08 3.07 3.04 3.05 3.01 2.97 2.94 2.91 Z in.3 267 238 214 193 171 154 137 126 115 105 93.2 81.5 71.4 62.4 in. 3.92 3.86 3.81 3.76 3.71 3.67 3.62 3.60 3.57 3.57 3.53 3.49 3.46 3.42 26.5 24.0 20.9 18.4 15.7 1.99 1.98 1.95 1.92 1.87 41.5 37.5 32.6 28.6 24.5 2.40 2.40 2.37 2.33 2.30 9.80 1.38 8.30 1.34 15.7 13.3 86.1 77.2 70.0 60.1 53.5 49.2 44.5 40.3 3.02 133 3.00 119 2.99 108 2.95 92.6 2.93 82.3 2.92 75.6 2.90 68.2 2.89 61.7 ho Torsional Properties 3.55 3.51 3.48 3.46 3.43 3.40 3.37 3.35 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 21.4 21.2 21.1 21.0 20.8 20.7 20.6 20.6 AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 20 1–20 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Shape Area, A Depth, d W21×93 ×83 c ×73 c ×68 c ×62 c ×55 c ×48 c,f in.2 27.3 24.4 21.5 20.0 18.3 16.2 14.1 in. 21.6 215/8 21.4 213/8 21.2 211/4 21.1 211/8 21.0 21 20.8 203/4 20.6 205/8 W21×57 c ×50 c ×44 c 16.7 21.1 21 0.405 14.7 20.8 207/8 0.380 13.0 20.7 205/8 0.350 W18×311 h ×283 h ×258 h ×234 h ×211 ×192 ×175 ×158 ×143 ×130 ×119 ×106 ×97 ×86 ×76 c 91.6 83.3 76.0 68.6 62.3 56.2 51.4 46.3 42.0 38.3 35.1 31.1 28.5 25.3 22.3 22.3 21.9 21.5 21.1 20.7 20.4 20.0 19.7 19.5 19.3 19.0 18.7 18.6 18.4 18.2 223/8 217/8 211/2 21 205/8 203/8 20 193/4 191/2 191/4 19 183/4 185/8 183/8 181/4 W18×71 ×65 ×60 c ×55 c ×50 c 20.9 19.1 17.6 16.2 14.7 18.5 18.4 18.2 18.1 18.0 181/2 183/8 181/4 181/8 18 W18×46 c ×40 c ×35 c Flange Thickness, tw tw ᎏ 2 Width, bf in. 0.580 9/16 0.515 1/2 0.455 7/16 0.430 7/16 0.400 3/8 0.375 3/8 0.350 3/8 in. 5/16 1/4 1/4 1/4 3/16 3/16 3/16 3/8 3/16 3/8 3/16 3/8 3/16 1.52 1.40 1.28 1.16 1.06 0.960 0.890 0.810 0.730 0.670 0.655 0.590 0.535 0.480 0.425 11/2 13/8 11/4 13/16 11/16 15/16 7/8 13/16 3/4 11/16 5/8 9/16 9/16 1/2 7/16 3/4 0.495 0.450 0.415 0.390 0.355 1/2 1/4 7/16 1/4 7/16 1/4 3/8 3/16 3/8 3/16 13.5 18.1 18 0.360 11.8 17.9 177/8 0.315 10.3 17.7 173/4 0.300 3/8 3/16 5/16 3/16 5/16 3/16 11/16 5/8 5/8 9/16 1/2 7/16 7/16 3/8 3/8 5/16 5/16 5/16 1/4 1/4 Distance k Thickness, tf kdes kdet in. 8.42 83/8 8.36 83/8 8.30 81/4 8.27 81/4 8.24 81/4 8.22 81/4 8.14 81/8 in. 0.930 0.835 0.740 0.685 0.615 0.522 0.430 in. 1.43 1.34 1.24 1.19 1.12 1.02 0.930 in. 15/8 11/2 17/16 13/8 15/16 13/16 11/8 6.56 61/2 6.53 61/2 6.50 61/2 0.650 0.535 0.450 5/8 12 117/8 113/4 115/8 111/2 111/2 113/8 111/4 111/4 111/8 111/4 111/4 111/8 111/8 11 2.74 2.50 2.30 2.11 1.91 1.75 1.59 1.44 1.32 1.20 1.06 0.940 0.870 0.770 0.680 23/4 21/2 25/16 21/8 115/16 13/4 19/16 17/16 15/16 13/16 11/16 15/16 7/8 3/4 11/16 75/8 75/8 71/2 71/2 71/2 0.810 0.750 0.695 0.630 0.570 13/16 0.605 0.525 0.425 5/8 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.2 11.3 11.2 11.1 11.1 11.0 7.64 7.59 7.56 7.53 7.50 6.06 6 6.02 6 6.00 6 15/16 13/16 3/4 11/16 5/8 1/2 7/16 9/16 7/16 3/4 11/16 5/8 9/16 1/2 7/16 1.15 15/16 1.04 11/4 0.950 11/8 3.24 3.00 2.70 2.51 2.31 2.15 1.99 1.84 1.72 1.60 1.46 1.34 1.27 1.17 1.08 37/16 33/16 3 23/4 29/16 27/16 27/16 23/8 23/16 21/16 115/16 113/16 13/4 15/8 19/16 1.21 1.15 1.10 1.03 0.972 11/2 17/16 13/8 15/16 11/4 1.01 11/4 0.927 13/16 0.827 11/8 k1 in. 15/16 Workable Gage in. in. 183/8 51/2 T 7/8 7/8 7/8 13/16 13/16 13/16 183/8 31/2 13/8 151/2 15/16 11/4 13/16 13/16 11/8 11/4 151/8 11/4 13/16 13/16 13/16 11/8 11/8 11/16 11/16 51/2 13/16 13/16 13/16 7/8 151/2 31/2g 7/8 13/16 13/16 13/16 13/16 151/2 31/2 g 13/16 3/4 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. c f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 21 DIMENSIONS AND PROPERTIES 1–21 Table 1-1 (continued) W-Shapes Properties W21-W18 Nominal Wt. Compact Section Criteria Axis X-X Axis Y-Y 32.3 36.4 41.2 43.6 46.9 50.0 53.6 I in.4 2070 1830 1600 1480 1330 1140 959 S in.3 192 171 151 140 127 110 93.0 r in. 8.70 8.67 8.64 8.60 8.54 8.40 8.24 57 5.04 46.3 50 6.10 49.4 44 7.22 53.6 1170 984 843 111 94.5 81.6 8.36 129 8.18 110 8.06 95.4 b ᎏf lb/ft 2tf 93 83 73 68 62 55 48 4.53 5.00 5.60 6.04 6.70 7.87 9.47 h ᎏ tw Z in.3 221 196 172 160 144 126 107 311 283 258 234 211 192 175 158 143 130 119 106 97 86 76 2.19 2.38 2.56 2.76 3.02 3.27 3.58 3.92 4.25 4.65 5.31 5.96 6.41 7.20 8.11 10.4 11.3 12.5 13.8 15.1 16.7 18.0 19.8 22.0 23.9 24.5 27.2 30.0 33.4 37.8 6970 6170 5510 4900 4330 3870 3450 3060 2750 2460 2190 1910 1750 1530 1330 624 565 514 466 419 380 344 310 282 256 231 204 188 166 146 8.72 8.61 8.53 8.44 8.35 8.28 8.20 8.12 8.09 8.03 7.90 7.84 7.82 7.77 7.73 754 676 611 549 490 442 398 356 322 290 262 230 211 186 163 71 65 60 55 50 4.71 5.06 5.44 5.98 6.57 32.4 35.7 38.7 41.1 45.2 1170 1070 984 890 800 127 117 108 98.3 88.9 7.50 7.49 7.47 7.41 7.38 146 133 123 112 101 46 5.01 44.6 40 5.73 50.9 35 7.06 53.5 712 612 510 78.8 68.4 57.6 7.25 7.21 7.04 90.7 78.4 66.5 I in.4 92.9 81.4 70.6 64.7 57.5 48.4 38.7 30.6 24.9 20.7 795 704 628 558 493 440 391 347 311 278 253 220 201 175 152 60.3 54.8 50.1 44.9 40.1 22.5 19.1 15.3 S in.3 22.1 19.5 17.0 15.7 14.0 11.8 9.52 rts ho Torsional Properties J Cw r in. 1.84 1.83 1.81 1.80 1.77 1.73 1.66 Z in.3 34.7 30.5 26.6 24.4 21.7 18.4 14.9 in. 2.24 2.21 2.19 2.17 2.15 2.11 2.05 in. 20.7 20.6 20.5 20.4 20.4 20.3 20.2 in.4 6.03 4.34 3.02 2.45 1.83 1.24 0.803 in.6 9940 8630 7410 6760 5960 4980 3950 9.35 1.35 7.64 1.30 6.37 1.26 14.8 12.2 10.2 1.68 20.5 1.64 20.3 1.60 20.3 1.77 1.14 0.770 3190 2570 2110 132 118 107 95.8 85.3 76.8 68.8 61.4 55.5 49.9 44.9 39.4 36.1 31.6 27.6 2.95 2.91 2.88 2.85 2.82 2.79 2.76 2.74 2.72 2.70 2.69 2.66 2.65 2.63 2.61 207 185 166 149 132 119 106 94.8 85.4 76.7 69.1 60.5 55.3 48.4 42.2 3.53 3.47 3.42 3.37 3.32 3.28 3.24 3.20 3.17 3.13 3.13 3.10 3.08 3.05 3.02 19.6 19.4 19.2 19.0 18.8 18.7 18.4 18.3 18.2 18.1 17.9 17.8 17.7 17.6 17.5 176 134 103 78.7 58.6 44.7 33.8 25.2 19.2 14.5 10.6 7.48 5.86 4.10 2.83 76200 65900 57600 50100 43400 38000 33300 29000 25700 22700 20300 17400 15800 13600 11700 15.8 14.4 13.3 11.9 10.7 1.70 1.69 1.68 1.67 1.65 24.7 22.5 20.6 18.5 16.6 2.05 2.03 2.02 2.00 1.98 17.7 17.7 17.5 17.5 17.4 3.49 2.73 2.17 1.66 1.24 4700 4240 3850 3430 3040 1.22 0.810 0.506 1720 1440 1140 7.43 1.29 6.35 1.27 5.12 1.22 11.7 1.58 17.5 10.0 1.56 17.4 8.06 1.51 17.3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 22 1–22 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Shape Area, A Depth, d W16×100 ×89 ×77 ×67 c in.2 29.4 26.2 22.6 19.6 in. 17.0 17 16.8 163/4 16.5 161/2 16.3 163/8 W16×57 ×50 c ×45 c ×40 c ×36 c 16.8 14.7 13.3 11.8 10.6 16.4 16.3 16.1 16.0 15.9 W16×31c ×26 c,v W14×730 h ×665 h ×605 h ×550 h ×500 h ×455 h ×426 h ×398 h ×370 h ×342 h ×311 h ×283 h ×257 ×233 ×211 ×193 ×176 ×159 ×145 163/8 161/4 161/8 16 157/8 22.4 21.6 20.9 20.2 19.6 19.0 18.7 18.3 17.9 17.5 17.1 16.7 16.4 16.0 15.7 15.5 15.2 15.0 14.8 223/8 215/8 207/8 201/4 195/8 19 185/8 181/4 177/8 171/2 171/8 163/4 163/8 16 153/4 151/2 151/4 15 143/4 Distance k tw ᎏ 2 Width, bf Thickness, tf kdes kdet in. 0.585 9/16 0.525 1/2 0.455 7/16 0.395 3/8 in. 5/16 1/4 1/4 3/16 in. 10.4 103/8 10.4 103/8 10.3 101/4 10.2 101/4 in. 0.985 1 0.875 7/8 0.760 3/4 0.665 11/16 in. 1.39 1.28 1.16 1.07 in. 17/8 13/4 15/8 19/16 in. 11/8 11/16 11/16 1 1.12 1.03 0.967 0.907 0.832 13/8 15/16 11/4 13/16 11/8 7/8 0.430 0.380 0.345 0.305 0.295 9.13 15.9 157/8 0.275 7.68 15.7 153/4 0.250 215 196 178 162 147 134 125 117 109 101 91.4 83.3 75.6 68.5 62.0 56.8 51.8 46.7 42.7 Flange Thickness, tw 3.07 2.83 2.60 2.38 2.19 2.02 1.88 1.77 1.66 1.54 1.41 1.29 1.18 1.07 0.980 0.890 0.830 0.745 0.680 7/16 1/4 3/8 3/16 3/8 3/16 5/16 3/16 5/16 3/16 1/4 1/8 1/4 1/8 31/16 213/16 25/8 23/8 23/16 2 17/8 13/4 111/16 19/16 17/16 15/16 13/16 11/16 1 7/8 13/16 3/4 11/16 19/16 17/16 15/16 13/16 11/8 1 15/16 7/8 13/16 13/16 3/4 11/16 5/8 9/16 1/2 7/16 7/16 3/8 3/8 71/8 71/8 7 7 7 0.715 0.630 0.565 0.505 0.430 11/16 5.53 51/2 5.50 51/2 0.440 0.345 7/16 7.12 7.07 7.04 7.00 6.99 17.9 17.7 17.4 17.2 17.0 16.8 16.7 16.6 16.5 16.4 16.2 16.1 16.0 15.9 15.8 15.7 15.7 15.6 15.5 177/8 175/8 173/8 171/4 17 167/8 163/4 165/8 161/2 163/8 161/4 161/8 16 157/8 153/4 153/4 155/8 155/8 151/2 4.91 4.52 4.16 3.82 3.50 3.21 3.04 2.85 2.66 2.47 2.26 2.07 1.89 1.72 1.56 1.44 1.31 1.19 1.09 5/8 9/16 1/2 7/16 3/8 415/16 41/2 43/16 313/16 31/2 33/16 31/16 27/8 211/16 21/2 21/4 21/16 17/8 13/4 19/16 17/16 15/16 13/16 11/16 0.842 11/8 0.747 11/16 5.51 5.12 4.76 4.42 4.10 3.81 3.63 3.44 3.26 3.07 2.86 2.67 2.49 2.32 2.16 2.04 1.91 1.79 1.69 63/16 513/16 57/16 51/8 413/16 41/2 45/16 41/8 315/16 33/4 39/16 33/8 33/16 3 27/8 23/4 25/8 21/2 23/8 k1 Workable Gage in. in. 131/4 51/2 T 135/8 31/2 g 13/16 13/16 13/16 3/4 3/4 3/4 135/8 135/8 31/2 31/2 23/4 10 3-71/2-3g 5 2 /8 3-71/2-3g 21/2 3-71/2-3 23/8 25/16 21/4 21/8 21/8 21/16 2 115/16 17/8 113/16 13/4 111/16 111/16 15/8 19/16 19/16 Shape is slender for compression with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 23 DIMENSIONS AND PROPERTIES 1–23 Table 1-1 (continued) W-Shapes Properties W16-W14 Nominal Wt. Compact Section Criteria Axis X-X 100 89 77 67 5.29 5.92 6.77 7.70 24.3 27.0 31.2 35.9 I in.4 1490 1300 1110 954 57 50 45 40 36 4.98 5.61 6.23 6.93 8.12 33.0 37.4 41.1 46.5 48.1 758 659 586 518 448 92.2 81.0 72.7 64.7 56.5 6.72 105 6.68 92.0 6.65 82.3 6.63 73.0 6.51 64.0 43.1 37.2 32.8 28.9 24.5 31 6.28 51.6 26 7.97 56.8 375 301 47.2 38.4 6.41 6.26 12.4 9.59 b ᎏf lb/ft 2tf 730 665 605 550 500 455 426 398 370 342 311 283 257 233 211 193 176 159 145 1.82 1.95 2.09 2.25 2.43 2.62 2.75 2.92 3.10 3.31 3.59 3.89 4.23 4.62 5.06 5.45 5.97 6.54 7.11 h ᎏ tw S in.3 175 155 134 117 3.71 14300 1280 4.03 12400 1150 4.39 10800 1040 4.79 9430 931 5.21 8210 838 5.66 7190 756 6.08 6600 706 6.44 6000 656 6.89 5440 607 7.41 4900 558 8.09 4330 506 8.84 3840 459 9.71 3400 415 10.7 3010 375 11.6 2660 338 12.8 2400 310 13.7 2140 281 15.3 1900 254 16.8 1710 232 r in. 7.10 7.05 7.00 6.96 Axis Y-Y Z in.3 198 175 150 130 54.0 44.2 8.17 1660 7.98 1480 7.80 1320 7.63 1180 7.48 1050 7.33 936 7.26 869 7.16 801 7.07 736 6.98 672 6.88 603 6.79 542 6.71 487 6.63 436 6.55 390 6.50 355 6.43 320 6.38 287 6.33 260 I in.4 186 163 138 119 4720 4170 3680 3250 2880 2560 2360 2170 1990 1810 1610 1440 1290 1150 1030 931 838 748 677 rts J Cw in. 16.0 15.9 15.7 15.6 in.4 7.73 5.45 3.57 2.39 in.6 11900 10200 8590 7300 15.7 15.7 15.5 15.5 15.5 2.22 1.52 1.11 0.794 0.545 2660 2270 1990 1730 1460 7.03 1.42 15.5 5.48 1.38 15.4 0.461 0.262 739 565 S in.3 35.7 31.4 26.9 23.2 r in. 2.51 2.49 2.47 2.46 Z in.3 54.9 48.1 41.1 35.5 in. 2.92 2.88 2.85 2.82 12.1 10.5 9.34 8.25 7.00 1.60 1.59 1.57 1.57 1.52 18.9 16.3 14.5 12.7 10.8 1.92 1.89 1.87 1.86 1.83 4.49 1.17 3.49 1.12 527 472 423 378 339 304 283 262 241 221 199 179 161 145 130 119 107 96.2 87.3 4.69 4.62 4.55 4.49 4.43 4.38 4.34 4.31 4.27 4.24 4.20 4.17 4.13 4.10 4.07 4.05 4.02 4.00 3.98 ho Torsional Properties 816 730 652 583 522 468 434 402 370 338 304 274 246 221 198 180 163 146 133 5.68 5.57 5.44 5.35 5.26 5.17 5.11 5.05 5.00 4.95 4.87 4.80 4.75 4.69 4.64 4.59 4.55 4.51 4.47 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 17.5 1450 17.1 1120 16.7 869 16.4 669 16.1 514 15.8 395 15.7 331 15.5 273 15.2 222 15.0 178 14.8 136 14.6 104 14.5 79.1 14.3 59.5 14.1 44.6 14.1 34.8 13.9 26.5 13.8 19.7 13.7 15.2 362000 305000 258000 219000 187000 160000 144000 129000 116000 103000 89100 77700 67800 59000 51500 45900 40500 35600 31700 AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 24 1–24 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Shape Area, A Depth, d W14×132 ×120 ×109 ×99 f ×90 f in.2 38.8 35.3 32.0 29.1 26.5 in. 14.7 145/8 14.5 141/2 14.3 143/8 14.2 141/8 14.0 14 W14×82 ×74 ×68 ×61 24.0 21.8 20.0 17.9 14.3 14.2 14.0 13.9 Width, bf Thickness, tf kdes kdet in. 0.645 5/8 0.590 9/16 0.525 1/2 0.485 1/2 0.440 7/16 in. 5/16 5/16 1/4 1/4 1/4 in. 14.7 143/4 14.7 145/8 14.6 145/8 14.6 145/8 14.5 141/2 in. 1.03 1 0.940 15/16 0.860 7/8 0.780 3/4 0.710 11/16 in. 1.63 1.54 1.46 1.38 1.31 10.1 10.1 10.0 10.0 1.45 1.38 1.31 1.24 1/2 1/4 7/16 1/4 7/16 3/8 1/4 3/16 W14×53 ×48 ×43 c 15.6 13.9 0.370 14.1 13.8 133/4 0.340 12.6 13.7 135/8 0.305 3/8 3/16 5/16 3/16 5/16 3/16 W14×38 c ×34 c ×30 c 11.2 14.1 141/8 0.310 10.0 14.0 14 0.285 8.85 13.8 137/8 0.270 5/16 3/16 5/16 3/16 1/4 1/8 W14×26 c ×22 c 7.69 13.9 137/8 0.255 6.49 13.7 133/4 0.230 1/4 1/8 1/4 1/8 13/4 15/8 11/2 13/8 15/16 13/16 11/16 15/16 7/8 13/16 11/16 5/8 9/16 1/2 1/2 7/16 3/8 7/8 137/8 98.9 89.5 81.9 74.1 67.7 61.8 56.0 50.0 44.7 39.9 35.2 31.2 28.2 25.6 23.2 21.1 19.1 16.8 16.3 15.9 15.4 15.1 14.7 14.4 14.0 13.7 13.4 13.1 12.9 12.7 12.5 12.4 12.3 12.1 167/8 163/8 157/8 153/8 15 143/4 143/8 14 133/4 133/8 131/8 127/8 123/4 121/2 123/8 121/4 121/8 Distance k tw ᎏ 2 0.510 0.450 0.415 0.375 W12×336 h ×305 h ×279 h ×252 h ×230 h ×210 ×190 ×170 ×152 ×136 ×120 ×106 ×96 ×87 ×79 ×72 ×65 f 141/4 141/8 14 137/8 Flange Thickness, tw 1.78 1.63 1.53 1.40 1.29 1.18 1.06 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.430 0.390 13/16 3/4 11/16 11/16 5/8 9/16 1/2 7/16 7/16 3/8 5/16 5/16 1/4 1/4 1/4 3/16 0.855 0.785 0.720 0.645 7/8 8.06 8 8.03 8 8.00 8 0.660 0.595 0.530 11/16 6.77 63/4 6.75 63/4 6.73 63/4 0.515 0.455 0.385 1/2 5.03 5 5.00 5 0.420 0.335 7/16 2.96 2.71 2.47 2.25 2.07 1.90 1.74 1.56 1.40 1.25 1.11 0.990 0.900 0.810 0.735 0.670 0.605 215/16 211/16 21/2 21/4 21/16 17/8 13/4 19/16 13/8 11/4 11/8 1 7/8 13/16 3/4 11/16 5/8 13.4 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.2 12.1 12.1 12.0 12.0 101/8 101/8 10 10 133/8 131/4 131/8 13 127/8 123/4 125/8 125/8 121/2 123/8 123/8 121/4 121/8 121/8 121/8 12 12 13/16 3/4 5/8 5/8 1/2 7/16 3/8 5/16 k1 T in. 25/16 21/4 23/16 21/16 2 in. 19/16 11/2 11/2 17/16 17/16 in. 10 111/16 15/8 19/16 11/2 11/16 107/8 11/16 11/16 1 Workable Gage in. 51/2 51/2 1.25 11/2 1 1.19 17/16 1 1.12 13/8 1 107/8 0.915 11/4 0.855 13/16 0.785 11/8 13/16 115/8 31/2 g 31/2 31/2 0.820 11/8 0.735 11/16 3/4 3.55 3.30 3.07 2.85 2.67 2.50 2.33 2.16 2.00 1.85 1.70 1.59 1.50 1.41 1.33 1.27 1.20 37/8 35/8 33/8 31/8 215/16 213/16 25/8 27/16 25/16 21/8 2 17/8 113/16 111/16 15/8 19/16 11/2 3/4 3/4 3/4 51/2 115/8 23/4 g 115/8 23/4 g 111/16 91/8 15/8 15/8 11/2 11/2 17/16 13/8 15/16 11/4 11/4 13/16 11/8 11/8 11/16 11/16 11/16 1 51/2 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. c f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 25 DIMENSIONS AND PROPERTIES 1–25 Table 1-1 (continued) W-Shapes Properties W14-W12 Nominal Wt. Compact Section Criteria Axis X-X Axis Y-Y rts ho Torsional Properties J Cw in. 13.7 13.6 13.4 13.4 13.3 in.4 12.3 9.37 7.12 5.37 4.06 in.6 25500 22700 20200 18000 16000 13.4 13.4 13.3 13.3 5.07 3.87 3.01 2.19 6710 5990 5380 4710 2.22 13.2 2.20 13.2 2.18 13.2 1.94 1.45 1.05 2540 2240 1950 132 120 109 99 90 7.15 7.80 8.49 9.34 10.2 17.7 19.3 21.7 23.5 25.9 I in.4 1530 1380 1240 1110 999 82 74 68 61 5.92 6.41 6.97 7.75 22.4 25.4 27.5 30.4 881 795 722 640 123 112 103 92.1 6.05 6.04 6.01 5.98 53 6.11 30.9 48 6.75 33.6 43 7.54 37.4 541 484 428 77.8 70.2 62.6 5.89 5.85 5.82 87.1 78.4 69.6 57.7 51.4 45.2 14.3 1.92 12.8 1.91 11.3 1.89 38 6.57 39.6 34 7.41 43.1 30 8.74 45.4 385 340 291 54.6 48.6 42.0 5.87 5.83 5.73 61.5 54.6 47.3 26.7 23.3 19.6 7.88 1.55 6.91 1.53 5.82 1.49 12.1 1.82 13.6 10.6 1.80 13.5 8.99 1.77 13.4 0.798 0.569 0.380 1230 1070 887 26 5.98 48.1 22 7.46 53.3 245 199 35.3 29.0 5.65 5.54 40.2 33.2 3.55 1.08 2.80 1.04 5.54 1.30 13.5 4.39 1.27 13.4 0.358 0.208 405 314 4060 3550 3110 2720 2420 2140 1890 1650 1430 1240 1070 933 833 740 662 597 533 483 435 393 353 321 292 263 235 209 186 163 145 131 118 107 97.4 87.9 6.41 6.29 6.16 6.06 5.97 5.89 5.82 5.74 5.66 5.58 5.51 5.47 5.44 5.38 5.34 5.31 5.28 b ᎏf lb/ft 2tf 336 305 279 252 230 210 190 170 152 136 120 106 96 87 79 72 65 2.26 2.45 2.66 2.89 3.11 3.37 3.65 4.03 4.46 4.96 5.57 6.17 6.76 7.48 8.22 8.99 9.92 h ᎏ tw 5.47 5.98 6.35 6.96 7.56 8.23 9.16 10.1 11.2 12.3 13.7 15.9 17.7 18.9 20.7 22.6 24.9 S in.3 209 190 173 157 143 r in. 6.28 6.24 6.22 6.17 6.14 Z in.3 234 212 192 173 157 I in.4 548 495 447 402 362 S in.3 74.5 67.5 61.2 55.2 49.9 r Z in. in.3 3.76 113 3.74 102 3.73 92.7 3.71 83.6 3.70 75.6 in. 4.23 4.20 4.17 4.14 4.10 139 126 115 102 148 134 121 107 29.3 26.6 24.2 21.5 2.48 2.48 2.46 2.45 44.8 40.5 36.9 32.8 2.85 2.83 2.80 2.78 22.0 19.6 17.3 8.91 7.00 603 1190 537 1050 481 937 428 828 386 742 348 664 311 589 275 517 243 454 214 398 186 345 164 301 147 270 132 241 119 216 108 195 96.8 174 177 159 143 127 115 104 93.0 82.3 72.8 64.2 56.0 49.3 44.4 39.7 35.8 32.4 29.1 3.47 3.42 3.38 3.34 3.31 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02 274 244 220 196 177 159 143 126 111 98.0 85.4 75.1 67.5 60.4 54.3 49.2 44.1 4.13 4.05 4.00 3.93 3.87 3.81 3.77 3.70 3.66 3.61 3.56 3.52 3.49 3.46 3.43 3.41 3.38 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 13.8 13.6 13.4 13.2 13.0 12.8 12.7 12.4 12.3 12.2 12.0 11.9 11.8 11.7 11.7 11.6 11.5 243 185 143 108 83.8 64.7 48.8 35.6 25.8 18.5 12.9 9.13 6.85 5.10 3.84 2.93 2.18 57000 48600 42000 35800 31200 27200 23600 20100 17200 14700 12400 10700 9410 8270 7330 6540 5780 AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 26 1–26 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web Shape Area, A Depth, d Thickness, tw Flange tw ᎏ 2 Width, bf W12×58 ×53 in. in. in.2 17.0 12.2 121/4 0.360 3/8 15.6 12.1 12 0.345 3/8 in. in. 3/16 10.0 10 3/16 10.0 10 W12×50 ×45 ×40 14.6 12.2 121/4 0.370 13.1 12.1 12 0.335 11.7 11.9 12 0.295 3/8 3/16 5/16 3/16 5/16 3/16 8.08 81/8 8.05 8 8.01 8 5/16 3/16 61/2 1/4 1/8 1/4 1/8 0.260 0.235 0.220 0.200 1/4 1/8 1/4 1/8 1/4 3/16 1/8 1/8 3/8 11/16 3/8 5/8 5/16 1/2 1/4 1/2 1/4 7/16 3/8 1/4 3/16 c W12×35 ×30 c ×26 c W12×22 c ×19 c ×16 c ×14c,v 121/2 10.3 12.5 0.300 8.79 12.3 123/8 0.260 7.65 12.2 121/4 0.230 6.48 12.3 5.57 12.2 4.71 12.0 4.16 11.9 121/4 121/8 12 117/8 W10×112 ×100 ×88 ×77 ×68 ×60 ×54 ×49 32.9 29.3 26.0 22.7 19.9 17.7 15.8 14.4 0.755 0.680 0.605 0.530 0.470 0.420 0.370 0.340 3/4 5/16 3/16 W10×45 ×39 ×33 13.3 10.1 101/8 0.350 11.5 9.92 97/8 0.315 9.71 9.73 93/4 0.290 3/8 3/16 5/16 3/16 5/16 3/16 3/16 1/4 1/8 11.4 11.1 10.8 10.6 10.4 10.2 10.1 10.0 113/8 111/8 107/8 105/8 103/8 101/4 101/8 10 101/2 W10×30 ×26 ×22 c 8.84 10.5 0.300 7.61 10.3 103/8 0.260 6.49 10.2 101/8 0.240 5/16 1/4 1/8 W10×19 ×17 c ×15 c ×12 c,f 5.62 10.2 101/4 4.99 10.1 101/8 4.41 9.99 10 3.54 9.87 97/8 1/4 1/8 1/4 1/8 1/4 1/8 3/16 1/8 0.250 0.240 0.230 0.190 Distance Thickness, tf 5/8 6.56 6.52 61/2 6.49 61/2 0.520 0.440 0.380 1/2 4.03 4.01 3.99 3.97 0.425 0.350 0.265 0.225 7/16 10.4 10.3 10.3 10.2 10.1 10.1 10.0 10.0 103/8 103/8 101/4 101/4 101/8 101/8 10 10 9/16 1/2 7/16 3/8 3/8 1/4 1/4 11/4 1.25 1.12 11/8 0.990 1 0.870 7/8 0.770 3/4 0.680 11/16 0.615 5/8 0.560 9/16 0.620 0.530 0.435 5/8 5.81 5.77 53/4 5.75 53/4 0.510 0.440 0.360 1/2 4.02 4.01 4.00 3.96 0.395 0.330 0.270 0.210 3/8 8.02 8 7.99 8 7.96 8 53/4 4 4 4 4 kdes kdet in. in. in. 0.640 5/8 1.24 11/2 0.575 9/16 1.18 13/8 0.640 0.575 0.515 4 4 4 4 k 1/2 7/16 7/16 3/8 5/16 1/4 3/16 1.14 11/2 1.08 13/8 1.02 13/8 13/16 0.820 0.740 11/8 0.680 11/16 0.725 0.650 0.565 0.525 1.75 1.62 1.49 1.37 1.27 1.18 1.12 1.06 T in. 15/16 in. 91/4 91/4 Workable Gage in. 51/2 51/2 15/16 91/4 51/2 101/8 31/2 15/16 15/16 7/8 3/4 3/4 3/4 15/16 5/8 7/8 9/16 13/16 9/16 3/4 9/16 103/8 21/4 g 115/16 1 71/2 113/16 1 111/16 15/16 19/16 7/8 17/16 7/8 13/16 13/8 15/16 13/16 13/16 11/4 1.12 15/16 1.03 13/16 0.935 11/8 11/8 0.810 0.740 11/16 0.660 15/16 0.695 0.630 0.570 0.510 k1 13/16 51/2 71/2 51/2 81/4 23/4 g 83/8 21/4 g 13/16 3/4 11/16 11/16 5/8 15/16 5/8 7/8 9/16 13/16 9/16 3/4 9/16 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. v Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi. c f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 9:42 AM Page 27 (Black plate) 1–27 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Properties W12-W10 Nominal Wt. Compact Section Criteria Axis X-X Axis Y-Y rts J Cw in. in. 2.81 11.6 2.79 11.5 in.4 2.10 1.58 in.6 3570 3160 2.25 11.6 2.23 11.5 2.21 11.4 1.71 1.26 0.906 1880 1650 1440 11.5 1.79 12.0 9.56 1.77 11.9 8.17 1.75 11.8 0.741 0.457 0.300 879 720 607 0.293 0.180 0.103 0.0704 164 131 96.9 80.4 h ᎏ tw lb/ft 58 7.82 27.0 53 8.69 28.1 I in.4 475 425 S in.3 78.0 70.6 r in. 5.28 5.23 Z in.3 86.4 77.9 I in.4 107 95.8 S r in.3 in. 21.4 2.51 19.2 2.48 Z in.3 32.5 29.1 50 6.31 26.8 45 7.00 29.6 40 7.77 33.6 391 348 307 64.2 57.7 51.5 5.18 5.15 5.13 71.9 64.2 57.0 56.3 50.0 44.1 13.9 1.96 12.4 1.95 11.0 1.94 21.3 19.0 16.8 35 6.31 36.2 30 7.41 41.8 26 8.54 47.2 285 238 204 45.6 38.6 33.4 5.25 5.21 5.17 51.2 43.1 37.2 24.5 20.3 17.3 7.47 1.54 6.24 1.52 5.34 1.51 22 19 16 14 4.74 5.72 7.53 8.82 41.8 46.2 49.4 54.3 156 130 103 88.6 25.4 21.3 17.1 14.9 4.91 4.82 4.67 4.62 29.3 24.7 20.1 17.4 112 100 88 77 68 60 54 49 4.17 4.62 5.18 5.86 6.58 7.41 8.15 8.93 10.4 11.6 13.0 14.8 16.7 18.7 21.2 23.1 716 623 534 455 394 341 303 272 126 112 98.5 85.9 75.7 66.7 60.0 54.6 45 6.47 22.5 39 7.53 25.0 33 9.15 27.1 248 209 171 49.1 42.1 35.0 4.32 4.27 4.19 54.9 46.8 38.8 30 5.70 29.5 26 6.56 34.0 22 7.99 36.9 170 144 118 32.4 27.9 23.2 4.38 4.35 4.27 36.6 31.3 26.0 18.8 16.2 13.8 10.9 4.14 4.05 3.95 3.90 21.6 18.7 16.0 12.6 19 17 15 12 b ᎏf 2tf 5.09 6.08 7.41 9.43 35.4 36.9 38.5 46.6 96.3 81.9 68.9 53.8 4.66 147 4.60 130 4.54 113 4.49 97.6 4.44 85.3 4.39 74.6 4.37 66.6 4.35 60.4 4.66 3.76 2.82 2.36 236 207 179 154 134 116 103 93.4 2.31 1.88 1.41 1.19 3.66 2.98 2.26 1.90 1.04 1.02 0.983 0.961 11.9 11.9 11.7 11.7 2.68 2.65 2.63 2.60 2.59 2.57 2.56 2.54 69.2 61.0 53.1 45.9 40.1 35.0 31.3 28.3 3.08 10.2 15.1 3.04 10.0 10.9 2.99 9.81 7.53 2.95 9.73 5.11 2.92 9.63 3.56 2.88 9.52 2.48 2.85 9.49 1.82 2.84 9.44 1.39 6020 5150 4330 3630 3100 2640 2320 2070 53.4 45.0 36.6 13.3 2.01 11.3 1.98 9.20 1.94 20.3 17.2 14.0 2.27 2.24 2.20 9.48 9.39 9.30 1.51 0.976 0.583 1200 992 791 16.7 14.1 11.4 5.75 1.37 4.89 1.36 3.97 1.33 8.84 1.60 7.50 1.58 6.10 1.55 9.99 9.86 9.84 0.622 0.402 0.239 414 345 275 2.14 1.78 1.45 1.10 3.35 2.80 2.30 1.74 9.81 9.77 9.72 9.66 0.233 0.156 0.104 0.0547 104 85.1 68.3 50.9 4.29 3.56 2.89 2.18 45.3 40.0 34.8 30.1 26.4 23.0 20.6 18.7 0.848 0.822 0.773 0.753 ho Torsional Properties 0.874 0.845 0.810 0.785 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.06 1.04 1.01 0.983 AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 28 1–28 DIMENSIONS AND PROPERTIES Table 1-1 (continued) W-Shapes Dimensions Web c f g Shape Area, A W8×67 ×58 ×48 ×40 ×35 ×31f in.2 19.7 17.1 14.1 11.7 10.3 9.13 Depth, d in. 9.00 8.75 8.50 8.25 8.12 8.00 9 83/4 81/2 81/4 81/8 8 Flange Thickness, tw tw ᎏ 2 Width, bf in. 0.570 9/16 0.510 1/2 0.400 3/8 0.360 3/8 0.310 5/16 0.285 5/16 in. 5/16 1/4 3/16 3/16 3/16 3/16 Distance kdes kdet in. 8.28 81/4 8.22 81/4 8.11 81/8 8.07 81/8 8.02 8 8.00 8 in. 0.935 0.810 0.685 0.560 0.495 0.435 in. 1.33 1.20 1.08 0.954 0.889 0.829 in. 15/8 11/2 13/8 11/4 13/16 11/8 6.54 61/2 6.50 61/2 0.465 0.400 7/16 5.27 51/4 5.25 51/4 0.400 0.330 3/8 4.02 4 4.00 4 3.94 4 0.315 0.255 0.205 5/16 6.08 61/8 6.02 6 5.99 6 0.455 0.365 0.260 7/16 4.03 4.00 3.94 3.94 4 4 4 4 0.405 0.280 0.215 0.195 3/8 15/16 13/16 11/16 9/16 1/2 7/16 W8×28 ×24 8.25 8.06 8 0.285 7.08 7.93 77/8 0.245 5/16 3/16 1/4 1/8 W8×21 ×18 6.16 8.28 81/4 0.250 5.26 8.14 81/8 0.230 1/4 1/8 1/4 1/8 W8×15 ×13 ×10 c,f 4.44 8.11 81/8 0.245 3.84 7.99 8 0.230 2.96 7.89 77/8 0.170 1/4 1/8 1/4 1/8 3/16 1/8 W6×25 ×20 ×15 f 7.34 6.38 63/8 0.320 5.87 6.20 61/4 0.260 4.43 5.99 6 0.230 5/16 3/16 1/4 1/8 1/4 1/8 W6×16 ×12 ×9 f ×8.5 f 4.74 3.55 2.68 2.52 0.260 0.230 0.170 0.170 1/4 1/8 1/4 1/8 3/16 1/8 3/16 1/8 W5×19 ×16 5.56 5.15 51/8 0.270 4.71 5.01 5 0.240 1/4 1/8 1/8 5.03 5 5.00 5 0.430 0.360 7/16 1/4 W4×13 3.83 4.16 41/8 0.280 1/4 1/8 4.06 4 0.345 6.28 6.03 5.90 5.83 61/4 6 57/8 57/8 k Thickness, tf k1 T in. in. 53/4 Workable Gage in. 51/2 15/16 7/8 13/16 13/16 13/16 3/4 0.859 0.794 15/16 5/8 7/8 9/16 61/8 61/8 4 4 0.700 0.630 7/8 13/16 9/16 9/16 61/2 61/2 23/4 g 23/4 g 0.615 0.555 0.505 13/16 9/16 61/2 21/4 g 3/4 9/16 11/16 1/2 0.705 0.615 0.510 15/16 9/16 41/2 31/2 7/8 9/16 3/4 9/16 0.655 0.530 0.465 0.445 7/8 9/16 9/16 41/2 21/4 g 3/4 11/16 1/2 11/16 1/2 0.730 0.660 13/16 7/16 3/8 3/4 7/16 31/2 31/2 23/4 g 23/4 g 3/8 0.595 3/4 1/2 25/8 21/4 g 3/8 5/16 1/4 3/16 3/8 1/4 1/4 3/16 3/16 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 29 DIMENSIONS AND PROPERTIES 1–29 Table 1-1 (continued) W-Shapes Properties W8-W4 Nominal Wt. Compact Section Criteria b ᎏf lb/ft 2tf h ᎏ tw Axis X-X I in.4 272 228 184 146 127 110 Axis Y-Y S in.3 60.4 52.0 43.2 35.5 31.2 27.5 r in. 3.72 3.65 3.61 3.53 3.51 3.47 Z in.3 70.1 59.8 49.0 39.8 34.7 30.4 I in.4 88.6 75.1 60.9 49.1 42.6 37.1 21.7 18.3 S in.3 21.4 18.3 15.0 12.2 10.6 9.27 r in. 2.12 2.10 2.08 2.04 2.03 2.02 rts Z in.3 32.7 27.9 22.9 18.5 16.1 14.1 ho Torsional Properties J Cw in. 2.43 2.39 2.35 2.31 2.28 2.26 in. 8.07 7.94 7.82 7.69 7.63 7.57 in.4 5.05 3.33 1.96 1.12 0.769 0.536 in.6 1440 1180 931 726 619 530 6.63 1.62 5.63 1.61 10.1 1.84 8.57 1.81 7.60 7.53 0.537 0.346 312 259 9.77 7.97 3.71 1.26 3.04 1.23 5.69 1.46 4.66 1.43 7.88 7.81 0.282 0.172 152 122 13.6 11.4 8.87 3.41 2.73 2.09 1.70 0.876 1.37 0.843 1.06 0.841 2.67 1.06 2.15 1.03 1.66 1.01 7.80 7.74 7.69 0.137 0.0871 0.0426 51.8 40.8 30.9 16.7 2.70 13.4 2.66 9.72 2.56 18.9 14.9 10.8 17.1 13.3 9.32 5.61 1.52 4.41 1.50 3.11 1.45 8.56 1.74 6.72 1.70 4.75 1.66 5.93 5.84 5.73 0.461 0.240 0.101 150 113 76.5 32.1 22.1 16.4 14.9 10.2 7.31 5.56 5.10 2.60 2.49 2.47 2.43 11.7 8.30 6.23 5.73 4.43 2.99 2.20 1.99 2.20 1.50 1.11 1.01 3.39 2.32 1.72 1.56 1.13 1.08 1.06 1.05 5.88 5.75 5.69 5.64 0.223 0.0903 0.0405 0.0333 38.2 24.7 17.7 15.8 5.85 13.7 6.94 15.4 26.3 21.4 10.2 2.17 8.55 2.13 11.6 9.63 9.13 7.51 3.63 1.28 3.00 1.26 5.53 1.45 4.58 1.43 4.72 4.65 0.316 0.192 50.9 40.6 5.88 10.6 11.3 5.46 1.72 6.28 3.86 1.90 1.00 2.92 1.16 3.82 0.151 14.0 67 58 48 40 35 31 4.43 5.07 5.92 7.21 8.10 9.19 11.1 12.4 15.9 17.6 20.5 22.3 28 24 7.03 22.3 8.12 25.9 98.0 82.7 24.3 20.9 3.45 3.42 27.2 23.1 21 18 6.59 27.5 7.95 29.9 75.3 61.9 18.2 15.2 3.49 3.43 20.4 17.0 15 13 10 6.37 28.1 7.84 29.9 9.61 40.5 48.0 39.6 30.8 11.8 3.29 9.91 3.21 7.81 3.22 25 20 15 6.68 15.5 8.25 19.1 11.5 21.6 53.4 41.4 29.1 16 12 9 8.5 4.98 7.14 9.16 10.1 19.1 21.6 29.2 29.1 19 16 13 0.967 0.918 0.905 0.890 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 30 1–30 DIMENSIONS AND PROPERTIES Table 1-2 M-Shapes Dimensions Web Shape Area, A Depth, d Flange Thickness, tw ᎏ 2 tw in. in. in.2 M12.5×12.4 c,v 3.63 12.5 121/2 0.155 1/8 ×11.6 c,v 3.40 12.5 121/2 0.155 1/8 in. 1/16 1/16 Distance Width, bf Thickness, tf k k1 T Workable Gage in. 3.75 33/4 3.50 31/2 in. 0.228 1/4 0.211 3/16 in. in. 9/16 3/8 in. 113/8 113/8 in. — — 9/16 3/8 M12×11.8 c 3.47 12.0 12 ×10.8 c 3.18 12.0 12 0.177 0.160 3/16 1/8 31/8 31/8 0.225 0.210 3/16 9/16 9/16 3/8 1/8 3.07 3.07 1/4 3/16 3/8 107/8 107/8 — — M12×10 c,v 2.95 12.0 12 0.149 1/8 1/16 3.25 31/4 0.180 3/16 1/2 3/8 11 — M10×9 c ×8 c 2.65 10.0 10 2.37 9.95 10 0.157 0.141 3/16 1/8 0.206 0.182 9/16 3/8 1/16 23/4 23/4 3/16 1/8 2.69 2.69 3/16 9/16 9.99 10 0.130 1/8 1/16 2.69 23/4 0.173 3/16 0.135 0.129 1/8 1/16 2.28 2.28 21/4 21/4 0.189 0.177 1/16 1.84 2.00 17/8 2 M10×7.5 c,v 2.22 M8×6.5 c ×6.2 c 1.92 1.82 8.00 8 8.00 8 1/8 1/16 M6×4.4 c ×3.7 c 1.29 1.09 6.00 6 0.114 1/8 5.92 57/8 0.0980 1/8 1/16 M5×18.9 t 5.56 5.00 5 M4×6 f ×4.08 ×3.45 ×3.2 1.75 1.27 1.01 1.01 3.80 4.00 4.00 4.00 M3×2.9 33/4 4 4 4 0.914 3.00 3 3/8 87/8 87/8 — — 7/16 5/16 91/8 — 3/16 9/16 3/8 3/16 7/16 1/4 67/8 71/8 — — 0.171 0.129 3/16 3/8 1/4 1/8 5/16 1/4 51/4 51/4 — — 0.316 5/ 16 3/ 16 5.00 5 0.416 7/16 13/16 1/2 33/8 23/4g 0.130 0.115 0.0920 0.0920 1/8 1/ 16 3/8 9/16 3/8 1/16 1/8 1/2 3/8 1/16 1/16 0.160 0.170 0.130 0.130 3/16 1/16 33/4 21/4 21/4 21/4 1/2 1/ 16 3.80 2.25 2.25 2.25 3/16 1/8 1/8 1/2 3/8 23/4 27/8 3 3 — — — — 0.0900 1/16 1/16 2.25 21/4 0.130 1/8 1/2 3/8 2 — Shape is slender for compression with Fy = 36 ksi. Shape exceeds compact limit for flexure with Fy = 36 ksi. g The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. t Shape has tapered flanges while other M-shapes have parallel flange surfaces. v Shape does not meet the h/tw limit for shear in AISC Specification Section G2.1(b)(i) with Fy = 36 ksi. — Indicates flange is too narrow to establish a workable gage. c f AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 31 DIMENSIONS AND PROPERTIES 1–31 Table 1-2 (continued) M-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X M-SHAPES Axis Y-Y rts ho J ᎏ S x ho Torsional Properties lb/ft 12.4 11.6 J Cw I S r Z I S r Z in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6 8.22 74.8 89.3 14.2 4.96 16.5 2.01 1.07 0.744 1.68 0.933 12.3 0.000283 0.0493 76.0 8.29 74.8 80.3 12.8 4.86 15.0 1.51 0.864 0.667 1.37 0.852 12.3 0.000263 0.0414 57.1 11.8 10.8 6.81 62.5 72.2 12.0 4.56 14.3 1.09 0.709 0.559 1.15 7.30 69.2 66.7 11.1 4.58 13.2 1.01 0.661 0.564 1.07 0.731 11.8 0.732 11.8 0.000355 0.0500 37.7 0.000300 0.0393 35.0 10 9.03 74.7 61.7 10.3 4.57 12.2 1.03 0.636 0.592 1.02 0.768 11.8 0.000240 0.0292 35.9 b ᎏf 2t f h ᎏ tw 9 8 6.53 58.4 39.0 7.39 65.0 34.6 7.79 3.83 9.22 0.672 0.500 0.503 0.809 0.650 9.79 0.000411 0.0314 16.1 6.95 3.82 8.20 0.593 0.441 0.500 0.711 0.646 9.77 0.000328 0.0224 14.2 7.5 7.77 71.0 33.0 6.60 3.85 7.77 0.562 0.418 0.503 0.670 0.646 9.82 0.000289 0.0187 13.5 6.5 6.2 6.03 53.8 18.5 6.44 56.5 17.6 4.63 3.11 5.43 0.376 0.329 0.443 0.529 0.563 7.81 0.000509 0.0184 4.39 3.10 5.15 0.352 0.308 0.439 0.495 0.560 7.82 0.000455 0.0156 4.4 3.7 5.39 47.0 7.75 54.7 18.9 6 4.08 3.45 3.2 2.9 7.23 2.41 2.36 2.80 0.180 0.195 0.372 0.311 0.467 5.83 0.000707 0.00990 1.53 5.96 2.01 2.34 2.33 0.173 0.173 0.398 0.273 0.499 5.79 0.000459 0.00530 1.45 6.01 11.2 24.2 11.9 6.62 8.65 8.65 22.0 26.4 33.9 33.9 8.65 23.6 5.73 5.38 4.72 3.53 2.86 2.86 9.67 2.08 11.1 8.70 3.48 1.25 5.33 1.44 4.58 0.00709 0.313 2.48 1.77 1.43 1.43 0.915 0.506 0.496 0.496 1.18 0.453 0.346 0.346 1.04 0.593 0.580 0.580 3.64 3.83 3.87 3.87 1.64 1.67 1.68 1.68 2.74 2.00 1.60 1.60 1.47 0.325 0.248 0.248 0.771 0.289 0.221 0.221 0.00208 0.00218 0.00148 0.00148 0.0184 0.0147 0.00820 0.00820 45.7 4.87 1.19 0.930 0.930 1.50 1.00 1.28 1.12 0.248 0.221 0.521 0.344 0.597 2.87 0.00275 0.00790 0.511 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 32 1–32 DIMENSIONS AND PROPERTIES Table 1-3 S-Shapes Dimensions Web Shape Area, A Depth, d Flange Distance Thickness, tw tw ᎏ 2 Width, bf Thickness, tf in. 0.800 13/16 0.620 5/8 in. 7/16 in. 8.05 8 7.87 77/8 1.09 1.09 7.25 71/4 7.13 71/8 7.00 7 0.870 0.870 0.870 7/8 7.20 71/4 7.06 7 0.920 0.920 15/16 S24×121 ×106 in.2 35.5 31.1 24.5 24.5 in. 241/2 241/2 S24×100 ×90 ×80 29.3 26.5 23.5 24.0 24.0 24.0 24 24 24 0.745 0.625 0.500 3/4 3/8 5/8 5/16 1/2 1/4 S20×96 ×86 28.2 25.3 20.3 20.3 201/4 201/4 0.800 0.660 13/16 7/16 11/16 3/8 S20×75 ×66 22.0 19.4 20.0 20.0 20 20 0.635 0.505 5/8 5/16 1/4 6.39 63/8 6.26 61/4 0.795 0.795 13/16 1/2 S18×70 ×54.7 20.5 16.0 18.0 18.0 18 18 0.711 0.461 11/16 3/8 1/4 6.25 61/4 6.00 6 0.691 0.691 11/16 7/16 S15×50 ×42.9 14.7 12.6 15.0 15.0 15 15 0.550 0.411 9/16 5/16 1/4 5.64 55/8 5.50 51/2 0.622 0.622 5/8 7/16 S12×50 ×40.8 14.7 11.9 12.0 12.0 12 12 0.687 0.462 11/16 3/8 1/4 5.48 51/2 5.25 51/4 0.659 0.659 11/16 7/16 S12×35 ×31.8 10.2 12.0 9.31 12.0 12 12 0.428 0.350 7/16 1/4 3/16 5.08 51/8 5.00 5 0.544 0.544 9/16 3/8 S10×35 ×25.4 10.3 10.0 7.45 10.0 10 10 0.594 0.311 5/8 5/16 3/16 4.94 5 4.66 45/8 0.491 0.491 1/2 5/16 4.17 41/8 4.00 4 0.425 0.425 7/16 5/16 in. 11/16 11/16 7/8 7/8 15/16 13/16 11/16 5/8 11/16 9/16 1/2 k T Workable Gage in. 2 2 in. 201/2 201/2 in. 4 4 13/4 13/4 13/4 201/2 201/2 201/2 4 4 4 13/4 13/4 163/4 163/4 4 4 15/8 15/8 163/4 163/4 31/2g 31/2g 11/2 11/2 15 15 31/2g 31/2g 13/8 13/8 121/4 121/4 31/2g 31/2g 17/16 17/16 91/8 91/8 3g 3g 13/16 13/16 95/8 95/8 3g 3g 11/8 11/8 73/4 73/4 23/4g 23/4g 1 1 6 6 21/4g 21/4g S8×23 ×18.4 6.76 5.40 8.00 8 8.00 8 0.441 0.271 7/16 1/4 1/4 1/8 S6×17.25 ×12.5 5.05 3.66 6.00 6 6.00 6 0.465 0.232 7/16 1/4 0.359 0.359 13/16 1/8 3.57 35/8 3.33 33/8 3/8 1/4 3/8 13/16 43/8 43/8 — — S5×10 2.93 5.00 5 0.214 3/16 1/8 3.00 3 0.326 5/16 3/4 31/2 — 3/16 2.80 2.66 25/8 0.293 0.293 5/16 3/4 21/2 5/16 3/4 21/2 — — 2.51 21/2 2.33 23/8 0.260 0.260 1/4 5/8 1/4 5/8 13/4 13/4 — — S4×9.5 ×7.7 2.79 2.26 4.00 4 4.00 4 0.326 0.193 5/16 3/16 1/8 S3×7.5 ×5.7 2.20 1.66 3.00 3 3.00 3 0.349 0.170 3/8 3/16 3/16 1/8 23/4 g 7/16 The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. — Indicates flange is too narrow to establish a workable gage. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 33 DIMENSIONS AND PROPERTIES 1–33 Table 1-3 (continued) S-Shapes Properties S-SHAPES Nominal Wt. Compact Section Criteria Axis X-X Axis Y-Y rts ho Torsional Properties lb/ft 121 106 I in.4 3.69 25.9 3160 3.61 33.4 2940 S in.3 258 240 r Z in. in.3 9.43 306 9.71 279 I in.4 83.0 76.8 J S r Z in.3 in. in.3 in. in. in.4 20.6 1.53 36.3 1.94 23.4 12.8 19.5 1.57 33.4 1.93 23.4 10.1 100 90 80 4.16 27.8 2380 4.09 33.1 2250 4.02 41.4 2100 199 187 175 9.01 239 9.21 222 9.47 204 47.4 44.7 42.0 13.1 12.5 12.0 1.27 24.0 1.30 22.4 1.34 20.8 1.66 23.1 1.66 23.1 1.67 23.1 7.59 6.05 4.89 6350 5980 5620 96 86 3.91 21.1 1670 3.84 25.6 1570 165 155 7.71 198 7.89 183 49.9 46.6 13.9 13.2 1.33 24.9 1.36 23.1 1.71 19.4 1.71 19.4 8.40 6.65 4690 4370 75 66 4.02 26.6 1280 3.93 33.5 1190 128 119 7.62 152 7.83 139 29.5 27.5 9.25 1.16 16.7 8.78 1.19 15.4 1.49 19.2 1.49 19.2 4.59 3.58 2720 2530 70 54.7 4.52 21.5 4.34 33.2 923 801 103 89.0 6.70 124 7.07 104 24.0 20.7 7.69 1.08 14.3 6.91 1.14 12.1 1.42 17.3 1.42 17.3 4.10 2.33 1800 1550 50 42.9 4.53 22.7 4.42 30.4 485 446 64.7 59.4 5.75 5.95 77.0 69.2 15.6 14.3 5.53 1.03 10.0 1.32 14.4 5.19 1.06 9.08 1.31 14.4 2.12 1.54 805 737 50 40.8 4.16 13.7 3.98 20.6 303 270 50.6 45.1 4.55 4.76 60.9 52.7 15.6 13.5 5.69 1.03 10.3 1.32 11.3 5.13 1.06 8.86 1.30 11.3 2.77 1.69 501 433 35 31.8 4.67 23.1 4.60 28.3 228 217 38.1 36.2 4.72 4.83 44.6 41.8 9.84 9.33 3.88 0.980 6.80 1.22 11.5 3.73 1.00 6.44 1.21 11.5 1.05 0.878 323 306 35 25.4 5.03 13.4 4.75 25.6 147 123 29.4 24.6 3.78 4.07 35.4 28.3 8.30 6.73 3.36 0.899 6.19 1.16 2.89 0.950 4.99 1.14 9.51 1.29 9.51 0.603 188 152 23 18.4 4.91 14.1 4.71 22.9 16.2 14.4 3.09 3.26 19.2 16.5 4.27 3.69 2.05 0.795 3.67 0.999 7.58 0.550 1.84 0.827 3.18 0.985 7.58 0.335 61.2 52.9 18.2 14.3 b ᎏf 2t f h ᎏ tw 64.7 57.5 17.25 4.97 9.67 12.5 4.64 19.4 26.2 22.0 8.74 2.28 7.34 2.45 10.5 8.45 2.29 1.80 1.28 0.673 2.35 0.859 5.64 0.371 1.08 0.702 1.86 0.831 5.64 0.167 10 12.3 4.90 2.05 5.66 1.19 0.795 0.638 1.37 0.754 4.67 0.114 4.61 16.8 Cw in.6 11400 10500 6.52 9.5 7.7 4.77 8.33 4.54 14.1 6.76 6.05 3.38 1.56 3.03 1.64 4.04 3.50 0.887 0.635 0.564 1.13 0.698 3.71 0.120 0.748 0.562 0.576 0.970 0.676 3.71 0.0732 3.05 2.57 7.5 5.7 4.83 5.38 4.48 11.0 2.91 2.50 1.94 1.15 1.67 1.23 2.35 1.94 0.578 0.461 0.513 0.821 0.638 2.74 0.0896 0.447 0.383 0.518 0.656 0.605 2.74 0.0433 1.08 0.838 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed._ 2/17/12 7:13 AM Page 34 1–34 DIMENSIONS AND PROPERTIES Table 1-4 HP-Shapes Dimensions Web Depth, d Flange Shape Area, A HP18×204 ×181 ×157f ×135f in.2 60.2 53.2 46.2 39.9 18.3 18.0 17.7 17.5 in. 181/4 18 17 3/4 17 1/2 HP16×183 ×162 ×141 ×121f ×101f ×88c,f 54.1 47.7 41.7 35.8 29.9 25.8 16.5 16.3 16.0 15.8 15.5 15.3 161/2 161/4 16 153/4 151/2 153/8 1.13 1 1/8 1.00 1 0.875 7/8 0.750 3/4 0.625 5/8 0.540 9/16 HP14×117 f ×102 f ×89 f ×73 c,f 34.4 30.1 26.1 21.4 14.2 14.0 13.8 13.6 141/4 14 137/8 135/8 0.805 0.705 0.615 0.505 13/16 7/16 11/16 3/8 5/8 5/16 1/2 1/4 12.3 12.1 11.9 11.8 121/4 0.685 121/8 0.605 12 0.515 113/4 0.435 11/16 3/8 5/8 5/16 1/2 7/16 1/4 1/4 Thickness, tw ᎏ 2 tw in. 1.13 1 1/8 1.00 1 0.870 7/8 0.750 3/4 Width, bf in. 9/16 1/2 7/16 3/8 9/16 1/2 7/16 3/8 5/16 5/16 18.1 18.0 17.9 17.8 in. 181/8 18 17 7/8 17 3/4 Distance Thickness, tf k in. 1.13 11/8 1.00 1 0.870 7/8 0.750 3/4 in. 2 5/16 2 3/16 21/16 115/16 in. in. 13/4 131/2 111/16 15/8 19/16 in. 7 1/2 2 5/16 2 3/16 21/16 115/16 113/16 13/4 13/4 113/4 111/16 15/8 19/16 11/2 17/16 51/2 11/2 13/8 15/16 13/16 11/16 111/4 1 15/16 7/8 51/2 13/8 15/16 11/4 11/8 1 91/2 51/2 16.3 16.1 16.0 15.9 15.8 15.7 161/2 161/8 16 15 7/8 15 3/4 1511/16 1.13 11/8 1.00 1 0.875 7/8 0.750 3/4 0.625 5/8 0.540 9/16 14.9 14.8 14.7 14.6 147/8 143/4 143/4 145/8 0.805 0.705 0.615 0.505 13/16 121/4 12.3 12.2 121/4 12.1 121/8 12.0 12 0.685 0.610 0.515 0.435 11/16 11/16 5/8 1/2 k1 T Workable Gage HP12×84 ×74f ×63 f ×53 c,f 24.6 21.8 18.4 15.5 HP10×57 ×42 f 16.7 12.4 9.99 10 0.565 9.70 93/4 0.415 9/16 5/16 0.565 0.420 7/16 11/4 11/8 15/16 1/4 10.2 101/4 10.1 101/8 9/16 7/16 13/16 71/2 71/2 51/2 51/2 HP8×36 f 10.6 8.02 7/16 1/4 8.16 81/8 0.445 7/16 11/8 7/8 53/4 51/2 c f 8 0.445 5/8 1/2 7/16 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 15/16 7/8 7/8 AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 35 DIMENSIONS AND PROPERTIES 1–35 Table 1-4 (continued) HP-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X Axis Y-Y lb/ft 204 8.01 181 9.00 157 10.3 135 11.9 12.1 13.6 15.6 18.2 I in.4 3480 3020 2570 2200 183 7.21 162 8.05 141 9.14 121 10.6 101 12.6 88 14.5 10.5 11.9 13.6 15.9 19.0 22.0 2510 2190 1870 1590 1300 1110 304 269 234 201 168 145 6.81 6.78 6.70 6.66 6.59 6.56 349 306 264 226 187 161 818 100 697 86.6 599 74.9 504 63.4 412 52.2 349 44.5 117 9.25 102 10.5 89 11.9 73 14.4 14.2 1220 172 16.2 1050 150 18.5 904 131 22.6 729 107 5.96 5.92 5.88 5.84 194 169 146 118 443 380 326 261 14.2 16.1 18.9 22.3 5.14 120 5.11 105 5.06 88.3 5.03 74.0 213 186 153 127 b ᎏf 2tf 84 8.97 74 10.0 63 11.8 53 13.8 h ᎏ tw S in.3 380 336 290 251 r in. 7.60 7.53 7.46 7.43 Z I S in.3 in.4 in.3 433 1120 124 379 974 108 327 833 93.1 281 706 79.3 r in. 4.31 4.28 4.25 4.21 650 106 569 93.8 472 79.1 393 66.7 Z in.3 191 167 143 122 ho J ᎏ S x ho J Cw in. 17.2 17.0 16.8 16.8 0.00451 0.00362 0.00285 0.00216 in.4 29.5 20.7 13.9 9.12 in.6 82500 70400 59000 49500 3.89 156 3.82 134 3.79 116 3.75 97.6 3.71 80.1 3.68 68.2 4.54 4.45 4.40 4.34 4.27 4.21 15.4 15.3 15.1 15.1 14.9 14.8 0.00576 0.00457 0.00365 0.00275 0.00203 0.00161 26.9 18.8 12.9 8.35 5.07 3.45 48300 40800 34300 28500 22800 19000 59.5 51.4 44.3 35.8 3.59 3.56 3.53 3.49 91.4 78.8 67.7 54.6 4.15 4.10 4.05 4.00 13.4 13.3 13.2 13.1 0.00348 0.00270 0.00207 0.00143 8.02 5.39 3.59 2.01 19900 16800 14200 11200 34.6 30.4 25.3 21.1 2.94 2.92 2.88 2.86 53.2 46.6 38.7 32.2 3.41 3.38 3.33 3.29 11.6 11.5 11.4 11.4 0.00345 0.00276 0.00202 0.00148 4.24 2.98 1.83 1.12 7140 6160 5000 4080 2.45 2.41 30.3 2.84 21.8 2.77 9.43 0.00355 1.97 9.28 0.00202 0.813 2240 1540 9.88 1.95 15.2 2.26 7.58 0.00341 0.770 578 294 210 58.8 4.18 43.4 4.13 66.5 101 19.7 48.3 71.7 14.2 36 119 29.8 3.36 33.6 40.3 rts Torsional Properties in. 5.03 4.96 4.92 4.85 57 9.03 13.9 42 12.0 18.9 9.16 14.2 HP-SHAPES AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 36 1–36 DIMENSIONS AND PROPERTIES Table 1-5 C-Shapes Dimensions Web Shape Area, A Depth, d Thickness, tw in.2 in. in. C15×50 14.7 15.0 15 0.716 11/16 ×40 11.8 15.0 15 0.520 1/2 ×33.9 10.0 15.0 15 0.400 3/8 C12×30 8.81 12.0 ×25 7.34 12.0 ×20.7 6.08 12.0 12 0.510 12 0.387 12 0.282 C10×30 ×25 ×20 ×15.3 10 10 10 10 8.81 7.35 5.87 4.48 10.0 10.0 10.0 10.0 Flange tw ᎏ 2 1/4 3/16 1/2 1/4 3/8 3/16 5/16 3/16 0.673 11/16 0.526 1/2 0.379 3/8 0.240 1/4 7/16 3/8 1/4 3/16 1/8 5.87 9.00 4.40 9.00 3.94 9.00 9 0.448 9 0.285 5/16 9 0.233 1/4 1/4 C8×18.75 5.51 8.00 ×13.75 4.03 8.00 ×11.5 3.37 8.00 8 0.487 1/2 8 0.303 5/16 8 0.220 1/4 1/4 C7×14.75 4.33 7.00 ×12.25 3.59 7.00 ×9.8 2.87 7.00 7 0.419 7/16 7 0.314 5/16 7 0.210 3/16 1/4 C6×13 ×10.5 ×8.2 3.82 6.00 3.07 6.00 2.39 6.00 6 0.437 7/16 6 0.314 5/16 6 0.200 3/16 1/4 C5×9 ×6.7 2.64 5.00 1.97 5.00 5 0.325 5 0.190 5/16 3/16 3/16 1/8 C4×7.25 ×6.25 ×5.4 ×4.5 2.13 1.77 1.58 1.38 4.00 4.00 4.00 4.00 4 4 4 4 0.321 5/16 0.247 1/4 0.184 3/16 0.125 1/8 3/16 C3×6 ×5 ×4.1 ×3.5 1.76 1.47 1.20 1.09 3.00 3.00 3.00 3.00 3 3 3 3 0.356 3/8 0.258 1/4 0.170 3/16 0.132 1/8 3/16 C9×20 ×15 ×13.4 Average Thickness, tf k T Workable Gage in. in. 17/16 17/16 17/16 in. 121/8 121/8 121/8 in. 21/4 2 2 in. 3/8 3/16 1/8 3/16 1/8 3/16 1/8 3/16 1/8 1/8 1/8 1/16 1/8 1/8 1/16 Distance Width, bf 3.72 3.52 3.40 33/4 31/2 33/8 in. 0.650 5/8 0.650 5/8 0.650 5/8 3.17 3.05 2.94 31/8 3 3 0.501 0.501 0.501 1/2 3.03 2.89 2.74 2.60 3 27/8 23/4 25/8 0.436 0.436 0.436 0.436 7/16 2.65 2.49 2.43 25/8 0.413 0.413 0.413 7/16 21/2 23/8 2.53 2.34 2.26 21/2 23/8 21/4 0.390 0.390 0.390 3/8 15/16 3/8 15/16 3/8 15/16 2.30 2.19 2.09 21/4 21/4 21/8 0.366 0.366 0.366 3/8 7/8 3/8 7/8 3/8 7/8 2.16 2.03 1.92 21/8 2 17/8 0.343 0.343 0.343 5/16 13/16 5/16 13/16 5/16 13/16 1.89 1.75 17/8 3/4 13/4 0.320 0.320 5/16 5/16 3/4 1.72 1.65 1.58 1.58 13/4 13/4 15/8 15/8 0.296 0.272 0.296 0.296 5/16 3/4 5/16 3/4 5/16 3/4 5/16 3/4 1.60 1.50 1.41 1.37 15/8 11/2 13/8 13/8 0.273 0.273 0.273 0.273 1/4 11/16 1/4 11/16 1/4 11/16 1/4 11/16 1/2 1/2 7/16 7/16 7/16 7/16 7/16 rts ho in. in. 1.17 14.4 1.15 14.4 1.13 14.4 11/8 11/8 11/8 93/4 13/4g 93/4 13/4g 93/4 13/4g 1 1 1 1 8 8 8 8 13/4g 13/4g 11/2g 11/2g 0.924 0.911 0.894 0.868 1 1 1 7 7 7 11/2g 13/8g 13/8g 0.850 8.59 0.825 8.59 0.814 8.59 61/8 61/8 61/8 11/2g 13/8g 13/8g 0.800 7.61 0.774 7.61 0.756 7.61 51/4 51/4 51/4 11/4g 11/4g 11/4g 0.738 6.63 0.722 6.63 0.698 6.63 43/8 43/8 43/8 13/8g 11/8g 11/8g 0.689 5.66 0.669 5.66 0.643 5.66 31/2 31/2 11/8g — 0.616 4.68 0.584 4.68 21/2 21/2 21/2 21/2 1g — — — 0.563 0.546 0.528 0.524 3.70 3.73 3.70 3.70 15/8 15/8 15/8 15/8 — — — — 0.519 0.496 0.469 0.456 2.73 2.73 2.73 2.73 g 1.01 11.5 1.00 11.5 0.983 11.5 The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. — Indicates flange is too narrow to establish a workable gage. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 9.56 9.56 9.56 9.56 AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 37 DIMENSIONS AND PROPERTIES 1–37 Table 1-5 (continued) C-Shapes Properties C-SHAPES Torsional Properties Nom- Shear inal Ctr, eo Wt. Axis X-X Axis Y-Y J xp Z in.3 in. in.4 8.14 0.490 2.65 6.84 0.392 1.45 6.19 0.332 1.01 Cw –r o I lb/ft in. in.4 50 0.583 404 40 0.767 348 33.9 0.896 315 S r Z I S r x– in.3 in. in.3 in.4 in.3 in. in. 53.8 5.24 68.5 11.0 3.77 0.865 0.799 46.5 5.43 57.5 9.17 3.34 0.883 0.778 42.0 5.61 50.8 8.07 3.09 0.901 0.788 30 25 20.7 0.618 162 0.746 144 0.870 129 27.0 24.0 21.5 4.29 33.8 4.43 29.4 4.61 25.6 5.12 2.05 0.762 0.674 4.32 0.367 0.861 151 4.45 1.87 0.779 0.674 3.82 0.306 0.538 130 3.86 1.72 0.797 0.698 3.47 0.253 0.369 112 4.54 0.919 4.72 0.909 4.93 0.899 30 25 20 15.3 0.368 0.494 0.636 0.796 20.7 18.2 15.8 13.5 3.43 3.52 3.67 3.88 3.93 3.34 2.80 2.27 20 15 13.4 0.515 60.9 13.5 0.681 51.0 11.3 0.742 47.8 10.6 103 91.1 78.9 67.3 26.7 23.1 19.4 15.9 0.668 0.675 0.690 0.711 0.649 0.617 0.606 0.634 3.78 3.18 2.70 2.34 0.441 0.367 0.294 0.224 H in. 5.49 0.937 5.71 0.927 5.94 0.920 1.22 0.687 0.368 0.209 79.5 68.3 56.9 45.5 3.63 3.76 3.93 4.19 2.41 1.17 0.640 0.583 2.46 0.326 0.427 1.91 1.01 0.659 0.586 2.04 0.245 0.208 1.75 0.954 0.666 0.601 1.94 0.219 0.168 39.4 31.0 28.2 3.46 0.899 3.69 0.882 3.79 0.875 18.75 0.431 43.9 11.0 2.82 13.9 1.97 1.01 0.598 0.565 2.17 0.344 0.434 13.75 0.604 36.1 9.02 2.99 11.0 1.52 0.848 0.613 0.554 1.73 0.252 0.186 11.5 0.697 32.5 8.14 3.11 9.63 1.31 0.775 0.623 0.572 1.57 0.211 0.130 25.1 19.2 16.5 3.05 0.894 3.26 0.874 3.41 0.862 3.22 16.9 3.40 13.6 3.48 12.6 1.65 1.47 1.31 1.15 in.6 492 410 358 0.921 0.912 0.900 0.884 14.75 0.441 27.2 12.25 0.538 24.2 9.8 0.647 21.2 7.78 2.51 9.75 1.37 0.772 0.561 0.532 1.63 0.309 0.267 13.1 6.92 2.59 8.46 1.16 0.696 0.568 0.525 1.42 0.257 0.161 11.2 6.07 2.72 7.19 0.957 0.617 0.578 0.541 1.26 0.205 0.0996 9.15 2.75 0.875 2.86 0.862 3.02 0.845 13 10.5 8.2 5.78 2.13 7.29 1.05 0.638 0.524 0.514 1.35 0.318 0.237 5.04 2.22 6.18 0.860 0.561 0.529 0.500 1.14 0.256 0.128 4.35 2.34 5.16 0.687 0.488 0.536 0.512 0.987 0.199 0.0736 7.19 5.91 4.70 2.37 0.858 2.48 0.842 2.65 0.824 0.380 17.3 0.486 15.1 0.599 13.1 9 6.7 0.427 0.552 8.89 3.56 1.84 4.39 0.624 0.444 0.486 0.478 0.913 0.264 0.109 7.48 2.99 1.95 3.55 0.470 0.372 0.489 0.484 0.757 0.215 0.0549 2.93 2.22 2.10 0.815 2.26 0.790 7.25 6.25 5.4 4.5 0.386 0.434 0.501 0.587 4.58 4.00 3.85 3.65 2.29 2.00 1.92 1.83 1.47 1.50 1.56 1.63 2.84 2.43 2.29 2.12 0.425 0.345 0.312 0.289 0.337 0.284 0.277 0.265 0.447 0.441 0.444 0.457 0.459 0.435 0.457 0.493 0.695 0.569 0.565 0.531 0.266 0.221 0.231 0.321 0.0817 0.0487 0.0399 0.0322 1.24 1.03 0.921 0.871 1.75 1.79 1.88 2.01 0.767 0.764 0.742 0.710 6 5 4.1 3.5 0.322 0.392 0.461 0.493 2.07 1.85 1.65 1.57 1.38 1.23 1.10 1.04 1.09 1.12 1.18 1.20 1.74 1.52 1.32 1.24 0.300 0.241 0.191 0.169 0.263 0.228 0.196 0.182 0.413 0.405 0.398 0.394 0.455 0.439 0.437 0.443 0.543 0.464 0.399 0.364 0.294 0.245 0.262 0.296 0.0725 0.0425 0.0269 0.0226 0.462 0.379 0.307 0.276 1.40 1.45 1.53 1.57 0.690 0.673 0.655 0.646 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 38 1–38 DIMENSIONS AND PROPERTIES Table 1-6 MC-Shapes Dimensions Web Area, A Shape Depth, d Flange Thickness, tw ᎏ 2 tw Width, bf Distance Average Thickness, tf k T Workable Gage rts ho MC18×58 ×51.9 ×45.8 ×42.7 in.2 17.1 15.3 13.5 12.6 in. 18.0 18.0 18.0 18.0 18 18 18 18 in. in. in. 0.700 11/16 3/8 4.20 41/4 0.600 5/8 5/16 4.10 41/8 0.500 1/2 1/4 4.00 4 0.450 7/16 1/4 3.95 4 in. 0.625 5/8 0.625 5/8 0.625 5/8 0.625 5/8 in. in. 17/16 151/8 17/16 17/16 17/16 in. 21/2 in. 1.35 1.35 1.34 1.34 in. 17.4 17.4 17.4 17.4 MC13×50 ×40 ×35 ×31.8 14.7 11.7 10.3 9.35 13.0 13.0 13.0 13.0 13 13 13 13 0.787 13/16 0.560 9/16 0.447 7/16 0.375 3/8 7/16 17/16 101/8 17/16 17/16 17/16 21/2 1.41 1.38 1.35 1.34 12.4 12.4 12.4 12.4 MC12×50 ×45 ×40 ×35 ×31 14.7 13.2 11.8 10.3 9.12 12.0 12.0 12.0 12.0 12.0 12 12 12 12 12 0.835 13/16 0.710 11/16 0.590 9/16 0.465 7/16 0.370 3/8 7/16 21/2 11/16 15/16 15/16 15/16 15/16 15/16 1.37 1.35 1.33 1.30 1.28 11.3 11.3 11.3 11.3 11.3 3/4 101/2 101/2 — 73/8 21/2g MC12×14.3 MC12×10.6 c 4.18 12.0 12 0.250 1/4 3.10 12.0 12 0.190 3/16 13/16 4.41 4.19 4.07 4.00 43/8 41/8 41/8 4 0.610 0.610 0.610 0.610 5/8 41/8 4 37/8 33/4 35/8 0.700 0.700 0.700 0.700 0.700 11/16 3/16 4.14 4.01 3.89 3.77 3.67 1/8 2.12 21/8 0.313 5/16 1/8 1.50 11/2 0.309 5/16 3/4 4.32 0.575 4.10 41/8 0.575 3.95 4 0.575 9/16 15/16 9/16 15/16 15/16 1.44 73/8 21/2g 1.40 73/8 21/2g 1.36 9.43 9.43 9.43 3.41 33/8 0.575 3.32 33/8 0.575 9/16 15/16 15/16 73/8 73/8 2g 2g 1.17 1.14 9.43 9.43 3/4 81/2 87/8 — — 0.486 9.72 0.363 9.80 11/4 11/4 61/2 61/2 2g 2g 1.20 1.18 8.45 8.45 13/16 13/16 55/8 55/8 2g 2g 1.20 1.18 7.48 7.48 11/8 11/8 53/4 53/4 2g 2g 1.03 1.02 7.50 7.50 5/16 1/4 3/16 3/8 5/16 1/4 12.1 10.0 9.87 10.0 8.37 10.0 10 0.796 10 0.575 9/16 10 0.425 7/16 7/16 MC10×25 ×22 7.34 10.0 6.45 10.0 10 0.380 3/8 10 0.290 5/16 3/16 MC10×8.4 c ×6.5 c 2.46 10.0 1.95 10.0 10 0.170 3/16 10 0.152 1/8 1/8 MC10×41.1 ×33.6 ×28.5 5/16 1/4 3/16 1/16 43/8 7.47 7.02 9.00 9.00 9 0.450 7/16 9 0.400 3/8 1/4 MC8×22.8 ×21.4 6.70 6.28 8.00 8.00 8 0.427 7/16 8 0.375 3/8 1/4 MC8×20 ×18.7 5.87 5.50 8.00 8.00 8 0.400 3/8 8 0.353 3/8 3/16 3/16 3.03 3 2.98 3 MC8×8.5 2.50 8.00 8 0.179 3/16 1/8 1.87 17/8 0.311 3/16 5/8 5/8 11/16 11/16 11/16 9/16 9/16 1.50 11/2 0.280 1/4 1.17 11/8 0.202 3/16 MC9×25.4 ×23.9 3/16 5/8 3.50 31/2 0.550 3.45 31/2 0.550 9/16 9/16 3.50 31/2 0.525 1/2 3.45 31/2 0.525 1/2 0.500 1/2 0.500 1/2 5/16 9/16 13/16 93/8 21/4 11/4g 0.672 11.7 0.478 11.7 63/8 11/8g 0.624 7.69 Shape is slender for compression with Fy = 36 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. — Indicates flange is too narrow to establish a workable gage. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 39 DIMENSIONS AND PROPERTIES 1–39 Table 1-6 (continued) MC-Shapes Properties MC18-MC8 Nom- Shear inal Ctr, eo Wt. Torsional Properties Axis X-X Axis Y-Y J Cw –r o S in.3 75.0 69.6 64.2 61.5 r in. 6.29 6.41 6.55 6.64 Z in.3 95.4 87.3 79.2 75.1 I in.4 17.6 16.3 14.9 14.3 S in.3 5.28 5.02 4.77 4.64 r in. 1.02 1.03 1.05 1.07 Z x– in. in.3 0.862 10.7 0.858 9.86 0.866 9.14 0.877 8.82 in. 0.474 0.424 0.374 0.349 in.4 in.6 2.81 1070 2.03 985 1.45 897 1.23 852 in. 6.56 6.70 6.87 6.97 0.944 0.939 0.933 0.930 xp H lb/ft 58 51.9 45.8 42.7 in. 0.695 0.797 0.909 0.969 I in.4 675 627 578 554 50 40 35 31.8 0.815 1.03 1.16 1.24 314 273 252 239 48.3 41.9 38.8 36.7 4.62 4.82 4.95 5.05 60.8 51.2 46.5 43.4 16.4 13.7 12.3 11.4 4.77 4.24 3.97 3.79 1.06 1.08 1.09 1.10 0.974 10.2 0.963 8.66 0.980 8.04 1.00 7.69 0.566 0.452 0.396 0.360 2.96 1.55 1.13 0.937 558 462 412 380 5.07 5.32 5.50 5.64 0.875 0.859 0.849 0.842 50 45 40 35 31 0.741 0.844 0.952 1.07 1.17 269 251 234 216 202 44.9 41.9 39.0 36.0 33.7 4.28 4.36 4.46 4.59 4.71 56.5 52.0 47.7 43.2 39.7 17.4 15.8 14.2 12.6 11.3 5.64 5.30 4.98 4.64 4.37 1.09 1.09 1.10 1.11 1.11 1.05 10.9 1.04 10.1 1.04 9.31 1.05 8.62 1.08 8.15 0.613 0.550 0.490 0.428 0.425 3.23 2.33 1.69 1.24 1.00 411 373 336 297 267 4.77 4.88 5.01 5.18 5.34 0.859 0.851 0.842 0.831 0.822 14.3 0.435 76.1 12.7 10.6 0.284 55.3 4.27 15.9 9.22 4.22 11.6 1.00 0.574 0.489 0.377 1.21 0.174 0.117 32.8 4.37 0.965 0.378 0.307 0.349 0.269 0.635 0.129 0.0596 11.7 4.27 0.983 41.1 0.864 157 33.6 1.06 139 28.5 1.21 126 31.5 27.8 25.3 3.61 39.3 15.7 3.75 33.7 13.1 3.89 30.0 11.3 25 22 22.0 20.5 3.87 26.2 3.99 23.9 1.03 110 1.12 102 8.4 0.332 31.9 6.5 0.182 22.9 4.85 1.14 1.09 4.35 1.15 1.09 3.99 1.16 1.12 9.49 0.604 2.26 8.28 0.494 1.20 7.59 0.419 0.791 269 224 193 4.26 0.790 4.47 0.770 4.68 0.752 7.25 2.96 0.993 0.953 5.65 0.367 0.638 6.40 2.75 0.997 0.990 5.29 0.467 0.510 124 110 4.46 0.803 4.62 0.791 6.39 3.61 7.92 0.326 0.268 0.364 0.284 0.548 0.123 0.0413 4.59 3.43 5.90 0.133 0.137 0.262 0.194 0.284 0.0975 0.0191 25.4 0.986 87.9 19.5 23.9 1.04 84.9 18.9 3.43 23.5 3.48 22.5 7.57 2.99 1.01 0.970 5.70 0.415 0.691 7.14 2.89 1.01 0.981 5.51 0.390 0.599 22.8 1.04 21.4 1.09 63.8 15.9 61.5 15.4 3.09 19.1 3.13 18.2 7.01 2.81 1.02 1.01 6.58 2.71 1.02 1.02 20 0.843 54.4 13.6 18.7 0.889 52.4 13.1 3.04 16.4 3.09 15.6 8.5 0.542 23.3 7.00 3.68 0.972 2.76 3.46 0.988 104 98.0 4.08 0.770 4.15 0.763 5.37 0.419 0.572 5.18 0.452 0.495 75.2 70.8 3.84 0.715 3.91 0.707 4.42 2.02 0.867 0.840 3.86 0.367 0.441 4.15 1.95 0.868 0.849 3.72 0.344 0.380 47.8 45.0 3.58 0.779 3.65 0.773 5.82 3.05 6.95 0.624 0.431 0.500 0.428 0.875 0.156 0.0587 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 8.21 3.24 0.910 AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 40 1–40 DIMENSIONS AND PROPERTIES Table 1-6 (continued) MC-Shapes Dimensions Web Shape Area, A Depth, d Flange Thickness, tw ᎏ 2 tw Distance Average Thickness, tf k T Workable Gage rts ho in. in. 3.60 35/8 0.500 1/2 3.45 31/2 0.500 1/2 in. 11/8 11/8 in. 43/4 43/4 in. 2g 2g in. 1.23 1.19 in. 6.50 6.50 3.50 31/2 0.475 1/2 3.50 31/2 0.385 3/8 11/16 7/8 37/8 41/4 2g 2g 1.20 1.20 5.53 5.62 0.475 1/2 0.475 1/2 11/16 11/16 37/8 37/8 13/4g 1.03 13/4g 1.01 5.53 5.53 11/2g 0.856 5.63 Width, bf MC7×22.7 ×19.1 in.2 6.67 5.61 in. in. 7.00 7 0.503 1/2 7.00 7 0.352 3/8 MC6×18 ×15.3 5.29 4.49 6.00 6.00 6 0.379 3/8 6 0.340 5/16 3/16 MC6×16.3 ×15.1 4.79 4.44 6.00 6.00 6 0.375 3/8 6 0.316 5/16 3/16 3/16 3.00 3 2.94 3 MC6×12 3.53 6.00 6 0.310 5/16 3/16 2.50 21/2 0.375 3/8 7/8 41/4 MC6×7 ×6.5 2.09 1.95 6.00 6.00 6 0.179 3/16 6 0.155 1/8 1/8 1.88 17/8 0.291 1.85 17/8 0.291 5/16 3/4 1/16 5/16 3/4 41/2 41/2 — — 0.638 5.71 0.631 5.71 MC4×13.8 4.03 4.00 4 0.500 1/2 1/4 2.50 21/2 0.500 1/2 2 — 0.851 3.50 13/8 — 0.657 2.65 MC3×7.1 2.11 3.00 3 0.312 5/16 in. 1/4 3/16 3/16 3/16 1.94 2 0.351 3/8 1 13/16 g The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. — Indicates flange is too narrow to establish a workable gage. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 41 DIMENSIONS AND PROPERTIES 1–41 Table 1-6 (continued) MC-Shapes Properties MC7-MC3 Nom- Shear inal Ctr, eo Wt. Torsional Properties Axis X-X Axis Y-Y J xp Z in.3 in. in.4 5.38 0.477 0.625 4.85 0.579 0.407 in.6 58.3 49.3 in. 3.53 0.659 3.70 0.638 9.89 2.37 11.7 5.88 2.47 1.05 1.12 8.44 2.38 9.91 4.91 2.01 1.05 1.05 4.68 0.644 0.379 3.85 0.511 0.223 34.6 30.0 3.46 0.563 3.41 0.579 16.3 0.930 26.0 15.1 0.982 24.9 8.66 2.33 10.4 3.77 1.82 0.887 0.927 3.47 0.465 0.336 8.30 2.37 9.83 3.46 1.73 0.883 0.940 3.30 0.543 0.285 22.1 20.5 3.11 0.643 3.18 0.634 12 6.24 2.30 7.47 1.85 1.03 0.724 0.704 1.97 0.294 0.155 11.3 2.80 0.740 lb/ft in. 22.7 1.01 19.1 1.15 18 1.17 15.3 1.16 29.7 25.3 0.725 18.7 7 0.583 11.4 6.5 0.612 11.0 3.81 2.34 4.50 0.603 0.439 0.537 0.501 0.865 0.174 0.0464 3.66 2.38 4.28 0.565 0.422 0.539 0.513 0.836 0.191 0.0412 Cw –r o I S r x– in.4 in.3 in. in. 7.24 2.83 1.04 1.04 6.06 2.55 1.04 1.08 I S r Z in.4 in.3 in. in.3 47.4 13.5 2.67 16.4 43.1 12.3 2.77 14.5 H 4.00 2.63 0.830 3.75 2.68 0.824 13.8 0.643 8.85 4.43 1.48 5.53 2.13 1.29 0.727 0.849 2.40 0.508 0.373 4.84 2.23 0.550 7.1 0.574 2.72 1.81 1.14 2.24 0.666 0.518 0.562 0.653 0.998 0.414 0.0928 0.915 1.76 0.516 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 42 1–42 DIMENSIONS AND PROPERTIES Table 1-7 Angles Properties Flexural-Torsional Properties Axis X-X k Wt. Area, A L8×8×11/8 ×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 in. 13/4 15/8 11/2 13/8 11/4 13/16 11/8 lb/ft 56.9 51.0 45.0 38.9 32.7 29.6 26.4 in.2 16.8 15.1 13.3 11.5 9.69 8.77 7.84 in.4 98.1 89.1 79.7 69.9 59.6 54.2 48.8 in.3 17.5 15.8 14.0 12.2 10.3 9.33 8.36 in. 2.41 2.43 2.45 2.46 2.48 2.49 2.49 in. 2.40 2.36 2.31 2.26 2.21 2.19 2.17 in.3 31.6 28.5 25.3 22.0 18.6 16.8 15.1 in. 1.05 0.944 0.831 0.719 0.606 0.548 0.490 in.4 7.13 5.08 3.46 2.21 1.30 0.961 0.683 in.6 32.5 23.4 16.1 10.4 6.16 4.55 3.23 in. 4.29 4.32 4.36 4.39 4.42 4.43 4.45 L8×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 11/2 13/8 11/4 11/8 11/16 1 15/16 44.2 39.1 33.8 28.5 25.7 23.0 20.2 13.1 11.5 9.99 8.41 7.61 6.80 5.99 80.9 72.4 63.5 54.2 49.4 44.4 39.3 15.1 13.4 11.7 9.86 8.94 8.01 7.06 2.49 2.50 2.52 2.54 2.55 2.55 2.56 2.65 2.60 2.55 2.50 2.48 2.46 2.43 27.3 24.3 21.1 17.9 16.2 14.6 12.9 1.45 1.43 1.34 1.27 1.24 1.20 1.15 4.34 2.96 1.90 1.12 0.823 0.584 0.396 16.3 11.3 7.28 4.33 3.20 2.28 1.55 3.88 3.92 3.95 3.98 3.99 4.01 4.02 L8×4×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 11/2 13/8 11/4 11/8 11/16 1 15/16 37.4 33.1 28.7 24.2 21.9 19.6 17.2 11.1 9.79 8.49 7.16 6.49 5.80 5.11 69.7 62.6 55.0 47.0 42.9 38.6 34.2 14.0 12.5 10.9 9.20 8.34 7.48 6.59 2.51 2.53 2.55 2.56 2.57 2.58 2.59 3.03 2.99 2.94 2.89 2.86 2.84 2.81 24.3 21.7 18.9 16.1 14.6 13.1 11.6 2.45 2.41 2.34 2.27 2.23 2.20 2.16 3.68 2.51 1.61 0.955 0.704 0.501 0.340 12.9 8.89 5.75 3.42 2.53 1.80 1.22 3.75 3.78 3.80 3.83 3.84 3.86 3.87 L7×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 11/4 11/8 1 15/16 7/8 26.2 22.1 17.9 15.7 13.6 7.74 6.50 5.26 4.63 4.00 37.8 32.4 26.6 23.6 20.5 8.39 7.12 5.79 5.11 4.42 2.21 2.23 2.25 2.26 2.27 2.50 2.45 2.40 2.38 2.35 14.8 12.5 10.2 9.03 7.81 1.84 1.80 1.74 1.71 1.67 1.47 0.868 0.456 0.310 0.198 3.97 2.37 1.25 0.851 0.544 3.31 3.34 3.37 3.38 3.40 L6×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 11/2 13/8 11/4 11/8 11/16 1 15/16 7/8 13/16 37.4 33.1 28.7 24.2 21.9 19.6 17.2 14.9 12.4 11.0 9.75 8.46 7.13 6.45 5.77 5.08 4.38 3.67 35.4 31.9 28.1 24.1 22.0 19.9 17.6 15.4 13.0 8.55 7.61 6.64 5.64 5.12 4.59 4.06 3.51 2.95 1.79 1.81 1.82 1.84 1.85 1.86 1.86 1.87 1.88 1.86 1.81 1.77 1.72 1.70 1.67 1.65 1.62 1.60 15.4 13.7 11.9 10.1 9.18 8.22 7.25 6.27 5.26 0.917 0.813 0.705 0.594 0.538 0.481 0.423 0.365 0.306 3.68 2.51 1.61 0.955 0.704 0.501 0.340 0.218 0.129 9.24 6.41 4.17 2.50 1.85 1.32 0.899 0.575 0.338 3.18 3.21 3.24 3.28 3.29 3.31 3.32 3.34 3.35 Shape I S r y– yp Z Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION J Cw –r o AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 9:50 AM Page 43 (Black plate) 1–43 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties L8-L6 Axis Y-Y I S r L8×8×11/8 ×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 in.4 98.1 89.1 79.7 69.9 59.6 54.2 48.8 in.3 17.5 15.8 14.0 12.2 10.3 9.33 8.36 in. 2.41 2.43 2.45 2.46 2.48 2.49 2.49 in. 2.40 2.36 2.31 2.26 2.21 2.19 2.17 in.3 31.6 28.5 25.3 22.0 18.6 16.8 15.1 in. 1.05 0.944 0.831 0.719 0.606 0.548 0.490 in.4 40.7 36.8 32.7 28.5 24.2 21.9 19.8 in.3 12.0 11.0 10.0 8.90 7.72 7.09 6.44 L8×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 38.8 34.9 30.8 26.4 24.1 21.7 19.3 8.92 7.94 6.92 5.88 5.34 4.79 4.23 1.72 1.74 1.75 1.77 1.78 1.79 1.80 1.65 1.60 1.56 1.51 1.49 1.46 1.44 16.2 14.4 12.5 10.5 9.52 8.52 7.50 0.819 0.719 0.624 0.526 0.476 0.425 0.374 21.3 18.9 16.6 14.1 12.8 11.5 10.2 L8×4×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 11.6 10.5 9.37 8.11 7.44 6.75 6.03 3.94 3.51 3.07 2.62 2.38 2.15 1.90 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.04 0.997 0.949 0.902 0.878 0.854 0.829 7.73 6.77 5.82 4.86 4.39 3.91 3.42 0.694 0.612 0.531 0.448 0.406 0.363 0.319 L7×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 9.00 7.79 6.48 5.79 5.06 3.01 2.56 2.10 1.86 1.61 1.08 1.10 1.11 1.12 1.12 1.00 0.958 0.910 0.886 0.861 5.60 4.69 3.77 3.31 2.84 0.553 0.464 0.376 0.331 0.286 8.55 7.61 6.64 5.64 5.12 4.59 4.06 3.51 2.95 1.79 1.81 1.82 1.84 1.85 1.86 1.86 1.87 1.88 1.86 1.81 1.77 1.72 1.70 1.67 1.65 1.62 1.60 15.4 13.7 11.9 10.1 9.18 8.22 7.25 6.27 5.26 Shape L6×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 35.4 31.9 28.1 24.1 22.0 19.9 17.6 15.4 13.0 Qs Axis Z-Z x– Z xp I S r Tan ␣ Fy = 36 ksi in. 1.56 1.56 1.57 1.57 1.58 1.58 1.59 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.959 0.912 7.60 6.71 5.82 4.91 4.45 3.98 3.51 1.28 1.28 1.29 1.29 1.30 1.30 1.31 0.542 0.546 0.550 0.554 0.556 0.557 0.559 1.00 1.00 1.00 0.997 0.959 0.912 0.850 7.83 6.97 6.14 5.24 4.78 4.32 3.84 3.48 3.06 2.65 2.24 2.03 1.82 1.61 0.844 0.846 0.850 0.856 0.859 0.863 0.867 0.247 0.252 0.257 0.262 0.264 0.266 0.268 1.00 1.00 1.00 0.997 0.959 0.912 0.850 5.63 4.81 3.94 3.50 3.04 2.57 2.16 1.76 1.55 1.34 0.855 0.860 0.866 0.869 0.873 0.324 0.329 0.334 0.337 0.339 1.00 1.00 0.965 0.912 0.840 0.917 14.9 0.813 13.3 0.705 11.6 0.594 9.81 0.538 8.90 0.481 8.06 0.423 7.05 0.365 6.21 0.306 5.20 5.70 5.18 4.63 4.04 3.73 3.40 3.05 2.69 2.30 1.17 1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.973 0.912 0.826 Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 44 1–44 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties Flexural-Torsional Properties Axis X-X Shape k Wt. Area, A in. 13/8 11/4 11/8 11/16 1 15/16 7/8 13/16 lb/ft 27.2 23.6 20.0 18.1 16.2 14.3 12.3 10.3 in.2 8.00 6.94 5.86 5.31 4.75 4.18 3.61 3.03 I r y– Z yp J Cw –r o in.3 7.13 6.23 5.29 4.81 4.31 3.81 3.30 2.77 in. 1.86 1.88 1.89 1.90 1.91 1.92 1.93 1.94 in. 2.12 2.07 2.03 2.00 1.98 1.95 1.93 1.90 in.3 12.7 11.1 9.44 8.59 7.71 6.81 5.89 4.96 in. 1.43 1.37 1.31 1.28 1.25 1.22 1.19 1.15 in.4 2.03 1.31 0.775 0.572 0.407 0.276 0.177 0.104 in.6 4.04 2.64 1.59 1.18 0.843 0.575 0.369 0.217 in. 2.82 2.85 2.88 2.90 2.91 2.93 2.94 2.96 4.50 16.6 3.44 12.9 2.89 10.9 4.23 3.23 2.72 1.92 1.93 1.94 2.07 2.02 2.00 7.49 5.74 4.84 1.50 1.41 1.38 0.386 0.168 0.0990 0.779 0.341 0.201 2.88 2.90 2.92 27.2 23.6 20.0 16.2 14.3 12.3 10.3 8.00 6.98 5.90 4.79 4.22 3.65 3.07 17.8 15.7 13.6 11.3 10.0 8.76 7.44 5.16 4.52 3.85 3.15 2.78 2.41 2.04 1.49 1.50 1.52 1.53 1.54 1.55 1.56 1.56 1.52 1.47 1.42 1.40 1.37 1.35 9.31 8.14 6.93 5.66 5.00 4.33 3.65 0.800 0.698 0.590 0.479 0.422 0.365 0.307 2.07 1.33 0.792 0.417 0.284 0.183 0.108 3.53 2.32 1.40 0.744 0.508 0.327 0.193 2.64 2.67 2.70 2.73 2.74 2.76 2.77 19.8 16.8 13.6 10.4 8.70 7.00 5.85 13.9 4.93 12.0 4.00 10.0 3.05 7.75 2.56 6.58 2.07 5.36 4.26 3.63 2.97 2.28 1.92 1.55 1.55 1.56 1.58 1.59 1.60 1.61 1.74 1.69 1.65 1.60 1.57 1.55 7.60 6.50 5.33 4.09 3.45 2.78 1.10 1.06 1.00 0.933 0.904 0.860 1.09 0.651 0.343 0.150 0.0883 0.0464 1.52 0.918 0.491 0.217 0.128 0.0670 2.36 2.39 2.42 2.45 2.47 2.48 3/4 11/16 12.8 11.3 9.80 8.20 6.60 3.75 3.31 2.86 2.41 1.94 9.43 8.41 7.35 6.24 5.09 2.89 2.56 2.22 1.87 1.51 1.58 1.59 1.60 1.61 1.62 1.74 1.72 1.69 1.67 1.64 5.12 4.53 3.93 3.32 2.68 1.25 1.22 1.19 1.14 1.12 0.322 0.220 0.141 0.0832 0.0438 0.444 0.304 0.196 0.116 0.0606 2.38 2.39 2.41 2.42 2.43 L4×4×3/4 11/8 ×5/8 1 7/8 ×1/2 13/16 ×7/16 3/4 ×3/8 11/16 ×5/16 5/8 ×1/4 18.5 15.7 12.8 11.3 9.80 8.20 6.60 5.44 4.61 3.75 3.30 2.86 2.40 1.93 7.62 6.62 5.52 4.93 4.32 3.67 3.00 2.79 2.38 1.96 1.73 1.50 1.27 1.03 1.18 1.20 1.21 1.22 1.23 1.24 1.25 1.27 1.22 1.18 1.15 1.13 1.11 1.08 5.02 4.28 3.50 3.10 2.69 2.26 1.82 0.680 0.576 0.469 0.413 0.358 0.300 0.241 1.02 0.610 0.322 0.220 0.141 0.0832 0.0438 1.12 0.680 0.366 0.252 0.162 0.0963 0.0505 2.10 2.13 2.16 2.18 2.19 2.21 2.22 L6×4×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 L6×31/2×1/2 1 15.3 7/8 ×3/8 11.7 ×5/16 13/16 9.80 L5×5×7/8 ×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 13/8 11/4 11/8 1 15/16 7/8 13/16 L5×31/2×3/4 13/16 ×5/8 11/16 15/16 ×1/2 13/16 ×3/8 3/4 ×5/16 11/16 ×1/4 L5×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 15/16 7/8 13/16 in.4 27.7 24.5 21.0 19.2 17.3 15.4 13.4 11.4 S Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 9:55 AM Page 45 (Black plate) 1–45 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties L6-L4 Axis Y-Y I S r L6×4×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 in.4 9.70 8.63 7.48 6.86 6.22 5.56 4.86 4.13 in.3 3.37 2.95 2.52 2.29 2.06 1.83 1.58 1.34 in. 1.10 1.12 1.13 1.14 1.14 1.15 1.16 1.17 in. 1.12 1.07 1.03 1.00 0.981 0.957 0.933 0.908 in.3 6.26 5.42 4.56 4.13 3.69 3.24 2.79 2.33 in. 0.667 0.578 0.488 0.443 0.396 0.348 0.301 0.253 in.4 5.82 5.08 4.32 3.93 3.54 3.14 2.73 2.31 in.3 2.91 2.51 2.12 1.92 1.72 1.51 1.31 1.10 L6×31/2×1/2 ×3/8 ×5/16 4.24 3.33 2.84 1.59 1.22 1.03 0.968 0.984 0.991 0.829 0.781 0.756 2.88 2.18 1.82 0.375 0.287 0.241 2.59 2.01 1.70 L5×5×7/8 ×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 17.8 15.7 13.6 11.3 10.0 8.76 7.44 5.16 4.52 3.85 3.15 2.78 2.41 2.04 1.49 1.50 1.52 1.53 1.54 1.55 1.56 1.56 1.52 1.47 1.42 1.40 1.37 1.35 9.31 8.14 6.93 5.66 5.00 4.33 3.65 0.800 0.698 0.590 0.479 0.422 0.365 0.307 L5×31/2×3/4 ×5/8 ×1/2 ×3/8 ×5/16 ×1/4 5.52 4.80 4.02 3.15 2.69 2.20 2.20 1.88 1.55 1.19 1.01 0.816 0.974 0.987 1.00 1.02 1.02 1.03 0.993 0.947 0.901 0.854 0.829 0.804 4.07 3.43 2.79 2.12 1.77 1.42 L5×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 2.55 2.29 2.01 1.72 1.41 1.13 1.00 0.874 0.739 0.600 0.824 0.831 0.838 0.846 0.853 0.746 0.722 0.698 0.673 0.648 L4×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 ×1/4 7.62 6.62 5.52 4.93 4.32 3.67 3.00 2.79 2.38 1.96 1.73 1.50 1.27 1.03 1.18 1.20 1.21 1.22 1.23 1.24 1.25 1.27 1.22 1.18 1.15 1.13 1.11 1.08 Shape Qs Axis Z-Z x– Z xp I S r Tan ␣ Fy = 36 ksi in. 0.854 0.856 0.859 0.861 0.864 0.867 0.870 0.874 0.421 0.428 0.435 0.438 0.440 0.443 0.446 0.449 1.00 1.00 1.00 1.00 1.00 0.973 0.912 0.826 1.34 1.02 0.859 0.756 0.763 0.767 0.343 0.349 0.352 1.00 0.912 0.826 7.60 6.55 5.62 4.64 4.04 3.55 3.00 3.43 3.08 2.70 2.29 2.06 1.83 1.58 0.971 0.972 0.975 0.980 0.983 0.986 0.990 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.912 0.585 0.493 0.400 0.305 0.256 0.207 3.23 2.74 2.26 1.73 1.47 1.19 1.90 1.60 1.29 0.985 0.827 0.667 0.744 0.746 0.750 0.755 0.758 0.761 0.464 0.472 0.479 0.485 0.489 0.491 1.00 1.00 1.00 0.983 0.912 0.804 2.08 1.82 1.57 1.31 1.05 0.375 0.331 0.286 0.241 0.194 1.55 1.37 1.20 1.01 0.825 0.953 0.840 0.726 0.610 0.491 0.642 0.644 0.646 0.649 0.652 0.357 0.361 0.364 0.368 0.371 1.00 1.00 0.983 0.912 0.804 5.02 4.28 3.50 3.10 2.69 2.26 1.82 0.680 0.576 0.469 0.413 0.358 0.300 0.241 3.25 2.76 2.25 1.99 1.73 1.46 1.19 1.81 1.59 1.35 1.22 1.08 0.936 0.776 0.774 0.774 0.776 0.777 0.779 0.781 0.783 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.912 Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 46 1–46 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties Flexural-Torsional Properties Axis X-X Area, A I S in. lb/ft 7/8 11.9 3/4 9.10 11/16 7.70 5/8 6.20 in.2 3.50 2.68 2.25 1.82 in.4 5.30 4.15 3.53 2.89 in.3 1.92 1.48 1.25 1.01 in. 1.23 1.25 1.25 1.26 L4×3×5/8 1 13.6 7/8 ×1/2 11.1 3/4 ×3/8 8.50 11/16 ×5/16 7.20 5/8 ×1/4 5.80 3.99 3.25 2.49 2.09 1.69 6.01 5.02 3.94 3.36 2.75 2.28 1.87 1.44 1.22 0.988 11.1 9.80 8.50 7.20 5.80 3.25 2.89 2.50 2.10 1.70 3.63 3.25 2.86 2.44 2.00 10.2 9.10 7.90 6.60 5.40 3.02 2.67 2.32 1.95 1.58 9.40 7.20 6.10 4.90 Shape L4×31/2×1/2 ×3/8 ×5/16 ×1/4 L31/2×31/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 L31/2×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 L31/2×21/2×1/2 ×3/8 ×5/16 ×1/4 L3×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 L3×21/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 k 7/8 13/16 3/4 11/16 5/8 7/8 13/16 3/4 11/16 5/8 7/8 3/4 11/16 5/8 7/8 13/16 3/4 11/16 5/8 9/16 7/8 13/16 3/4 11/16 5/8 9/16 Wt. y– Z yp J Cw –r o in. 1.24 1.20 1.17 1.14 in.3 3.46 2.66 2.24 1.81 in. 0.500 0.427 0.400 0.360 in.4 0.301 0.132 0.0782 0.0412 in.6 0.302 0.134 0.0798 0.0419 in. 2.03 2.06 2.08 2.09 1.23 1.24 1.26 1.27 1.27 1.37 1.32 1.27 1.25 1.22 4.08 3.36 2.60 2.19 1.77 0.808 0.750 0.680 0.656 0.620 0.529 0.281 0.123 0.0731 0.0386 0.472 0.255 0.114 0.0676 0.0356 1.91 1.94 1.97 1.98 1.99 1.48 1.32 1.15 0.969 0.787 1.05 1.06 1.07 1.08 1.09 1.05 1.03 1.00 0.979 0.954 2.66 2.36 2.06 1.74 1.41 0.464 0.413 0.357 0.300 0.243 0.281 0.192 0.123 0.0731 0.0386 0.238 0.164 0.106 0.0634 0.0334 1.87 1.89 1.90 1.92 1.93 3.45 3.10 2.73 2.33 1.92 1.45 1.29 1.12 0.951 0.773 1.07 1.08 1.09 1.09 1.10 1.12 1.09 1.07 1.05 1.02 2.61 2.32 2.03 1.72 1.39 0.480 0.449 0.407 0.380 0.340 0.260 0.178 0.114 0.0680 0.0360 0.191 0.132 0.0858 0.0512 0.0270 1.75 1.76 1.78 1.79 1.80 2.77 2.12 1.79 1.45 3.24 2.56 2.20 1.81 1.41 1.09 0.925 0.753 1.08 1.10 1.11 1.12 1.20 1.15 1.13 1.10 2.52 1.96 1.67 1.36 0.730 0.673 0.636 0.600 0.234 0.103 0.0611 0.0322 0.159 0.0714 0.0426 0.0225 1.66 1.69 1.71 1.72 9.40 8.30 7.20 6.10 4.90 3.71 2.76 2.43 2.11 1.78 1.44 1.09 2.20 1.98 1.75 1.50 1.23 0.948 1.06 0.946 0.825 0.699 0.569 0.433 0.895 0.903 0.910 0.918 0.926 0.933 0.929 0.907 0.884 0.860 0.836 0.812 1.91 1.70 1.48 1.26 1.02 0.774 0.460 0.405 0.352 0.297 0.240 0.182 0.230 0.157 0.101 0.0597 0.0313 0.0136 0.144 1.59 0.100 1.60 0.0652 1.62 0.0390 1.64 0.0206 1.65 0.00899 1.67 8.50 7.60 6.60 5.60 4.50 3.39 2.50 2.22 1.93 1.63 1.32 1.00 2.07 1.87 1.65 1.41 1.16 0.899 1.03 0.921 0.803 0.681 0.555 0.423 0.910 0.917 0.924 0.932 0.940 0.947 0.995 0.972 0.949 0.925 0.900 0.874 1.86 1.66 1.45 1.23 1.000 0.761 0.500 0.463 0.427 0.392 0.360 0.333 0.213 0.146 0.0943 0.0560 0.0296 0.0130 0.112 1.46 0.0777 1.48 0.0507 1.49 0.0304 1.51 0.0161 1.52 0.00705 1.54 r Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 10:03 AM Page 47 (Black plate) 1–47 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties L4-L3 Axis Y-Y I S r L4×31/2×1/2 ×3/8 ×5/16 ×1/4 in.4 3.76 2.96 2.52 2.07 in.3 1.50 1.16 0.980 0.794 in. 1.04 1.05 1.06 1.07 in. 0.994 0.947 0.923 0.897 in.3 2.69 2.06 1.74 1.40 in. 0.438 0.335 0.281 0.228 in.4 1.79 1.39 1.16 0.953 in.3 1.17 0.938 0.811 0.653 L4×3×5/8 ×1/2 ×3/8 ×5/16 ×1/4 2.85 2.40 1.89 1.62 1.33 1.34 1.10 0.851 0.721 0.585 0.845 0.858 0.873 0.880 0.887 0.867 0.822 0.775 0.750 0.725 2.45 1.99 1.52 1.28 1.03 0.499 0.406 0.311 0.261 0.211 1.59 1.30 1.00 0.849 0.692 L31/2×31/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 3.63 3.25 2.86 2.44 2.00 1.48 1.32 1.15 0.969 0.787 1.05 1.06 1.07 1.08 1.09 1.05 1.03 1.00 0.979 0.954 2.66 2.36 2.06 1.74 1.41 0.464 0.413 0.357 0.300 0.243 L31/2×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 2.32 2.09 1.84 1.58 1.30 1.09 0.971 0.847 0.718 0.585 0.877 0.885 0.892 0.900 0.908 0.869 0.846 0.823 0.798 0.773 1.97 1.75 1.52 1.28 1.04 L31/2×21/2×1/2 ×3/8 ×5/16 ×1/4 1.36 1.09 0.937 0.775 0.756 0.589 0.501 0.410 0.701 0.716 0.723 0.731 0.701 0.655 0.632 0.607 L3×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 2.20 1.98 1.75 1.50 1.23 0.948 1.06 0.946 0.825 0.699 0.569 0.433 0.895 0.903 0.910 0.918 0.926 0.933 L3×21/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 1.29 1.17 1.03 0.888 0.734 0.568 0.736 0.656 0.573 0.487 0.397 0.303 0.718 0.724 0.731 0.739 0.746 0.753 Shape Qs Axis Z-Z x– Z xp I S r Tan ␣ Fy = 36 ksi in. 0.716 0.719 0.721 0.723 0.750 0.755 0.757 0.759 1.00 1.00 0.997 0.912 1.13 0.927 0.705 0.591 0.476 0.631 0.633 0.636 0.638 0.639 0.534 0.542 0.551 0.554 0.558 1.00 1.00 1.00 0.997 0.912 1.51 1.33 1.17 0.984 0.802 1.01 0.920 0.821 0.714 0.598 0.679 0.681 0.683 0.685 0.688 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 0.431 0.381 0.331 0.279 0.226 1.15 1.02 0.894 0.758 0.622 0.851 0.774 0.692 0.602 0.487 0.618 0.620 0.622 0.624 0.628 0.713 0.717 0.720 0.722 0.725 1.00 1.00 1.00 1.00 0.965 1.39 1.07 0.900 0.728 0.396 0.303 0.256 0.207 0.781 0.609 0.518 0.426 0.649 0.496 0.419 0.340 0.532 0.535 0.538 0.541 0.485 0.495 0.500 0.504 1.00 1.00 1.00 0.965 0.929 0.907 0.884 0.860 0.836 0.812 1.91 1.70 1.48 1.26 1.02 0.774 0.460 0.405 0.352 0.297 0.240 0.182 0.922 0.817 0.716 0.606 0.490 0.373 0.703 0.639 0.570 0.496 0.415 0.326 0.580 0.580 0.581 0.583 0.585 0.586 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.912 0.746 0.724 0.701 0.677 0.653 0.627 1.34 1.19 1.03 0.873 0.707 0.536 0.417 0.370 0.322 0.272 0.220 0.167 0.665 0.594 0.514 0.435 0.355 0.271 0.568 0.517 0.463 0.404 0.327 0.247 0.516 0.516 0.517 0.518 0.520 0.521 0.666 0.671 0.675 0.679 0.683 0.687 1.00 1.00 1.00 1.00 1.00 0.912 Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 48 1–48 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties Flexural-Torsional Properties Axis X-X Shape L3×2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 L21/2×21/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 L21/2×2×3/8 ×5/16 ×1/4 ×3/16 L21/2×11/2×1/4 ×3/16 L2×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 k Wt. Area, A in. lb/ft 7.70 5.90 5.00 4.10 3.07 in.2 2.26 1.75 1.48 1.20 0.917 in.4 1.92 1.54 1.32 1.09 0.847 in.3 1.00 0.779 0.662 0.541 0.414 in. 0.922 0.937 0.945 0.953 0.961 in. 1.08 1.03 1.01 0.980 0.952 in.3 1.78 1.39 1.19 0.969 0.743 in. 0.740 0.667 0.632 0.600 0.555 in.4 0.192 0.0855 0.0510 0.0270 0.0119 in.6 in. 0.0908 1.39 0.0413 1.42 0.0248 1.43 0.0132 1.45 0.00576 1.46 7.70 5.90 5.00 4.10 3.07 2.26 1.73 1.46 1.19 0.901 1.22 0.972 0.837 0.692 0.535 0.716 0.558 0.474 0.387 0.295 0.735 0.749 0.756 0.764 0.771 0.803 0.758 0.735 0.711 0.687 1.29 1.01 0.853 0.695 0.529 0.452 0.346 0.292 0.238 0.180 0.188 0.0833 0.0495 0.0261 0.0114 0.0791 0.0362 0.0218 0.0116 0.00510 1.30 1.33 1.35 1.36 1.38 5.30 4.50 3.62 2.75 1.55 1.32 1.07 0.818 0.914 0.790 0.656 0.511 0.546 0.465 0.381 0.293 0.766 0.774 0.782 0.790 0.826 0.803 0.779 0.754 0.982 0.839 0.688 0.529 0.433 0.388 0.360 0.319 0.0746 0.0444 0.0235 0.0103 0.0268 0.0162 0.00868 0.00382 1.22 1.23 1.25 1.26 3.19 2.44 0.947 0.594 0.364 0.792 0.724 0.464 0.280 0.801 0.866 0.839 0.644 0.606 0.0209 0.00694 0.497 0.569 0.00921 0.00306 1.19 1.20 4.70 3.92 3.19 2.44 1.65 1.37 1.16 0.944 0.722 0.491 0.632 0.609 0.586 0.561 0.534 0.629 0.537 0.440 0.338 0.230 1.05 1.06 1.08 1.09 1.10 13/16 11/16 5/8 9/16 1/2 3/4 5/8 9/16 1/2 7/16 5/8 9/16 1/2 7/16 1/2 7/16 5/8 9/16 1/2 7/16 3/8 I S r y– Z yp J 0.476 0.414 0.346 0.271 0.189 0.348 0.298 0.244 0.188 0.129 0.591 0.598 0.605 0.612 0.620 0.343 0.290 0.236 0.181 0.123 Cw 0.0658 0.0393 0.0209 0.00921 0.00293 0.0174 0.0106 0.00572 0.00254 0.000789 –r o Table 1-7A Workable Gages in Angle Legs, in. Leg 8 g g1 g2 41/2 3 3 7 6 4 21/2 3 31/2 21/4 21/2 5 4 3 2 13/4 21/2 31/2 3 21/2 2 2 13/4 13/8 11/8 13/4 11/2 13/8 11/4 1 7/8 7/8 Note: Other gages are permitted to suit specific requirements subject to clearances and edge distance limitations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3/4 1 5/8 AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 10:09 AM Page 49 (Black plate) 1–49 DIMENSIONS AND PROPERTIES Table 1-7 (continued) Angles Properties L3-L2 Axis Y-Y I S r L3×2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 in.4 0.667 0.539 0.467 0.390 0.305 in.3 0.470 0.368 0.314 0.258 0.198 in. 0.543 0.555 0.562 0.569 0.577 in. 0.580 0.535 0.511 0.487 0.462 in.3 0.887 0.679 0.572 0.463 0.351 in. 0.377 0.292 0.247 0.200 0.153 in.4 0.409 0.319 0.271 0.223 0.173 in.3 0.411 0.313 0.264 0.214 0.163 L21/2×21/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 1.22 0.972 0.837 0.692 0.535 0.716 0.558 0.474 0.387 0.295 0.735 0.749 0.756 0.764 0.771 0.803 0.758 0.735 0.711 0.687 1.29 1.01 0.853 0.695 0.529 0.452 0.346 0.292 0.238 0.180 0.526 0.400 0.338 0.276 0.209 L21/2×2×3/8 ×5/16 ×1/4 ×3/16 0.513 0.446 0.372 0.292 0.361 0.309 0.253 0.195 0.574 0.581 0.589 0.597 0.578 0.555 0.532 0.508 0.657 0.557 0.454 0.347 0.310 0.264 0.214 0.164 0.273 0.233 0.192 0.148 L21/2×11/2×1/4 ×3/16 0.160 0.126 0.142 0.110 0.411 0.418 0.372 0.347 0.261 0.198 L2×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.476 0.414 0.346 0.271 0.189 0.348 0.298 0.244 0.188 0.129 0.591 0.598 0.605 0.612 0.620 0.632 0.609 0.586 0.561 0.534 0.629 0.537 0.440 0.338 0.230 Shape Qs Axis Z-Z x– Z xp I S r Tan ␣ Fy = 36 ksi in. 0.425 0.426 0.428 0.431 0.435 0.413 0.426 0.432 0.437 0.442 1.00 1.00 1.00 1.00 0.912 0.459 0.373 0.326 0.274 0.216 0.481 0.481 0.481 0.482 0.482 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.295 0.260 0.213 0.163 0.419 0.420 0.423 0.426 0.612 0.618 0.624 0.628 1.00 1.00 1.00 0.983 0.189 0.145 0.0977 0.119 0.321 0.0754 0.0914 0.324 0.354 0.360 1.00 0.983 0.343 0.290 0.236 0.181 0.123 0.203 0.172 0.142 0.109 0.0756 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.912 0.227 0.200 0.171 0.137 0.0994 0.386 0.386 0.387 0.389 0.391 Table 1-7B Compactness Criteria for Angles Compression t nonslender up to Flexure compact up to Compression noncompact up to t nonslender up to Width of angle leg, in. 11/8 1 7/8 3/4 5/8 9/16 1/2 8 7 6 8 7 Flexure compact up to noncompact up to Width of angle leg, in. — — — — — — 8 7/16 3/8 5/16 1/4 3/16 1/8 5 4 4 3 2 11/2 Note: Compactness criteria given for Fy = 36 ksi. Cv = 1.0 for all angles. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 6 5 4 31/2 21/2 11/2 8 8 8 6 4 3 AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 50 1–50 DIMENSIONS AND PROPERTIES Table 1-8 WT-Shapes Dimensions Stem Area, A Shape h v 2 in. Thickness, tw tw ᎏ 2 Flange Area Width, bf 2 Distance Thickness, tf in. in. in. in. in. in. 22.0 21.8 21.7 21.5 22 213/4 215/8 211/2 1.03 1 0.865 7/8 0.785 13/16 0.710 11/16 1/2 22.6 18.9 17.0 15.2 15.9 15.8 15.8 15.8 16 157/8 153/4 153/4 1.77 1.58 1.42 1.22 13/4 19/16 17/16 11/4 2.56 2.36 2.20 2.01 25/8 27/16 21/4 21/16 51/2 h WT20×296.5 ×251.5 h ×215.5 h ×198.5 h ×186 h ×181c,h ×162 c ×148.5 c ×138.5 c ×124.5 c ×107.5 c,v ×99.5 c,v 87.2 74.0 63.3 58.3 54.7 53.2 47.7 43.6 40.7 36.7 31.8 29.2 21.5 21.0 20.6 20.5 20.3 20.3 20.1 19.9 19.8 19.7 19.5 19.3 211/2 21 205/8 201/2 203/8 201/4 201/8 197/8 197/8 193/4 191/2 193/8 1.79 1.54 1.34 1.22 1.16 1.12 1.00 0.930 0.830 0.750 0.650 0.650 113/16 19/16 15/16 11/4 13/16 11/8 1 15/16 13/16 3/4 5/8 5/8 15/16 13/16 38.5 32.3 11/16 27.6 5/8 25.0 5/8 23.6 9/16 22.7 1/2 20.1 1/2 18.5 7/16 16.5 3/8 14.8 5/16 12.7 5/16 12.6 16.7 16.4 16.2 16.1 16.1 16.0 15.9 15.8 15.8 15.8 15.8 15.8 163/4 163/8 161/4 161/8 161/8 16 157/8 157/8 157/8 153/4 153/4 153/4 3.23 2.76 2.36 2.20 2.05 2.01 1.81 1.65 1.58 1.42 1.22 1.07 31/4 23/4 23/8 23/16 21/16 2 113/16 15/8 19/16 17/16 11/4 11/16 4.41 3.94 3.54 3.38 3.23 3.19 2.99 2.83 2.76 2.60 2.40 2.25 41/2 4 35/8 31/2 35/16 31/4 31/16 215/16 27/8 211/16 21/2 25/16 71/2 WT20×196 h ×165.5 h ×163.5 h ×147 c ×139 c ×132 c ×117.5 c ×105.5 c ×91.5 c,v ×83.5 c,v ×74.5 c,v 57.8 48.8 47.9 43.1 41.0 38.7 34.6 31.1 26.7 24.5 21.9 20.8 20.4 20.4 20.2 20.1 20.0 19.8 19.7 19.5 19.3 19.1 203/4 203/8 203/8 201/4 201/8 20 197/8 195/8 191/2 191/4 191/8 1.42 1.22 1.18 1.06 1.03 0.960 0.830 0.750 0.650 0.650 0.630 17/16 11/4 13/16 11/16 1 15/16 13/16 3/4 5/8 5/8 5/8 3/4 12.4 12.2 12.1 12.0 12.0 11.9 11.9 11.8 11.8 11.8 11.8 123/8 121/8 121/8 12 12 117/8 117/8 113/4 113/4 113/4 113/4 2.52 2.13 2.13 1.93 1.81 1.73 1.58 1.42 1.20 1.03 0.830 21/2 21/8 21/8 115/16 113/16 13/4 19/16 17/16 13/16 1 13/16 3.70 3.31 3.31 3.11 2.99 2.91 2.76 2.60 2.38 2.21 2.01 313/16 33/8 33/8 33/16 31/16 3 27/8 211/16 21/2 25/16 21/8 71/2 7/16 3/8 5/8 5/8 9/16 1/2 1/2 7/16 3/8 5/16 5/16 5/16 29.4 24.9 24.1 21.4 20.6 19.2 16.5 14.8 12.7 12.5 12.0 in. kdes 49.2 42.6 38.5 33.9 7/16 in. kdet Workable Gage k WT22×167.5 c ×145 c ×131c ×115 c,v in. c Depth, d Shape is slender for compression with Fy = 50 ksi. Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 51 DIMENSIONS AND PROPERTIES 1–51 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT22-WT20 Qs Axis Y-Y I S r y– Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 2170 131 1830 111 1640 99.4 1440 88.6 6.63 6.54 6.53 6.53 5.53 5.26 5.19 5.17 234 196 176 157 1.54 1.35 1.22 1.07 600 521 462 398 75.2 65.9 58.6 50.5 12.0 13.6 15.4 16.8 17.5 18.1 20.1 21.4 23.9 26.3 30.0 29.7 3310 2730 2290 2070 1930 1870 1650 1500 1360 1210 1030 988 209 174 148 134 126 122 108 98.9 88.6 79.4 68.0 66.5 6.16 6.07 6.01 5.96 5.95 5.92 5.88 5.87 5.78 5.75 5.71 5.81 5.66 5.38 5.18 5.03 4.98 4.91 4.77 4.71 4.50 4.41 4.28 4.47 379 314 266 240 225 217 192 176 157 140 120 117 2.61 1260 2.25 1020 1.95 843 1.81 771 1.70 709 1.66 691 1.50 609 1.38 546 1.29 522 1.16 463 1.01 398 0.929 347 151 124 104 95.7 88.3 86.3 76.6 69.0 65.9 58.8 50.5 44.1 14.6 16.7 17.3 19.1 19.5 20.8 23.9 26.3 30.0 29.7 30.3 2270 1880 1840 1630 1550 1450 1260 1120 955 899 815 153 128 125 111 106 99.2 85.7 76.7 65.7 63.7 59.7 6.27 6.21 6.19 6.14 6.14 6.11 6.04 6.01 5.98 6.05 6.10 5.94 5.74 5.66 5.51 5.51 5.41 5.17 5.08 4.97 5.19 5.45 275 231 224 199 191 178 153 137 117 115 108 2.33 2.00 1.98 1.80 1.71 1.63 1.45 1.31 1.13 1.10 1.72 lb/ft 167.5 145 131 115 b ᎏf 2tf d ᎏ tw 4.50 5.02 5.57 6.45 21.4 25.2 27.6 30.3 296.5 251.5 215.5 198.5 186 181 162 148.5 138.5 124.5 107.5 99.5 2.58 2.98 3.44 3.66 3.93 3.99 4.40 4.80 5.03 5.55 6.45 7.39 196 165.5 163.5 147 139 132 117.5 105.5 91.5 83.5 74.5 2.45 2.86 2.85 3.11 3.31 3.45 3.77 4.17 4.92 5.76 7.11 401 322 320 281 261 246 222 195 165 141 114 64.9 52.9 52.7 46.7 43.5 41.3 37.3 33.0 28.0 23.9 19.4 Fy = 50 ksi 3.49 118 3.49 102 3.47 90.9 3.43 78.3 0.824 0.630 0.525 0.436 3.80 3.72 3.65 3.63 3.60 3.60 3.57 3.54 3.58 3.55 3.54 3.45 240 197 164 150 138 135 119 107 102 90.8 77.8 68.2 1.00 1.00 1.00 1.00 1.00 0.991 0.890 0.824 0.697 0.579 0.445 0.454 2.64 106 2.57 85.7 2.58 85.0 2.55 75.0 2.52 69.9 2.52 66.0 2.54 59.0 2.51 52.1 2.49 44.0 2.40 37.8 2.29 30.9 1.00 1.00 1.00 0.940 0.920 0.854 0.697 0.579 0.445 0.454 0.436 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Torsional Properties J Cw in.4 in.6 37.2 25.4 18.6 12.4 438 275 200 139 221 2340 138 1400 88.2 881 70.6 677 57.7 558 54.2 511 39.6 362 30.5 279 25.7 218 19.0 158 12.4 101 9.12 83.5 85.4 52.5 51.4 38.2 32.4 27.9 20.6 15.2 9.65 6.99 4.66 796 484 449 322 282 233 156 113 71.2 62.9 51.9 AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 52 1–52 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Area, A Shape Depth, d 2 in. in. 96.2 77.8 71.7 64.9 58.1 53.0 48.4 44.5 41.5 38.5 36.3 34.1 20.5 19.9 19.7 19.4 19.2 19.0 18.8 18.7 18.6 18.4 18.3 18.2 201/2 197/8 195/8 193/8 191/4 19 187/8 185/8 181/2 183/8 183/8 181/4 1.97 1.61 1.50 1.36 1.22 1.12 1.02 0.945 0.885 0.840 0.800 0.760 WT18×128 c ×116 c ×105 c ×97 c ×91c ×85 c ×80 c ×75 c ×67.5 c,v 37.6 34.0 30.9 28.5 26.8 25.0 23.5 22.1 19.9 18.7 18.6 18.3 18.2 18.2 18.1 18.0 17.9 17.8 183/4 181/2 183/8 181/4 181/8 181/8 18 177/8 173/4 0.960 0.870 0.830 0.765 0.725 0.680 0.650 0.625 0.600 WT16.5×193.5 ×177 h ×159 ×145.5 c ×131.5 c ×120.5 c ×110.5 c ×100.5 c h v in. WT18×326 h ×264.5 h ×243.5 h ×220.5 h ×197.5 h ×180.5h ×165 c ×151c ×141c ×131c ×123.5 c ×115.5c h c Thickness, tw 57.0 52.1 46.8 42.8 38.7 35.6 32.6 29.7 18.0 17.8 17.6 17.4 17.3 17.1 17.0 16.8 18 173/4 175/8 173/8 171/4 171/8 17 167/8 tw ᎏ 2 in. Flange Area 2 in. 1/2 7/8 7/16 13/16 7/16 3/4 3/8 3/4 11/16 3/8 3/8 5/8 5/16 5/8 5/16 5/8 11/4 1.26 1.16 13/16 1.04 11/16 0.960 15/16 0.870 7/8 0.830 13/16 0.775 3/4 0.715 11/16 5/16 5/8 5/8 9/16 1/2 7/16 7/16 3/8 3/8 Thickness, tf in. in. kdet Workable Gage kdes in. in. in. 17.6 17.2 17.1 17.0 16.8 16.7 16.6 16.7 16.6 16.6 16.5 16.5 175/8 171/4 171/8 17 167/8 163/4 165/8 165/8 165/8 161/2 161/2 161/2 3.54 2.91 2.68 2.44 2.20 2.01 1.85 1.68 1.57 1.44 1.35 1.26 39/16 215/16 211/16 27/16 23/16 2 17/8 111/16 19/16 17/16 13/8 11/4 4.49 3.86 3.63 3.39 3.15 2.96 2.80 2.63 2.52 2.39 2.30 2.21 413/16 43/16 4 33/4 37/16 35/16 31/8 3 27/8 23/4 25/8 29/16 71/2 18.0 16.1 15.2 14.0 13.2 12.3 11.7 11.2 10.7 12.2 12.1 12.2 12.1 12.1 12.0 12.0 12.0 12.0 121/4 121/8 121/8 121/8 121/8 12 12 12 12 1.73 1.57 1.36 1.26 1.18 1.10 1.02 0.940 0.790 13/4 19/16 13/8 11/4 13/16 11/8 1 15/16 13/16 2.48 2.32 2.11 2.01 1.93 1.85 1.77 1.69 1.54 25/8 27/16 25/16 23/16 21/8 2 115/16 17/8 111/16 51/2 22.6 20.6 18.3 16.7 15.0 14.2 13.1 12.0 16.2 16.1 16.0 15.9 15.8 15.9 15.8 15.7 161/4 161/8 16 157/8 153/4 157/8 153/4 153/4 2.28 2.09 1.89 1.73 1.57 1.40 1.28 1.15 21/4 21/16 17/8 13/4 19/16 13/8 11/4 11/8 3.07 2.88 2.68 2.52 2.36 2.19 2.06 1.94 33/16 215/16 23/4 25/8 27/16 21/4 21/8 2 5 1/2 2 1 40.4 13/16 32.0 15/8 3/4 29.5 11/2 11/16 26.4 13/8 5/8 23.4 11/4 9/16 21.3 11/8 1/2 19.2 1 15/16 1/2 17.6 7/8 7/16 16.4 7/16 15.5 13/16 13/16 7/16 14.7 3/4 3/8 13.9 15/16 Width, bf Distance k Shape is slender for compression with Fy = 50 ksi. Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 53 DIMENSIONS AND PROPERTIES 1–53 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT18-WT16.5 Qs Axis Y-Y Fy = 50 Torsional Properties J Cw in.4 in.6 295 163 128 96.6 70.7 54.1 42.0 32.1 26.3 20.8 17.3 14.3 3070 1600 1250 914 652 491 372 285 231 185 155 129 d ᎏ tw I S r y– Z yp I S r Z lb/ft 326 264.5 243.5 220.5 197.5 180.5 165 151 141 131 123.5 115.5 b ᎏf 2tf in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 2.48 2.96 3.19 3.48 3.83 4.16 4.49 4.96 5.29 5.75 6.11 6.54 10.4 12.4 13.1 14.3 15.7 17.0 18.4 19.8 21.0 21.9 22.9 23.9 3160 2440 2220 1980 1740 1570 1410 1280 1190 1110 1040 978 208 164 150 134 119 107 97.0 88.8 82.6 77.5 73.3 69.1 5.74 5.60 5.57 5.52 5.47 5.43 5.39 5.37 5.36 5.36 5.36 5.36 5.35 4.96 4.84 4.69 4.53 4.42 4.30 4.22 4.16 4.14 4.12 4.10 383 298 272 242 213 192 173 158 146 137 129 122 2.73 2.26 2.10 1.91 1.73 1.59 1.46 1.33 1.25 1.16 1.10 1.03 1610 1240 1120 997 877 786 711 648 599 545 507 470 184 145 131 117 104 94.0 85.5 77.8 72.2 65.8 61.4 57.0 4.10 4.00 3.96 3.92 3.88 3.85 3.83 3.82 3.80 3.76 3.74 3.71 290 227 206 184 162 146 132 120 112 102 94.8 88.0 1.00 1.00 1.00 1.00 1.00 1.00 0.976 0.905 0.844 0.799 0.748 0.697 128 116 105 97 91 85 80 75 67.5 3.53 3.86 4.48 4.81 5.12 5.47 5.88 6.37 7.56 19.5 1210 21.4 1080 22.0 985 23.8 901 25.1 845 26.6 786 27.7 740 28.6 698 29.7 637 87.4 78.5 73.1 67.0 63.1 58.9 55.8 53.1 49.7 5.66 5.63 5.65 5.62 5.62 5.61 5.61 5.62 5.66 4.92 4.82 4.87 4.80 4.77 4.73 4.74 4.78 4.96 156 140 131 120 113 105 100 95.5 90.1 1.54 1.40 1.27 1.18 1.11 1.04 0.980 0.923 1.23 264 234 206 187 174 160 147 135 113 43.2 38.6 33.8 30.9 28.8 26.6 24.6 22.5 18.9 2.65 2.62 2.58 2.56 2.55 2.53 2.50 2.47 2.38 68.5 60.9 53.4 48.8 45.3 41.8 38.6 35.4 29.8 0.920 0.824 0.794 0.702 0.635 0.566 0.522 0.489 0.454 26.4 19.7 13.9 11.1 9.20 7.51 6.17 5.04 3.48 205 151 119 92.7 77.6 63.2 53.6 46.0 37.3 193.5 177 159 145.5 131.5 120.5 110.5 100.5 3.55 3.85 4.23 4.60 5.03 5.66 6.20 6.85 14.3 15.3 16.9 18.1 19.9 20.6 21.9 23.5 1460 107 1320 96.8 1160 85.8 1060 78.3 943 70.2 872 65.8 799 60.8 725 55.5 5.07 5.03 4.99 4.96 4.93 4.96 4.95 4.95 4.27 4.15 4.02 3.93 3.83 3.84 3.81 3.77 193 174 154 140 125 116 107 97.8 1.76 1.62 1.46 1.35 1.23 1.12 1.03 0.940 810 729 645 581 517 466 420 375 100 90.6 80.7 73.1 65.5 58.8 53.2 47.6 3.77 3.74 3.71 3.68 3.65 3.62 3.59 3.56 156 141 125 113 101 90.8 82.1 73.3 1.00 1.00 1.00 0.991 0.900 0.864 0.799 0.718 73.9 57.1 42.1 32.5 24.3 18.0 13.9 10.4 615 468 335 256 188 146 113 84.9 AMERICAN INSTITUTE OF STEEL CONSTRUCTION ksi AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 54 1–54 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Area, A Shape Depth, d 2 Area Width, bf 2 Thickness, tf kdes in. in. in. in. in. in. 167/8 163/4 165/8 161/2 163/8 0.670 0.635 0.605 0.580 0.550 11/16 3/8 5/16 5/8 5/16 9/16 5/16 9/16 5/16 11.5 11.6 11.5 11.5 11.5 111/2 115/8 111/2 111/2 111/2 1.22 11/4 1.06 11/16 0.960 15/16 0.855 7/8 0.740 3/4 1.92 1.76 1.66 1.56 1.44 21/8 115/16 113/16 13/4 15/8 51/2 5/8 11.3 10.6 10.1 9.60 9.04 WT15×195.5 h ×178.5 h ×163 h ×146 ×130.5 ×117.5 c ×105.5 c ×95.5 c ×86.5 c 57.6 52.5 48.0 43.0 38.5 34.7 31.1 28.0 25.4 16.6 16.4 16.2 16.0 15.8 15.7 15.5 15.3 15.2 165/8 163/8 161/4 16 153/4 155/8 151/2 153/8 151/4 1.36 1.24 1.14 1.02 0.930 0.830 0.775 0.710 0.655 13/8 11/4 11/8 1 15/16 13/16 3/4 11/16 5/8 11/16 22.6 20.3 18.5 16.3 14.7 13.0 12.0 10.9 10.0 15.6 15.5 15.4 15.3 15.2 15.1 15.1 15.0 15.0 155/8 151/2 153/8 151/4 151/8 15 151/8 15 15 2.44 2.24 2.05 1.85 1.65 1.50 1.32 1.19 1.07 3.23 3.03 2.84 2.64 2.44 2.29 2.10 1.97 1.85 33/8 31/8 215/16 23/4 29/16 23/8 21/4 21/16 2 51/2 WT15×74c ×66 c ×62 c ×58 c ×54c ×49.5 c ×45 c,v 21.8 19.5 18.2 17.1 15.9 14.5 13.2 15.3 15.2 15.1 15.0 14.9 14.8 14.8 153/8 151/8 151/8 15 147/8 147/8 143/4 0.650 0.615 0.585 0.565 0.545 0.520 0.470 5/8 5/16 5/16 9/16 5/16 9/16 5/16 9/16 1/2 5/16 1/4 1/2 1/4 10.0 9.32 8.82 8.48 8.13 7.71 6.94 10.5 10.5 10.5 10.5 10.5 10.5 10.4 101/2 101/2 101/2 101/2 101/2 101/2 103/8 1.18 13/16 1.00 1 0.930 15/16 0.850 7/8 0.760 3/4 0.670 11/16 0.610 5/8 1.83 1.65 1.58 1.50 1.41 1.32 1.26 21/16 17/8 113/16 13/4 111/16 19/16 11/2 51/2 5/8 79.3 54.2 49.5 45.2 41.5 38.1 34.7 32.0 28.6 26.3 23.8 21.6 16.3 15.2 15.0 14.8 14.6 14.5 14.3 14.2 14.1 13.9 13.8 13.7 161/4 151/4 15 143/4 145/8 141/2 143/8 141/4 14 137/8 133/4 133/4 1.97 1.38 1.26 1.16 1.06 0.980 0.910 0.830 0.750 0.725 0.660 0.605 2 1 32.0 11/16 21.0 13/8 5/8 18.9 11/4 13/16 5/8 17.2 11/16 9/16 15.5 1/2 14.2 1 15/16 1/2 13.0 13/16 7/16 11.8 3/4 3/8 10.5 3/4 3/8 10.1 11/16 3/8 9.10 5/8 5/16 8.28 15.3 14.7 14.6 14.4 14.4 14.3 14.2 14.1 14.0 14.1 14.0 14.0 151/4 145/8 141/2 141/2 143/8 141/4 141/4 141/8 14 141/8 14 14 3.54 2.48 2.28 2.09 1.93 1.77 1.61 1.50 1.34 1.19 1.08 0.975 39/16 21/2 21/4 21/16 115/16 13/4 15/8 11/2 15/16 13/16 11/16 1 4.33 3.27 3.07 2.88 2.72 2.56 2.40 2.29 2.13 1.98 1.87 1.76 47/16 33/8 33/16 3 213/16 211/16 21/2 23/8 21/4 21/16 2 17/8 51/2g 51/2 h WT13.5×269.5 ×184h ×168 h ×153.5 h ×140.5 ×129 ×117.5 ×108.5 ×97 c ×89 c ×80.5 c ×73 c 5/8 9/16 1/2 1/2 7/16 3/8 3/8 5/16 in. kdet Workable Gage 16.9 16.7 16.7 16.5 16.4 in. in. tw ᎏ 2 Distance k 24.7 22.5 20.7 19.1 17.4 WT16.5×84.5 c ×76 c ×70.5 c ×65 c ×59 c,v in. Thickness, tw Flange 27/16 21/4 21/16 17/8 15/8 11/2 15/16 13/16 11/16 Shape is slender for compression with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 55 DIMENSIONS AND PROPERTIES 1–55 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT16.5-WT13.5 Qs Axis Y-Y Fy = 50 Torsional Properties J Cw in.4 in.6 d ᎏ tw I S r y– Z yp I S r Z lb/ft 84.5 76 70.5 65 59 b ᎏf 2tf in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 4.71 5.48 6.01 6.73 7.76 25.2 26.3 27.6 28.4 29.8 649 592 552 513 469 51.1 47.4 44.7 42.1 39.2 5.12 5.14 5.15 5.18 5.20 4.21 4.26 4.29 4.36 4.47 90.8 84.5 79.8 75.6 70.8 1.08 0.967 0.901 0.832 0.862 155 136 123 109 93.5 27.0 23.6 21.3 18.9 16.3 2.50 2.47 2.43 2.38 2.32 42.1 36.9 33.4 29.7 25.6 0.630 0.579 0.525 0.496 0.451 8.81 6.16 4.84 3.67 2.64 55.4 43.0 35.4 29.3 23.4 195.5 178.5 163 146 130.5 117.5 105.5 95.5 86.5 3.19 3.45 3.75 4.12 4.59 5.02 5.74 6.35 7.01 12.2 13.2 14.2 15.7 17.0 18.9 20.0 21.5 23.2 1220 1090 981 861 765 674 610 549 497 96.9 87.2 78.8 69.6 62.4 55.1 50.5 45.7 41.7 4.61 4.56 4.52 4.48 4.46 4.41 4.43 4.42 4.42 4.00 3.87 3.76 3.62 3.54 3.41 3.39 3.34 3.31 177 159 143 125 112 98.2 89.5 80.8 73.5 1.85 1.70 1.56 1.41 1.27 1.15 1.03 0.935 0.851 774 693 622 549 480 427 378 336 299 99.2 89.6 81.0 71.9 63.3 56.8 50.1 44.7 39.9 3.67 3.64 3.60 3.58 3.53 3.51 3.49 3.46 3.42 155 140 126 111 97.9 87.5 77.2 68.9 61.4 1.00 1.00 1.00 1.00 1.00 0.951 0.895 0.819 0.733 86.3 66.6 51.2 37.5 26.9 20.1 14.1 10.5 7.78 636 478 361 257 184 133 96.4 71.2 53.0 74 66 62 58 54 49.5 45 4.44 5.27 5.65 6.17 6.89 7.80 8.52 23.5 24.7 25.8 26.5 27.3 28.5 31.5 466 421 396 373 349 322 290 40.6 37.4 35.3 33.7 32.0 30.0 27.1 4.63 4.66 4.66 4.67 4.69 4.71 4.69 3.84 3.90 3.90 3.94 4.01 4.09 4.04 72.2 66.8 63.1 60.4 57.7 54.4 49.0 1.04 0.921 0.867 0.815 0.757 0.912 0.835 114 98.0 90.4 82.1 73.0 63.9 57.3 21.7 18.6 17.2 15.6 13.9 12.2 11.0 2.28 2.25 2.23 2.19 2.15 2.10 2.09 33.9 29.2 27.0 24.6 21.9 19.3 17.3 0.718 0.657 0.601 0.570 0.537 0.493 0.403 7.24 4.85 3.98 3.21 2.49 1.88 1.41 37.6 28.5 23.9 20.5 17.3 14.3 10.5 269.5 184 168 153.5 140.5 129 117.5 108.5 97 89 80.5 73 2.15 2.96 3.19 3.46 3.72 4.03 4.41 4.71 5.24 5.92 6.49 7.16 8.30 1530 128 11.0 939 81.7 11.9 839 73.4 12.8 753 66.4 13.8 677 59.9 14.8 613 54.7 15.7 556 50.0 17.1 502 45.2 18.8 444 40.3 19.2 414 38.2 20.9 372 34.4 22.6 336 31.2 4.39 4.16 4.12 4.08 4.04 4.02 4.00 3.96 3.94 3.97 3.95 3.95 4.34 3.71 3.58 3.47 3.35 3.27 3.20 3.10 3.02 3.04 2.98 2.94 242 151 135 121 109 98.9 89.9 81.1 71.8 67.7 60.8 55.0 138 89.3 80.8 72.9 66.4 60.2 54.2 49.9 44.1 39.4 35.4 31.7 3.65 3.48 3.45 3.41 3.39 3.36 3.33 3.32 3.29 3.25 3.23 3.20 218 140 126 113 103 93.3 83.8 77.0 67.8 60.8 54.5 48.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.956 0.935 0.849 0.763 2.60 1060 1.85 655 1.70 587 1.56 527 1.44 477 1.33 430 1.22 384 1.13 352 1.02 309 0.932 278 0.849 248 0.772 222 AMERICAN INSTITUTE OF STEEL CONSTRUCTION ksi 247 1740 84.5 532 65.4 401 50.5 304 39.6 232 30.7 178 23.4 135 18.8 105 13.5 74.3 10.0 57.7 7.53 42.7 5.62 31.7 AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 56 1–56 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Shape Area, A Depth, d 2 in. Thickness, tw Area Width, bf 2 Distance Thickness, tf kdes in. in. in. in. in. in. 13.8 13.6 13.5 13.5 13.4 137/8 135/8 131/2 131/2 133/8 0.610 0.570 0.515 0.490 0.460 5/8 5/16 5/16 1/2 1/4 1/2 1/4 7/16 1/4 10.0 10.1 10.0 10.0 10.0 10 101/8 10 10 10 1.10 11/8 0.930 15/16 0.830 13/16 0.745 3/4 0.640 5/8 1.70 1.53 1.43 1.34 1.24 2 113/16 13/4 15/8 19/16 51/2 9/16 8.43 7.78 6.98 6.60 6.14 WT12×185 h ×167.5 h ×153 h ×139.5 h ×125 ×114.5 ×103.5 ×96 ×88 ×81 ×73 c ×65.5 c ×58.5 c ×52 c 54.5 49.1 44.9 41.0 36.8 33.6 30.3 28.2 25.8 23.9 21.5 19.3 17.2 15.3 14.0 13.8 13.6 13.4 13.2 13.0 12.9 12.7 12.6 12.5 12.4 12.2 12.1 12.0 14 133/4 135/8 133/8 131/8 13 127/8 123/4 125/8 121/2 123/8 121/4 121/8 12 1.52 1.38 1.26 1.16 1.04 0.960 0.870 0.810 0.750 0.705 0.650 0.605 0.550 0.500 11/2 13/8 11/4 13/16 11/16 15/16 7/8 13/16 3/4 11/16 5/8 5/8 9/16 1/2 3/4 21.3 19.0 17.1 15.5 13.7 12.5 11.2 10.3 9.47 8.81 8.04 7.41 6.67 6.02 13.7 13.5 13.4 13.3 13.2 13.1 13.0 13.0 12.9 13.0 12.9 12.9 12.8 12.8 135/8 131/2 133/8 131/4 131/8 131/8 13 13 127/8 13 127/8 127/8 123/4 123/4 2.72 2.48 2.28 2.09 1.89 1.73 1.57 1.46 1.34 1.22 1.09 0.960 0.850 0.750 23/4 21/2 21/4 21/16 17/8 13/4 19/16 17/16 15/16 11/4 11/16 15/16 7/8 3/4 3.22 2.98 2.78 2.59 2.39 2.23 2.07 1.96 1.84 1.72 1.59 1.46 1.35 1.25 35/8 33/8 33/16 3 213/16 25/8 21/2 23/8 21/4 21/8 2 17/8 13/4 15/8 51/2 WT12×51.5c ×47 c ×42 c ×38 c ×34 c 15.1 13.8 12.4 11.2 10.0 12.3 12.2 12.1 12.0 11.9 121/4 121/8 12 12 117/8 0.550 0.515 0.470 0.440 0.415 9/16 5/16 1/4 1/2 1/4 7/16 1/4 7/16 1/4 0.980 1 0.875 7/8 0.770 3/4 0.680 11/16 0.585 9/16 1.48 1.38 1.27 1.18 1.09 17/8 13/4 111/16 19/16 11/2 51/2 1/2 9.11 11.9 117/8 0.430 8.10 11.8 113/4 0.395 7/16 1/4 3/8 3/16 in. WT12×31c ×27.5 c,v 11/16 5/8 5/8 9/16 1/2 7/16 7/16 3/8 3/8 5/16 5/16 5/16 1/4 in. kdet Workable Gage k 18.9 16.8 15.0 13.8 12.4 WT13.5×64.5 c ×57 c ×51c ×47 c ×42 c in. tw ᎏ 2 Flange 6.75 6.26 5.66 5.26 4.92 9.00 9.07 9.02 8.99 8.97 9 91/8 9 9 9 5.10 4.66 7.04 7 7.01 7 0.590 0.505 9/16 1/2 1.09 11/2 1.01 17/16 Shape is slender for compression with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION 51/2g 51/2g 31/2 31/2 AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 57 DIMENSIONS AND PROPERTIES 1–57 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT13.5-WT12 Qs Axis Y-Y Fy = 50 Torsional Properties J Cw in.4 in.6 5.55 3.65 2.63 2.01 1.40 24.0 17.5 12.6 10.2 7.79 d ᎏ tw I S r y– Z yp I S r Z lb/ft 64.5 57 51 47 42 b ᎏf 2tf in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 4.55 5.41 6.03 6.70 7.78 22.6 23.9 26.2 27.6 29.1 323 289 258 239 216 31.0 28.3 25.3 23.8 21.9 4.13 4.15 4.14 4.16 4.18 3.39 3.42 3.37 3.41 3.48 55.1 50.4 45.0 42.4 39.2 0.945 0.832 0.750 0.692 0.621 92.2 79.3 69.6 62.0 52.8 18.4 15.8 13.9 12.4 10.6 2.21 2.18 2.15 2.12 2.07 28.8 24.6 21.7 19.4 16.6 185 167.5 153 139.5 125 114.5 103.5 96 88 81 73 65.5 58.5 52 2.51 2.73 2.94 3.18 3.49 3.79 4.14 4.43 4.81 5.31 5.92 6.70 7.53 8.50 9.20 10.0 10.8 11.6 12.7 13.5 14.8 15.7 16.8 17.7 19.1 20.2 22.0 24.0 779 686 611 546 478 431 382 350 319 293 264 238 212 189 74.7 66.3 59.4 53.6 47.2 42.9 38.3 35.2 32.2 29.9 27.2 24.8 22.3 20.0 3.78 3.73 3.69 3.65 3.61 3.58 3.55 3.53 3.51 3.50 3.50 3.52 3.51 3.51 3.57 140 3.42 123 3.29 110 3.18 98.8 3.05 86.5 2.96 78.1 2.87 69.3 2.80 63.5 2.74 57.8 2.70 53.3 2.66 48.2 2.65 43.9 2.62 39.2 2.59 35.1 1.99 1.82 1.67 1.54 1.39 1.28 1.17 1.09 1.00 0.921 0.833 0.750 0.672 0.600 85.1 75.9 68.6 61.9 54.9 49.7 44.4 40.9 37.2 34.2 30.3 26.5 23.2 20.3 3.27 133 3.23 119 3.20 107 3.17 96.3 3.14 85.2 3.11 77.0 3.08 68.6 3.07 63.1 3.04 57.3 3.05 52.6 3.01 46.6 2.97 40.7 2.94 35.7 2.91 31.2 1.00 100 1.00 75.6 1.00 58.4 1.00 45.1 1.00 33.2 1.00 25.5 1.00 19.1 1.00 15.3 1.00 11.9 1.00 9.22 0.940 6.70 0.885 4.74 0.794 3.35 0.692 2.35 51.5 47 42 38 34 4.59 5.18 5.86 6.61 7.66 22.4 23.7 25.7 27.3 28.7 204 186 166 151 137 22.0 20.3 18.3 16.9 15.6 3.67 3.67 3.67 3.68 3.70 3.01 2.99 2.97 3.00 3.06 39.2 36.1 32.5 30.1 27.9 0.841 0.764 0.685 0.622 0.560 13.3 12.0 10.5 9.18 7.85 1.99 1.98 1.95 1.92 1.87 0.773 0.707 0.606 0.537 0.486 31 5.97 27.7 27.5 6.94 29.9 131 117 15.6 14.1 3.79 3.80 3.46 3.50 28.4 1.28 25.6 1.53 581 513 460 412 362 326 289 265 240 221 195 170 149 130 59.7 54.5 47.2 41.3 35.2 17.2 14.5 4.90 1.38 4.15 1.34 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 20.7 18.7 16.3 14.3 12.3 ksi 0.763 0.697 0.583 0.525 0.473 7.85 0.522 6.65 0.448 553 405 305 230 165 125 91.3 72.5 55.8 43.8 31.9 23.1 16.4 11.6 3.53 12.3 2.62 9.57 1.84 6.90 1.34 5.30 0.932 4.08 0.850 0.588 3.92 2.93 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 58 1–58 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Area, A Shape Depth, d 2 in. Thickness, tw Area in. in. 29.6 26.8 24.4 21.6 19.4 17.9 16.3 14.9 11.5 11.4 11.2 11.0 10.9 10.8 10.8 10.7 111/2 113/8 111/4 11 107/8 107/8 103/4 105/8 0.910 0.830 0.750 0.720 0.650 0.600 0.550 0.500 15/16 1/2 13/16 7/16 3/4 3/8 3/4 3/8 5/8 5/16 5/8 5/16 9/16 5/16 1/4 10.5 9.43 8.43 7.94 7.09 6.50 5.92 5.34 WT10.5×46.5 c ×41.5 c ×36.5 c ×34 c ×31c ×27.5 c ×24 c,f,v 13.7 12.2 10.7 10.0 9.13 8.10 7.07 10.8 10.7 10.6 10.6 10.5 10.4 10.3 103/4 103/4 105/8 105/8 101/2 103/8 101/4 0.580 0.515 0.455 0.430 0.400 0.375 0.350 9/16 c WT10.5×28.5 ×25 c ×22 c,v WT9×155.5 h ×141.5 h ×129 h ×117 h ×105.5 ×96 ×87.5 ×79 ×71.5 ×65 ×59.5 ×53 ×48.5 ×43 c ×38 c 101/2 8.37 10.5 0.405 7.36 10.4 103/8 0.380 6.49 10.3 103/8 0.350 45.8 41.7 38.0 34.3 31.2 28.1 25.7 23.2 21.0 19.2 17.6 15.6 14.2 12.7 11.1 11.2 10.9 10.7 10.5 10.3 10.2 10.0 9.86 9.75 9.63 9.49 9.37 9.30 9.20 9.11 111/8 107/8 103/4 101/2 103/8 101/8 10 97/8 93/4 95/8 91/2 93/8 91/4 91/4 91/8 1.52 1.40 1.28 1.16 1.06 0.960 0.890 0.810 0.730 0.670 0.655 0.590 0.535 0.480 0.425 1/2 1/2 5/16 1/4 7/16 1/4 7/16 1/4 3/8 3/16 3/8 3/16 3/8 3/16 3/8 3/16 3/8 3/16 3/8 3/16 11/2 13/8 11/4 13/16 11/16 15/16 7/8 13/16 3/4 11/16 5/8 9/16 9/16 1/2 7/16 3/4 11/16 5/8 5/8 9/16 1/2 7/16 7/16 3/8 3/8 5/16 5/16 5/16 1/4 1/4 Width, bf 2 WT10.5×100.5 ×91 ×83 ×73.5 ×66 ×61 ×55.5 c ×50.5 c in. in. tw ᎏ 2 Flange 6.27 5.52 4.83 4.54 4.20 3.90 3.61 4.26 3.96 3.62 17.0 15.3 13.7 12.2 11.0 9.77 8.92 7.99 7.11 6.45 6.21 5.53 4.97 4.41 3.87 Thickness, tf in. 12.6 12.5 12.4 12.5 12.4 12.4 12.3 12.3 8.42 8.36 8.30 8.27 8.24 8.22 8.14 Distance in. 125/8 121/2 123/8 121/2 121/2 123/8 123/8 121/4 1.63 1.48 1.36 1.15 1.04 0.960 0.875 0.800 15/8 11/2 13/8 11/8 11/16 15/16 7/8 13/16 83/8 83/8 81/4 81/4 81/4 81/4 81/8 0.930 0.835 0.740 0.685 0.615 0.522 0.430 15/16 61/2 6.56 0.650 6.53 61/2 0.535 6.50 61/2 0.450 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.2 11.3 11.2 11.1 11.1 11.0 12 117/8 113/4 115/8 111/2 111/2 113/8 111/4 111/4 111/8 111/4 111/4 111/8 111/8 11 2.74 2.50 2.30 2.11 1.91 1.75 1.59 1.44 1.32 1.20 1.06 0.940 0.870 0.770 0.680 13/16 3/4 11/16 5/8 1/2 7/16 5/8 9/16 7/16 23/4 21/2 25/16 21/8 115/16 13/4 19/16 17/16 15/16 13/16 11/16 15/16 7/8 3/4 11/16 kdet Workable Gage k kdes in. in. in. 2.13 1.98 1.86 1.65 1.54 1.46 1.38 1.30 21/2 23/8 21/4 2 115/16 113/16 13/4 111/16 51/2 1.43 1.34 1.24 1.19 1.12 1.02 0.930 15/8 11/2 17/16 13/8 15/16 13/16 11/8 51/2 1.15 15/16 1.04 11/4 0.950 11/8 31/2 31/2g 31/2g 3.24 3.00 2.70 2.51 2.31 2.15 1.99 1.84 1.72 1.60 1.46 1.34 1.27 1.17 1.08 37/16 33/16 3 23/4 29/16 27/16 27/16 23/8 23/16 21/16 115/16 113/16 13/4 15/8 19/16 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. c f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION 51/2 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 59 DIMENSIONS AND PROPERTIES 1–59 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT10.5-WT9 Qs Axis Y-Y Fy = 50 Torsional Properties J Cw in.4 in.6 20.4 15.3 11.8 7.69 5.62 4.47 3.40 2.60 85.4 63.0 47.3 32.5 23.4 18.4 13.8 10.4 d ᎏ tw I S r y– Z yp I S r Z lb/ft 100.5 91 83 73.5 66 61 55.5 50.5 b ᎏf 2tf in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 3.86 4.22 4.57 5.44 6.01 6.45 7.05 7.68 12.6 13.7 14.9 15.3 16.8 18.0 19.6 21.4 285 253 226 204 181 166 150 135 31.9 28.5 25.5 23.7 21.1 19.3 17.5 15.8 3.10 3.07 3.04 3.08 3.06 3.04 3.03 3.01 2.57 2.48 2.39 2.39 2.33 2.28 2.23 2.18 58.6 52.1 46.3 42.4 37.6 34.3 31.0 27.9 1.18 1.07 0.983 0.864 0.780 0.724 0.662 0.605 43.1 38.6 35.0 30.0 26.7 24.6 22.2 20.2 3.02 3.00 2.99 2.95 2.93 2.91 2.90 2.89 66.5 59.5 53.9 46.3 41.1 37.8 34.1 30.8 1.00 1.00 1.00 1.00 1.00 1.00 0.915 0.824 46.5 41.5 36.5 34 31 27.5 24 4.53 5.00 5.60 6.04 6.70 7.87 9.47 18.6 20.8 23.3 24.7 26.3 27.7 29.4 144 127 110 103 93.8 84.4 74.9 17.9 15.7 13.8 12.9 11.9 10.9 9.90 3.25 3.22 3.21 3.20 3.21 3.23 3.26 2.74 2.66 2.60 2.59 2.58 2.64 2.74 31.8 28.0 24.4 22.9 21.1 19.4 17.8 0.812 0.728 0.647 0.606 0.554 0.493 0.459 46.4 40.7 35.3 32.4 28.7 24.2 19.4 11.0 9.74 8.51 7.83 6.97 5.89 4.76 1.84 1.83 1.81 1.80 1.77 1.73 1.66 17.3 15.2 13.3 12.2 10.9 9.18 7.44 0.966 0.854 0.728 0.657 0.579 0.522 0.463 3.01 2.16 1.51 1.22 0.913 0.617 0.400 9.33 6.50 4.42 3.62 2.78 2.08 1.52 90.4 11.8 3.29 80.3 10.7 3.30 71.1 9.68 3.31 2.85 2.93 2.98 21.2 0.638 19.4 0.771 17.6 1.06 15.3 12.5 10.3 7.40 0.597 6.08 0.533 5.07 0.463 0.884 0.570 0.383 2.50 1.89 1.40 2.93 2.80 2.68 2.55 2.44 2.34 2.26 2.17 2.09 2.02 2.03 1.97 1.91 1.86 1.80 90.6 80.2 71.0 62.4 55.0 48.5 43.6 38.5 34.0 30.5 28.7 25.2 22.6 19.9 17.3 28.5 5.04 25.9 25 6.10 27.4 22 7.22 29.4 155.5 141.5 129 117 105.5 96 87.5 79 71.5 65 59.5 53 48.5 43 38 2.19 2.38 2.56 2.76 3.02 3.27 3.58 3.92 4.25 4.65 5.31 5.96 6.41 7.20 8.11 7.37 7.79 8.36 9.05 9.72 10.6 11.2 12.2 13.4 14.4 14.5 15.9 17.4 19.2 21.4 383 337 298 261 229 202 181 160 142 127 119 104 93.8 82.4 71.8 46.6 41.5 37.0 32.7 29.1 25.8 23.4 20.8 18.5 16.7 15.9 14.1 12.7 11.2 9.83 2.89 2.85 2.80 2.75 2.72 2.68 2.66 2.63 2.60 2.58 2.60 2.59 2.56 2.55 2.54 1.91 1.75 1.61 1.48 1.34 1.23 1.13 1.02 0.937 0.856 0.778 0.695 0.640 0.570 0.505 271 241 217 188 166 152 137 124 398 352 314 279 246 220 196 174 156 139 126 110 100 87.6 76.2 4.67 1.35 3.82 1.30 3.18 1.26 66.2 59.2 53.4 47.9 42.7 38.4 34.4 30.7 27.7 24.9 22.5 19.7 18.0 15.8 13.8 2.95 104 2.91 92.5 2.88 83.1 2.85 74.4 2.82 66.1 2.79 59.4 2.76 53.1 2.74 47.4 2.72 42.7 2.70 38.3 2.69 34.5 2.66 30.2 2.65 27.6 2.63 24.2 2.61 21.1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION ksi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.935 0.824 87.2 66.5 51.1 39.1 29.1 22.3 16.8 12.5 9.58 7.23 5.30 3.73 2.92 2.04 1.41 339 251 189 140 102 75.7 56.5 41.2 30.7 22.8 17.4 12.1 9.29 6.42 4.37 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 60 1–60 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Shape Area, A 2 in. WT9×35.5 c ×32.5 c ×30 c ×27.5 c ×25 c WT9×23 c ×20 c ×17.5 c,v 10.4 9.55 8.82 8.10 7.34 Depth, d in. 9.24 9.18 9.12 9.06 9.00 6.77 9.03 5.88 8.95 5.15 8.85 Thickness, tw in. tw ᎏ 2 Flange Area Width, bf 2 in. in. 0.495 0.450 0.415 0.390 0.355 1/2 1/4 7/16 1/4 7/16 1/4 3/8 3/16 3/8 3/16 4.57 4.13 3.78 3.53 3.19 7.64 7.59 7.56 7.53 7.50 9 0.360 9 0.315 87/8 0.300 3/8 3/16 5/16 3/16 5/16 3/16 3.25 2.82 2.66 6.06 6 6.02 6 6.00 6 1/2 5/16 1/4 7/16 1/4 91/4 91/8 91/8 9 9 WT8×50 ×44.5 ×38.5 c ×33.5 c 14.7 13.1 11.3 9.81 8.49 8.38 8.26 8.17 81/2 83/8 81/4 81/8 0.585 0.525 0.455 0.395 9/16 3/8 3/16 WT8×28.5 c ×25 c ×22.5 c ×20 c ×18 c 8.39 7.37 6.63 5.89 5.29 8.22 8.13 8.07 8.01 7.93 81/4 81/8 81/8 8 77/8 0.430 0.380 0.345 0.305 0.295 7/16 1/4 3/8 3/16 3/8 3/16 5/16 3/16 5/16 3/16 WT8×15.5 c ×13 c,v 4.56 7.94 3.84 7.85 1/4 1/8 1/4 1/8 8 0.275 77/8 0.250 4.96 4.40 3.76 3.23 Thickness, tf in. 10.4 10.4 10.3 10.2 Distance in. 75/8 75/8 71/2 71/2 71/2 103/8 103/8 101/4 101/4 71/8 71/8 7 7 7 0.810 0.750 0.695 0.630 0.570 13/16 0.605 0.525 0.425 5/8 3/4 11/16 5/8 9/16 1/2 7/16 0.985 1 0.875 7/8 0.760 3/4 0.665 11/16 3.53 3.09 2.78 2.44 2.34 7.12 7.07 7.04 7.00 6.99 0.715 0.630 0.565 0.505 0.430 2.18 1.96 5.53 51/2 0.440 5.50 51/2 0.345 11/16 5/8 9/16 1/2 7/16 7/16 3/8 k kdes kdet in. in. in. 1.21 1.15 1.10 1.03 0.972 11/2 17/16 13/8 15/16 11/4 31/2g 1.01 11/4 0.927 13/16 0.827 11/8 31/2g 1.39 1.28 1.16 1.07 17/8 13/4 15/8 19/16 51/2 1.12 1.03 0.967 0.907 0.832 13/8 15/16 11/4 13/16 11/8 31/2g 0.842 11/8 0.747 11/16 31/2 31/2 Shape is slender for compression with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. v Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. c g AMERICAN INSTITUTE OF STEEL CONSTRUCTION Workable Gage 31/2 31/2 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 61 DIMENSIONS AND PROPERTIES 1–61 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. lb/ft 35.5 32.5 30 27.5 25 Compact Section Criteria b ᎏf 2tf d ᎏ tw 4.71 5.06 5.44 5.98 6.57 18.7 20.4 22.0 23.2 25.4 Axis X-X WT9-WT8 Qs Axis Y-Y J Cw in.4 in.6 0.961 0.875 0.794 0.733 0.620 1.74 1.36 1.08 0.830 0.619 3.96 3.01 2.35 1.84 1.36 5.84 0.635 4.97 0.496 4.02 0.460 0.609 0.404 0.252 1.20 0.788 0.598 I S r y– Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 2.74 2.72 2.71 2.71 2.70 2.26 2.20 2.16 2.16 2.12 20.0 18.0 16.5 15.3 13.8 0.683 0.629 0.583 0.538 0.489 30.1 27.4 25.0 22.5 20.0 7.89 7.22 6.63 5.97 5.35 1.70 1.69 1.68 1.67 1.65 12.3 11.2 10.3 9.26 8.28 7.77 2.77 6.73 2.76 6.21 2.79 2.33 2.29 2.39 13.9 0.558 12.0 0.489 11.2 0.450 11.3 9.55 7.67 3.71 1.29 3.17 1.27 2.56 1.22 78.2 11.2 70.7 10.1 64.7 9.29 59.5 8.63 53.5 7.79 23 5.01 25.1 20 5.73 28.4 17.5 7.06 29.5 52.1 44.8 40.1 50 44.5 38.5 33.5 5.29 5.92 6.77 7.70 14.5 16.0 18.2 20.7 76.8 11.4 67.2 10.1 56.9 8.59 48.6 7.36 2.28 2.27 2.24 2.22 1.76 1.70 1.63 1.56 20.7 18.1 15.3 13.0 0.706 0.631 0.549 0.481 93.1 81.3 69.2 59.5 28.5 25 22.5 20 18 4.98 5.61 6.23 6.93 8.12 19.1 21.4 23.4 26.3 26.9 48.7 42.3 37.8 33.1 30.6 7.77 6.78 6.10 5.35 5.05 2.41 2.40 2.39 2.37 2.41 1.94 1.89 1.86 1.81 1.88 13.8 12.0 10.8 9.43 8.93 0.589 0.521 0.471 0.421 0.378 21.6 18.6 16.4 14.4 12.2 15.5 6.28 28.9 13 7.97 31.4 27.5 23.5 4.64 2.45 4.09 2.47 2.02 2.09 8.27 0.413 7.36 0.372 6.20 4.79 17.9 15.7 13.4 11.6 6.06 5.26 4.67 4.12 3.50 2.51 2.49 2.47 2.46 1.60 1.59 1.57 1.56 1.52 2.24 1.17 1.74 1.12 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Torsional Properties 27.4 24.0 20.5 17.7 Fy = 50 ksi 1.00 1.00 0.986 0.859 3.85 2.72 1.78 1.19 0.940 0.824 0.723 0.579 0.553 1.10 0.760 0.555 0.396 0.272 1.99 1.34 0.974 0.673 0.516 3.51 0.479 2.73 0.406 0.230 0.130 0.366 0.243 9.42 8.15 7.22 6.36 5.42 10.4 7.19 4.61 3.01 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 62 1–62 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Shape Area, A 2 in. Depth, d in. Thickness, tw in. tw ᎏ 2 in. WT7×365 h ×332.5 h ×302.5 h ×275 h ×250 h ×227.5 h ×213 h ×199 h ×185 h ×171h ×155.5 h ×141.5 h ×128.5 ×116.5 ×105.5 ×96.5 ×88 ×79.5 ×72.5 107 97.8 89.0 80.9 73.5 66.9 62.7 58.4 54.4 50.3 45.7 41.6 37.8 34.2 31.0 28.4 25.9 23.4 21.3 11.2 10.8 10.5 10.1 9.80 9.51 9.34 9.15 8.96 8.77 8.56 8.37 8.19 8.02 7.86 7.74 7.61 7.49 7.39 111/4 107/8 101/2 101/8 93/4 91/2 93/8 91/8 9 83/4 81/2 83/8 81/4 8 77/8 73/4 75/8 71/2 73/8 3.07 2.83 2.60 2.38 2.19 2.02 1.88 1.77 1.66 1.54 1.41 1.29 1.18 1.07 0.980 0.890 0.830 0.745 0.680 31/16 213/16 25/8 23/8 23/16 2 17/8 13/4 111/16 19/16 17/16 15/16 13/16 11/16 1 7/8 13/16 3/4 11/16 WT7×66 ×60 ×54.5 ×49.5 f ×45 f 19.4 17.7 16.0 14.6 13.2 7.33 7.24 7.16 7.08 7.01 73/8 71/4 71/8 71/8 7 0.645 0.590 0.525 0.485 0.440 5/8 5/16 9/16 5/16 1/2 1/4 1/2 1/4 7/16 1/4 WT7×41 ×37 ×34 ×30.5 c 12.0 10.9 10.0 8.96 7.16 7.09 7.02 6.95 71/8 71/8 7 7 0.510 0.450 0.415 0.375 1/2 1/4 7/16 1/4 7/16 1/4 3/8 3/16 7 0.370 67/8 0.340 67/8 0.305 3/8 3/16 5/16 3/16 5/16 3/16 WT7×26.5 c ×24 c ×21.5 c 7.80 6.96 7.07 6.90 6.31 6.83 Flange Area Width, bf 2 in. Distance Thickness, tf kdet in. in. in. 177/8 175/8 173/8 171/4 17 167/8 163/4 165/8 161/2 163/8 161/4 161/8 16 157/8 153/4 153/4 155/8 155/8 151/2 4.91 4.52 4.16 3.82 3.50 3.21 3.04 2.85 2.66 2.47 2.26 2.07 1.89 1.72 1.56 1.44 1.31 1.19 1.09 415/16 41/2 43/16 313/16 31/2 33/16 31/16 27/8 211/16 21/2 21/4 21/16 17/8 13/4 19/16 17/16 15/16 13/16 11/16 5.51 5.12 4.76 4.42 4.10 3.81 3.63 3.44 3.26 3.07 2.86 2.67 2.49 2.32 2.16 2.04 1.91 1.79 1.69 63/16 513/16 57/16 51/8 413/16 41/2 45/16 41/8 315/16 33/4 39/16 33/8 33/16 3 27/8 23/4 25/8 21/2 23/8 71/2g 71/2g 71/2 4.73 4.27 3.76 3.43 3.08 14.7 14.7 14.6 14.6 14.5 143/4 145/8 145/8 145/8 141/2 1.03 1 0.940 15/16 0.860 7/8 0.780 3/4 0.710 11/16 1.63 1.54 1.46 1.38 1.31 25/16 21/4 23/16 21/16 2 51/2 3.65 3.19 2.91 2.60 10.1 10.1 10.0 10.0 101/8 101/8 10 10 0.855 0.785 0.720 0.645 7/8 1.45 1.38 1.31 1.24 111/16 15/8 19/16 11/2 51/2 0.660 0.595 0.530 11/16 2.58 2.34 2.08 8.06 8 8.03 8 8.00 8 in. kdes Workable Gage 17.9 17.7 17.4 17.2 17.0 16.8 16.7 16.6 16.5 16.4 16.2 16.1 16.0 15.9 15.8 15.7 15.7 15.6 15.5 19/16 34.4 17/16 30.6 15/16 27.1 13/16 24.1 11/8 21.5 1 19.2 15/16 17.5 7/8 16.2 13/16 14.8 13/16 13.5 3/4 12.1 11/16 10.8 5/8 9.62 9/16 8.58 1/2 7.70 7/16 6.89 7/16 6.32 3/8 5.58 3/8 5.03 in. k 13/16 3/4 5/8 5/8 1/2 1.25 11/2 1.19 17/16 1.12 13/8 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. c f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION 51/2 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 63 DIMENSIONS AND PROPERTIES 1–63 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT7 Qs Axis Y-Y J Cw in.4 in.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 714 555 430 331 254 196 164 135 110 88.3 67.5 51.8 39.3 29.6 22.2 17.3 13.2 9.84 7.56 5250 3920 2930 2180 1620 1210 991 801 640 502 375 281 209 154 113 87.2 65.2 47.9 36.3 56.5 51.2 46.3 41.8 37.8 1.00 1.00 1.00 1.00 1.00 6.13 4.67 3.55 2.68 2.03 26.6 20.0 15.0 11.1 8.31 22.4 20.2 18.4 16.4 1.00 1.00 1.00 0.971 2.53 1.93 1.50 1.09 5.63 4.19 3.21 2.29 0.967 0.723 0.522 1.46 1.07 0.751 b ᎏf 2tf d ᎏ tw I S r y– Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 1.82 1.95 2.09 2.25 2.43 2.62 2.75 2.92 3.10 3.31 3.59 3.89 4.23 4.62 5.06 5.45 5.97 6.54 7.11 3.65 3.82 4.04 4.24 4.47 4.71 4.97 5.17 5.40 5.69 6.07 6.49 6.94 7.50 8.02 8.70 9.17 10.1 10.9 739 622 524 442 375 321 287 257 229 203 176 153 133 116 102 89.8 80.5 70.2 62.5 95.4 82.1 70.6 60.9 52.7 45.9 41.4 37.6 33.9 30.4 26.7 23.5 20.7 18.2 16.2 14.4 13.0 11.4 10.2 2.62 2.52 2.43 2.34 2.26 2.19 2.14 2.10 2.05 2.01 1.96 1.92 1.88 1.84 1.81 1.78 1.76 1.73 1.71 3.47 3.25 3.05 2.85 2.67 2.51 2.40 2.30 2.19 2.09 1.97 1.86 1.75 1.65 1.57 1.49 1.43 1.35 1.29 211 182 157 136 117 102 91.7 82.9 74.4 66.2 57.7 50.4 43.9 38.2 33.4 29.4 26.3 22.8 20.2 3.00 2.77 2.55 2.35 2.16 1.99 1.88 1.76 1.65 1.54 1.41 1.29 1.18 1.08 0.980 0.903 0.827 0.751 0.688 2360 2080 1840 1630 1440 1280 1180 1090 994 903 807 722 645 576 513 466 419 374 338 264 236 211 189 169 152 141 131 121 110 99.4 89.7 80.7 72.5 65.0 59.3 53.5 48.1 43.7 4.69 4.62 4.55 4.49 4.43 4.38 4.34 4.31 4.27 4.24 4.20 4.17 4.13 4.10 4.07 4.05 4.02 4.00 3.98 408 365 326 292 261 234 217 201 185 169 152 137 123 110 98.9 90.1 81.3 73.0 66.2 66 7.15 60 7.80 54.5 8.49 49.5 9.34 45 10.2 11.4 12.3 13.6 14.6 15.9 57.8 51.7 45.3 40.9 36.5 9.57 8.61 7.56 6.88 6.16 1.73 1.71 1.68 1.67 1.66 1.29 1.24 1.17 1.14 1.09 18.6 16.5 14.4 12.9 11.5 0.658 0.602 0.548 0.500 0.456 274 247 223 201 181 37.2 33.7 30.6 27.6 25.0 3.76 3.74 3.73 3.71 3.70 41 37 34 30.5 5.92 6.41 6.97 7.75 14.0 15.8 16.9 18.5 41.2 36.0 32.6 28.9 7.14 6.25 5.69 5.07 1.85 1.82 1.81 1.80 1.39 1.32 1.29 1.25 13.2 11.5 10.4 9.15 0.593 0.541 0.498 0.448 74.1 66.9 60.7 53.7 14.6 13.3 12.1 10.7 2.48 2.48 2.46 2.45 26.5 24 21.5 6.11 18.8 6.75 20.3 7.54 22.4 27.6 24.9 21.9 4.94 1.88 4.49 1.88 3.98 1.86 1.38 1.35 1.31 8.87 0.484 8.00 0.440 7.05 0.395 28.8 25.7 22.6 lb/ft 365 332.5 302.5 275 250 227.5 213 199 185 171 155.5 141.5 128.5 116.5 105.5 96.5 88 79.5 72.5 7.15 1.92 6.40 1.91 5.65 1.89 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Torsional Properties Fy = 50 ksi 11.0 0.956 9.80 0.880 8.64 0.773 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 64 1–64 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Shape Area, A 2 Depth, d Area Width, bf Thickness, tf in. in. 2 in. in. 5.58 7.05 5.00 6.99 4.42 6.92 7 0.310 7 0.285 67/8 0.270 5/16 3/16 1/4 3/16 1/8 6.77 63/4 0.515 6.75 63/4 0.455 6.73 63/4 0.385 1/2 5/16 2.19 1.99 1.87 WT7×13 c ×11c,v 3.85 6.96 3.25 6.87 7 0.255 67/8 0.230 1/4 1/8 1/8 1.77 1.58 5.03 5 5.00 5 0.420 0.335 7/16 1/4 13/4 15/8 11/2 13/8 15/16 13/16 11/16 15/16 7/8 13/16 11/16 5/8 9/16 1/2 1/2 7/16 3/8 7/8 2.96 2.71 2.47 2.25 2.07 1.90 1.74 1.56 1.40 1.25 1.11 0.990 0.900 0.810 0.735 0.670 0.605 215/16 211/16 21/2 21/4 21/16 17/8 13/4 19/16 13/8 11/4 11/8 1 7/8 13/16 3/4 11/16 5/8 0.640 0.575 5/8 2.26 2.02 1.76 8.08 81/8 0.640 8.05 8 0.575 8.01 8 0.515 5/8 1.88 1.60 1.41 6.56 61/2 0.520 6.52 61/2 0.440 6.49 61/2 0.380 1/2 WT6×168 h ×152.5 h ×139.5 h ×126 h ×115 h ×105 ×95 ×85 ×76 ×68 ×60 ×53 ×48 ×43.5 ×39.5 ×36 ×32.5 f 49.5 44.7 41.0 37.1 33.8 30.9 28.0 25.0 22.4 20.0 17.6 15.6 14.1 12.8 11.6 10.6 9.54 8.41 8.16 7.93 7.71 7.53 7.36 7.19 7.02 6.86 6.71 6.56 6.45 6.36 6.27 6.19 6.13 6.06 in. tw ᎏ 2 Distance WT7×19 c ×17 c ×15 c in. in. Thickness, tw Flange 83/8 81/8 77/8 73/4 71/2 73/8 71/4 7 67/8 63/4 61/2 61/2 63/8 61/4 61/4 61/8 6 1.78 1.63 1.53 1.40 1.29 1.18 1.06 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.430 0.390 14.9 13.3 3/4 12.1 11/16 10.7 11/16 9.67 5/8 8.68 9/16 7.62 1/2 6.73 7/16 5.96 7/16 5.30 3/8 4.66 5/16 3.93 5/16 3.50 1/4 3.23 1/4 2.91 1/4 2.63 3/16 2.36 13/16 WT6×29 ×26.5 8.52 6.10 7.78 6.03 61/8 0.360 6 0.345 3/8 3/16 3/8 3/16 WT6×25 ×22.5 ×20 c 7.30 6.10 6.56 6.03 5.84 5.97 61/8 0.370 6 0.335 6 0.295 3/8 3/16 5/16 3/16 5/16 3/16 WT6×17.5 c ×15 c ×13 c 5.17 6.25 4.40 6.17 3.82 6.11 61/4 0.300 61/8 0.260 61/8 0.230 5/16 1/4 3/16 1/8 1/4 1/8 13.4 13.2 13.1 13.0 12.9 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.2 12.1 12.1 12.0 12.0 133/8 131/4 131/8 13 127/8 123/4 125/8 125/8 121/2 123/8 123/8 121/4 121/8 121/8 121/8 12 12 2.19 10.0 10 2.08 10.0 10 7/16 3/8 5/16 9/16 9/16 1/2 7/16 3/8 k kdes kdet in. in. f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. 0.915 11/4 0.855 13/16 0.785 11/8 31/2g 31/2 31/2 0.820 11/8 0.735 11/16 2 3/4g 2 3/4g 3.55 3.30 3.07 2.85 2.67 2.50 2.33 2.16 2.00 1.85 1.70 1.59 1.50 1.41 1.33 1.27 1.20 37/8 35/8 33/8 31/8 215/16 213/16 25/8 27/16 25/16 21/8 2 17/8 113/16 111/16 15/8 19/16 11/2 51/2 1.24 11/2 1.18 13/8 51/2 51/2 1.14 11/2 1.08 13/8 1.02 13/8 51/2 0.820 13/16 0.740 11/8 0.680 11/16 31/2 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. v Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. c Workable Gage AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 65 DIMENSIONS AND PROPERTIES 1–65 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT7-WT6 Qs Axis Y-Y J Cw in.4 in.6 6.07 0.758 5.32 0.667 4.49 0.611 0.398 0.284 0.190 0.554 0.400 0.287 2.76 0.537 2.19 0.448 0.179 0.104 0.207 0.134 I S r y– Z yp I S r Z lb/ft 19 17 15 d ᎏ tw in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 6.57 22.7 7.41 24.5 8.74 25.6 23.3 20.9 19.0 4.22 2.04 3.83 2.04 3.55 2.07 1.54 1.53 1.58 7.45 0.412 6.74 0.371 6.25 0.329 13.3 3.94 1.55 11.6 3.45 1.53 9.79 2.91 1.49 13 11 5.98 27.3 7.46 29.9 17.3 14.8 3.31 2.12 2.91 2.14 1.72 1.76 5.89 0.383 5.20 0.325 4.45 1.77 1.08 3.50 1.40 1.04 168 152.5 139.5 126 115 105 95 85 76 68 60 53 48 43.5 39.5 36 32.5 b ᎏf 2tf 2.26 2.45 2.66 2.89 3.11 3.37 3.65 4.03 4.46 4.96 5.57 6.17 6.76 7.48 8.22 8.99 9.92 4.72 5.01 5.18 5.51 5.84 6.24 6.78 7.31 7.89 8.49 9.24 10.6 11.6 12.2 13.2 14.3 15.5 190 162 141 121 106 92.1 79.0 67.8 58.5 50.6 43.4 36.3 32.0 28.9 25.8 23.2 20.6 31.2 27.0 24.1 20.9 18.5 16.4 14.2 12.3 10.8 9.46 8.22 6.92 6.12 5.60 5.03 4.54 4.06 1.96 1.90 1.86 1.81 1.77 1.73 1.68 1.65 1.62 1.59 1.57 1.53 1.51 1.50 1.49 1.48 1.47 2.31 2.16 2.05 1.92 1.82 1.72 1.62 1.52 1.43 1.35 1.28 1.19 1.13 1.10 1.06 1.02 0.985 68.4 59.1 51.9 44.8 39.4 34.5 29.8 25.6 22.0 19.0 16.2 13.6 11.9 10.7 9.49 8.48 7.50 1.84 1.69 1.56 1.42 1.31 1.21 1.10 0.994 0.896 0.805 0.716 0.637 0.580 0.527 0.480 0.439 0.398 593 525 469 414 371 332 295 259 227 199 172 151 135 120 108 97.5 87.2 88.6 79.3 71.3 63.6 57.5 51.9 46.5 41.2 36.4 32.1 28.0 24.7 22.2 19.9 17.9 16.2 14.5 3.47 137 3.42 122 3.38 110 3.34 97.9 3.31 88.4 3.28 79.7 3.25 71.2 3.22 62.9 3.19 55.6 3.16 48.9 3.13 42.7 3.11 37.5 3.09 33.7 3.07 30.2 3.05 27.1 3.04 24.6 3.02 22.0 29 26.5 7.82 16.9 8.69 17.5 19.1 17.7 3.76 1.50 3.54 1.51 1.03 1.02 6.97 0.426 6.46 0.389 53.5 10.7 2.51 47.9 9.58 2.48 16.2 14.5 25 22.5 20 6.31 16.5 7.00 18.0 7.77 20.2 18.7 16.6 14.4 3.79 1.60 3.39 1.59 2.95 1.57 1.17 1.13 1.09 6.88 0.452 6.10 0.408 5.28 0.365 28.2 25.0 22.0 6.97 1.96 6.21 1.95 5.50 1.94 17.5 15 13 6.31 20.8 7.41 23.7 8.54 26.6 16.0 13.5 11.7 3.23 1.76 2.75 1.75 2.40 1.75 1.30 1.27 1.25 5.71 0.394 4.83 0.337 4.20 0.295 12.2 3.73 1.54 10.2 3.12 1.52 8.66 2.67 1.51 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Torsional Properties Fy = 50 ksi 1.00 120 1.00 92.0 1.00 70.9 1.00 53.5 1.00 41.6 1.00 32.1 1.00 24.3 1.00 17.7 1.00 12.8 1.00 9.21 1.00 6.42 1.00 4.55 1.00 3.42 1.00 2.54 1.00 1.91 1.00 1.46 1.00 1.09 1.00 1.00 481 356 267 195 148 112 82.1 58.3 41.3 28.9 19.7 13.6 10.1 7.34 5.43 4.07 2.97 1.05 0.788 2.08 1.53 10.6 1.00 9.47 1.00 8.38 0.885 0.855 0.627 0.452 1.23 0.885 0.620 5.73 0.854 4.78 0.707 4.08 0.566 0.369 0.228 0.150 0.437 0.267 0.174 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 66 1–66 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Area, A Shape 2 Depth, d in. tw ᎏ 2 Area in. in. 3.24 2.79 2.36 2.08 6.16 6.08 6.00 5.96 61/8 61/8 6 6 0.260 0.235 0.220 0.200 1/4 1/8 1/4 1/8 1/4 1/8 3/16 1/8 1.60 1.43 1.32 1.19 WT5×56 ×50 ×44 ×38.5 ×34 ×30 ×27 ×24.5 16.5 14.7 13.0 11.3 10.0 8.84 7.90 7.21 5.68 5.55 5.42 5.30 5.20 5.11 5.05 4.99 55/8 51/2 53/8 51/4 51/4 51/8 5 5 0.755 0.680 0.605 0.530 0.470 0.420 0.370 0.340 3/4 3/8 3/8 11/16 5/8 1/2 5/16 1/4 1/2 1/4 7/16 1/4 3/8 3/16 5/16 3/16 WT5×22.5 ×19.5 ×16.5 6.63 5.05 5.73 4.96 4.85 4.87 5 0.350 5 0.315 47/8 0.290 3/8 3/16 5/16 3/16 5/16 3/16 WT5×15 ×13 c ×11c 4.42 5.24 3.81 5.17 3.24 5.09 51/4 0.300 51/8 0.260 51/8 0.240 5/16 1/4 3/16 1/8 1/4 1/8 WT5×9.5 ×8.5 c ×7.5 c ×6 c,f 2.81 2.50 2.21 1.77 5.12 5.06 5.00 4.94 51/8 0.250 5 0.240 5 0.230 47/8 0.190 1/4 1/8 1/4 1/8 1/4 1/8 3/16 1/8 WT4×33.5 ×29 ×24 ×20 ×17.5 ×15.5 f 9.84 8.54 7.05 5.87 5.14 4.56 4.50 4.38 4.25 4.13 4.06 4.00 41/2 43/8 41/4 41/8 4 4 0.570 0.510 0.400 0.360 0.310 0.285 9/16 1/2 5/16 1/4 3/8 3/16 3/8 3/16 5/16 3/16 5/16 WT4×14 ×12 4.12 4.03 3.54 3.97 4 4 0.285 0.245 5/16 c 1/4 Width, bf 2 WT6×11c ×9.5 c ×8 c ×7 c,v in. in. Thickness, tw Flange 4.29 3.77 3.28 2.81 2.44 2.15 1.87 1.70 Thickness, tf in. 4.03 4.01 3.99 3.97 10.4 10.3 10.3 10.2 10.1 10.1 10.0 10.0 Distance in. 4 4 4 4 103/8 103/8 101/4 101/4 101/8 101/8 10 10 0.425 0.350 0.265 0.225 7/16 3/8 1/4 1/4 1.25 11/4 1.12 11/8 0.990 1 0.870 7/8 0.770 3/4 0.680 11/16 0.615 5/8 0.560 9/16 1.77 1.56 1.41 8.02 8 7.99 8 7.96 8 0.620 0.530 0.435 5/8 1.57 1.34 1.22 5.81 53/4 0.510 5.77 53/4 0.440 5.75 53/4 0.360 1/2 1.28 1.21 1.15 0.938 4.02 4.01 4.00 3.96 4 4 4 4 0.395 0.330 0.270 0.210 3/8 8.28 8.22 8.11 8.07 8.02 8.00 81/4 81/4 81/8 81/8 8 8 0.935 0.810 0.685 0.560 0.495 0.435 15/16 3/16 2.57 2.23 1.70 1.49 1.26 1.14 3/16 1/8 1.15 6.54 61/2 0.465 0.971 6.50 61/2 0.400 1/2 7/16 7/16 3/8 5/16 1/4 3/16 13/16 11/16 9/16 1/2 7/16 7/16 3/8 k kdes kdet in. in. in. 15/16 21/4g 0.725 0.650 0.565 0.525 1.75 1.62 1.49 1.37 1.27 1.18 1.12 1.06 7/8 13/16 3/4 115/16 113/16 111/16 19/16 17/16 13/8 15/16 11/4 f g AMERICAN INSTITUTE OF STEEL CONSTRUCTION 51/2 1.12 15/16 1.03 13/16 0.935 11/8 0.810 11/8 0.740 11/16 0.660 15/16 23/4g 15/16 21/4g 0.695 0.630 0.570 0.510 1.33 1.20 1.08 0.954 0.889 0.829 7/8 13/16 3/4 15/8 11/2 13/8 11/4 13/16 11/8 0.859 0.794 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. v Shear strength controlled by buckling effects (Cv < 1.0) with Fy = 50 ksi. c Workable Gage 15/16 7/8 51/2 31/2 31/2 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 67 DIMENSIONS AND PROPERTIES 1–67 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT6-WT4 Qs Axis Y-Y J Cw in.4 in.6 0.707 0.597 0.537 0.451 0.146 0.0899 0.0511 0.0350 0.137 0.0934 0.0678 0.0493 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7.50 5.41 3.75 2.55 1.78 1.23 0.909 0.693 1.00 1.00 1.00 0.753 0.487 0.291 0.981 0.616 0.356 4.41 3.75 3.05 1.00 0.900 0.834 0.310 0.201 0.119 0.273 0.173 0.107 1.67 1.40 1.15 0.869 0.870 0.839 0.809 0.592 0.116 0.0776 0.0518 0.0272 0.0796 0.0610 0.0475 0.0255 1.00 1.00 1.00 1.00 1.00 1.00 2.51 1.66 0.977 0.558 0.384 0.267 3.56 2.28 1.30 0.715 0.480 0.327 1.00 1.00 0.268 0.173 0.230 0.144 d ᎏ tw I S r y– Z yp I S r Z lb/ft 11 9.5 8 7 b ᎏf 2tf in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 4.74 5.72 7.53 8.82 23.7 25.9 27.3 29.8 11.7 10.1 8.70 7.67 2.59 2.28 2.04 1.83 1.90 1.90 1.92 1.92 1.63 1.65 1.74 1.76 2.33 1.88 1.41 1.18 1.15 0.939 0.706 0.593 0.847 0.821 0.773 0.753 1.83 1.49 1.13 0.947 56 50 44 38.5 34 30 27 24.5 4.17 4.62 5.18 5.86 6.58 7.41 8.15 8.93 7.52 8.16 8.96 10.0 11.1 12.2 13.6 14.7 28.6 24.5 20.8 17.4 14.9 12.9 11.1 10.0 6.40 5.56 4.77 4.05 3.49 3.04 2.64 2.39 1.32 1.29 1.27 1.24 1.22 1.21 1.19 1.18 1.21 13.4 0.791 118 1.13 11.4 0.711 103 1.06 9.65 0.631 89.3 0.990 8.06 0.555 76.8 0.932 6.85 0.493 66.7 0.884 5.87 0.438 58.1 0.836 5.05 0.395 51.7 0.807 4.52 0.361 46.7 22.5 19.5 16.5 6.47 14.4 7.53 15.7 9.15 16.8 10.2 2.47 1.24 8.84 2.16 1.24 7.71 1.93 1.26 0.907 0.876 0.869 4.65 0.413 3.99 0.359 3.48 0.305 15 13 11 5.70 17.5 6.56 19.9 7.99 21.2 9.28 2.24 1.45 7.86 1.91 1.44 6.88 1.72 1.46 1.10 1.06 1.07 4.01 0.380 3.39 0.330 3.02 0.282 8.35 2.87 1.37 7.05 2.44 1.36 5.71 1.99 1.33 9.5 8.5 7.5 6 5.09 6.08 7.41 9.43 20.5 21.1 21.7 26.0 6.68 6.06 5.45 4.35 1.74 1.62 1.50 1.22 1.54 1.56 1.57 1.57 1.28 1.32 1.37 1.36 3.10 2.90 2.71 2.20 0.349 0.311 0.305 0.322 2.15 1.78 1.45 1.09 33.5 29 24 20 17.5 15.5 4.43 5.07 5.92 7.21 8.10 9.19 7.89 10.9 8.59 9.12 10.6 6.85 11.5 5.73 13.1 4.82 14.0 4.28 3.05 2.61 1.97 1.69 1.43 1.28 1.05 1.03 0.986 0.988 0.968 0.969 0.936 0.874 0.777 0.735 0.688 0.668 6.29 5.25 3.94 3.25 2.71 2.39 0.594 0.520 0.435 0.364 0.321 0.285 14 12 7.03 14.1 8.12 16.2 4.23 1.28 1.01 0.734 3.53 1.08 0.999 0.695 4.63 4.11 3.72 3.32 0.402 0.348 0.639 0.760 2.38 0.315 1.98 0.272 26.7 22.5 18.3 22.6 20.0 17.4 15.1 13.2 11.5 10.3 9.34 2.67 2.65 2.63 2.60 2.58 2.57 2.56 2.54 34.6 30.5 26.5 22.9 20.0 17.5 15.6 14.1 6.65 2.01 10.1 5.64 1.98 8.57 4.60 1.94 7.00 1.07 0.887 0.723 0.551 44.3 10.7 37.5 9.13 30.5 7.51 24.5 6.08 21.3 5.31 18.5 4.64 0.874 0.844 0.810 0.785 2.12 16.3 2.10 13.9 2.08 11.4 2.04 9.24 2.03 8.05 2.02 7.03 10.8 3.31 1.62 9.14 2.81 1.61 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Torsional Properties 5.04 4.28 Fy = 50 ksi 16.9 11.9 8.02 5.31 3.62 2.46 1.78 1.33 AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 68 1–68 DIMENSIONS AND PROPERTIES Table 1-8 (continued) WT-Shapes Dimensions Stem Shape Area, A 2 f g in. Thickness, tw in. tw ᎏ 2 Flange Area 2 Distance Width, bf Thickness, tf in. in. in. in. WT4×10.5 ×9 3.08 4.14 2.63 4.07 41/8 0.250 41/8 0.230 1/4 1/8 3/8 1/4 1/8 1.04 5.27 51/4 0.400 0.936 5.25 51/4 0.330 WT4×7.5 ×6.5 ×5 c,f 2.22 4.06 1.92 4.00 1.48 3.95 4 4 4 1/4 1/8 1/8 3/16 1/8 0.993 4.02 4 0.919 4.00 4 0.671 3.94 4 0.315 0.255 0.205 5/16 1/4 WT3×12.5 ×10 ×7.5 f 3.67 3.19 2.94 3.10 2.21 3.00 31/4 0.320 31/8 0.260 3 0.230 5/16 3/16 1/4 1/8 1/4 1/8 1.02 6.08 0.806 6.02 6 0.689 5.99 6 0.455 0.365 0.260 7/16 WT3×8 ×6 ×4.5 f ×4.25 f 2.37 1.78 1.34 1.26 3.14 3.02 2.95 2.92 31/8 3 3 27/8 0.260 0.230 0.170 0.170 1/4 1/8 1/8 3/16 1/8 3/16 1/8 0.816 0.693 0.502 0.496 0.405 0.280 0.215 0.195 3/8 1/4 WT2.5×9.5 ×8 2.78 2.58 2.35 2.51 25/8 0.270 21/2 0.240 1/4 1/8 1/4 1/8 0.695 5.03 5 0.601 5.00 5 0.430 0.360 7/16 WT2×6.5 1.91 2.08 21/8 0.280 1/4 1/8 0.582 4.06 4 0.345 in. c Depth, d 0.245 0.230 0.170 61/8 4.03 4.00 3.94 3.94 4 4 4 4 k kdes kdet in. in. in. 0.700 0.630 7/8 13/16 23/4g 23/4g 0.615 0.555 0.505 13/16 21/4g 0.705 0.615 0.510 15/16 0.655 0.530 0.465 0.445 7/8 0.730 0.660 13/16 3/8 3/4 23/4 23/4 3/8 0.595 3/4 21/4 5/16 1/4 3/16 3/8 1/4 1/4 3/16 3/16 Shape is slender for compression with Fy = 50 ksi. Shape exceeds compact limit for flexure with Fy = 50 ksi. The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. AMERICAN INSTITUTE OF STEEL CONSTRUCTION Workable Gage 3/4 11/16 31/2 7/8 3/4 21/4g 3/4 11/16 11/16 AISC_PART 01A:14th Ed_ 1/20/11 7:31 AM Page 69 DIMENSIONS AND PROPERTIES 1–69 Table 1-8 (continued) WT-Shapes Properties Nominal Wt. Compact Section Criteria Axis X-X WT4-WT2 Qs Axis Y-Y Fy = 50 Torsional Properties J Cw in.4 in.6 I S r y– Z yp I S r Z lb/ft 10.5 9 d ᎏ tw in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 6.59 16.6 7.95 17.7 3.90 3.41 1.18 1.12 1.05 1.14 0.831 2.11 0.292 0.834 1.86 0.251 4.88 3.98 1.85 1.26 1.52 1.23 7.5 6.5 5 6.37 16.6 7.84 17.4 9.61 23.2 3.28 2.89 2.15 1.07 1.22 0.974 1.23 0.717 1.20 0.998 1.91 0.276 1.03 1.74 0.240 0.953 1.27 0.188 1.70 1.36 1.05 0.849 0.876 1.33 1.00 0.682 0.843 1.07 1.00 0.531 0.840 0.826 0.733 0.0679 0.0382 0.0433 0.0269 0.0212 0.0114 12.5 6.68 10.0 10 8.25 11.9 7.5 11.5 13.0 2.29 1.76 1.41 0.886 0.789 0.610 1.68 0.302 0.693 0.774 0.560 1.29 0.244 0.577 0.797 0.558 1.03 0.185 8.53 6.64 4.66 2.81 1.52 2.21 1.50 1.56 1.45 4.28 1.00 3.36 1.00 2.37 1.00 0.229 0.171 0.120 0.0858 0.0504 0.0342 1.69 1.32 0.950 0.905 0.685 0.564 0.408 0.397 2.21 1.50 1.10 0.995 1.10 0.748 0.557 0.505 1.69 1.16 0.856 0.778 0.111 0.0449 0.0202 0.0166 8 6 4.5 4.25 b ᎏf 2tf 4.98 7.14 9.16 10.1 12.1 13.1 17.4 17.2 0.844 0.862 0.842 0.848 0.676 0.677 0.623 0.637 1.25 1.01 0.720 0.700 0.294 0.222 0.170 0.160 0.966 0.918 0.905 0.890 ksi 2.84 1.00 2.33 1.00 1.00 1.00 1.00 1.00 0.141 0.0916 0.0855 0.0562 0.0426 0.0178 0.00736 0.00620 9.5 8 5.85 9.56 1.01 0.485 0.604 0.487 0.970 0.276 6.94 10.5 0.845 0.413 0.599 0.458 0.801 0.235 4.56 3.75 1.81 1.28 1.50 1.26 2.76 1.00 2.28 1.00 0.157 0.0775 0.0958 0.0453 6.5 5.88 7.43 0.526 0.321 0.524 0.440 0.616 0.236 1.93 0.950 1.00 1.46 1.00 0.0750 0.0233 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01A:14th Ed_ 1/20/11 7:31 AM Page 70 1–70 DIMENSIONS AND PROPERTIES Table 1-9 MT-Shapes Dimensions Stem Shape c,v MT6.25×6.2 ×5.8 c,v c MT6×5.9 ×5.4 c,v ×5 c,v c Area, A Depth, d in.2 in. Thickness, tw in. Flange tw ᎏ 2 Area Width, bf in. in.2 in. 1.82 1.70 6.27 6.25 61/4 1/8 1/16 61/4 0.155 0.155 1/8 1/16 1.74 1.59 1.48 6.00 5.99 5.99 6 6 6 0.177 0.160 0.149 3/16 1/8 3/16 1/8 1/8 1/16 1/8 Distance Thickness, tf in. k Workable Gage in. in. 0.971 3.75 0.969 3.50 33/4 31/2 0.228 0.211 1/4 9/16 — 3/16 9/16 1.06 3.07 0.958 3.07 0.892 3.25 31/8 31/8 31/4 0.225 0.210 0.180 1/4 9/16 3/16 9/16 3/16 1/2 9/16 — — — 1.33 1.19 5.00 4.98 5 5 0.157 0.141 3/16 1/16 23/4 0.206 0.182 3/16 1/8 0.785 2.69 0.701 2.69 23/4 3/16 9/16 — — MT5×3.75 c,v 1.11 5.00 5 0.130 1/8 1/16 0.649 2.69 23/4 0.173 3/16 7/16 — 1/16 0.540 2.28 0.516 2.28 21/4 9/16 21/4 0.189 0.177 3/16 3/16 7/16 — — MT5×4.5 ×4 c c,v 0.959 4.00 0.911 4.00 4 4 0.135 0.129 1/8 1/8 1/16 MT3×2.2c 0.647 3.00 ×1.85 c 0.545 2.96 3 3 0.114 0.0980 1/8 1/16 1/16 0.342 1.84 0.290 2.00 17/8 2 0.171 0.129 3/16 1/8 1/8 3/8 5/16 — — 23/4g MT4×3.25 ×3.1c MT2.5×9.45 t MT2×3 f 2.50 21/2 0.316 5/16 3/16 0.790 5.00 5 0.416 7/16 13/16 0.875 1.90 17/8 0.130 1/8 1/16 0.247 3.80 33/4 0.160 3/16 1/2 2.78 Shape is slender for compression with Fy = 36 ksi. Shape exceeds compact limit for flexure with Fy = 36 ksi. g The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. t This shape has tapered flanges while all other MT-shapes have parallel flange surfaces. v Shape does not meet the h/tw limit for shear in AISC Specification Section G2.1(a) with Fy = 36 ksi. — Indicates flange is too narrow to establish a workable gage. c f AMERICAN INSTITUTE OF STEEL CONSTRUCTION — AISC_PART 01A:14th Ed_ 1/20/11 7:31 AM Page 71 DIMENSIONS AND PROPERTIES 1–71 Table 1-9 (continued) MT-Shapes Properties MT-SHAPES Nominal Wt. lb/ft Compact Section Criteria b ᎏf 2tf d ᎏ tw Axis X-X I S 4 in. r y– Qs Axis Y-Y yp Z 3 3 in. in. in. in. in. I S 4 in. r 3 in. in. Z in. Fy = 36 3 ksi Torsional Properties J Cw 4 in. in.6 6.2 5.8 8.22 40.4 7.29 8.29 40.3 6.94 1.61 1.57 2.01 2.03 1.74 1.84 2.92 2.86 0.372 1.00 0.536 0.808 0.756 0.432 0.746 0.839 0.341 0.0246 0.669 0.684 0.342 0.0206 0.0284 0.0268 5.9 5.4 5 6.82 33.9 6.61 7.31 37.4 6.03 9.03 40.2 5.62 1.61 1.46 1.36 1.96 1.95 1.96 1.89 1.86 1.86 2.89 2.63 2.45 1.13 1.05 1.08 0.543 0.354 0.506 0.330 0.517 0.318 0.561 0.575 0.484 0.0249 0.566 0.532 0.397 0.0196 0.594 0.509 0.344 0.0145 0.0337 0.0250 0.0202 4.5 4 6.53 31.8 3.47 7.39 35.3 3.08 1.00 1.62 0.894 1.62 1.54 1.52 1.81 1.61 0.808 0.336 0.250 0.809 0.296 0.220 0.505 0.403 0.550 0.0156 0.502 0.354 0.446 0.0112 0.0138 0.00989 3.75 7.77 38.4 2.91 0.836 1.63 1.51 1.51 0.759 0.281 0.209 0.505 0.334 0.377 0.00932 0.00792 3.25 6.03 29.6 1.57 3.1 6.44 31.0 1.50 0.558 1.29 0.533 1.29 1.18 1.18 1.01 0.472 0.188 0.165 0.967 0.497 0.176 0.154 0.444 0.264 0.634 0.00917 0.00463 0.441 0.247 0.578 0.00778 0.00403 2.2 5.38 26.3 0.579 0.268 0.949 0.841 0.483 0.190 0.0897 0.0973 0.374 0.155 0.778 0.00494 0.00124 1.85 7.75 30.2 0.483 0.226 0.945 0.827 0.409 0.174 0.0863 0.0863 0.400 0.136 0.609 0.00265 0.000754 9.45 6.01 3 11.9 7.91 1.05 0.528 0.617 0.512 1.03 0.276 4.35 1.74 14.6 0.208 0.133 0.493 0.341 0.241 0.112 0.732 0.385 1.26 2.66 1.00 0.926 0.588 1.00 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 0.156 0.0732 0.00919 0.00193 AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 72 1–72 DIMENSIONS AND PROPERTIES Table 1-10 ST-Shapes Dimensions Stem Shape Area, A Depth, d ST12×60.5 ×53 in.2 17.8 15.6 12.3 12.3 ST12×50 ×45 ×40 c 14.7 13.2 11.7 12.0 12.0 12.0 12 12 12 ST10×48 ×43 14.1 12.7 10.2 10.2 ST10×37.5 ×33 11.0 10.0 9.70 10.0 ST9×35 10.3 ×27.35 8.02 Thickness, tw in. in. 121/4 0.800 13/16 121/4 0.620 5/8 tw 2 in. 7/16 5/16 Flange Area Width, bf Distance Thickness, tf Workable Gage in.2 9.80 7.60 8.05 7.87 8 77/8 1.09 1.09 11/16 11/16 2 2 in. 4 4 8.94 7.50 6.00 7.25 7.13 7.00 71/4 71/8 7 0.870 0.870 0.870 7/8 13/4 13/4 13/4 4 4 4 8.12 6.70 7.20 7.06 71/4 7 0.920 0.920 15/16 13/4 13/4 4 4 15/8 15/8 31/2g 31/2g 11/2 11/2 31/2g 31/2g 13/8 13/8 31/2g 31/2g 17/16 17/16 3g 3g 13/16 13/16 3g 3g 11/8 11/8 23/4g 23/4g in. in. in. 3/4 3/8 5/8 5/16 1/2 1/4 101/8 0.800 101/8 0.660 13/16 7/16 11/16 3/8 10 10 0.635 0.505 5/8 5/16 1/4 6.35 5.05 6.39 6.26 63/8 61/4 0.795 0.795 13/16 1/2 9.00 9 9.00 9 0.711 0.461 11/16 3/8 1/4 6.40 4.15 6.25 6.00 61/4 6 0.691 0.691 11/16 7/16 0.745 0.625 0.500 k 7/8 7/8 15/16 13/16 11/16 ST7.5×25 ×21.45 7.34 6.30 7.50 71/2 7.50 71/2 0.550 0.411 9/16 5/16 1/4 4.13 3.08 5.64 5.50 55/8 51/2 0.622 0.622 5/8 7/16 ST6×25 ×20.4 7.33 5.96 6.00 6 6.00 6 0.687 0.462 11/16 3/8 1/4 4.12 2.77 5.48 5.25 51/2 51/4 0.659 0.659 11/16 7/16 ST6×17.5 ×15.9 5.12 4.65 6.00 6 6.00 6 0.428 0.350 7/16 1/4 3/16 2.57 2.10 5.08 5.00 51/8 5 0.544 0.544 9/16 3/8 ST5×17.5 ×12.7 5.14 3.72 5.00 5 5.00 5 0.594 0.311 5/8 5/16 3/16 2.97 1.56 4.94 4.66 5 45/8 0.491 0.491 1/2 5/16 ST4×11.5 ×9.2 3.38 2.70 4.00 4 4.00 4 0.441 0.271 7/16 1/4 1/8 1.76 1.08 4.17 4.00 41/8 4 0.425 0.425 7/16 1/4 7/16 1 1 21/4g 21/4g ST3×8.6 ×6.25 2.53 1.83 3.00 3 3.00 3 0.465 0.232 7/16 1/4 35/8 33/8 0.359 0.359 13/16 1/8 1.40 3.57 0.696 3.33 3/8 1/4 3/8 13/16 — — 1.46 2.50 21/2 0.214 3/16 1/8 0.535 3.00 3 0.326 5/16 3/4 — 1.40 1.13 2.00 2 2.00 2 0.326 0.193 5/16 3/16 23/4 25/8 0.293 0.293 3/4 1/8 0.652 2.80 0.386 2.66 5/16 3/16 5/16 3/4 — — 0.349 0.170 3/8 3/16 21/2 23/8 0.260 0.260 5/8 1/8 0.524 2.51 0.255 2.33 1/4 3/16 1/4 5/8 ST2.5×5 ST2×4.75 ×3.85 ST1.5×3.75 ×2.85 c g 1.10 1.50 11/2 0.830 1.50 11/2 5/8 11/16 9/16 1/2 Shape is slender for compression with Fy = 36 ksi The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. — Indicates flange is too narrow to establish a workable gage. AMERICAN INSTITUTE OF STEEL CONSTRUCTION — — AISC_PART 01B_14th Ed._Nov. 19, 2012 14-12-04 2:33 PM Page 73 (Black plate) DIMENSIONS AND PROPERTIES 1–73 Table 1-10 (continued) ST-Shapes Properties ST-SHAPES Compact Nom- Section inal Criteria Wt. b d I S ᎏf ᎏ tw lb/ft 2tf in.4 in.3 60.5 3.69 15.4 259 30.1 53 3.61 19.8 216 24.1 yp y– r Z I S r Z Fy = 36 J Cw ksi in. in. in.3 in. in.4 in.3 in. in.3 in.4 in.6 3.82 3.63 54.5 1.26 41.5 10.3 1.53 18.1 1.00 6.38 27.5 3.72 3.28 43.3 1.02 38.4 9.76 1.57 16.7 1.00 5.05 15.0 50 45 40 4.17 16.1 215 4.10 19.2 190 4.02 24.0 162 26.3 22.6 18.6 3.83 3.79 3.72 3.84 47.5 3.60 41.1 3.30 33.6 2.16 23.7 1.42 22.3 0.909 21.0 6.55 1.27 12.0 6.27 1.30 11.2 6.00 1.34 10.4 1.00 3.76 1.00 3.01 0.876 2.44 19.5 12.1 6.94 48 43 3.91 12.7 143 3.84 15.4 124 20.3 17.2 3.18 3.13 3.13 36.9 2.91 31.1 1.35 25.0 0.972 23.3 6.93 1.33 12.5 6.59 1.36 11.6 1.00 1.00 4.16 3.30 15.0 9.17 37.5 4.02 15.7 109 15.8 33 3.94 19.8 92.9 12.9 3.15 3.10 3.07 28.6 2.81 23.4 1.34 14.8 0.841 13.7 4.62 1.16 4.39 1.19 8.36 1.00 7.70 1.00 2.28 1.78 7.21 4.02 35 4.52 12.7 27.35 4.34 19.5 84.5 14.0 62.3 9.60 2.87 2.79 2.94 25.1 2.51 17.3 1.78 12.0 0.737 10.4 3.84 1.08 3.45 1.14 7.17 1.00 6.06 1.00 2.02 1.16 7.03 2.26 25 4.53 13.6 21.45 4.42 18.2 40.5 32.9 7.72 5.99 2.35 2.29 2.25 14.0 2.01 10.8 0.826 7.79 0.605 7.13 2.76 1.03 2.59 1.06 4.99 1.00 4.54 1.00 1.05 0.765 2.02 0.995 25 4.17 8.73 25.1 20.4 3.98 13.0 18.9 6.04 4.27 1.85 1.78 1.84 11.0 0.758 7.79 1.58 7.71 0.577 6.74 2.84 1.03 2.57 1.06 5.16 1.00 4.43 1.00 1.36 0.842 1.97 0.787 17.5 4.67 14.0 15.9 4.60 17.1 3.95 3.30 1.83 1.78 1.65 1.51 7.12 0.543 4.92 5.94 0.480 4.66 1.94 0.980 3.40 1.00 1.87 1.00 3.22 1.00 0.524 0.438 0.556 0.364 17.5 5.03 8.42 12.5 3.62 12.7 4.75 16.1 7.79 2.05 1.56 1.45 1.56 1.20 6.58 0.673 4.15 3.70 0.403 3.36 1.68 0.899 3.10 1.00 1.44 0.950 2.49 1.00 0.633 0.300 0.725 0.173 11.5 4.91 9.07 9.2 4.71 14.8 1.22 1.14 1.15 3.19 0.439 2.13 0.942 2.07 0.336 1.84 1.02 0.795 1.84 1.00 0.922 0.827 1.59 1.00 0.271 0.167 0.168 0.0642 8.6 4.97 6.45 6.25 4.64 12.9 17.2 14.8 5.00 1.76 3.49 1.14 Axis X-X Qs Axis Y-Y Torsional Properties 2.12 1.02 0.915 0.915 1.85 0.394 1.14 0.642 0.673 1.17 1.00 1.26 0.547 0.831 0.692 1.01 0.271 0.901 0.541 0.702 0.930 1.00 0.181 0.0772 0.0830 0.0197 0.671 0.348 0.677 0.570 0.650 0.239 0.597 0.398 0.638 0.686 1.00 0.0568 0.01000 4.75 4.78 6.13 0.462 0.319 0.575 0.553 0.592 0.250 0.444 0.317 0.564 0.565 1.00 3.85 4.54 10.4 0.307 0.198 0.522 0.448 0.381 0.204 0.374 0.281 0.576 0.485 1.00 0.0590 0.00995 0.0364 0.00457 3.75 4.83 4.30 0.200 0.187 0.426 0.432 0.351 0.219 0.289 0.230 0.513 0.411 1.00 2.85 4.48 8.82 0.114 0.0970 0.370 0.329 0.196 0.171 0.223 0.192 0.518 0.328 1.00 0.0432 0.00496 0.0216 0.00189 5 4.60 11.7 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 74 1–74 DIMENSIONS AND PROPERTIES Table 1-11 Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. HSS20×12×5/8 ×1/2 ×3/8 ×5/16 in. 0.581 0.465 0.349 0.291 lb/ft 127.37 103.30 78.52 65.87 HSS20×8×5/8 ×1/2 ×3/8 ×5/16 0.581 0.465 0.349 0.291 HSS20×4×1/2 ×3/8 ×5/16 ×1/4 Shape Area, A Axis X-X b/t h/t in.2 35.0 28.3 21.5 18.1 17.7 22.8 31.4 38.2 31.4 40.0 54.3 65.7 in.4 1880 1550 1200 1010 in.3 188 155 120 101 in. 7.33 7.39 7.45 7.48 in.3 230 188 144 122 110.36 89.68 68.31 57.36 30.3 24.6 18.7 15.7 10.8 14.2 19.9 24.5 31.4 40.0 54.3 65.7 1440 1190 926 786 144 119 92.6 78.6 6.89 6.96 7.03 7.07 185 152 117 98.6 0.465 0.349 0.291 0.233 76.07 58.10 48.86 39.43 20.9 16.0 13.4 10.8 5.60 8.46 10.7 14.2 40.0 54.3 65.7 82.8 838 657 560 458 83.8 65.7 56.0 45.8 6.33 6.42 6.46 6.50 115 89.3 75.6 61.5 HSS18×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 0.581 0.465 0.349 0.291 0.233 93.34 76.07 58.10 48.86 39.43 25.7 20.9 16.0 13.4 10.8 7.33 9.90 14.2 17.6 22.8 28.0 35.7 48.6 58.9 74.3 923 770 602 513 419 103 85.6 66.9 57.0 46.5 6.00 6.07 6.15 6.18 6.22 135 112 86.4 73.1 59.4 HSS16×12×5/8 ×1/2 ×3/8 ×5/16 0.581 0.465 0.349 0.291 110.36 89.68 68.31 57.36 30.3 24.6 18.7 15.7 17.7 22.8 31.4 38.2 24.5 31.4 42.8 52.0 1090 904 702 595 136 113 87.7 74.4 6.00 6.06 6.12 6.15 165 135 104 87.7 HSS16×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 0.581 0.465 0.349 0.291 0.233 93.34 76.07 58.10 48.86 39.43 25.7 20.9 16.0 13.4 10.8 10.8 14.2 19.9 24.5 31.3 24.5 31.4 42.8 52.0 65.7 815 679 531 451 368 102 84.9 66.3 56.4 46.1 5.64 5.70 5.77 5.80 5.83 129 106 82.1 69.4 56.4 HSS16×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 76.33 62.46 47.90 40.35 32.63 24.73 21.0 17.2 13.2 11.1 8.96 6.76 3.88 5.60 8.46 10.7 14.2 20.0 24.5 31.4 42.8 52.0 65.7 89.0 539 455 360 308 253 193 67.3 56.9 45.0 38.5 31.6 24.2 5.06 5.15 5.23 5.27 5.31 5.35 92.9 77.3 60.2 51.1 41.7 31.7 I Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION S r Z AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 75 DIMENSIONS AND PROPERTIES 1–75 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS20-HSS16 Workable Flat Axis Y-Y Shape HSS20×12×5/8 ×1/2 ×3/8 ×5/16 HSS20×8×5/8 ×1/2 ×3/8 ×5/16 I in.4 851 705 547 464 338 283 222 189 S r Z in.3 142 117 91.1 77.3 in. 4.930 4.99 5.04 5.07 in.3 162 132 102 85.8 84.6 70.8 55.6 47.4 3.34 3.39 3.44 3.47 Depth Width Torsion J C Surface Area in. in. in.4 173/16 93/16 1890 173/4 93/4 1540 185/16 105/16 1180 185/8 105/8 997 in.3 257 209 160 134 ft 2/ft 5.17 5.20 5.23 5.25 96.4 79.5 61.5 52.0 173/16 173/4 185/16 185/8 53/16 53/4 65/16 65/8 916 757 586 496 167 137 105 88.3 4.50 4.53 4.57 4.58 HSS20×4×1/2 ×3/8 ×5/16 ×1/4 58.7 47.6 41.2 34.3 29.3 23.8 20.6 17.1 1.68 1.73 1.75 1.78 34.0 26.8 22.9 18.7 173/4 185/16 185/8 187/8 — 25/16 25/8 27/8 195 156 134 111 63.8 49.9 42.4 34.7 3.87 3.90 3.92 3.93 HSS18×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 158 134 106 91.3 75.1 52.7 44.6 35.5 30.4 25.0 2.48 2.53 2.58 2.61 2.63 61.0 50.7 39.5 33.5 27.3 153/16 153/4 165/16 169/16 167/8 33/16 33/4 45/16 49/16 47/8 462 387 302 257 210 109 89.9 69.5 58.7 47.7 3.83 3.87 3.90 3.92 3.93 133/16 93/16 1370 133/4 93/4 1120 145/16 105/16 862 145/8 105/8 727 204 166 127 107 4.50 4.53 4.57 4.58 132 108 83.4 70.4 57.0 3.83 3.87 3.90 3.92 3.93 60.5 50.7 39.7 33.8 27.6 21.1 3.17 3.20 3.23 3.25 3.27 3.28 HSS16x12×5/8 ×1/2 ×3/8 ×5/16 700 581 452 384 117 96.8 75.3 64.0 4.80 4.86 4.91 4.94 135 111 85.5 72.2 HSS16×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 274 230 181 155 127 68.6 57.6 45.3 38.7 31.7 3.27 3.32 3.37 3.40 3.42 79.2 65.5 50.8 43.0 35.0 133/16 133/4 145/16 145/8 147/8 53/16 53/4 65/16 65/8 67/8 681 563 436 369 300 27.0 23.5 19.1 16.6 13.8 10.8 1.60 1.65 1.71 1.73 1.76 1.78 32.5 27.4 21.7 18.5 15.2 11.7 133/16 133/4 145/16 145/8 147/8 153/16 — — 25/16 25/8 27/8 33/16 174 150 120 103 85.2 65.5 HSS16×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 54.1 47.0 38.3 33.2 27.7 21.5 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 76 1–76 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. HSS14×10×5/8 ×1/2 ×3/8 ×5/16 ×1/4 in. 0.581 0.465 0.349 0.291 0.233 lb/ft 93.34 76.07 58.10 48.86 39.43 HSS14×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 HSS14×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 Shape Area, A Axis X-X b/t h/t in.2 25.7 20.9 16.0 13.4 10.8 14.2 18.5 25.7 31.4 39.9 21.1 27.1 37.1 45.1 57.1 76.33 62.46 47.90 40.35 32.63 24.73 21.0 17.2 13.2 11.1 8.96 6.76 7.33 9.90 14.2 17.6 22.8 31.5 0.581 0.465 0.349 0.291 0.233 0.174 67.82 55.66 42.79 36.10 29.23 22.18 18.7 15.3 11.8 9.92 8.03 6.06 HSS12×10×1/2 ×3/8 ×5/16 ×1/4 0.465 0.349 0.291 0.233 69.27 53.00 44.60 36.03 HSS12×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 HSS12×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 I S r in.4 687 573 447 380 310 in.3 98.2 81.8 63.9 54.3 44.3 in. 5.17 5.23 5.29 5.32 5.35 in.3 120 98.8 76.3 64.6 52.4 21.1 27.1 37.1 45.1 57.1 77.5 478 402 317 271 222 170 68.3 57.4 45.3 38.7 31.7 24.3 4.77 4.84 4.91 4.94 4.98 5.01 88.7 73.6 57.3 48.6 39.6 30.1 3.88 5.60 8.46 10.7 14.2 20.0 21.1 27.1 37.1 45.1 57.1 77.5 373 317 252 216 178 137 53.3 45.3 36.0 30.9 25.4 19.5 4.47 4.55 4.63 4.67 4.71 4.74 73.1 61.0 47.8 40.6 33.2 25.3 19.0 14.6 12.2 9.90 18.5 25.7 31.4 39.9 22.8 31.4 38.2 48.5 395 310 264 216 65.9 51.6 44.0 36.0 4.56 4.61 4.64 4.67 78.8 61.1 51.7 42.1 76.33 62.46 47.90 40.35 32.63 24.73 21.0 17.2 13.2 11.1 8.96 6.76 10.8 14.2 19.9 24.5 31.3 43.0 17.7 22.8 31.4 38.2 48.5 66.0 397 333 262 224 184 140 66.1 55.6 43.7 37.4 30.6 23.4 4.34 4.41 4.47 4.50 4.53 4.56 82.1 68.1 53.0 44.9 36.6 27.8 67.82 55.66 42.79 36.10 29.23 22.18 18.7 15.3 11.8 9.92 8.03 6.06 7.33 9.90 14.2 17.6 22.8 31.5 17.7 22.8 31.4 38.2 48.5 66.0 321 271 215 184 151 116 53.4 45.2 35.9 30.7 25.2 19.4 4.14 4.21 4.28 4.31 4.34 4.38 68.8 57.4 44.8 38.1 31.1 23.7 Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION Z AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 77 DIMENSIONS AND PROPERTIES 1–77 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS14-HSS12 Workable Flat Axis Y-Y Shape I S r Z Depth Width Torsion J C Surface Area HSS14×10×5/8 ×1/2 ×3/8 ×5/16 ×1/4 in.4 407 341 267 227 186 in.3 81.5 68.1 53.4 45.5 37.2 in. 3.98 4.04 4.09 4.12 4.14 in.3 95.1 78.5 60.7 51.4 41.8 in. 113/16 113/4 125/16 129/16 127/8 in. 73/16 73/4 85/16 89/16 87/8 in.4 832 685 528 446 362 in.3 146 120 91.8 77.4 62.6 ft 2/ft 3.83 3.87 3.90 3.92 3.93 HSS14×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 124 105 84.1 72.3 59.6 45.9 41.2 35.1 28.0 24.1 19.9 15.3 2.43 2.48 2.53 2.55 2.58 2.61 48.4 40.4 31.6 26.9 22.0 16.7 113/16 113/4 125/16 129/16 127/8 133/16 33/16 33/4 45/16 49/16 47/8 53/16 334 279 219 186 152 116 83.7 69.3 53.7 45.5 36.9 28.0 3.17 3.20 3.23 3.25 3.27 3.28 HSS14×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 47.2 41.2 33.6 29.2 24.4 19.0 23.6 20.6 16.8 14.6 12.2 9.48 1.59 1.64 1.69 1.72 1.74 1.77 28.5 24.1 19.1 16.4 13.5 10.3 111/4 113/4 121/4 125/8 127/8 131/8 — — 21/4 25/8 27/8 31/8 148 127 102 87.7 72.4 55.8 52.6 44.1 34.6 29.5 24.1 18.4 2.83 2.87 2.90 2.92 2.93 2.95 298 234 200 164 59.7 46.9 40.0 32.7 3.96 4.01 4.04 4.07 69.6 54.0 45.7 37.2 93/4 105/16 109/16 107/8 73/4 85/16 89/16 87/8 545 421 356 289 102 78.3 66.1 53.5 3.53 3.57 3.58 3.60 HSS12×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 210 178 140 120 98.8 75.7 52.5 44.4 35.1 30.1 24.7 18.9 3.16 3.21 3.27 3.29 3.32 3.35 61.9 51.5 40.1 34.1 27.8 21.1 93/16 93/4 105/16 109/16 107/8 111/8 53/16 53/4 65/16 69/16 67/8 71/8 454 377 293 248 202 153 97.7 80.4 62.1 52.4 42.5 32.2 3.17 3.20 3.23 3.25 3.27 3.28 HSS12×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 107 91.1 72.9 62.8 51.9 40.0 35.5 30.4 24.3 20.9 17.3 13.3 2.39 2.44 2.49 2.52 2.54 2.57 42.1 35.2 27.7 23.6 19.3 14.7 93/16 93/4 105/16 109/16 107/8 113/16 33/16 33/4 45/16 49/16 47/8 53/16 271 227 178 152 124 94.6 71.1 59.0 45.8 38.8 31.6 24.0 2.83 2.87 2.90 2.92 2.93 2.95 HSS12×10×1/2 ×3/8 ×5/16 ×1/4 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 78 1–78 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t I S r Z HSS12×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 in. 0.581 0.465 0.349 0.291 0.233 0.174 lb/ft 59.32 48.85 37.69 31.84 25.82 19.63 in.2 16.4 13.5 10.4 8.76 7.10 5.37 3.88 5.60 8.46 10.7 14.2 20.0 17.7 22.8 31.4 38.2 48.5 66.0 in.4 245 210 168 144 119 91.8 in.3 40.8 34.9 28.0 24.1 19.9 15.3 in. 3.87 3.95 4.02 4.06 4.10 4.13 in.3 55.5 46.7 36.7 31.3 25.6 19.6 HSS12×31/2×3/8 ×5/16 0.349 0.291 36.41 30.78 10.0 8.46 7.03 9.03 31.4 38.2 156 134 26.0 22.4 3.94 3.98 34.7 29.6 HSS12×3×5/16 ×1/4 ×3/16 0.291 0.233 0.174 29.72 24.12 18.35 8.17 6.63 5.02 7.31 9.88 14.2 38.2 48.5 66.0 124 103 79.6 20.7 17.2 13.3 3.90 3.94 3.98 27.9 22.9 17.5 HSS12×2×5/16 ×1/4 ×3/16 0.291 0.233 0.174 27.59 22.42 17.08 7.59 6.17 4.67 3.87 5.58 8.49 38.2 48.5 66.0 104 86.9 67.4 17.4 14.5 11.2 3.71 3.75 3.80 24.5 20.1 15.5 HSS10×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 67.82 55.66 42.79 36.10 29.23 22.18 18.7 15.3 11.8 9.92 8.03 6.06 10.8 14.2 19.9 24.5 31.3 43.0 14.2 18.5 25.7 31.4 39.9 54.5 253 214 169 145 119 91.4 50.5 42.7 33.9 29.0 23.8 18.3 3.68 3.73 3.79 3.82 3.85 3.88 62.2 51.9 40.5 34.4 28.1 21.4 HSS10×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 59.32 48.85 37.69 31.84 25.82 19.63 16.4 13.5 10.4 8.76 7.10 5.37 7.33 9.90 14.2 17.6 22.8 31.5 14.2 18.5 25.7 31.4 39.9 54.5 201 171 137 118 96.9 74.6 40.2 34.3 27.4 23.5 19.4 14.9 3.50 3.57 3.63 3.66 3.69 3.73 51.3 43.0 33.8 28.8 23.6 18.0 HSS10×5×3/8 ×5/16 ×1/4 ×3/16 0.349 0.291 0.233 0.174 35.13 29.72 24.12 18.35 9.67 8.17 6.63 5.02 11.3 14.2 18.5 25.7 25.7 31.4 39.9 54.5 120 104 85.8 66.2 24.1 20.8 17.2 13.2 3.53 3.56 3.60 3.63 30.4 26.0 21.3 16.3 Shape Axis X-X Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 79 DIMENSIONS AND PROPERTIES 1–79 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS12-HSS10 Axis Y-Y Shape I Torsion Workable Flat S r Z Depth Width J C Surface Area HSS12×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 in.4 40.4 35.3 28.9 25.2 21.0 16.4 in.3 20.2 17.7 14.5 12.6 10.5 8.20 in. 1.57 1.62 1.67 1.70 1.72 1.75 in.3 24.5 20.9 16.6 14.2 11.7 9.00 in. 93/16 93/4 105/16 105/8 107/8 113/16 in. — — 25/16 25/8 27/8 33/16 in.4 122 105 84.1 72.4 59.8 46.1 in.3 44.6 37.5 29.5 25.2 20.6 15.7 ft 2/ft 2.50 2.53 2.57 2.58 2.60 2.62 HSS12×31/2×3/8 ×5/16 21.3 18.6 12.2 10.6 1.46 1.48 14.0 12.1 105/16 105/8 — — 64.7 56.0 25.5 21.8 2.48 2.50 HSS12×3×5/16 ×1/4 ×3/16 13.1 11.1 8.72 8.73 7.38 5.81 1.27 1.29 1.32 10.0 8.28 6.40 105/8 107/8 113/16 — — 23/16 41.3 34.5 26.8 18.4 15.1 11.6 2.42 2.43 2.45 HSS12×2×5/16 ×1/4 ×3/16 5.10 4.41 3.55 5.10 4.41 3.55 0.820 0.845 0.872 6.05 5.08 3.97 105/8 107/8 113/16 — — — 17.6 15.1 12.0 11.6 9.64 7.49 2.25 2.27 2.28 HSS10×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 178 151 120 103 84.7 65.1 44.5 37.8 30.0 25.7 21.2 16.3 3.09 3.14 3.19 3.22 3.25 3.28 53.3 44.5 34.8 29.6 24.2 18.4 73/16 73/4 85/16 85/8 87/8 93/16 53/16 53/4 65/16 65/8 67/8 73/16 346 288 224 190 155 118 80.4 66.4 51.4 43.5 35.3 26.7 2.83 2.87 2.90 2.92 2.93 2.95 HSS10×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 89.4 76.8 61.8 53.3 44.1 34.1 29.8 25.6 20.6 17.8 14.7 11.4 2.34 2.39 2.44 2.47 2.49 2.52 35.8 30.1 23.7 20.2 16.6 12.7 73/16 73/4 85/16 85/8 87/8 93/16 33/16 33/4 45/16 45/8 47/8 53/16 209 176 139 118 96.7 73.8 58.6 48.7 37.9 32.2 26.2 19.9 2.50 2.53 2.57 2.58 2.60 2.62 HSS10×5×3/8 ×5/16 ×1/4 ×3/16 40.6 35.2 29.3 22.7 16.2 14.1 11.7 9.09 2.05 2.07 2.10 2.13 18.7 16.0 13.2 10.1 85/16 85/8 87/8 93/16 35/16 35/8 37/8 43/16 100 86.0 70.7 54.1 31.2 26.5 21.6 16.5 2.40 2.42 2.43 2.45 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 80 1–80 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t I S r Z HSS10×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 in. 0.581 0.465 0.349 0.291 0.233 0.174 0.116 lb/ft 50.81 42.05 32.58 27.59 22.42 17.08 11.56 in.2 14.0 11.6 8.97 7.59 6.17 4.67 3.16 3.88 5.60 8.46 10.7 14.2 20.0 31.5 14.2 18.5 25.7 31.4 39.9 54.5 83.2 in.4 149 129 104 90.1 74.7 57.8 39.8 in.3 29.9 25.8 20.8 18.0 14.9 11.6 7.97 in. 3.26 3.34 3.41 3.44 3.48 3.52 3.55 in.3 40.3 34.1 27.0 23.1 19.0 14.6 10.0 HSS10×31/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 40.34 31.31 26.53 21.57 16.44 11.13 11.1 8.62 7.30 5.93 4.50 3.04 4.53 7.03 9.03 12.0 17.1 27.2 18.5 25.7 31.4 39.9 54.5 83.2 118 96.1 83.2 69.1 53.6 37.0 23.7 19.2 16.6 13.8 10.7 7.40 3.26 3.34 3.38 3.41 3.45 3.49 31.9 25.3 21.7 17.9 13.7 9.37 HSS10×3×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 30.03 25.46 20.72 15.80 10.71 8.27 7.01 5.70 4.32 2.93 5.60 7.31 9.88 14.2 22.9 25.7 31.4 39.9 54.5 83.2 88.0 76.3 63.6 49.4 34.2 17.6 15.3 12.7 9.87 6.83 3.26 3.30 3.34 3.38 3.42 23.7 20.3 16.7 12.8 8.80 HSS10×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 27.48 23.34 19.02 14.53 9.86 7.58 6.43 5.24 3.98 2.70 2.73 3.87 5.58 8.49 14.2 25.7 31.4 39.9 54.5 83.2 71.7 62.6 52.5 41.0 28.5 14.3 12.5 10.5 8.19 5.70 3.08 3.12 3.17 3.21 3.25 20.3 17.5 14.4 11.1 7.65 HSS9×7×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 59.32 48.85 37.69 31.84 25.82 19.63 16.4 13.5 10.4 8.76 7.10 5.37 9.05 12.1 17.1 21.1 27.0 37.2 12.5 16.4 22.8 27.9 35.6 48.7 174 149 119 102 84.1 64.7 38.7 33.0 26.4 22.6 18.7 14.4 3.26 3.32 3.38 3.41 3.44 3.47 48.3 40.5 31.8 27.1 22.2 16.9 Shape Axis X-X Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 81 DIMENSIONS AND PROPERTIES 1–81 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS10-HSS9 Axis Y-Y Shape Depth Width I S r Z HSS10×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 in.4 33.5 29.5 24.3 21.2 17.7 13.9 9.65 in.3 16.8 14.7 12.1 10.6 8.87 6.93 4.83 in. 1.54 1.59 1.64 1.67 1.70 1.72 1.75 in.3 20.6 17.6 14.0 12.1 10.0 7.66 5.26 in. 73/16 73/4 85/16 85/8 87/8 93/16 97/16 HSS10×31/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 21.4 17.8 15.6 13.1 10.3 7.22 12.2 10.2 8.92 7.51 5.89 4.12 1.39 1.44 1.46 1.49 1.51 1.54 14.7 11.8 10.2 8.45 6.52 4.48 HSS10×3×3/8 ×5/16 ×1/4 ×3/16 ×1/8 12.4 11.0 9.28 7.33 5.16 8.28 7.30 6.19 4.89 3.44 1.22 1.25 1.28 1.30 1.33 HSS10×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 4.70 4.24 3.67 2.97 2.14 4.70 4.24 3.67 2.97 2.14 0.787 0.812 0.838 0.864 0.890 HSS9×7×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 117 100 80.4 69.2 57.2 44.1 33.5 28.7 23.0 19.8 16.3 12.6 Torsion Workable Flat 2.68 2.73 2.78 2.81 2.84 2.87 Surface Area J C in. — — 25/16 25/8 27/8 33/16 37/16 in.4 95.7 82.6 66.5 57.3 47.4 36.5 25.1 in.3 36.7 31.0 24.4 20.9 17.1 13.1 8.90 ft 2/ft 2.17 2.20 2.23 2.25 2.27 2.28 2.30 73/4 85/16 85/8 87/8 93/16 97/16 — — — — 211/16 215/16 63.2 51.5 44.6 37.0 28.6 19.8 26.5 21.1 18.0 14.8 11.4 7.75 2.12 2.15 2.17 2.18 2.20 2.22 9.73 8.42 6.99 5.41 3.74 85/16 85/8 87/8 93/16 97/16 — — — 23/16 27/16 37.8 33.0 27.6 21.5 14.9 17.7 15.2 12.5 9.64 6.61 2.07 2.08 2.10 2.12 2.13 5.76 5.06 4.26 3.34 2.33 85/16 85/8 87/8 93/16 97/16 — — — — — 15.9 14.2 12.2 9.74 6.90 11.0 9.56 7.99 6.22 4.31 1.90 1.92 1.93 1.95 1.97 63/16 63/4 75/16 75/8 77/8 83/16 43/16 43/4 55/16 55/8 57/8 63/16 62.0 51.5 40.0 33.9 27.6 20.9 2.50 2.53 2.57 2.58 2.60 2.62 40.5 34.0 26.7 22.8 18.7 14.3 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 235 197 154 131 107 81.7 AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 82 1–82 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t I S r Z HSS9×5×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 in. 0.581 0.465 0.349 0.291 0.233 0.174 lb/ft 50.81 42.05 32.58 27.59 22.42 17.08 in.2 14.0 11.6 8.97 7.59 6.17 4.67 5.61 7.75 11.3 14.2 18.5 25.7 12.5 16.4 22.8 27.9 35.6 48.7 in.4 133 115 92.5 79.8 66.1 51.1 in.3 29.6 25.5 20.5 17.7 14.7 11.4 in. 3.08 3.14 3.21 3.24 3.27 3.31 in.3 38.5 32.5 25.7 22.0 18.1 13.8 HSS9×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.465 0.349 0.291 0.233 0.174 35.24 27.48 23.34 19.02 14.53 9.74 7.58 6.43 5.24 3.98 3.45 5.60 7.31 9.88 14.2 16.4 22.8 27.9 35.6 48.7 80.8 66.3 57.7 48.2 37.6 18.0 14.7 12.8 10.7 8.35 2.88 2.96 3.00 3.04 3.07 24.6 19.7 16.9 14.0 10.8 HSS8×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 50.81 42.05 32.58 27.59 22.42 17.08 14.0 11.6 8.97 7.59 6.17 4.67 7.33 9.90 14.2 17.6 22.8 31.5 10.8 14.2 19.9 24.5 31.3 43.0 114 98.2 79.1 68.3 56.6 43.7 28.5 24.6 19.8 17.1 14.2 10.9 2.85 2.91 2.97 3.00 3.03 3.06 36.1 30.5 24.1 20.6 16.9 13.0 HSS8×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.581 0.465 0.349 0.291 0.233 0.174 0.116 42.30 35.24 27.48 23.34 19.02 14.53 9.86 11.7 9.74 7.58 6.43 5.24 3.98 2.70 3.88 5.60 8.46 10.7 14.2 20.0 31.5 10.8 14.2 19.9 24.5 31.3 43.0 66.0 82.0 71.8 58.7 51.0 42.5 33.1 22.9 20.5 17.9 14.7 12.8 10.6 8.27 5.73 2.64 2.71 2.78 2.82 2.85 2.88 2.92 27.4 23.5 18.8 16.1 13.3 10.2 7.02 HSS8×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 31.84 24.93 21.21 17.32 13.25 9.01 8.81 6.88 5.85 4.77 3.63 2.46 3.45 5.60 7.31 9.88 14.2 22.9 14.2 19.9 24.5 31.3 43.0 66.0 58.6 48.5 42.4 35.5 27.8 19.3 14.6 12.1 10.6 8.88 6.94 4.83 2.58 2.65 2.69 2.73 2.77 2.80 20.0 16.1 13.9 11.5 8.87 6.11 Shape Axis X-X Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 83 DIMENSIONS AND PROPERTIES 1–83 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS9-HSS8 Axis Y-Y Shape I Torsion Workable Flat S r Z Depth Width J C Surface Area HSS9×5×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 in.4 52.0 45.2 36.8 32.0 26.6 20.7 in.3 20.8 18.1 14.7 12.8 10.6 8.28 in. 1.92 1.97 2.03 2.05 2.08 2.10 in.3 25.3 21.5 17.1 14.6 12.0 9.25 in. 63/16 63/4 75/16 75/8 77/8 83/16 in. 23/16 23/4 35/16 35/8 37/8 43/16 in.4 128 109 86.9 74.4 61.2 46.9 in.3 42.5 35.6 27.9 23.8 19.4 14.8 ft 2/ft 2.17 2.20 2.23 2.25 2.27 2.28 HSS9×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 13.2 11.2 9.88 8.38 6.64 8.81 7.45 6.59 5.59 4.42 1.17 1.21 1.24 1.27 1.29 10.8 8.80 7.63 6.35 4.92 63/4 75/16 75/8 77/8 83/16 — — — — 23/16 40.0 33.1 28.9 24.2 18.9 19.7 15.8 13.6 11.3 8.66 1.87 1.90 1.92 1.93 1.95 HSS8×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 72.3 62.5 50.6 43.8 36.4 28.2 24.1 20.8 16.9 14.6 12.1 9.39 2.27 2.32 2.38 2.40 2.43 2.46 29.5 24.9 19.8 16.9 13.9 10.7 53/16 53/4 65/16 65/8 67/8 73/16 33/16 33/4 45/16 45/8 47/8 53/16 150 127 100 85.8 70.3 53.7 46.0 38.4 30.0 25.5 20.8 15.8 2.17 2.20 2.23 2.25 2.27 2.28 HSS8×4×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 26.6 23.6 19.6 17.2 14.4 11.3 7.90 13.3 11.8 9.80 8.58 7.21 5.65 3.95 1.51 1.56 1.61 1.63 1.66 1.69 1.71 16.6 14.3 11.5 9.91 8.20 6.33 4.36 53/16 53/4 65/16 65/8 67/8 73/16 77/16 — — 25/16 25/8 27/8 33/16 37/16 70.3 61.1 49.3 42.6 35.3 27.2 18.7 28.7 24.4 19.3 16.5 13.6 10.4 7.10 1.83 1.87 1.90 1.92 1.93 1.95 1.97 HSS8×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 11.7 10.0 8.81 7.49 5.94 4.20 7.81 6.63 5.87 4.99 3.96 2.80 1.15 1.20 1.23 1.25 1.28 1.31 9.64 7.88 6.84 5.70 4.43 3.07 53/4 65/16 65/8 67/8 73/16 77/16 — — — — 23/16 27/16 34.3 28.5 24.9 20.8 16.2 11.3 17.4 14.0 12.1 10.0 7.68 5.27 1.70 1.73 1.75 1.77 1.78 1.80 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 84 1–84 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t I S r Z HSS8×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 in. 0.349 0.291 0.233 0.174 0.116 lb/ft 22.37 19.08 15.62 11.97 8.16 in.2 6.18 5.26 4.30 3.28 2.23 2.73 3.87 5.58 8.49 14.2 19.9 24.5 31.3 43.0 66.0 in.4 38.2 33.7 28.5 22.4 15.7 in.3 9.56 8.43 7.12 5.61 3.93 in. 2.49 2.53 2.57 2.61 2.65 in.3 13.4 11.6 9.68 7.51 5.19 HSS7×5×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 35.24 27.48 23.34 19.02 14.53 9.86 9.74 7.58 6.43 5.24 3.98 2.70 7.75 11.3 14.2 18.5 25.7 40.1 12.1 17.1 21.1 27.0 37.2 57.3 60.6 49.5 43.0 35.9 27.9 19.3 17.3 14.1 12.3 10.2 7.96 5.52 2.50 2.56 2.59 2.62 2.65 2.68 21.9 17.5 15.0 12.4 9.52 6.53 HSS7×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 31.84 24.93 21.21 17.32 13.25 9.01 8.81 6.88 5.85 4.77 3.63 2.46 5.60 8.46 10.7 14.2 20.0 31.5 12.1 17.1 21.1 27.0 37.2 57.3 50.7 41.8 36.5 30.5 23.8 16.6 14.5 11.9 10.4 8.72 6.81 4.73 2.40 2.46 2.50 2.53 2.56 2.59 18.8 15.1 13.1 10.8 8.33 5.73 HSS7×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 28.43 22.37 19.08 15.62 11.97 8.16 7.88 6.18 5.26 4.30 3.28 2.23 3.45 5.60 7.31 9.88 14.2 22.9 12.1 17.1 21.1 27.0 37.2 57.3 40.7 34.1 29.9 25.2 19.8 13.8 11.6 9.73 8.54 7.19 5.65 3.95 2.27 2.35 2.38 2.42 2.45 2.49 15.8 12.8 11.1 9.22 7.14 4.93 HSS7×2×1/4 ×3/16 ×1/8 0.233 0.174 0.116 13.91 10.70 7.31 3.84 2.93 2.00 5.58 8.49 14.2 27.0 37.2 57.3 19.8 15.7 11.1 5.67 4.49 3.16 2.27 2.31 2.35 7.64 5.95 4.13 HSS6×5×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 31.84 24.93 21.21 17.32 13.25 9.01 8.81 6.88 5.85 4.77 3.63 2.46 7.75 11.3 14.2 18.5 25.7 40.1 9.90 14.2 17.6 22.8 31.5 48.7 41.1 33.9 29.6 24.7 19.3 13.4 13.7 11.3 9.85 8.25 6.44 4.48 2.16 2.22 2.25 2.28 2.31 2.34 17.2 13.8 11.9 9.87 7.62 5.24 Shape Axis X-X Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 85 DIMENSIONS AND PROPERTIES 1–85 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS8-HSS6 Axis Y-Y Shape HSS8×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 Torsion Workable Flat Depth Width I S r Z in.4 3.73 3.38 2.94 2.39 1.72 in.3 3.73 3.38 2.94 2.39 1.72 in. 0.777 0.802 0.827 0.853 0.879 in.3 4.61 4.06 3.43 2.70 1.90 in. 65/16 65/8 67/8 73/16 77/16 Surface Area J C in. — — — — — in.4 12.1 10.9 9.36 7.48 5.30 in.3 8.65 7.57 6.35 4.95 3.44 ft 2/ft 1.57 1.58 1.60 1.62 1.63 HSS7×5×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 35.6 29.3 25.5 21.3 16.6 11.6 14.2 11.7 10.2 8.53 6.65 4.63 1.91 1.97 1.99 2.02 2.05 2.07 17.3 13.8 11.9 9.83 7.57 5.20 43/4 55/16 55/8 57/8 63/16 67/16 23/4 35/16 35/8 37/8 43/16 47/16 75.8 60.6 52.1 42.9 32.9 22.5 27.2 21.4 18.3 15.0 11.4 7.79 1.87 1.90 1.92 1.93 1.95 1.97 HSS7×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 20.7 17.3 15.2 12.8 10.0 7.03 10.4 8.63 7.58 6.38 5.02 3.51 1.53 1.58 1.61 1.64 1.66 1.69 12.6 10.2 8.83 7.33 5.67 3.91 43/4 55/16 55/8 57/8 61/8 67/16 — 25/16 25/8 27/8 31/8 37/16 50.5 41.0 35.4 29.3 22.7 15.6 21.1 16.8 14.4 11.8 9.07 6.20 1.70 1.73 1.75 1.77 1.78 1.80 HSS7×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 10.2 8.71 7.74 6.60 5.24 3.71 6.80 5.81 5.16 4.40 3.50 2.48 1.14 1.19 1.21 1.24 1.26 1.29 8.46 6.95 6.05 5.06 3.94 2.73 43/4 55/16 55/8 57/8 63/16 67/16 — — — — 23/16 27/16 28.6 23.9 20.9 17.5 13.7 9.48 15.0 12.1 10.5 8.68 6.69 4.60 1.53 1.57 1.58 1.60 1.62 1.63 HSS7×2×1/4 ×3/16 ×1/8 2.58 2.10 1.52 2.58 2.10 1.52 0.819 0.845 0.871 3.02 2.39 1.68 57/8 63/16 67/16 — — — 7.95 6.35 4.51 5.52 4.32 3.00 1.43 1.45 1.47 12.3 10.2 8.91 7.47 5.84 4.07 1.87 1.92 1.95 1.98 2.01 2.03 15.2 12.2 10.5 8.72 6.73 4.63 33/4 45/16 45/8 47/8 53/16 57/16 23/4 35/16 35/8 37/8 43/16 47/16 23.0 18.2 15.6 12.8 9.76 6.66 1.70 1.73 1.75 1.77 1.78 1.80 HSS6×5×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 30.8 25.5 22.3 18.7 14.6 10.2 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 59.8 48.1 41.4 34.2 26.3 18.0 AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 86 1–86 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t I S r Z HSS6×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 in. 0.465 0.349 0.291 0.233 0.174 0.116 lb/ft 28.43 22.37 19.08 15.62 11.97 8.16 in.2 7.88 6.18 5.26 4.30 3.28 2.23 5.60 8.46 10.7 14.2 20.0 31.5 9.90 14.2 17.6 22.8 31.5 48.7 in.4 34.0 28.3 24.8 20.9 16.4 11.4 in.3 11.3 9.43 8.27 6.96 5.46 3.81 in. 2.08 2.14 2.17 2.20 2.23 2.26 in.3 14.6 11.9 10.3 8.53 6.60 4.56 HSS6×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 25.03 19.82 16.96 13.91 10.70 7.31 6.95 5.48 4.68 3.84 2.93 2.00 3.45 5.60 7.31 9.88 14.2 22.9 9.90 14.2 17.6 22.8 31.5 48.7 26.8 22.7 20.1 17.0 13.4 9.43 8.95 7.57 6.69 5.66 4.47 3.14 1.97 2.04 2.07 2.10 2.14 2.17 12.1 9.90 8.61 7.19 5.59 3.87 HSS6×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 17.27 14.83 12.21 9.42 6.46 4.78 4.10 3.37 2.58 1.77 2.73 3.87 5.58 8.49 14.2 14.2 17.6 22.8 31.5 48.7 17.1 15.3 13.1 10.5 7.42 5.71 5.11 4.37 3.49 2.47 1.89 1.93 1.97 2.01 2.05 7.93 6.95 5.84 4.58 3.19 HSS5×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 25.03 19.82 16.96 13.91 10.70 7.31 6.95 5.48 4.68 3.84 2.93 2.00 5.60 8.46 10.7 14.2 20.0 31.5 7.75 11.3 14.2 18.5 25.7 40.1 21.2 17.9 15.8 13.4 10.6 7.42 8.49 7.17 6.32 5.35 4.22 2.97 1.75 1.81 1.84 1.87 1.90 1.93 10.9 8.96 7.79 6.49 5.05 3.50 HSS5×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 21.63 17.27 14.83 12.21 9.42 6.46 6.02 4.78 4.10 3.37 2.58 1.77 3.45 5.60 7.31 9.88 14.2 22.9 7.75 11.3 14.2 18.5 25.7 40.1 16.4 14.1 12.6 10.7 8.53 6.03 6.57 5.65 5.03 4.29 3.41 2.41 1.65 1.72 1.75 1.78 1.82 1.85 8.83 7.34 6.42 5.38 4.21 2.93 Shape Axis X-X Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 87 DIMENSIONS AND PROPERTIES 1–87 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS6-HSS5 Workable Flat Axis Y-Y Shape I S r Z HSS6×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 in.4 17.8 14.9 13.2 11.1 8.76 6.15 in.3 8.89 7.47 6.58 5.56 4.38 3.08 in. 1.50 1.55 1.58 1.61 1.63 1.66 in.3 11.0 8.94 7.75 6.45 5.00 3.46 in. 33/4 45/16 45/8 47/8 53/16 57/16 HSS6×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 8.69 7.48 6.67 5.70 4.55 3.23 5.79 4.99 4.45 3.80 3.03 2.15 1.12 1.17 1.19 1.22 1.25 1.27 7.28 6.03 5.27 4.41 3.45 2.40 HSS6×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 2.77 2.52 2.21 1.80 1.31 2.77 2.52 2.21 1.80 1.31 0.760 0.785 0.810 0.836 0.861 HSS5×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 14.9 12.6 11.1 9.46 7.48 5.27 7.43 6.30 5.57 4.73 3.74 2.64 HSS5×3×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 7.18 6.25 5.60 4.81 3.85 2.75 4.78 4.16 3.73 3.21 2.57 1.83 Depth Width Torsion Surface Area J C in. — 25/16 25/8 27/8 33/16 37/16 in.4 40.3 32.8 28.4 23.6 18.2 12.6 in.3 17.8 14.2 12.2 10.1 7.74 5.30 ft 2/ft 1.53 1.57 1.58 1.60 1.62 1.63 33/4 45/16 45/8 47/8 53/16 57/16 — — — — 23/16 27/16 23.1 19.3 16.9 14.2 11.1 7.73 12.7 10.3 8.91 7.39 5.71 3.93 1.37 1.40 1.42 1.43 1.45 1.47 3.46 3.07 2.61 2.07 1.46 45/16 45/8 47/8 53/16 57/16 — — — — — 8.42 7.60 6.55 5.24 3.72 6.35 5.58 4.70 3.68 2.57 1.23 1.25 1.27 1.28 1.30 1.46 1.52 1.54 1.57 1.60 1.62 9.35 7.67 6.67 5.57 4.34 3.01 23/4 35/16 35/8 37/8 43/16 47/16 — 25/16 25/8 27/8 33/16 37/16 30.3 24.9 21.7 18.0 14.0 9.66 14.5 11.7 10.1 8.32 6.41 4.39 1.37 1.40 1.42 1.43 1.45 1.47 1.09 1.14 1.17 1.19 1.22 1.25 6.10 5.10 4.48 3.77 2.96 2.07 23/4 35/16 35/8 37/8 43/16 47/16 — — — — 23/16 27/16 17.6 14.9 13.1 11.0 8.64 6.02 10.3 8.44 7.33 6.10 4.73 3.26 1.20 1.23 1.25 1.27 1.28 1.30 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 88 1–88 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t HSS5×21/2×1/4 ×3/16 ×1/8 in. 0.233 0.174 0.116 lb/ft 11.36 8.78 6.03 in.2 3.14 2.41 1.65 7.73 11.4 18.6 18.5 25.7 40.1 HSS5×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 14.72 12.70 10.51 8.15 5.61 4.09 3.52 2.91 2.24 1.54 2.73 3.87 5.58 8.49 14.2 HSS4×3×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 14.72 12.70 10.51 8.15 5.61 4.09 3.52 2.91 2.24 1.54 HSS4×21/2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 13.44 11.64 9.66 7.51 5.18 HSS4×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 HSS31/2×21/2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 HSS31/2×2×1/4 ×3/16 ×1/8 Shape Axis X-X I S r Z in.4 9.40 7.51 5.34 in.3 3.76 3.01 2.14 in. 1.73 1.77 1.80 in.3 4.83 3.79 2.65 11.3 14.2 18.5 25.7 40.1 10.4 9.35 8.08 6.50 4.65 4.14 3.74 3.23 2.60 1.86 1.59 1.63 1.67 1.70 1.74 5.71 5.05 4.27 3.37 2.37 5.60 7.31 9.88 14.2 22.9 8.46 10.7 14.2 20.0 31.5 7.93 7.14 6.15 4.93 3.52 3.97 3.57 3.07 2.47 1.76 1.39 1.42 1.45 1.49 1.52 5.12 4.51 3.81 3.00 2.11 3.74 3.23 2.67 2.06 1.42 4.16 5.59 7.73 11.4 18.6 8.46 10.7 14.2 20.0 31.5 6.77 6.13 5.32 4.30 3.09 3.38 3.07 2.66 2.15 1.54 1.35 1.38 1.41 1.44 1.47 4.48 3.97 3.38 2.67 1.88 12.17 10.58 8.81 6.87 4.75 3.39 2.94 2.44 1.89 1.30 2.73 3.87 5.58 8.49 14.2 8.46 10.7 14.2 20.0 31.5 5.60 5.13 4.49 3.66 2.65 2.80 2.56 2.25 1.83 1.32 1.29 1.32 1.36 1.39 1.43 3.84 3.43 2.94 2.34 1.66 0.349 0.291 0.233 0.174 0.116 12.17 10.58 8.81 6.87 4.75 3.39 2.94 2.44 1.89 1.30 4.16 5.59 7.73 11.4 18.6 7.03 9.03 12.0 17.1 27.2 4.75 4.34 3.79 3.09 2.23 2.72 2.48 2.17 1.76 1.28 1.18 1.22 1.25 1.28 1.31 3.59 3.20 2.74 2.18 1.54 0.233 0.174 0.116 7.96 6.23 4.33 2.21 1.71 1.19 5.58 8.49 14.2 12.0 17.1 27.2 3.17 2.61 1.90 1.81 1.49 1.09 1.20 1.23 1.27 2.36 1.89 1.34 Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 89 DIMENSIONS AND PROPERTIES 1–89 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS5-HSS31/2 Workable Flat Axis Y-Y Shape Depth Width Torsion S r Z HSS5×21/2×1/4 ×3/16 ×1/8 in.4 3.13 2.53 1.82 in.3 2.50 2.03 1.46 in. 0.999 1.02 1.05 in.3 2.95 2.33 1.64 in. 37/8 43/16 47/16 in. — — — in.4 7.93 6.26 4.40 in.3 4.99 3.89 2.70 ft 2/ft 1.18 1.20 1.22 HSS5×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 2.28 2.10 1.84 1.51 1.10 2.28 2.10 1.84 1.51 1.10 0.748 0.772 0.797 0.823 0.848 2.88 2.57 2.20 1.75 1.24 35/16 35/8 37/8 43/16 47/16 — — — — — 6.61 5.99 5.17 4.15 2.95 5.20 4.59 3.88 3.05 2.13 1.07 1.08 1.10 1.12 1.13 HSS4×3×3/8 ×5/16 ×1/4 ×3/16 ×1/8 5.01 4.52 3.91 3.16 2.27 3.34 3.02 2.61 2.10 1.51 1.11 1.13 1.16 1.19 1.21 4.18 3.69 3.12 2.46 1.73 25/16 25/8 27/8 33/16 37/16 — — — — — 10.6 9.41 7.96 6.26 4.38 6.59 5.75 4.81 3.74 2.59 1.07 1.08 1.10 1.12 1.13 HSS4×21/2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 3.17 2.89 2.53 2.06 1.49 2.54 2.32 2.02 1.65 1.19 0.922 0.947 0.973 0.999 1.03 3.20 2.85 2.43 1.93 1.36 25/16 25/8 27/8 31/8 37/16 — — — — — 7.57 6.77 5.78 4.59 3.23 5.32 4.67 3.93 3.08 2.14 0.983 1.00 1.02 1.03 1.05 1.80 1.67 1.48 1.22 0.898 1.80 1.67 1.48 1.22 0.898 0.729 0.754 0.779 0.804 0.830 2.31 2.08 1.79 1.43 1.02 25/16 25/8 27/8 33/16 37/16 — — — — — 4.83 4.40 3.82 3.08 2.20 4.04 3.59 3.05 2.41 1.69 0.900 0.917 0.933 0.950 0.967 2.77 2.54 2.23 1.82 1.33 2.21 2.03 1.78 1.46 1.06 0.904 0.930 0.956 0.983 1.01 2.82 2.52 2.16 1.72 1.22 — 21/8 23/8 211/16 215/16 — — — — — 6.16 5.53 4.75 3.78 2.67 4.57 4.03 3.40 2.67 1.87 0.900 0.917 0.933 0.950 0.967 1.30 1.08 0.795 1.30 1.08 0.795 0.766 0.792 0.818 1.58 1.27 0.912 23/8 211/16 215/16 — — — 3.16 2.55 1.83 2.64 2.09 1.47 0.850 0.867 0.883 HSS4×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 HSS31/2×21/2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 HSS31/2×2×1/4 ×3/16 ×1/8 —Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION J C Surface Area I AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 90 1–90 DIMENSIONS AND PROPERTIES Table 1-11 (continued) Rectangular HSS Dimensions and Properties Design Wall Thickness, t Nominal Wt. Area, A b/t h/t HSS31/2×11/2×1/4 ×3/16 ×1/8 in. 0.233 0.174 0.116 lb/ft 7.11 5.59 3.90 in.2 1.97 1.54 1.07 3.44 5.62 9.93 12.0 17.1 27.2 in.4 2.55 2.12 1.57 HSS3×21/2×5/16 ×1/4 ×3/16 ×1/8 0.291 0.233 0.174 0.116 9.51 7.96 6.23 4.33 2.64 2.21 1.71 1.19 5.59 7.73 11.4 18.6 7.31 9.88 14.2 22.9 HSS3×2×5/16 ×1/4 ×3/16 ×1/8 0.291 0.233 0.174 0.116 8.45 7.11 5.59 3.90 2.35 1.97 1.54 1.07 3.87 5.58 8.49 14.2 HSS3×11/2×1/4 ×3/16 ×1/8 0.233 0.174 0.116 6.26 4.96 3.48 1.74 1.37 0.956 HSS3×1×3/16 ×1/8 0.174 0.116 4.32 3.05 HSS21/2×2×1/4 ×3/16 ×1/8 0.233 0.174 0.116 HSS21/2×11/2×1/4 ×3/16 ×1/8 Shape Axis X-X I r Z in.3 1.46 1.21 0.896 in. 1.14 1.17 1.21 in.3 1.98 1.60 1.15 2.92 2.57 2.11 1.54 1.94 1.72 1.41 1.03 1.05 1.08 1.11 1.14 2.51 2.16 1.73 1.23 7.31 9.88 14.2 22.9 2.38 2.13 1.77 1.30 1.59 1.42 1.18 0.867 1.01 1.04 1.07 1.10 2.11 1.83 1.48 1.06 3.44 5.62 9.93 9.88 14.2 22.9 1.68 1.42 1.06 1.12 0.945 0.706 0.982 1.02 1.05 1.51 1.24 0.895 1.19 0.840 2.75 5.62 14.2 22.9 1.07 0.817 0.713 0.545 0.947 0.987 0.989 0.728 6.26 4.96 3.48 1.74 1.37 0.956 5.58 8.49 14.2 7.73 11.4 18.6 1.33 1.12 0.833 1.06 0.894 0.667 0.874 0.904 0.934 1.37 1.12 0.809 0.233 0.174 0.116 5.41 4.32 3.05 1.51 1.19 0.840 3.44 5.62 9.93 7.73 11.4 18.6 1.03 0.882 0.668 0.822 0.705 0.535 0.826 0.860 0.892 1.11 0.915 0.671 HSS21/2×1×3/16 ×1/8 0.174 0.116 3.68 2.63 1.02 0.724 2.75 5.62 11.4 18.6 0.646 0.503 0.517 0.403 0.796 0.834 0.713 0.532 HSS21/4×2×3/16 ×1/8 0.174 0.116 4.64 3.27 1.28 0.898 8.49 14.2 9.93 16.4 0.859 0.646 0.764 0.574 0.819 0.848 0.952 0.693 HSS2×11/2×3/16 ×1/8 0.174 0.116 3.68 2.63 1.02 0.724 5.62 9.93 8.49 14.2 0.495 0.383 0.495 0.383 0.697 0.728 0.639 0.475 HSS2×1×3/16 ×1/8 0.174 0.116 3.04 2.20 0.845 0.608 2.75 5.62 8.49 14.2 0.350 0.280 0.350 0.280 0.643 0.679 0.480 0.366 Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION S AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 91 DIMENSIONS AND PROPERTIES 1–91 Table 1-11 (continued) Rectangular HSS Dimensions and Properties HSS31/2 -HSS2 Workable Flat Axis Y-Y Shape I S r Z Depth Width Torsion J C Surface Area in.4 0.638 0.544 0.411 in.3 0.851 0.725 0.548 in. 0.569 0.594 0.619 in.3 1.06 0.867 0.630 in. 23/8 211/16 215/16 in. — — — in.4 1.79 1.49 1.09 in.3 1.88 1.51 1.08 ft 2/ft 0.767 0.784 0.800 2.18 1.93 1.59 1.16 1.74 1.54 1.27 0.931 0.908 0.935 0.963 0.990 2.20 1.90 1.52 1.09 — — 23/16 27/16 — — — — 4.34 3.74 3.00 2.13 3.39 2.87 2.27 1.59 0.833 0.850 0.867 0.883 HSS3×2×5/16 ×1/4 ×3/16 ×1/8 1.24 1.11 0.932 0.692 1.24 1.11 0.932 0.692 0.725 0.751 0.778 0.804 1.58 1.38 1.12 0.803 — — 23/16 27/16 — — — — 2.87 2.52 2.05 1.47 2.60 2.23 1.78 1.25 0.750 0.767 0.784 0.800 HSS3×11/2×1/4 ×3/16 ×1/8 0.543 0.467 0.355 0.725 0.622 0.474 0.559 0.584 0.610 0.911 0.752 0.550 17/8 23/16 27/16 — — — 1.44 1.21 0.886 1.58 1.28 0.920 0.683 0.700 0.717 HSS3×1×3/16 ×1/8 0.173 0.138 0.345 0.276 0.380 0.405 0.432 0.325 23/16 27/16 — — 0.526 0.408 0.792 0.585 0.617 0.633 HSS21/2×2×1/4 ×3/16 ×1/8 0.930 0.786 0.589 0.930 0.786 0.589 0.731 0.758 0.785 1.17 0.956 0.694 — — — — — — 1.90 1.55 1.12 1.82 1.46 1.04 0.683 0.700 0.717 HSS21/2×11/2×1/4 ×3/16 ×1/8 0.449 0.390 0.300 0.599 0.520 0.399 0.546 0.572 0.597 0.764 0.636 0.469 — — — — — — 1.10 0.929 0.687 1.29 1.05 0.759 0.600 0.617 0.633 HSS21/2×1×3/16 ×1/8 0.143 0.115 0.285 0.230 0.374 0.399 0.360 0.274 — — — — 0.412 0.322 0.648 0.483 0.534 0.550 HSS21/4×2×3/16 ×1/8 0.713 0.538 0.713 0.538 0.747 0.774 0.877 0.639 — — — — 1.32 0.957 1.30 0.927 0.659 0.675 HSS2×11/2×3/16 ×1/8 0.313 0.244 0.417 0.325 0.554 0.581 0.521 0.389 — — — — 0.664 0.496 0.822 0.599 0.534 0.550 0.112 0.0922 0.225 0.184 0.365 0.390 0.288 0.223 — — — — 0.301 0.238 0.505 0.380 0.450 0.467 HSS31/2×11/2×1/4 ×3/16 ×1/8 HSS3×21/2×5/16 ×1/4 ×3/16 ×1/8 HSS2×1×3/16 ×1/8 — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 92 1–92 DIMENSIONS AND PROPERTIES Table 1-12 Square HSS Dimensions and Properties HSS16-HSS8 Shape Design Wall Nom- Area, Thick- inal A ness, Wt. t b/t h/t I S r Z HSS16×16×5/8 ×1/2 ×3/8 ×5/16 in. 0.581 0.465 0.349 0.291 lb/ft 127.37 103.30 78.52 65.87 in.2 35.0 28.3 21.5 18.1 24.5 31.4 42.8 52.0 in.4 in.3 24.5 1370 171 31.4 1130 141 42.8 873 109 52.0 739 92.3 in. 6.25 6.31 6.37 6.39 in.3 200 164 126 106 HSS14×14×5/8 ×1/2 ×3/8 ×5/16 0.581 0.465 0.349 0.291 110.36 89.68 68.31 57.36 30.3 24.6 18.7 15.7 21.1 27.1 37.1 45.1 21.1 27.1 37.1 45.1 897 743 577 490 128 106 82.5 69.9 5.44 151 5.49 124 5.55 95.4 5.58 80.5 HSS12×12×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 93.34 76.07 58.10 48.86 39.43 29.84 25.7 20.9 16.0 13.4 10.8 8.15 17.7 22.8 31.4 38.2 48.5 66.0 17.7 22.8 31.4 38.2 48.5 66.0 548 457 357 304 248 189 91.4 76.2 59.5 50.7 41.4 31.5 4.62 109 4.68 89.6 4.73 69.2 4.76 58.6 4.79 47.6 4.82 36.0 HSS10×10×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 0.581 0.465 0.349 0.291 0.233 0.174 76.33 62.46 47.90 40.35 32.63 24.73 21.0 17.2 13.2 11.1 8.96 6.76 14.2 18.5 25.7 31.4 39.9 54.5 14.2 18.5 25.7 31.4 39.9 54.5 304 256 202 172 141 108 60.8 51.2 40.4 34.5 28.3 21.6 3.80 3.86 3.92 3.94 3.97 4.00 HSS9×9×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.581 0.465 0.349 0.291 0.233 0.174 0.116 67.82 55.66 42.79 36.10 29.23 22.18 14.96 18.7 15.3 11.8 9.92 8.03 6.06 4.09 12.5 16.4 22.8 27.9 35.6 48.7 74.6 12.5 16.4 22.8 27.9 35.6 48.7 74.6 216 183 145 124 102 78.2 53.5 47.9 40.6 32.2 27.6 22.7 17.4 11.9 HSS8×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.581 0.465 0.349 0.291 0.233 0.174 0.116 59.32 48.85 37.69 31.84 25.82 19.63 13.26 16.4 13.5 10.4 8.76 7.10 5.37 3.62 10.8 14.2 19.9 24.5 31.3 43.0 66.0 10.8 14.2 19.9 24.5 31.3 43.0 66.0 146 125 100 85.6 70.7 54.4 37.4 36.5 31.2 24.9 21.4 17.7 13.6 9.34 Workable Flat Torsion J in.3 276 224 171 144 ft 2/ft 5.17 5.20 5.23 5.25 113/16 1430 113/4 1170 125/16 900 125/8 759 208 170 130 109 4.50 4.53 4.57 4.58 93/16 93/4 105/16 105/8 107/8 113/16 885 728 561 474 384 290 151 123 94.6 79.7 64.5 48.6 3.83 3.87 3.90 3.92 3.93 3.95 73.2 60.7 47.2 40.1 32.7 24.8 73/16 73/4 85/16 85/8 87/8 93/16 498 412 320 271 220 167 102 84.2 64.8 54.8 44.4 33.6 3.17 3.20 3.23 3.25 3.27 3.28 3.40 3.45 3.51 3.54 3.56 3.59 3.62 58.1 48.4 37.8 32.1 26.2 20.0 13.6 63/16 63/4 75/16 75/8 77/8 83/16 87/16 356 296 231 196 159 121 82.0 81.6 67.4 52.1 44.0 35.8 27.1 18.3 2.83 2.87 2.90 2.92 2.93 2.95 2.97 2.99 3.04 3.10 3.13 3.15 3.18 3.21 44.7 37.5 29.4 25.1 20.5 15.7 10.7 53/16 53/4 65/16 65/8 67/8 73/16 77/16 244 204 160 136 111 84.5 57.3 63.2 52.4 40.7 34.5 28.1 21.3 14.4 2.50 2.53 2.57 2.58 2.60 2.62 2.63 Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. 133/16 133/4 145/16 145/8 in.4 2170 1770 1350 1140 C Surface Area AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 93 DIMENSIONS AND PROPERTIES 1–93 Table 1-12 (continued) Square HSS Dimensions and Properties Shape Design Wall Nom- Area, Thick- inal A ness, Wt. t b/t h/t I S r Z HSS7-HSS41/2 Torsion Workable Flat J C Surface Area HSS7×7×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 in. 0.581 0.465 0.349 0.291 0.233 0.174 0.116 lb/ft 50.81 42.05 32.58 27.59 22.42 17.08 11.56 in.2 14.0 11.6 8.97 7.59 6.17 4.67 3.16 9.05 12.1 17.1 21.1 27.0 37.2 57.3 9.05 12.1 17.1 21.1 27.0 37.2 57.3 in.4 93.4 80.5 65.0 56.1 46.5 36.0 24.8 in.3 26.7 23.0 18.6 16.0 13.3 10.3 7.09 in. 2.58 2.63 2.69 2.72 2.75 2.77 2.80 in.3 33.1 27.9 22.1 18.9 15.5 11.9 8.13 in. 43/16 43/4 55/16 55/8 57/8 63/16 67/16 in.4 158 133 105 89.7 73.5 56.1 38.2 in.3 47.1 39.3 30.7 26.1 21.3 16.2 11.0 ft 2/ft 2.17 2.20 2.23 2.25 2.27 2.28 2.30 HSS6×6×5/8 ×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.581 0.465 0.349 0.291 0.233 0.174 0.116 42.30 35.24 27.48 23.34 19.02 14.53 9.86 11.7 9.74 7.58 6.43 5.24 3.98 2.70 7.33 9.90 14.2 17.6 22.8 31.5 48.7 7.33 9.90 14.2 17.6 22.8 31.5 48.7 55.2 48.3 39.5 34.3 28.6 22.3 15.5 18.4 16.1 13.2 11.4 9.54 7.42 5.15 2.17 2.23 2.28 2.31 2.34 2.37 2.39 23.2 19.8 15.8 13.6 11.2 8.63 5.92 33/16 33/4 45/16 45/8 47/8 53/16 57/16 94.9 81.1 64.6 55.4 45.6 35.0 23.9 33.4 28.1 22.1 18.9 15.4 11.8 8.03 1.83 1.87 1.90 1.92 1.93 1.95 1.97 HSS51/2×51/2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 0.291 0.233 0.174 0.116 24.93 21.21 17.32 13.25 9.01 6.88 5.85 4.77 3.63 2.46 12.8 15.9 20.6 28.6 44.4 12.8 15.9 20.6 28.6 44.4 29.7 25.9 21.7 17.0 11.8 10.8 9.43 7.90 6.17 4.30 2.08 2.11 2.13 2.16 2.19 13.1 11.3 9.32 7.19 4.95 313/16 41/8 43/8 411/16 415/16 49.0 42.2 34.8 26.7 18.3 18.4 15.7 12.9 9.85 6.72 1.73 1.75 1.77 1.78 1.80 HSS5×5×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 28.43 22.37 19.08 15.62 11.97 8.16 7.88 6.18 5.26 4.30 3.28 2.23 7.75 11.3 14.2 18.5 25.7 40.1 7.75 11.3 14.2 18.5 25.7 40.1 26.0 10.4 21.7 8.68 19.0 7.62 16.0 6.41 12.6 5.03 8.80 3.52 1.82 1.87 1.90 1.93 1.96 1.99 13.1 10.6 9.16 7.61 5.89 4.07 23/4 35/16 35/8 37/8 43/16 47/16 44.6 36.1 31.2 25.8 19.9 13.7 18.7 14.9 12.8 10.5 8.08 5.53 1.53 1.57 1.58 1.60 1.62 1.63 HSS41/2×41/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.465 0.349 0.291 0.233 0.174 0.116 25.03 19.82 16.96 13.91 10.70 7.31 6.95 5.48 4.68 3.84 2.93 2.00 6.68 9.89 12.5 16.3 22.9 35.8 6.68 9.89 12.5 16.3 22.9 35.8 18.1 15.3 13.5 11.4 9.02 6.35 1.61 1.67 1.70 1.73 1.75 1.78 10.2 8.36 7.27 6.06 4.71 3.27 21/4 213/16 31/8 33/8 311/16 315/16 31.3 14.8 25.7 11.9 22.3 10.2 18.5 8.44 14.4 6.49 9.92 4.45 1.37 1.40 1.42 1.43 1.45 1.47 8.03 6.79 6.00 5.08 4.01 2.82 Note: For compactness criteria, refer to Table 1-12A. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 94 1–94 DIMENSIONS AND PROPERTIES Table 1-12 (continued) Square HSS Dimensions and Properties HSS4-HSS2 Shape Design Wall Nom- Area, Thick- inal A ness, Wt. t I S r Z Workable Flat Torsion Surface Area b/t h/t 5.60 8.46 10.7 14.2 20.0 31.5 5.60 8.46 10.7 14.2 20.0 31.5 in.4 11.9 10.3 9.14 7.80 6.21 4.40 in.3 5.97 5.13 4.57 3.90 3.10 2.20 in. 1.41 1.47 1.49 1.52 1.55 1.58 in.3 7.70 6.39 5.59 4.69 3.67 2.56 in. — 25/16 25/8 27/8 33/16 37/16 HSS31/2×31/2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 14.72 4.09 7.03 7.03 0.291 12.70 3.52 9.03 9.03 0.233 10.51 2.91 12.0 12.0 0.174 8.15 2.24 17.1 17.1 0.116 5.61 1.54 27.2 27.2 6.49 5.84 5.04 4.05 2.90 3.71 3.34 2.88 2.31 1.66 1.26 1.29 1.32 1.35 1.37 4.69 4.14 3.50 2.76 1.93 — 11.2 21/8 9.89 23/8 8.35 211/16 6.56 215/16 4.58 6.77 5.90 4.92 3.83 2.65 1.07 1.08 1.10 1.12 1.13 HSS3×3×3/8 ×5/16 ×1/4 ×3/16 ×1/8 0.349 12.17 3.39 5.60 5.60 0.291 10.58 2.94 7.31 7.31 0.233 8.81 2.44 9.88 9.88 0.174 6.87 1.89 14.2 14.2 0.116 4.75 1.30 22.9 22.9 3.78 3.45 3.02 2.46 1.78 2.52 2.30 2.01 1.64 1.19 1.06 1.08 1.11 1.14 1.17 3.25 2.90 2.48 1.97 1.40 — — — 23/16 27/16 6.64 5.94 5.08 4.03 2.84 4.74 4.18 3.52 2.76 1.92 0.900 0.917 0.933 0.950 0.967 0.291 0.233 0.174 0.116 1.82 1.63 1.35 0.998 1.46 1.30 1.08 0.799 0.880 0.908 0.937 0.965 1.88 1.63 1.32 0.947 — — — — 3.20 2.79 2.25 1.61 2.74 2.35 1.86 1.31 0.750 0.767 0.784 0.800 HSS21/4×21/4×1/4 0.233 ×3/16 0.174 ×1/8 0.116 6.26 1.74 6.66 6.66 1.13 1.01 0.806 1.28 4.96 1.37 9.93 9.93 0.953 0.847 0.835 1.04 3.48 0.956 16.4 16.4 0.712 0.633 0.863 0.755 — — — 1.96 1.60 1.15 1.85 1.48 1.05 0.683 0.700 0.717 HSS2×2×1/4 0.233 ×3/16 0.174 ×1/8 0.116 5.41 1.51 5.58 5.58 0.747 0.747 0.704 0.964 4.32 1.19 8.49 8.49 0.641 0.641 0.733 0.797 3.05 0.840 14.2 14.2 0.486 0.486 0.761 0.584 — — — 1.31 1.41 0.600 1.09 1.14 0.617 0.796 0.817 0.633 HSS4×4×1/2 ×3/8 ×5/16 ×1/4 ×3/16 ×1/8 HSS21/2×21/2×5/16 ×1/4 ×3/16 ×1/8 in. 0.465 0.349 0.291 0.233 0.174 0.116 lb/ft 21.63 17.27 14.83 12.21 9.42 6.46 8.45 7.11 5.59 3.90 in.2 6.02 4.78 4.10 3.37 2.58 1.77 2.35 5.59 5.59 1.97 7.73 7.73 1.54 11.4 11.4 1.07 18.6 18.6 Note: For compactness criteria, refer to Table 1-12A. — Indicates flat depth or width is too small to establish a workable flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION J C in.4 in.3 21.0 11.2 17.5 9.14 15.3 7.91 12.8 6.56 10.0 5.07 6.91 3.49 ft 2/ft 1.20 1.23 1.25 1.27 1.28 1.30 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 95 DIMENSIONS AND PROPERTIES 1–95 Table 1-12A Rectangular and Square HSS Compactness Criteria Compactness Criteria for Rectangular and Square HSS Nominal Wall Thickness, in. 5/8 1/2 3/8 5/16 1/4 3/16 1/8 Compression Shear Flexure nonslender up to compact up to compact up to Cv = 1.0 up to Flange Width, in. Flange Width, in. Web Height, in. Web Height, in. 20 16 12 10 8 6 4 18 14 10 9 7 5 31/2 20 20 20 18 14 10 7 20 20 20 18 14 10 7 Note: Compactness criteria given for Fy = 46 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 96 1–96 DIMENSIONS AND PROPERTIES Table 1-13 Round HSS Dimensions and Properties HSS20-HSS10 Shape Design Wall Thickness, t Nominal Wt. Area, A Torsion D/t I S r Z J C HSS20×0.500 ×0.375f in. 0.465 0.349 lb/ft in.2 104.00 28.5 78.67 21.5 43.0 57.3 in.4 1360 1040 in.3 136 104 in. 6.91 6.95 in.3 177 135 in.4 2720 2080 in.3 272 208 HSS18×0.500 ×0.375f 0.465 0.349 93.54 25.6 70.66 19.4 38.7 51.6 985 754 109 83.8 6.20 6.24 143 109 1970 1510 219 168 HSS16×0.625 ×0.500 ×0.438 ×0.375 ×0.312f ×0.250f 0.581 0.465 0.407 0.349 0.291 0.233 103.00 82.85 72.87 62.64 52.32 42.09 28.1 22.7 19.9 17.2 14.4 11.5 27.5 34.4 39.3 45.8 55.0 68.7 838 685 606 526 443 359 105 85.7 75.8 65.7 55.4 44.8 5.46 5.49 5.51 5.53 5.55 5.58 138 112 99.0 85.5 71.8 57.9 1680 1370 1210 1050 886 717 209 171 152 131 111 89.7 HSS14×0.625 ×0.500 ×0.375 ×0.312 ×0.250f 0.581 0.465 0.349 0.291 0.233 89.36 72.16 54.62 45.65 36.75 24.5 19.8 15.0 12.5 10.1 24.1 30.1 40.1 48.1 60.1 552 453 349 295 239 78.9 64.8 49.8 42.1 34.1 4.75 4.79 4.83 4.85 4.87 105 85.2 65.1 54.7 44.2 1100 907 698 589 478 158 130 100 84.2 68.2 HSS12.750×0.500 ×0.375 ×0.250f 0.465 0.349 0.233 65.48 17.9 49.61 13.6 33.41 9.16 27.4 36.5 54.7 339 262 180 53.2 41.0 28.2 4.35 4.39 4.43 70.2 53.7 36.5 678 523 359 106 82.1 56.3 HSS10.750×0.500 ×0.375 ×0.250 0.465 0.349 0.233 54.79 15.0 41.59 11.4 28.06 7.70 23.1 30.8 46.1 199 154 106 37.0 28.7 19.8 3.64 3.68 3.72 49.2 37.8 25.8 398 309 213 74.1 57.4 39.6 HSS10×0.625 ×0.500 ×0.375 ×0.312 ×0.250 ×0.188f 0.581 0.465 0.349 0.291 0.233 0.174 62.64 17.2 50.78 13.9 38.58 10.6 32.31 8.88 26.06 7.15 19.72 5.37 17.2 21.5 28.7 34.4 42.9 57.5 191 159 123 105 85.3 64.8 38.3 31.7 24.7 20.9 17.1 13.0 3.34 3.38 3.41 3.43 3.45 3.47 51.6 42.3 32.5 27.4 22.2 16.8 383 317 247 209 171 130 76.6 63.5 49.3 41.9 34.1 25.9 f Shape exceeds compact limit for flexure with Fy = 42 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 97 DIMENSIONS AND PROPERTIES 1–97 Table 1-13 (continued) Round HSS Dimensions and Properties Shape f Design Wall Thickness, t Nominal Wt. HSS9.625HSS6.875 Torsion Area, A D/t I S r Z J C HSS9.625×0.500 ×0.375 ×0.312 ×0.250 ×0.188f in. 0.465 0.349 0.291 0.233 0.174 lb/ft in.2 48.77 13.4 37.08 10.2 31.06 8.53 25.06 6.87 18.97 5.17 20.7 27.6 33.1 41.3 55.3 in.4 141 110 93.0 75.9 57.7 in.3 29.2 22.8 19.3 15.8 12.0 in. 3.24 3.28 3.30 3.32 3.34 in.3 39.0 30.0 25.4 20.6 15.5 in.4 281 219 186 152 115 in.3 58.5 45.5 38.7 31.5 24.0 HSS8.625×0.625 ×0.500 ×0.375 ×0.322 ×0.250 ×0.188f 0.581 0.465 0.349 0.300 0.233 0.174 53.45 14.7 43.43 11.9 33.07 9.07 28.58 7.85 22.38 6.14 16.96 4.62 14.8 18.5 24.7 28.8 37.0 49.6 119 100 77.8 68.1 54.1 41.3 27.7 23.1 18.0 15.8 12.5 9.57 2.85 2.89 2.93 2.95 2.97 2.99 37.7 31.0 23.9 20.8 16.4 12.4 239 199 156 136 108 82.5 55.4 46.2 36.1 31.6 25.1 19.1 HSS7.625×0.375 ×0.328 0.349 0.305 29.06 25.59 7.98 7.01 21.8 25.0 52.9 47.1 13.9 12.3 2.58 2.59 18.5 16.4 106 94.1 27.8 24.7 HSS7.500×0.500 ×0.375 ×0.312 ×0.250 ×0.188 0.465 0.349 0.291 0.233 0.174 37.42 10.3 28.56 7.84 23.97 6.59 19.38 5.32 14.70 4.00 16.1 21.5 25.8 32.2 43.1 63.9 50.2 42.9 35.2 26.9 17.0 13.4 11.4 9.37 7.17 2.49 2.53 2.55 2.57 2.59 23.0 17.9 15.1 12.3 9.34 128 100 85.8 70.3 53.8 34.1 26.8 22.9 18.7 14.3 HSS7×0.500 ×0.375 ×0.312 ×0.250 ×0.188 ×0.125f 0.465 0.349 0.291 0.233 0.174 0.116 34.74 26.56 22.31 18.04 13.69 9.19 9.55 7.29 6.13 4.95 3.73 2.51 15.1 20.1 24.1 30.0 40.2 60.3 51.2 40.4 34.6 28.4 21.7 14.9 14.6 11.6 9.88 8.11 6.21 4.25 2.32 2.35 2.37 2.39 2.41 2.43 19.9 15.5 13.1 10.7 8.11 5.50 102 80.9 69.1 56.8 43.5 29.7 29.3 23.1 19.8 16.2 12.4 8.49 HSS6.875×0.500 ×0.375 ×0.312 ×0.250 ×0.188 0.465 0.349 0.291 0.233 0.174 34.07 26.06 21.89 17.71 13.44 9.36 7.16 6.02 4.86 3.66 14.8 19.7 23.6 29.5 39.5 48.3 38.2 32.7 26.8 20.6 14.1 11.1 9.51 7.81 5.99 2.27 2.31 2.33 2.35 2.37 19.1 14.9 12.6 10.3 7.81 96.7 76.4 65.4 53.7 41.1 28.1 22.2 19.0 15.6 12.0 Shape exceeds compact limit for flexure with Fy = 42 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 98 1–98 DIMENSIONS AND PROPERTIES Table 1-13 (continued) Round HSS Dimensions and Properties HSS6.625HSS5 Design Wall Thickness, t Nominal Wt. Area, A D/t HSS6.625×0.500 ×0.432 ×0.375 ×0.312 ×0.280 ×0.250 ×0.188 ×0.125f in. 0.465 0.402 0.349 0.291 0.260 0.233 0.174 0.116 lb/ft 32.74 28.60 25.06 21.06 18.99 17.04 12.94 8.69 in.2 9.00 7.86 6.88 5.79 5.20 4.68 3.53 2.37 14.2 16.5 19.0 22.8 25.5 28.4 38.1 57.1 in.4 42.9 38.2 34.0 29.1 26.4 23.9 18.4 12.6 in.3 13.0 11.5 10.3 8.79 7.96 7.22 5.54 3.79 in. 2.18 2.20 2.22 2.24 2.25 2.26 2.28 2.30 HSS6×0.500 ×0.375 ×0.312 ×0.280 ×0.250 ×0.188 ×0.125f 0.465 0.349 0.291 0.260 0.233 0.174 0.116 29.40 22.55 18.97 17.12 15.37 11.68 7.85 8.09 6.20 5.22 4.69 4.22 3.18 2.14 12.9 17.2 20.6 23.1 25.8 34.5 51.7 31.2 24.8 21.3 19.3 17.6 13.5 9.28 10.4 8.28 7.11 6.45 5.86 4.51 3.09 HSS5.563×0.500 ×0.375 ×0.258 ×0.188 ×0.134 0.465 0.349 0.240 0.174 0.124 27.06 20.80 14.63 10.80 7.78 7.45 5.72 4.01 2.95 2.12 12.0 15.9 23.2 32.0 44.9 24.4 19.5 14.2 10.7 7.84 HSS5.500×0.500 ×0.375 ×0.258 0.465 0.349 0.240 26.73 20.55 14.46 7.36 5.65 3.97 11.8 15.8 22.9 HSS5×0.500 ×0.375 ×0.312 ×0.258 ×0.250 ×0.188 ×0.125 0.465 0.349 0.291 0.240 0.233 0.174 0.116 24.05 18.54 15.64 13.08 12.69 9.67 6.51 6.62 5.10 4.30 3.59 3.49 2.64 1.78 10.8 14.3 17.2 20.8 21.5 28.7 43.1 Shape f Torsion I S r Z J C in.3 17.7 15.6 13.8 11.7 10.5 9.52 7.24 4.92 in.4 85.9 76.4 68.0 58.2 52.7 47.9 36.7 25.1 in.3 25.9 23.1 20.5 17.6 15.9 14.4 11.1 7.59 1.96 2.00 2.02 2.03 2.04 2.06 2.08 14.3 11.2 9.49 8.57 7.75 5.91 4.02 62.4 49.7 42.6 38.7 35.2 27.0 18.6 20.8 16.6 14.2 12.9 11.7 9.02 6.19 8.77 7.02 5.12 3.85 2.82 1.81 1.85 1.88 1.91 1.92 12.1 9.50 6.80 5.05 3.67 48.8 39.0 28.5 21.4 15.7 17.5 14.0 10.2 7.70 5.64 23.5 18.8 13.7 8.55 6.84 5.00 1.79 1.83 1.86 11.8 9.27 6.64 47.0 37.6 27.5 17.1 13.7 10.0 17.2 13.9 12.0 10.2 9.94 7.69 5.31 6.88 5.55 4.79 4.08 3.97 3.08 2.12 1.61 1.65 1.67 1.69 1.69 1.71 1.73 9.60 7.56 6.46 5.44 5.30 4.05 2.77 34.4 27.7 24.0 20.4 19.9 15.4 10.6 13.8 11.1 9.58 8.15 7.95 6.15 4.25 Shape exceeds compact limit for flexure with Fy = 42 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 99 DIMENSIONS AND PROPERTIES 1–99 Table 1-13 (continued) Round HSS Dimensions and Properties HSS4.500HSS2.500 Design Wall Thickness, t Nominal Wt. Area, A D/t HSS4.500×0.375 ×0.337 ×0.237 ×0.188 ×0.125 in. 0.349 0.313 0.220 0.174 0.116 lb/ft 16.54 15.00 10.80 8.67 5.85 in.2 4.55 4.12 2.96 2.36 1.60 12.9 14.4 20.5 25.9 38.8 in.4 9.87 9.07 6.79 5.54 3.84 in.3 4.39 4.03 3.02 2.46 1.71 in. 1.47 1.48 1.52 1.53 1.55 in.3 6.03 5.50 4.03 3.26 2.23 in.4 19.7 18.1 13.6 11.1 7.68 in.3 8.78 8.06 6.04 4.93 3.41 HSS4×0.313 ×0.250 ×0.237 ×0.226 ×0.220 ×0.188 ×0.125 0.291 0.233 0.220 0.210 0.205 0.174 0.116 12.34 10.00 9.53 9.12 8.89 7.66 5.18 3.39 2.76 2.61 2.50 2.44 2.09 1.42 13.7 17.2 18.2 19.0 19.5 23.0 34.5 5.87 4.91 4.68 4.50 4.41 3.83 2.67 2.93 2.45 2.34 2.25 2.21 1.92 1.34 1.32 1.33 1.34 1.34 1.34 1.35 1.37 4.01 3.31 3.15 3.02 2.96 2.55 1.75 11.7 9.82 9.36 9.01 8.83 7.67 5.34 5.87 4.91 4.68 4.50 4.41 3.83 2.67 HSS3.500×0.313 ×0.300 ×0.250 ×0.216 ×0.203 ×0.188 ×0.125 0.291 0.279 0.233 0.201 0.189 0.174 0.116 10.66 10.26 8.69 7.58 7.15 6.66 4.51 2.93 2.82 2.39 2.08 1.97 1.82 1.23 12.0 12.5 15.0 17.4 18.5 20.1 30.2 3.81 3.69 3.21 2.84 2.70 2.52 1.77 2.18 2.11 1.83 1.63 1.54 1.44 1.01 1.14 1.14 1.16 1.17 1.17 1.18 1.20 3.00 2.90 2.49 2.19 2.07 1.93 1.33 7.61 7.38 6.41 5.69 5.41 5.04 3.53 4.35 4.22 3.66 3.25 3.09 2.88 2.02 HSS3×0.250 ×0.216 ×0.203 ×0.188 ×0.152 ×0.134 ×0.125 0.233 0.201 0.189 0.174 0.141 0.124 0.116 7.35 6.43 6.07 5.65 4.63 4.11 3.84 2.03 1.77 1.67 1.54 1.27 1.12 1.05 12.9 14.9 15.9 17.2 21.3 24.2 25.9 1.95 1.74 1.66 1.55 1.30 1.16 1.09 1.30 1.16 1.10 1.03 0.865 0.774 0.730 0.982 0.992 0.996 1.00 1.01 1.02 1.02 1.79 1.58 1.50 1.39 1.15 1.03 0.965 3.90 3.48 3.31 3.10 2.59 2.32 2.19 2.60 2.32 2.21 2.06 1.73 1.55 1.46 HSS2.875×0.250 ×0.203 ×0.188 ×0.125 0.233 0.189 0.174 0.116 7.02 5.80 5.40 3.67 1.93 1.59 1.48 1.01 12.3 15.2 16.5 24.8 1.70 1.45 1.35 0.958 1.18 1.01 0.941 0.667 0.938 0.952 0.957 0.976 1.63 1.37 1.27 0.884 3.40 2.89 2.70 1.92 2.37 2.01 1.88 1.33 HSS2.500×0.250 ×0.188 ×0.125 0.233 0.174 0.116 6.01 4.65 3.17 1.66 1.27 0.869 10.7 14.4 21.6 1.08 0.865 0.619 0.862 0.692 0.495 0.806 0.825 0.844 1.20 0.943 0.660 2.15 1.73 1.24 1.72 1.38 0.990 Shape Torsion I S r Z J AMERICAN INSTITUTE OF STEEL CONSTRUCTION C AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 100 1–100 DIMENSIONS AND PROPERTIES Table 1-13 (continued) Round HSS Dimensions and Properties HSS2.375HSS1.660 Design Wall Thickness, t Nominal Wt. Area, A D/t HSS2.375×0.250 ×0.218 ×0.188 ×0.154 ×0.125 in. 0.233 0.203 0.174 0.143 0.116 lb/ft 5.68 5.03 4.40 3.66 3.01 in.2 1.57 1.39 1.20 1.00 0.823 10.2 11.7 13.6 16.6 20.5 in.4 0.910 0.824 0.733 0.627 0.527 in.3 0.766 0.694 0.617 0.528 0.443 in. 0.762 0.771 0.781 0.791 0.800 in.3 1.07 0.960 0.845 0.713 0.592 HSS1.900×0.188 ×0.145 ×0.120 0.174 0.135 0.111 3.44 2.72 2.28 0.943 0.749 0.624 10.9 14.1 17.1 0.355 0.293 0.251 0.374 0.309 0.264 0.613 0.626 0.634 0.520 0.421 0.356 0.710 0.586 0.501 0.747 0.617 0.527 HSS1.660×0.140 0.130 2.27 0.625 12.8 0.184 0.222 0.543 0.305 0.368 0.444 Shape Torsion I S r Z J AMERICAN INSTITUTE OF STEEL CONSTRUCTION in.4 1.82 1.65 1.47 1.25 1.05 C in.3 1.53 1.39 1.23 1.06 0.887 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 101 DIMENSIONS AND PROPERTIES 1–101 Table 1-14 Pipe Dimensions and Properties PIPE Shape Nom- Dimensions Nominal Design Wall Wall inal Outside Inside Area DiaDia- Thick- ThickWt. meter meter ness ness lb/ft in. in. in. in. in.2 D/t I S r J Z in.4 in.3 in. in.4 in.3 Standard Weight (Std.) Pipe 12 Std. Pipe 10 Std. Pipe 8 Std. Pipe 6 Std. Pipe 5 Std. Pipe 4 Std. Pipe 31/ 2 Std. Pipe 3 Std. Pipe 21/ 2 Std. Pipe 2 Std. Pipe 11/ 2 Std. Pipe 11/4 Std. Pipe 1 Std. Pipe 3/4 Std. Pipe 1/ 2 Std. 49.6 12.8 40.5 10.8 28.6 8.63 19.0 6.63 14.6 5.56 10.8 4.50 9.12 4.00 7.58 3.50 5.80 2.88 3.66 2.38 2.72 1.90 2.27 1.66 1.68 1.32 1.13 1.05 0.850 0.840 12.0 10.0 7.98 6.07 5.05 4.03 3.55 3.07 2.47 2.07 1.61 1.38 1.05 0.824 0.622 0.375 0.365 0.322 0.280 0.258 0.237 0.226 0.216 0.203 0.154 0.145 0.140 0.133 0.113 0.109 0.349 13.7 0.340 11.5 0.300 7.85 0.261 5.20 0.241 4.01 0.221 2.96 0.211 2.50 0.201 2.07 0.189 1.61 0.143 1.02 0.135 0.749 0.130 0.625 0.124 0.469 0.105 0.312 0.101 0.234 36.5 31.6 28.8 25.4 23.1 20.4 19.0 17.4 15.2 16.6 14.1 12.8 10.6 10.0 8.32 262 41.0 151 28.1 68.1 15.8 26.5 7.99 14.3 5.14 6.82 3.03 4.52 2.26 2.85 1.63 1.45 1.01 0.627 0.528 0.293 0.309 0.184 0.222 0.0830 0.126 0.0350 0.0671 0.0160 0.0388 4.39 523 3.68 302 2.95 136 2.25 52.9 1.88 28.6 1.51 13.6 1.34 9.04 1.17 5.69 0.952 2.89 0.791 1.25 0.626 0.586 0.543 0.368 0.423 0.166 0.336 0.0700 0.264 0.0320 53.7 36.9 20.8 10.6 6.83 4.05 3.03 2.19 1.37 0.713 0.421 0.305 0.177 0.0942 0.0555 339 199 100 38.3 19.5 9.12 5.94 3.70 1.83 0.827 0.372 0.231 0.101 0.0430 0.0190 53.2 37.0 23.1 11.6 7.02 4.05 2.97 2.11 1.27 0.696 0.392 0.278 0.154 0.0818 0.0462 4.35 678 3.64 398 2.89 199 2.20 76.6 1.85 39.0 1.48 18.2 1.31 11.9 1.14 7.40 0.930 3.66 0.771 1.65 0.610 0.744 0.528 0.462 0.410 0.202 0.325 0.0860 0.253 0.0380 70.2 49.2 31.0 15.6 9.50 5.53 4.07 2.91 1.77 0.964 0.549 0.393 0.221 0.119 0.0686 35.8 19.2 11.6 6.53 3.31 1.94 1.07 2.78 308 2.08 127 1.74 64.4 1.39 29.4 1.06 11.6 0.854 5.56 0.711 2.54 49.9 27.4 16.7 9.50 4.89 2.91 1.60 Extra Strong (x-Strong) Pipe 12 x-Strong Pipe 10 x-Strong Pipe 8 x-Strong Pipe 6 x-Strong Pipe 5 x-Strong Pipe 4 x-Strong Pipe 31/ 2 x-Strong Pipe 3 x-Strong Pipe 21/ 2 x-Strong Pipe 2 x-Strong Pipe 11/ 2 x-Strong Pipe 11/4 x-Strong Pipe 1 x-Strong Pipe 3/4 x-Strong Pipe 1/ 2 x-Strong 65.5 54.8 43.4 28.6 20.8 15.0 12.5 10.3 7.67 5.03 3.63 3.00 2.17 1.48 1.09 12.8 10.8 8.63 6.63 5.56 4.50 4.00 3.50 2.88 2.38 1.90 1.66 1.32 1.05 0.840 11.8 9.75 7.63 5.76 4.81 3.83 3.36 2.90 2.32 1.94 1.50 1.28 0.957 0.742 0.546 Pipe 8 xx-Strong Pipe 6 xx-Strong Pipe 5 xx-Strong Pipe 4 xx-Strong Pipe 3 xx-Strong Pipe 21/ 2 xx-Strong Pipe 2 xx-Strong 72.5 53.2 38.6 27.6 18.6 13.7 9.04 8.63 6.63 5.56 4.50 3.50 2.88 2.38 6.88 4.90 4.06 3.15 2.30 1.77 1.50 0.500 0.500 0.500 0.432 0.375 0.337 0.318 0.300 0.276 0.218 0.200 0.191 0.179 0.154 0.147 0.465 17.5 0.465 15.1 0.465 11.9 0.403 7.83 0.349 5.73 0.315 4.14 0.296 3.43 0.280 2.83 0.257 2.10 0.204 1.40 0.186 1.00 0.178 0.837 0.166 0.602 0.143 0.407 0.137 0.303 27.4 23.1 18.5 16.4 15.9 14.3 13.5 12.5 11.2 11.7 10.2 9.33 7.92 7.34 6.13 Double-Extra Strong (xx-Strong) 0.875 0.864 0.750 0.674 0.600 0.552 0.436 0.816 20.0 0.805 14.7 0.699 10.7 0.628 7.66 0.559 5.17 0.514 3.83 0.406 2.51 10.6 8.23 7.96 7.17 6.26 5.59 5.85 154 63.5 32.2 14.7 5.79 2.78 1.27 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 102 1–102 DIMENSIONS AND PROPERTIES Table 1-15 Double Angles Properties SLBB LLBB Shape Area LLBB Separation, s, in. SLBB Qs LLBB Qs Axis Y-Y Radius of Gyration SLBB Separation, s, in. Angles Angles in SepaContact rated rx Angles Angles in SepaContact rated rx in.2 0 3/8 3/4 0 3/8 3/4 2L8×8×11/8 ×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 33.6 30.2 26.6 23.0 19.4 17.5 15.7 3.41 3.39 3.36 3.34 3.32 3.31 3.30 3.54 3.52 3.50 3.47 3.45 3.44 3.43 3.68 3.66 3.63 3.61 3.58 3.57 3.56 3.41 3.39 3.36 3.34 3.32 3.31 3.30 3.54 3.52 3.50 3.47 3.45 3.44 3.43 3.68 3.66 3.63 3.61 3.58 3.57 3.56 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 0.997 0.959 0.912 2.41 2.43 2.45 2.46 2.48 2.49 2.49 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 0.997 0.959 0.912 2.41 2.43 2.45 2.46 2.48 2.49 2.49 2L8×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 26.2 23.0 20.0 16.8 15.2 13.6 12.0 2.39 2.37 2.35 2.33 2.32 2.31 2.30 2.52 2.50 2.47 2.45 2.44 2.43 2.42 2.66 2.63 2.61 2.59 2.58 2.56 2.55 3.63 3.61 3.59 3.57 3.55 3.54 3.53 3.77 3.75 3.72 3.70 3.69 3.68 3.66 3.91 3.89 3.86 3.84 3.83 3.81 3.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.959 0.912 0.850 2.49 2.50 2.52 2.54 2.55 2.55 2.56 1.00 1.00 1.00 1.00 1.00 0.998 0.938 1.00 1.00 1.00 0.997 0.959 0.912 0.850 1.72 1.74 1.75 1.77 1.78 1.79 1.80 2L8×4×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 22.2 19.6 17.0 14.3 13.0 11.6 10.2 1.46 1.44 1.42 1.39 1.38 1.38 1.37 1.60 1.57 1.55 1.52 1.51 1.50 1.49 1.75 1.72 1.69 1.66 1.65 1.63 1.62 3.94 3.91 3.89 3.86 3.85 3.83 3.82 4.08 4.06 4.03 4.00 3.99 3.97 3.96 4.23 4.21 4.18 4.15 4.13 4.12 4.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.959 0.912 0.850 2.51 2.53 2.55 2.56 2.57 2.58 2.59 1.00 1.00 1.00 1.00 1.00 0.998 0.938 1.00 1.00 1.00 0.997 0.959 0.912 0.850 1.03 1.04 1.05 1.06 1.07 1.08 1.09 2L7×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 15.5 13.0 10.5 9.26 8.00 1.48 1.45 1.44 1.43 1.42 1.61 1.58 1.56 1.55 1.54 1.75 1.73 1.70 1.68 1.67 3.34 3.31 3.29 3.28 3.26 3.48 3.46 3.43 3.42 3.40 3.63 3.60 3.57 3.56 3.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 0.912 0.840 2.21 2.23 2.25 2.26 2.27 1.00 1.00 1.00 0.998 0.928 1.00 1.00 0.965 0.912 0.840 1.08 1.10 1.11 1.12 1.12 2L6×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 22.0 19.5 16.9 14.3 12.9 11.5 10.2 8.76 7.34 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.47 2.72 2.70 2.67 2.65 2.64 2.63 2.62 2.60 2.59 2.86 2.84 2.81 2.79 2.78 2.76 2.75 2.74 2.72 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.47 2.72 2.70 2.67 2.65 2.64 2.63 2.62 2.60 2.59 2.86 2.84 2.81 2.79 2.78 2.76 2.75 2.74 2.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.998 0.914 1.00 1.00 1.00 1.00 1.00 1.00 0.973 0.912 0.826 1.79 1.81 1.82 1.84 1.85 1.86 1.86 1.87 1.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.998 0.914 1.00 1.00 1.00 1.00 1.00 1.00 0.973 0.912 0.826 1.79 1.81 1.82 1.84 1.85 1.86 1.86 1.87 1.88 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. in. AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 103 DIMENSIONS AND PROPERTIES 1–103 Table 1-15 (continued) Double Angles Properties 2L8-2L6 Flexural-Torsional Properties Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. Back to Back of Angles, in. Shape 3/8 0 3/4 3/8 0 Single Angle Properties Area, A 3/4 rz r–o H r–o H r–o H r–o H r–o H r–o H in.2 in. 2L8×8×11/8 ×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 4.56 4.56 4.56 4.56 4.56 4.56 4.56 0.837 0.834 0.831 0.829 0.826 0.825 0.824 4.66 4.66 4.66 4.66 4.66 4.65 4.65 0.844 0.841 0.838 0.836 0.833 0.832 0.831 4.77 4.77 4.76 4.76 4.76 4.75 4.75 0.851 0.848 0.845 0.843 0.840 0.839 0.837 4.56 4.56 4.56 4.56 4.56 4.56 4.56 0.837 0.834 0.831 0.829 0.826 0.825 0.824 4.66 4.66 4.66 4.66 4.66 4.65 4.65 0.844 0.841 0.838 0.836 0.833 0.832 0.831 4.77 4.77 4.76 4.76 4.76 4.75 4.75 0.851 0.848 0.845 0.843 0.840 0.839 0.837 16.8 15.1 13.3 11.5 9.69 8.77 7.84 1.56 1.56 1.57 1.57 1.58 1.58 1.59 2L8×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 4.06 4.07 4.07 4.08 4.09 4.09 4.09 0.721 0.718 0.714 0.712 0.710 0.709 0.708 4.14 4.14 4.15 4.16 4.16 4.16 4.16 0.732 0.728 0.725 0.722 0.720 0.719 0.718 4.23 4.23 4.23 4.24 4.24 4.24 4.24 0.742 0.739 0.735 0.732 0.731 0.729 0.728 4.18 4.17 4.17 4.16 4.15 4.15 4.15 0.924 0.922 0.919 0.917 0.916 0.915 0.913 4.30 4.29 4.28 4.27 4.27 4.26 4.26 0.929 0.926 0.924 0.921 0.920 0.919 0.918 4.43 4.42 4.40 4.39 4.39 4.38 4.38 0.933 0.930 0.928 0.926 0.924 0.923 0.922 13.1 11.5 9.99 8.41 7.61 6.80 5.99 1.28 1.28 1.29 1.29 1.30 1.30 1.31 2L8×4×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 3.86 3.87 3.88 3.89 3.90 3.90 3.91 0.568 0.566 0.564 0.562 0.562 0.561 0.561 3.91 3.92 3.93 3.94 3.94 3.95 3.95 0.580 0.577 0.575 0.573 0.572 0.571 0.571 3.97 3.98 3.99 3.99 4.00 4.00 4.00 0.594 0.590 0.587 0.585 0.584 0.583 0.582 4.11 4.09 4.07 4.05 4.04 4.03 4.02 0.983 0.981 0.980 0.979 0.978 0.978 0.977 4.25 4.22 4.20 4.18 4.17 4.16 4.15 0.984 0.982 0.981 0.980 0.980 0.979 0.978 4.39 4.37 4.35 4.32 4.31 4.30 4.29 0.985 0.984 0.983 0.981 0.981 0.980 0.980 11.1 9.79 8.49 7.16 6.49 5.80 5.11 0.844 0.846 0.850 0.856 0.859 0.863 0.867 2L7×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 3.41 3.42 3.43 3.43 3.44 0.611 0.608 0.606 0.605 0.605 3.47 3.47 3.48 3.49 3.49 0.624 0.621 0.618 0.617 0.616 3.53 3.54 3.55 3.55 3.55 0.639 0.635 0.632 0.630 0.629 3.57 3.55 3.53 3.53 3.52 0.969 0.967 0.965 0.964 0.963 3.70 3.68 3.66 3.66 3.65 0.971 0.969 0.968 0.967 0.966 3.84 3.82 3.80 3.79 3.78 0.973 0.971 0.970 0.969 0.968 7.74 6.50 5.26 4.63 4.00 0.855 0.860 0.866 0.869 0.873 2L6×6×1 ×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 0.843 0.839 0.835 0.831 0.829 0.827 0.826 0.824 0.823 3.53 3.53 3.52 3.52 3.52 3.52 3.52 3.51 3.51 0.852 0.848 0.844 0.840 0.838 0.836 0.835 0.833 0.832 3.64 3.63 3.63 3.62 3.62 3.62 3.62 3.61 3.61 0.861 0.857 0.853 0.849 0.847 0.846 0.844 0.842 0.841 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 0.843 0.839 0.835 0.831 0.829 0.827 0.826 0.824 0.823 3.53 3.53 3.52 3.52 3.52 3.52 3.52 3.51 3.51 0.852 0.848 0.844 0.840 0.838 0.836 0.835 0.833 0.832 3.64 3.63 3.63 3.62 3.62 3.62 3.62 3.61 3.61 0.861 0.857 0.853 0.849 0.847 0.846 0.844 0.842 0.841 11.0 9.75 8.46 7.13 6.45 5.77 5.08 4.38 3.67 1.17 1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 104 1–104 DIMENSIONS AND PROPERTIES Table 1-15 (continued) Double Angles Properties SLBB LLBB Shape Area LLBB Separation, s, in. SLBB Qs LLBB Qs Axis Y-Y Radius of Gyration SLBB Separation, s, in. Angles Angles in SepaContact rated rx Angles Angles in SepaContact rated rx in.2 0 3/8 3/4 0 3/8 3/4 2L6×4×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 16.0 13.9 11.7 10.6 9.50 8.36 7.22 6.06 1.57 1.55 1.53 1.52 1.51 1.50 1.49 1.48 1.71 1.68 1.66 1.65 1.64 1.62 1.61 1.60 1.86 1.83 1.80 1.79 1.77 1.76 1.75 1.74 2.82 2.80 2.77 2.76 2.75 2.74 2.73 2.72 2.96 2.94 2.91 2.90 2.89 2.88 2.86 2.85 3.11 3.08 3.06 3.04 3.03 3.02 3.00 2.99 2L6×31/2×1/2 ×3/8 ×5/16 9.00 6.88 5.78 1.27 1.26 1.25 1.40 1.38 1.37 1.54 1.52 1.50 2.82 2.80 2.78 2.96 2.94 2.92 3.11 1.00 3.08 1.00 3.06 1.00 1.00 1.92 0.912 1.93 0.826 1.94 1.00 1.00 0.968 0.998 0.912 0.984 0.914 0.826 0.991 2L5×5×7/8 ×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 16.0 14.0 11.8 9.58 8.44 7.30 6.14 2.16 2.13 2.11 2.09 2.08 2.07 2.06 2.30 2.27 2.25 2.22 2.21 2.20 2.19 2.44 2.41 2.39 2.36 2.35 2.34 2.32 2.16 2.13 2.11 2.09 2.08 2.07 2.06 2.30 2.27 2.25 2.22 2.21 2.20 2.19 2.44 2.41 2.39 2.36 2.35 2.34 2.32 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.983 0.912 1.49 1.50 1.52 1.53 1.54 1.55 1.56 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.983 0.912 1.49 1.50 1.52 1.53 1.54 1.55 1.56 2L5×31/2×3/4 ×5/8 ×1/2 ×3/8 ×5/16 ×1/4 11.7 9.86 8.00 6.10 5.12 4.14 1.39 1.37 1.35 1.33 1.32 1.31 1.53 1.50 1.48 1.46 1.44 1.43 1.68 1.65 1.62 1.59 1.58 1.57 2.33 2.30 2.28 2.26 2.25 2.23 2.47 2.45 2.42 2.39 2.38 2.37 2.62 2.59 2.57 2.54 2.52 2.51 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.912 0.804 1.55 1.56 1.58 1.59 1.60 1.61 1.00 1.00 1.00 1.00 0.998 0.894 1.00 1.00 1.00 0.983 0.912 0.804 0.974 0.987 1.00 1.02 1.02 1.03 2L5×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 7.50 6.62 5.72 4.82 3.88 1.11 1.10 1.09 1.08 1.07 1.24 1.23 1.22 1.21 1.19 1.39 1.38 1.36 1.35 1.33 2.35 2.34 2.33 2.32 2.30 2.50 2.48 2.47 2.46 2.44 2.64 2.63 2.62 2.60 2.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.912 0.804 1.58 1.59 1.60 1.61 1.62 1.00 1.00 1.00 0.998 0.894 1.00 1.00 0.983 0.912 0.804 0.824 0.831 0.838 0.846 0.853 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.973 0.912 0.826 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. 1.86 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.00 1.00 1.00 1.00 1.00 1.00 0.998 0.914 1.00 1.00 1.00 1.00 1.00 0.973 0.912 0.826 in. 1.10 1.12 1.13 1.14 1.14 1.15 1.16 1.17 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 105 DIMENSIONS AND PROPERTIES 1–105 Table 1-15 (continued) Double Angles Properties Flexural-Torsional Properties Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. Back to Back of Angles, in. Shape 3/8 0 2L6×4×7/8 ×3/4 ×5/8 ×9/16 ×1/2 ×7/16 ×3/8 ×5/16 2L6-2L5 3/4 3/8 0 Single Angle Properties Area, A 3/4 rz r–o H r–o H r–o H r–o H r–o H r–o H in.2 in. 2.96 2.97 2.98 2.98 2.99 2.99 2.99 3.00 0.678 0.673 0.669 0.667 0.665 0.663 0.662 0.661 3.04 3.04 3.05 3.05 3.05 3.06 3.06 3.06 0.694 0.688 0.684 0.682 0.679 0.678 0.676 0.674 3.12 3.12 3.13 3.13 3.13 3.13 3.13 3.13 0.710 0.705 0.700 0.697 0.695 0.693 0.691 0.689 3.10 3.09 3.08 3.07 3.07 3.06 3.06 3.05 0.952 0.949 0.946 0.945 0.943 0.942 0.940 0.939 3.23 3.22 3.21 3.20 3.19 3.19 3.18 3.17 0.956 0.953 0.950 0.949 0.948 0.946 0.945 0.944 3.37 3.35 3.34 3.33 3.32 3.31 3.31 3.30 0.959 0.957 0.954 0.953 0.952 0.950 0.949 0.948 8.00 6.94 5.86 5.31 4.75 4.18 3.61 3.03 0.854 0.856 0.859 0.861 0.864 0.867 0.870 0.874 2L6x31/2×1/2 2.94 0.615 2.99 0.630 3.06 0.646 3.04 0.964 3.17 0.967 3.31 0.969 4.50 0.756 ×3/8 2.95 0.613 3.00 0.627 3.07 0.642 3.02 0.962 3.15 0.965 3.29 0.967 3.44 0.763 ×5/16 2.95 0.612 3.00 0.625 3.07 0.641 3.02 0.960 3.14 0.964 3.28 0.966 2.89 0.767 2L5×5×7/8 ×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 2.85 2.85 2.85 2.85 2.85 2.84 2.84 0.845 0.840 0.835 0.830 0.828 0.826 0.825 2.96 2.95 2.95 2.94 2.94 2.94 2.94 0.856 0.851 0.846 0.842 0.839 0.838 0.836 3.07 3.06 3.06 3.05 3.05 3.04 3.04 0.866 0.861 0.857 0.852 0.850 0.848 0.847 2.85 2.85 2.85 2.85 2.85 2.84 2.84 0.845 0.840 0.835 0.830 0.828 0.826 0.825 2.96 2.95 2.95 2.94 2.94 2.94 2.94 0.856 0.851 0.846 0.842 0.839 0.838 0.836 3.07 3.06 3.06 3.05 3.05 3.04 3.04 0.866 0.861 0.857 0.852 0.850 0.848 0.847 8.00 6.98 5.90 4.79 4.22 3.65 3.07 0.971 0.972 0.975 0.980 0.983 0.986 0.990 2L5x31/2×3/4 ×5/8 ×1/2 ×3/8 ×5/16 ×1/4 2.49 2.49 2.50 2.51 2.51 2.52 0.699 0.693 0.688 0.683 0.682 0.680 2.57 2.57 2.58 2.58 2.58 2.58 0.717 0.711 0.705 0.700 0.698 0.696 2.66 2.66 2.66 2.66 2.66 2.66 0.736 0.730 0.724 0.718 0.716 0.714 2.60 2.59 2.58 2.56 2.56 2.55 0.943 0.940 0.936 0.933 0.931 0.929 2.73 2.71 2.70 2.69 2.68 2.67 0.949 0.945 0.942 0.938 0.937 0.935 2.86 2.85 2.83 2.81 2.81 2.80 0.953 0.950 0.947 0.944 0.942 0.941 5.85 4.93 4.00 3.05 2.56 2.07 0.744 0.746 0.750 0.755 0.758 0.761 2L5×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 2.44 2.45 2.45 2.46 2.46 0.628 0.626 0.624 0.623 0.622 2.51 2.51 2.51 2.52 2.52 0.646 0.644 0.642 0.640 0.638 2.58 2.58 2.59 2.59 2.59 0.667 0.664 0.661 0.659 0.657 2.54 2.54 2.53 2.52 2.51 0.962 0.961 0.959 0.958 0.957 2.68 2.67 2.66 2.65 2.64 0.966 0.964 0.963 0.962 0.961 2.81 2.80 2.79 2.78 2.77 0.969 0.968 0.967 0.965 0.964 3.75 3.31 2.86 2.41 1.94 0.642 0.644 0.646 0.649 0.652 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 106 1–106 DIMENSIONS AND PROPERTIES Table 1-15 (continued) Double Angles Properties SLBB LLBB Shape Area LLBB Separation, s, in. SLBB Qs LLBB Qs Axis Y-Y Radius of Gyration SLBB Separation, s, in. Angles Angles in SepaContact rated rx Angles Angles in SepaContact rated rx in.2 0 3/8 3/4 0 3/8 3/4 2L4×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 ×1/4 10.9 9.22 7.50 6.60 5.72 4.80 3.86 1.73 1.71 1.69 1.68 1.67 1.66 1.65 1.88 1.85 1.83 1.81 1.80 1.79 1.78 2.03 2.00 1.97 1.96 1.94 1.93 1.91 1.73 1.71 1.69 1.68 1.67 1.66 1.65 1.88 1.85 1.83 1.81 1.80 1.79 1.78 2.03 2.00 1.97 1.96 1.94 1.93 1.91 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.997 0.912 1.18 1.20 1.21 1.22 1.23 1.24 1.25 1.00 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.997 0.912 1.18 1.20 1.21 1.22 1.23 1.24 1.25 2L4×31/2×1/2 ×3/8 ×5/16 ×1/4 7.00 5.36 4.50 3.64 1.44 1.42 1.40 1.39 1.57 1.55 1.53 1.52 1.72 1.69 1.68 1.66 1.75 1.73 1.72 1.70 1.89 1.86 1.85 1.83 2.03 2.00 1.99 1.97 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.912 1.23 1.25 1.25 1.26 1.00 1.00 1.00 0.998 1.00 1.00 0.997 0.912 1.04 1.05 1.06 1.07 2L4×3×5/8 ×1/2 ×3/8 ×5/16 ×1/4 7.98 6.50 4.98 4.18 3.38 1.21 1.19 1.17 1.16 1.15 1.35 1.32 1.30 1.29 1.27 1.50 1.47 1.44 1.43 1.41 1.84 1.81 1.79 1.78 1.76 1.98 1.95 1.93 1.91 1.90 2.13 2.10 2.07 2.06 2.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.912 1.23 1.24 1.26 1.27 1.27 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 0.997 0.912 0.845 0.858 0.873 0.880 0.887 2L31/2×31/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 6.50 5.78 5.00 4.20 3.40 1.49 1.48 1.47 1.46 1.44 1.63 1.61 1.60 1.59 1.57 1.77 1.76 1.74 1.73 1.72 1.49 1.48 1.47 1.46 1.44 1.63 1.61 1.60 1.59 1.57 1.77 1.76 1.74 1.73 1.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 1.05 1.06 1.07 1.08 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 1.05 1.06 1.07 1.08 1.09 2L31/2×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 6.04 5.34 4.64 3.90 3.16 1.23 1.22 1.21 1.20 1.19 1.37 1.36 1.35 1.33 1.32 1.52 1.51 1.49 1.48 1.46 1.55 1.54 1.52 1.51 1.50 1.69 1.67 1.66 1.65 1.63 1.84 1.82 1.81 1.79 1.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 1.07 1.08 1.09 1.09 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 0.877 0.885 0.892 0.900 0.908 2L31/2×21/2×1/2 ×3/8 ×5/16 ×1/4 5.54 4.24 3.58 2.90 0.992 0.970 0.960 0.950 1.13 1.11 1.09 1.08 1.28 1.25 1.24 1.22 1.62 1.59 1.58 1.57 1.76 1.73 1.72 1.70 1.91 1.88 1.87 1.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 1.08 1.10 1.11 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.965 0.701 0.716 0.723 0.731 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. in. AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 107 DIMENSIONS AND PROPERTIES 1–107 Table 1-15 (continued) Double Angles 2L4-2L31/2 Properties Flexural-Torsional Properties Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. Back to Back of Angles, in. Shape 3/8 0 3/4 3/8 0 Single Angle Properties Area, A 3/4 rz r–o H r–o H r–o H r–o H r–o H r–o H in.2 in. 2L4×4×3/4 ×5/8 ×1/2 ×7/16 ×3/8 ×5/16 ×1/4 2.28 2.28 2.28 2.28 2.28 2.28 2.28 0.847 0.841 0.834 0.832 0.829 0.826 0.824 2.39 2.39 2.38 2.38 2.38 2.37 2.37 0.861 0.854 0.848 0.846 0.843 0.840 0.838 2.51 2.50 2.49 2.49 2.49 2.48 2.48 0.874 0.868 0.862 0.859 0.856 0.854 0.851 2.28 2.28 2.28 2.28 2.28 2.28 2.28 0.847 0.841 0.834 0.832 0.829 0.826 0.824 2.39 2.39 2.38 2.38 2.38 2.37 2.37 0.861 0.854 0.848 0.846 0.843 0.840 0.838 2.51 2.50 2.49 2.49 2.49 2.48 2.48 0.874 0.868 0.862 0.859 0.856 0.854 0.851 5.44 4.61 3.75 3.30 2.86 2.40 1.93 0.774 0.774 0.776 0.777 0.779 0.781 0.783 2L4×31/2×1/2 ×3/8 ×5/16 ×1/4 2.14 2.14 2.14 2.14 0.784 0.778 0.775 0.773 2.23 2.23 2.23 2.22 0.802 0.795 0.792 0.790 2.33 2.33 2.33 2.32 0.819 0.813 0.810 0.807 2.16 2.16 2.16 2.15 0.882 0.876 0.874 0.871 2.28 2.27 2.26 2.26 0.893 0.888 0.885 0.883 2.40 2.39 2.38 2.37 0.904 0.899 0.896 0.894 3.50 2.68 2.25 1.82 0.716 0.719 0.721 0.723 2L4×3×5/8 ×1/2 ×3/8 ×5/16 ×1/4 2.02 2.02 2.03 2.03 2.03 0.728 0.721 0.715 0.712 0.710 2.11 2.11 2.11 2.11 2.11 0.750 0.743 0.736 0.733 0.730 2.21 2.20 2.20 2.20 2.20 0.773 0.765 0.757 0.754 0.751 2.10 2.09 2.08 2.07 2.06 0.930 0.925 0.920 0.918 0.915 2.22 2.21 2.20 2.19 2.18 0.938 0.933 0.928 0.926 0.924 2.36 2.34 2.32 2.32 2.31 0.945 0.940 0.936 0.934 0.932 3.99 3.25 2.49 2.09 1.69 0.631 0.633 0.636 0.638 0.639 2L31/2×31/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 1.99 1.99 1.99 1.99 1.99 0.838 0.835 0.832 0.829 0.826 2.10 2.09 2.09 2.09 2.08 0.854 0.851 0.848 0.845 0.842 2.21 2.21 2.20 2.20 2.19 0.869 0.866 0.863 0.860 0.857 1.99 1.99 1.99 1.99 1.99 0.838 0.835 0.832 0.829 0.826 2.10 2.09 2.09 2.09 2.08 0.854 0.851 0.848 0.845 0.842 2.21 2.21 2.20 2.20 2.19 0.869 0.866 0.863 0.860 0.857 3.25 2.89 2.50 2.10 1.70 0.679 0.681 0.683 0.685 0.688 2L31/2×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 1.85 1.85 1.85 1.85 1.85 0.780 0.776 0.773 0.770 0.767 1.94 1.94 1.94 1.94 1.94 0.801 0.797 0.794 0.790 0.787 2.05 2.05 2.05 2.04 2.04 0.822 0.818 0.814 0.811 0.807 1.88 1.88 1.88 1.87 1.87 0.892 0.889 0.885 0.883 0.880 2.00 1.99 1.99 1.98 1.98 0.904 0.901 0.898 0.895 0.893 2.13 2.12 2.11 2.11 2.10 0.915 0.912 0.910 0.907 0.905 3.02 2.67 2.32 1.95 1.58 0.618 0.620 0.622 0.624 0.628 2L31/2×21/2×1/2 ×3/8 ×5/16 ×1/4 1.75 1.75 1.76 1.76 0.706 0.698 0.695 0.693 1.83 1.83 1.83 1.83 0.732 0.724 0.720 0.717 1.93 1.93 1.92 1.92 0.759 0.750 0.746 0.742 1.82 1.81 1.80 1.80 0.938 0.933 0.930 0.928 1.95 1.93 1.92 1.92 0.946 0.941 0.939 0.937 2.08 2.07 2.06 2.05 0.953 0.949 0.947 0.944 2.77 2.12 1.79 1.45 0.532 0.535 0.538 0.541 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 108 1–108 DIMENSIONS AND PROPERTIES Table 1-15 (continued) Double Angles Properties SLBB LLBB Shape Area LLBB Separation, s, in. SLBB Qs LLBB Qs Axis Y-Y Radius of Gyration SLBB Separation, s, in. Angles Angles in SepaContact rated rx Angles Angles in SepaContact rated rx in.2 0 3/8 3/4 0 3/8 3/4 2L3×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 5.52 4.86 4.22 3.56 2.88 2.18 1.29 1.28 1.27 1.26 1.25 1.24 1.43 1.42 1.41 1.39 1.38 1.37 1.58 1.57 1.55 1.54 1.52 1.51 1.29 1.28 1.27 1.26 1.25 1.24 1.43 1.42 1.41 1.39 1.38 1.37 1.58 1.57 1.55 1.54 1.52 1.51 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.912 0.895 0.903 0.910 0.918 0.926 0.933 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.912 0.895 0.903 0.910 0.918 0.926 0.933 2L3×21/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 5.00 4.44 3.86 3.26 2.64 2.00 1.04 1.02 1.01 1.00 0.991 0.980 1.18 1.16 1.15 1.14 1.12 1.11 1.33 1.32 1.30 1.29 1.27 1.25 1.35 1.34 1.32 1.31 1.30 1.29 1.49 1.48 1.46 1.45 1.44 1.42 1.64 1.63 1.61 1.60 1.58 1.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.912 0.910 0.917 0.924 0.932 0.940 0.947 1.00 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 1.00 0.912 0.718 0.724 0.731 0.739 0.746 0.753 2L3×2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 4.52 3.50 2.96 2.40 1.83 0.795 0.771 0.760 0.749 0.739 0.940 0.911 0.897 0.883 0.869 1.10 1.07 1.05 1.03 1.02 1.42 1.39 1.38 1.37 1.35 1.56 1.54 1.52 1.51 1.49 1.72 1.69 1.67 1.66 1.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.912 0.922 0.937 0.945 0.953 0.961 1.00 1.00 1.00 1.00 0.998 1.00 1.00 1.00 1.00 0.912 0.543 0.555 0.562 0.569 0.577 2L21/2×21/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 4.52 3.46 2.92 2.38 1.80 1.09 1.07 1.05 1.04 1.03 1.23 1.21 1.19 1.18 1.17 1.39 1.36 1.34 1.33 1.31 1.09 1.07 1.05 1.04 1.03 1.23 1.21 1.19 1.18 1.17 1.39 1.36 1.34 1.33 1.31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.735 0.749 0.756 0.764 0.771 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.735 0.749 0.756 0.764 0.771 2L21/2×2×3/8 ×5/16 ×1/4 ×3/16 3.10 2.64 2.14 1.64 0.815 0.804 0.794 0.784 0.957 0.943 0.930 0.916 1.11 1.10 1.08 1.07 1.13 1.12 1.10 1.09 1.27 1.26 1.24 1.23 1.42 1.41 1.39 1.38 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.766 0.774 0.782 0.790 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.983 0.574 0.581 0.589 0.597 2L21/2×11/2×1/4 ×3/16 1.89 1.45 0.554 0.694 0.852 1.17 0.543 0.679 0.834 1.16 1.32 1.30 1.47 1.00 1.45 1.00 1.00 0.792 1.00 0.983 0.801 1.00 1.00 0.411 0.983 0.418 2.74 2.32 1.89 1.44 0.982 0.865 0.853 0.842 0.831 0.818 1.01 0.996 0.982 0.967 0.951 1.17 1.15 1.14 1.12 1.10 1.00 1.00 1.00 1.00 0.912 1.00 1.00 1.00 1.00 0.912 2L2×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 1.01 0.996 0.982 0.967 0.951 1.17 1.15 1.14 1.12 1.10 0.865 0.853 0.842 0.831 0.818 1.00 1.00 1.00 1.00 0.998 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. 0.591 0.598 0.605 0.612 0.620 1.00 1.00 1.00 1.00 0.998 in. 0.591 0.598 0.605 0.612 0.620 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 109 DIMENSIONS AND PROPERTIES 1–109 Table 1-15 (continued) Double Angles Properties 2L3-2L2 Flexural-Torsional Properties Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. Back to Back of Angles, in. Shape 3/8 0 3/4 3/8 0 Single Angle Properties Area, A 3/4 rz r–o H r–o H r–o H r–o H r–o H r–o H in.2 in. 2L3×3×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 1.71 1.71 1.71 1.71 1.71 1.71 0.842 0.838 0.834 0.830 0.827 0.823 1.82 1.82 1.81 1.81 1.81 1.80 0.861 0.857 0.853 0.849 0.845 0.842 1.94 1.94 1.93 1.93 1.92 1.91 0.878 0.874 0.870 0.866 0.863 0.859 1.71 1.71 1.71 1.71 1.71 1.71 0.842 0.838 0.834 0.830 0.827 0.823 1.82 1.82 1.81 1.81 1.81 1.80 0.861 0.857 0.853 0.849 0.845 0.842 1.94 1.94 1.93 1.93 1.92 1.91 0.878 0.874 0.870 0.866 0.863 0.859 2.76 2.43 2.11 1.78 1.44 1.09 0.580 0.580 0.581 0.583 0.585 0.586 2L3×21/2×1/2 ×7/16 ×3/8 ×5/16 ×1/4 ×3/16 1.57 1.57 1.57 1.57 1.57 1.57 0.774 0.769 0.764 0.760 0.756 0.753 1.66 1.66 1.66 1.66 1.66 1.65 0.800 0.795 0.790 0.785 0.781 0.778 1.78 1.77 1.77 1.76 1.76 1.75 0.824 0.819 0.815 0.810 0.806 0.802 1.61 1.60 1.60 1.59 1.59 1.58 0.905 0.901 0.897 0.893 0.890 0.887 1.73 1.72 1.72 1.71 1.70 1.70 0.918 0.914 0.911 0.907 0.904 0.901 1.86 1.85 1.85 1.84 1.83 1.82 0.929 0.926 0.923 0.920 0.917 0.914 2.50 2.22 1.93 1.63 1.32 1.00 0.516 0.516 0.517 0.518 0.520 0.521 2L3×2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 1.47 1.48 1.48 1.48 1.49 0.684 0.675 0.671 0.668 0.666 1.55 1.55 1.56 1.56 1.55 0.717 0.707 0.702 0.698 0.695 1.66 1.65 1.65 1.65 1.64 0.751 0.739 0.734 0.730 0.726 1.55 1.54 1.53 1.52 1.52 0.955 0.949 0.946 0.944 0.941 1.69 1.67 1.66 1.65 1.64 0.962 0.957 0.954 0.952 0.950 1.83 1.81 1.80 1.79 1.78 0.968 0.963 0.961 0.959 0.957 2.26 1.75 1.48 1.20 0.917 0.425 0.426 0.428 0.431 0.435 2L21/2×21/2×1/2 ×3/8 ×5/16 ×1/4 ×3/16 1.43 1.42 1.42 1.42 1.42 0.850 0.839 0.834 0.829 0.825 1.54 1.53 1.53 1.52 1.52 0.871 0.861 0.856 0.852 0.847 1.67 1.65 1.65 1.64 1.63 0.890 0.881 0.876 0.872 0.868 1.43 1.42 1.42 1.42 1.42 0.850 0.839 0.834 0.829 0.825 1.54 1.53 1.53 1.52 1.52 0.871 0.861 0.856 0.852 0.847 1.67 1.65 1.65 1.64 1.63 0.890 0.881 0.876 0.872 0.868 2.26 1.73 1.46 1.19 0.901 0.481 0.481 0.481 0.482 0.482 2L21/2×2×3/8 ×5/16 ×1/4 ×3/16 1.29 1.29 1.29 1.29 0.754 0.748 0.744 0.740 1.38 1.38 1.38 1.38 0.786 0.781 0.775 0.771 1.49 1.49 1.49 1.48 0.817 0.812 0.806 0.801 1.32 1.32 1.32 1.31 0.913 0.909 0.904 0.901 1.45 1.44 1.43 1.43 0.927 0.923 0.920 0.916 1.59 1.58 1.57 1.56 0.939 0.936 0.933 0.929 1.55 1.32 1.07 0.818 0.419 0.420 0.423 0.426 2L21/2×11/2×1/4 1.22 0.630 1.29 0.669 1.38 0.712 1.27 0.962 1.40 0.969 1.55 0.975 0.947 0.321 ×3/16 1.22 0.627 1.29 0.665 1.38 0.706 1.26 0.959 1.39 0.967 1.53 0.973 0.724 0.324 2L2×2×3/8 ×5/16 ×1/4 ×3/16 ×1/8 1.14 1.14 1.13 1.13 1.13 0.847 0.841 0.835 0.830 0.826 1.25 1.25 1.24 1.24 1.23 0.874 0.868 0.862 0.857 0.853 1.38 1.37 1.37 1.36 1.35 0.897 0.891 0.886 0.882 0.877 1.14 1.14 1.13 1.13 1.13 0.847 0.841 0.835 0.830 0.826 1.25 1.25 1.24 1.24 1.23 0.874 0.868 0.862 0.857 0.853 Note: For compactness criteria, refer to Table 1-7B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.38 1.37 1.37 1.36 1.35 0.897 0.891 0.886 0.882 0.877 1.37 1.16 0.944 0.722 0.491 0.386 0.386 0.387 0.389 0.391 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 110 1–110 DIMENSIONS AND PROPERTIES Table 1-16 2C-Shapes Properties 2C-SHAPES Shape Axis Y-Y Separation, s, in. Area, A in.2 3/8 0 I in.4 S in.3 r in. Z in.3 29.4 40.7 23.6 32.6 20.0 28.5 2C12×30 ×25 ×20.7 17.6 18.2 14.7 15.6 12.2 13.6 5.75 1.02 11.9 23.3 5.11 1.03 9.89 19.8 4.64 1.06 8.49 17.2 2C10×30 ×25 ×20 ×15.3 17.6 14.7 11.7 8.96 5.04 4.25 3.62 3.13 2C9×20 ×15 ×13.4 11.7 8.80 8.80 6.86 7.88 6.34 11.0 1.18 23.5 9.25 1.18 18.4 8.38 1.20 15.8 I in.4 2C15×50 ×40 ×33.9 15.3 12.3 9.91 8.14 Axis X-X 0.931 11.4 0.914 9.06 0.918 7.11 0.953 5.68 S in.3 3/4 r in. Z in.3 I in.4 S in.3 50.5 12.9 1.31 29.0 62.4 15.3 40.2 10.9 1.31 22.8 49.6 12.7 35.1 9.78 1.33 19.5 43.1 11.4 20.2 16.2 13.0 10.6 r in. Z in.3 rx in. 1.46 34.5 1.45 27.2 1.47 23.3 5.24 5.43 5.61 6.94 1.15 15.2 29.6 6.12 1.16 12.6 25.0 5.51 1.19 10.8 21.7 8.36 1.30 18.5 7.32 1.31 15.4 6.55 1.34 13.0 4.29 4.43 4.61 6.27 5.27 4.44 3.80 7.73 6.48 5.43 4.59 3.43 3.52 3.67 3.88 1.07 14.7 26.3 1.05 11.8 21.1 1.05 9.32 16.9 1.09 7.36 13.7 3.32 0.866 6.84 11.8 4.15 1.00 2.76 0.882 5.17 9.10 3.41 1.02 2.61 0.897 4.74 8.39 3.20 1.03 9.05 15.6 6.82 12.0 6.21 11.0 1.22 18.0 1.20 14.6 1.20 11.5 1.23 9.04 5.15 1.15 11.2 3.22 4.19 1.17 8.48 3.40 3.92 1.18 7.69 3.48 2C8×18.75 11.0 7.46 ×13.75 8.06 5.51 ×11.5 6.74 4.82 2.95 0.823 6.23 10.2 3.75 0.962 8.29 13.7 4.71 1.11 10.4 2.82 2.35 0.826 4.48 7.47 2.95 0.962 5.99 10.0 3.68 1.11 7.51 2.99 2.13 0.846 3.86 6.50 2.66 0.982 5.12 8.66 3.29 1.13 6.38 3.11 2C7×14.75 ×12.25 ×9.8 8.66 5.18 7.18 4.30 5.74 3.59 2.25 0.773 4.61 1.96 0.773 3.78 1.72 0.791 3.11 7.21 2.90 0.912 6.23 9.85 3.68 1.07 5.97 2.51 0.911 5.13 8.14 3.17 1.06 4.95 2.17 0.929 4.18 6.72 2.73 1.08 7.85 2.51 6.48 2.59 5.26 2.72 2C6×13 ×10.5 ×8.2 7.64 4.11 6.14 3.26 4.78 2.63 1.91 0.734 3.92 1.60 0.728 3.08 1.37 0.741 2.45 5.85 2.50 0.876 5.35 8.13 3.21 1.03 4.63 2.08 0.867 4.24 6.43 2.67 1.02 3.72 1.76 0.881 3.34 5.14 2.24 1.04 6.77 2.13 5.39 2.22 4.24 2.34 2C5×9 ×6.7 5.28 2.45 3.94 1.86 1.30 0.682 2.52 1.06 0.688 1.91 3.59 1.73 0.824 3.51 5.09 2.25 0.982 4.50 1.84 2.71 1.40 0.831 2.65 3.84 1.81 0.989 3.83 1.95 2C4×7.25 ×6.25 ×5.4 ×4.5 4.26 3.54 3.16 2.76 1.75 1.36 1.29 1.25 1.02 0.824 0.812 0.789 0.641 0.620 0.637 0.673 1.96 1.54 1.44 1.36 2.63 2.06 1.94 1.86 1.38 1.12 1.10 1.05 0.786 0.763 0.783 0.820 2.75 2.20 2.04 1.88 3.81 3.01 2.82 2.66 1.82 1.49 1.44 1.36 0.946 0.922 0.943 0.981 3.55 2.87 2.63 2.40 1.47 1.50 1.56 1.63 2C3×6 ×5 ×4.1 ×3.5 3.52 2.94 2.40 2.18 1.33 1.05 0.842 0.766 0.833 0.699 0.597 0.558 0.614 0.597 0.591 0.593 1.60 1.29 1.05 0.966 2.06 1.63 1.32 1.20 1.15 0.969 0.827 0.772 0.764 0.746 0.741 0.743 2.26 1.84 1.50 1.37 3.03 2.43 1.97 1.80 1.54 1.30 1.10 1.03 0.927 0.909 0.905 0.908 2.92 2.39 1.95 1.78 1.09 1.12 1.18 1.20 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 111 DIMENSIONS AND PROPERTIES 1–111 Table 1-17 2MC-Shapes Properties 2MC18-2MC7 Axis Y-Y Separation, s, in. Area, A Shape 3/8 0 in.2 I in.4 S in.3 r in. Z in.3 I in.4 2MC18×58 ×51.9 ×45.8 ×42.7 34.2 30.6 27.0 25.2 60.6 55.0 50.1 47.8 14.4 13.4 12.5 12.1 1.33 1.34 1.36 1.38 29.5 26.3 23.4 22.1 72.8 65.9 59.8 57.0 2MC13×50 ×40 ×35 ×31.8 29.4 23.4 20.6 18.7 60.7 49.1 44.3 41.5 13.8 11.7 10.9 10.4 1.44 1.45 1.47 1.49 28.6 22.7 20.2 18.7 2MC12×50 ×45 ×40 ×35 ×31 29.4 26.4 23.6 20.6 18.2 67.2 59.9 53.7 48.0 44.0 16.2 14.9 13.8 12.7 12.0 1.51 1.51 1.51 1.53 1.55 30.9 27.5 24.5 21.6 19.7 2MC12×14.3 c 2MC12×10.6 2MC10×8.4c ×6.5c r in. Z in.3 I in.4 16.6 15.4 14.3 13.8 1.46 1.47 1.49 1.51 35.9 32.0 28.4 26.8 87.5 79.0 71.4 67.9 72.5 58.4 52.6 49.2 15.8 13.4 12.3 11.7 1.57 1.58 1.60 1.62 34.1 27.2 24.1 22.2 79.8 71.1 63.7 56.8 52.1 18.5 16.9 15.6 14.4 13.5 1.65 1.64 1.65 1.66 1.69 36.4 32.4 29.0 25.5 23.1 S in.3 rx r in. Z in.3 in. 19.1 17.6 16.3 15.7 1.60 1.61 1.63 1.64 42.3 37.7 33.5 31.6 6.29 6.41 6.55 6.64 86.3 69.4 62.3 58.2 18.0 15.2 14.0 13.3 1.71 1.72 1.74 1.76 39.7 31.6 27.9 25.7 4.62 4.82 4.95 5.05 94.5 84.1 75.3 67.1 61.4 20.9 19.2 17.7 16.2 15.2 1.79 1.79 1.79 1.81 1.83 41.9 37.4 33.4 29.4 26.5 4.28 4.36 4.46 4.59 4.71 1.50 0.618 3.15 4.66 2.02 0.747 4.72 6.73 2.70 0.897 6.29 4.27 6.20 1.21 0.804 0.441 1.67 2.05 1.21 0.575 2.83 3.33 1.78 0.733 3.99 4.22 14.7 27.8 12.9 25.4 13.9 12.1 11.0 1.58 26.4 1.58 21.5 1.61 18.7 70.7 58.2 51.1 8.18 1.38 14.0 7.67 1.40 12.8 33.6 30.7 15.7 13.6 12.3 1.71 30.9 83.1 17.7 1.72 25.2 68.3 15.3 1.75 21.9 59.8 13.8 1.85 1.86 1.89 35.5 28.9 25.0 3.61 3.75 3.89 9.36 1.51 16.8 40.4 10.7 8.76 1.54 15.2 36.8 10.0 1.66 1.69 19.5 17.6 3.87 3.99 4.92 1.05 0.700 0.462 1.40 1.75 1.03 0.596 2.32 2.79 1.49 0.753 3.90 0.414 0.354 0.326 0.757 0.835 0.615 0.463 1.49 1.53 0.990 0.626 3.24 3.61 2.22 3.43 2MC9×25.4 14.9 29.2 ×23.9 14.0 27.8 8.34 1.40 14.5 8.05 1.41 13.8 35.2 33.4 9.53 1.53 17.3 42.2 10.9 9.19 1.54 16.4 40.1 10.5 1.68 1.69 20.1 19.0 3.43 3.48 2MC8×22.8 13.4 27.7 ×21.4 12.6 26.3 7.91 1.44 13.5 7.63 1.45 12.8 33.2 31.6 9.01 1.58 16.0 39.7 10.2 8.68 1.59 15.2 37.7 9.86 1.72 1.73 18.6 17.5 3.09 3.13 2MC8×20 11.7 17.1 ×18.7 11.0 16.2 5.66 1.21 5.45 1.21 6.61 1.34 12.1 26.2 6.35 1.35 11.4 24.8 1.49 1.50 14.3 13.5 3.04 3.09 2MC8×8.5 1.15 0.658 2.14 5.00 2.16 2MC7×22.7 13.3 29.0 ×19.1 11.2 25.1 c S in.3 3/4 8.36 3.19 2MC10×41.1 24.2 60.0 ×33.6 19.7 49.5 ×28.5 16.7 43.5 2MC10×25 ×22 Axis X-X 9.88 21.2 9.34 20.1 8.06 1.47 13.9 7.27 1.50 12.1 3.14 34.7 30.0 7.70 7.39 1.52 0.793 3.08 4.47 1.99 0.946 9.16 1.61 16.4 41.3 10.4 8.25 1.64 14.2 35.7 9.34 1.76 1.78 Shape is slender for compression with Fy = 36 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.02 3.05 18.9 16.3 2.67 2.77 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 112 1–112 DIMENSIONS AND PROPERTIES Table 1-17 (continued) 2MC-Shapes Properties 2MC6-2MC3 Shape Axis Y-Y Separation, s, in. Area, A in.2 3/8 0 I in.4 S in.3 Axis X-X r in. Z in.3 I in.4 S in.3 3/4 r in. Z in.3 rx I in.4 S in.3 r in. Z in.3 in. 2MC6×18 10.6 25.0 ×15.3 8.98 19.7 7.13 1.54 11.8 29.8 5.63 1.48 9.43 23.6 8.07 1.68 13.8 35.3 6.39 1.62 11.1 28.1 9.11 7.24 1.83 1.77 15.8 12.8 2.37 2.38 2MC6×16.3 9.58 15.8 ×15.1 8.88 14.8 5.26 1.28 5.02 1.29 8.88 19.4 8.35 18.2 6.10 1.42 10.7 23.8 5.82 1.43 10.0 22.3 7.05 6.71 1.58 1.58 12.5 11.7 2.33 2.37 2MC6×12 7.06 7.21 2.89 1.01 4.97 9.32 3.47 1.15 4.15 1.30 7.62 2.30 2MC6×7 ×6.5 4.18 2.25 3.90 2.15 1.20 0.734 2.09 1.16 0.744 2.00 3.19 3.04 1.55 0.873 2.88 4.41 1.96 1.49 0.883 2.73 4.20 1.89 1.03 1.04 3.66 2.34 3.46 2.38 2MC4×13.8 8.06 10.1 4.03 1.12 2MC3×7.1 1.62 0.862 2.76 4.22 3.13 6.84 12.9 4.31 6.29 11.9 4.81 1.27 8.35 16.3 5.68 1.42 9.87 1.48 2.03 1.01 3.55 5.79 2.50 1.17 4.34 1.14 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 113 DIMENSIONS AND PROPERTIES 1–113 Table 1-18 Weights of Raised-Pattern Floor Plates Gauge No. Wt., lb/ft 2 18 16 14 13 12 2.40 3.00 3.75 4.50 5.25 Nominal Thickness, in. 1/8 3/16 1/4 5/16 3/8 7/16 Wt., lb/ft 2 Nominal Thickness, in. 6.16 8.71 11.3 13.8 16.4 18.9 Note: Thickness is measured near the edge of the plate, exclusive of raised pattern. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1/2 9/16 5/8 3/4 7/8 1 Wt., lb/ft 2 21.5 24.0 26.6 31.7 36.8 41.9 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 114 1–114 DIMENSIONS AND PROPERTIES Table 1-19 W-Shapes with Cap Channels Properties Axis X-X W-Shape Channel Total Wt. Total Area I I S1 = ᎏ y I S2 = ᎏ y in.3 in.3 1 lb/ft in.2 in.4 r 2 in. W36×150 MC18×42.7 C15×33.9 193 184 56.8 54.2 12000 11500 553 546 831 764 14.6 14.6 W33×141 MC18×42.7 C15×33.9 184 175 54.1 51.5 10000 9580 490 484 750 689 13.6 13.6 W33×118 MC18×42.7 C15×33.9 161 152 47.2 44.6 8280 7900 400 395 656 596 13.2 13.3 W30×116 MC18×42.7 C15×33.9 159 150 46.8 44.1 6900 6590 365 360 598 544 12.1 12.2 W30×99 MC18×42.7 C15×33.9 142 133 41.6 39.0 5830 5550 304 300 533 481 11.8 11.9 W27×94 C15×33.9 128 37.6 4530 268 435 11.0 W27×84 C15×33.9 118 34.7 4050 237 403 10.8 W24×84 C15×33.9 C12×20.7 118 105 34.7 30.8 3340 3030 217 211 367 302 9.82 9.92 W24×68 C15×33.9 C12×20.7 102 88.7 30.0 26.1 2710 2440 173 168 321 258 9.51 9.67 W21×68 C15×33.9 C12×20.7 102 88.7 30.0 26.1 2180 1970 156 152 287 232 8.52 8.67 W21×62 C15×33.9 C12×20.7 95.9 82.7 28.2 24.3 2000 1800 142 138 272 218 8.41 8.59 W18×50 C15×33.9 C12×20.7 83.9 70.7 24.6 20.7 1250 1120 100 97.3 211 166 7.12 7.35 W16×36 C15×33.9 C12×20.7 69.9 56.7 20.5 16.6 748 670 64.5 62.8 160 123 6.04 6.34 W14×30 C12×20.7 C10×15.3 50.7 45.3 14.9 13.3 447 420 46.7 46.0 98.1 84.5 5.47 5.61 W12×26 C12×20.7 C10×15.3 46.7 41.3 13.7 12.1 318 299 36.8 36.3 82.1 70.5 4.81 4.96 Note: Compactness criteria not addressed in this table. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 115 DIMENSIONS AND PROPERTIES 1–115 Table 1-19 (continued) W-Shapes with Cap Channels Properties Axis X-X W-Shape Channel Axis Y-Y y1 y2 Z yp I S r Z in. in. in.3 in. in.4 in.3 in. in.3 W36×150 MC18×42.7 C15×33.9 21.8 21.1 14.5 15.1 738 716 28.0 25.9 824 584 91.5 77.9 3.81 3.28 146 122 W33×141 MC18×42.7 C15×33.9 20.4 19.8 13.3 13.9 652 635 27.0 24.9 800 561 88.9 74.8 3.85 3.30 142 118 W33×118 MC18×42.7 C15×33.9 20.7 20.0 12.6 13.3 544 529 27.8 25.5 741 502 82.3 66.9 3.96 3.35 126 102 W30×116 MC18×42.7 C15×33.9 18.9 18.3 11.5 12.1 492 480 26.1 23.8 718 479 79.8 63.8 3.92 3.29 124 100 W30×99 MC18×42.7 C15×33.9 19.2 18.5 10.9 11.5 412 408 26.4 24.4 682 442 75.8 59.0 4.05 3.37 114 89.4 W27×94 C15×33.9 16.9 10.4 357 23.6 439 58.5 3.41 89.6 W27×84 C15×33.9 17.1 10.0 316 23.9 420 56.0 3.48 83.9 W24×84 C15×33.9 C12×20.7 15.4 14.3 9.10 10.0 286 275 21.6 18.5 409 223 54.5 37.2 3.43 2.69 83.4 58.2 W24×68 C15×33.9 C12×20.7 15.7 14.5 8.46 9.49 232 224 21.7 19.2 385 199 51.3 33.2 3.58 2.76 75.3 50.1 W21×68 C15×33.9 C12×20.7 13.9 12.9 7.59 8.49 207 200 19.3 17.6 379 194 50.6 32.3 3.56 2.72 75.1 50.0 W21×62 C15×33.9 C12×20.7 14.1 13.0 7.33 8.26 189 183 19.4 18.1 372 186 49.6 31.1 3.63 2.77 72.5 47.3 W18×50 C15×33.9 C12×20.7 12.5 11.5 5.92 6.76 133 127 16.9 16.1 354 169 47.3 28.2 3.79 2.85 67.3 42.2 W16×36 C15×33.9 C12×20.7 11.6 10.7 4.67 5.47 86.8 83.2 15.2 14.6 339 153 45.2 25.6 4.06 3.04 61.6 36.4 W14×30 C12×20.7 C10×15.3 9.57 9.11 4.55 4.97 62.0 60.3 12.9 12.6 149 86.8 24.8 17.4 3.16 2.55 34.6 24.9 W12×26 C12×20.7 C10×15.3 8.63 8.22 3.87 4.24 48.2 47.0 11.6 11.3 146 84.5 24.4 16.9 3.27 2.64 33.7 24.1 Note: Compactness criteria not addressed in this table. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 116 1–116 DIMENSIONS AND PROPERTIES Table 1-20 S-Shapes with Cap Channels Properties Axis X-X S-Shape Channel Total Wt. Total Area I I S1 = ᎏ y I S2 = ᎏ y in.3 in.3 1 lb/ft in.2 in.4 r 2 in. S24×80 C12×20.7 C10×15.3 101 95.3 29.5 27.9 2750 2610 191 188 278 252 9.66 9.67 S20×66 C12×20.7 C10×15.3 86.7 81.3 25.5 23.9 1620 1530 132 129 202 181 7.97 8.00 S15×42.9 C10×15.3 C8×11.5 58.2 54.4 17.1 16.0 615 583 65.7 64.7 105 93.9 6.00 6.04 S12×31.8 C10×15.3 C8×11.5 47.1 43.3 13.8 12.7 314 297 40.2 39.6 71.2 63.0 4.77 4.84 S10×25.4 C10×15.3 C8×11.5 40.7 36.9 11.9 10.8 185 175 27.5 27.1 52.7 46.3 3.94 4.02 Note: Compactness criteria not addressed in this table. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 117 DIMENSIONS AND PROPERTIES 1–117 Table 1-20 (continued) S-Shapes with Cap Channels Properties Axis X-X S-Shape Channel Axis Y-Y y1 y2 Z yp I S r Z in. in. in.3 in. in.4 in.3 in. in.3 S24×80 C12×20.7 C10×15.3 14.4 13.9 9.90 10.4 256 246 18.1 16.5 171 109 28.5 21.8 2.41 1.98 46.4 36.8 S20×66 C12×20.7 C10×15.3 12.3 11.8 7.99 8.44 180 173 16.0 14.4 156 94.7 26.1 18.9 2.48 1.99 41.0 31.3 S15×42.9 C10×15.3 C8×11.5 9.37 9.01 5.87 6.21 87.6 86.5 12.8 11.6 81.5 46.8 16.3 11.7 2.18 1.71 25.0 18.7 S12×31.8 C10×15.3 C8×11.5 7.82 7.50 4.42 4.72 54.0 52.4 10.6 10.3 76.5 41.8 15.3 10.5 2.36 1.82 22.3 16.1 S10×25.4 C10×15.3 C8×11.5 6.73 6.45 3.51 3.77 37.2 36.1 73.9 39.2 14.8 9.81 2.49 1.90 20.9 14.6 9.03 8.82 Note: Compactness criteria not addressed in this table. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 118 1–118 DIMENSIONS AND PROPERTIES Table 1-21 Crane Rails Dimensions and Properties ASCE CRANE RAILS ASTM PROFILE 104 ASTM PROFILE 135 ASTM PROFILE 175 n in. in. 17/32 11/64 5/8 7/32 11/16 1/4 49/64 9/32 13/16 9/32 7/8 19/64 57/64 19/64 31/32 5/16 11/16 11/16 11/4 19/64 1/2 15/32 5/8 1/2 c r in. in. 12 12 12 12 12 12 12 12 12 14 Flat 18 111/16 17/8 21/8 23/8 27/16 21/2 29/16 23/4 21/2 37/16 4.3 41/4 t in. h R in. in. 12 12 12 12 12 12 12 12 31/2 12 Vert. Vert. 21/64 123/32 25/64 155/64 21/16 217/64 215/32 25/8 23/4 25/64 27/16 213/16 23/4 37/64 7/16 31/64 33/64 35/64 9/16 9/16 1 11/4 11/4 11/2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Axis X-X S l Base 171/128 123/32 1115/128 23/64 23/16 217/64 265/128 27/16 215/32 25/8 221/32 in. 31/8 31/2 37/8 41/4 45/8 5 53/16 53/4 5 53/16 6 6 m Web Head in. 125/64 b Head Area Base Gage, g Depth, d Classification Crane Std. ASCE ASTM A759 Wt. lb/yd in. 30 31/8 40 31/2 50 37/8 60 41/4 70 45/8 — 80 5 85 53/16 100 53/4 104 5 135 53/4 171 6 175 6 Light TYPE ASTM PROFILE 171 y in.2 3.00 3.94 4.90 5.93 6.81 7.86 8.33 9.84 10.3 13.3 16.8 17.1 in.4 4.10 6.54 10.1 14.6 19.7 26.4 30.1 44.0 29.8 50.8 73.4 70.5 in.3 2.55 3.59 5.10 6.64 8.19 10.1 11.1 14.6 10.7 17.3 24.5 23.4 in.3 — 3.89 — 7.12 8.87 11.1 12.2 16.1 13.5 18.1 24.4 23.6 in. — 1.68 1.88 2.05 2.22 2.38 2.47 2.73 2.21 2.81 3.01 2.98 AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 119 DIMENSIONS AND PROPERTIES 1–119 Table 1-22 ASTM A6 Tolerances for W-Shapes and HP-Shapes Permissible Cross-Sectional Variations Nominal Depth, in. A Depth at Web Centerline, in. B Flange Width, in. T + T′ Flanges Out of Square, Max. in. Ea Web Off Center, in. C, Max. Depth at any Cross-Section over Theoretical Depth, in. Over Under Over Under To 12, incl. 1/ 8 1/ 8 1/ 4 3/ 16 1/ 4 3/ 16 1/ 4 Over 12 1/ 8 1/ 8 1/ 4 3/ 16 5/ 16 3/ 16 1/ 4 Permissible Variations in Length Variations from Specified Length for Lengths Given, in. Nominal Depth b, in. 30 ft and Under Over Beams 24 in. and under Beams over 24 in. All columns Sizes /8 1 1 /2 /2 1/ Under plus 1/16 for each additional 5 ft or fraction thereof 3 /8 1 2 plus /16 for each additional 5 ft or fraction thereof 1 /2 Mill Straightness Tolerancesc Permissible Variation in Straightness, in. Length Camber Flange width less than 6 in. All Area and Weight 3/8 /8 All Ends Out of Square Over 3 3 Flange width equal to or greater than 6 in. Certain sections with a flange width approx. equal to depth & specified on order as columnsd Over 30 ft Under 45 ft and under Sweep (total length, ft) in. × 10 1/8 in. × (total length, ft) 1/8 in. × (total length, ft) 10 5 (total length, ft) 1/8 in. × with 3/8 in. max. 10 1/8 [ in. + 1/8 in. × (total length, ft – 45) 10 Other Permissible Rolling Variations Over 45 ft 3/8 ] −2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weighte 1/64 in., per in. of depth, or of flange width if it is greater than the depth a Variation of 5/16 in. max. for sections over 426 lb/ft. b For shapes specified in the order for use as bearing piles, the permitted variations are plus 5 in. and minus 0 in. c The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. d Applies only to W8×31and heavier, W10×49 and heavier, W12×65 and heavier, W14×90 and heavier, HP8×36, HP10×57, HP12×74 and heavier, and HP14×102 and heavier. If other sections are specified on the order as columns, the tolerance will be subject to negotiation with the manufacturer. e For shapes with a nominal weight ≥ 100 lb/ft, the permitted variation is ±2.5% from the theoretical or specified amount. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM 1–120 Page 120 DIMENSIONS AND PROPERTIES W-Shapes Channels Angles S- and M-Shapes Tees Fig. 1-1. Positions for measuring straightness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 121 DIMENSIONS AND PROPERTIES 1–121 Table 1-23 ASTM A6 Tolerances for S-Shapes, M-Shapes and Channels *Back of square and centerline of web to be parallel when measuring “out-of-square” Permissible Cross-Sectional Variations Nominal Depth, in. Shape Aa Depth, in. B Flange Width, in. Over Under Over Under 3 to 7, incl. 3/ 32 1/ 16 1/ 8 1/ 8 Over 7 to 14, incl. 1/ 8 3/ 32 5/ 32 5/ 32 Over 14 to 24, incl. 3/ 16 1/ 8 3/ 16 3/ 16 S shapes and M shapes Channels 3 to 7, incl. 3/ 32 1/ 16 1/ 8 1/ 8 Over 7 to 14, incl. 1/ 8 3/ 32 1/ 8 5/ 32 Over 14 3/ 16 1/ 8 1/ 8 3/ 16 T + T ′b Flanges Out of Square, per in. of B, in. E Web Off Center, in. 1/ 32 3/ 16 1/ 32 — Permissible Variations in Length Variations from Specified Length for Lengths Givenc, in. Shape 5 to 10 ft, excl. 10 to 20 ft, excl. 20 to 30 ft, incl. Over 30 to 40 ft, incl. Over 40 to 65 ft, incl. Over 65 ft All 1 11/ 2 13/4 21/ 4 23/4 — Mill Straightness Tolerancesd Camber Sweep 1/8 in. × (total length, ft) 5 Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject to negotiation between the manufacturer and purchaser for the individual sections involved. Other Permissible Rolling Variations Area and Weight Ends Out of Square −2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weighte S-Shapes, M-Shapes and Channels 1/64 in., per in. of depth — Indicates that there is no requirement. a A is measured at center line of web for S-shapes and M-shapes and at back of web for channels. b T + T ′ applies when flanges of channels are toed in or out. c The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft. d The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. e For shapes with a nominal weight ≥ 100 lb/ft, the permitted variation is ±2.5% from the theoretical or specified amount. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 122 1–122 DIMENSIONS AND PROPERTIES Table 1-24 ASTM A6 Tolerances for WT-, MT- and ST-Shapes Permissible Variations in Depth Dimension A may be approximately one-half beam depth or any dimension resulting from off-center splitting or splitting on two lines, as specified in the order. Specified Depth, A, in. Variations in Depth A, Over and Under 1/8 To 6, excl. 3/16 6 to 16, excl. 1/4 16 to 20, excl. 5/16 20 to 24, excl. 3/8 24 and over The above variations in depths of tees include the permissible variations in depth for the beams before splitting Mill Straightness Tolerancesa Camber and Sweep 1/8 in. × (total length, ft) 5 Other Permissible Rolling Variations Other permissible variations in cross section as well as permissible variations in length, area, weight, ends out-of-square, and sweep for WTs will correspond to those of the beam before splitting. — Indicates that there is no requirement. a The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. For tolerance on induced camber and sweep, see AISC Code of Standard Practice Section 6.4.4. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 123 DIMENSIONS AND PROPERTIES 1–123 Table 1-25 ASTM A6 Tolerances for Angles, 3 in. and Larger Permissible Cross-Sectional Variations Shape Angles 3 to 4, incl. Over 4 to 6, incl. Over 6 5 to 10 ft, excl. 1 T Out of Square per in. of B, in. B Leg Size, in. Nominal Leg Sizea, in. Over 1/8 1/8 3/16 Under 3/32 1/8 1/8 3/128b Permissible Variations in Length Variations Over Specified Length for Lengths Givenc, in. 10 to 20 ft, excl. 20 to 30 ft, incl. Over 30 to 40 ft, incl. Over 40 to 65 ft, incl. 11/2 13/4 21/4 23/4 Mill Straightness Tolerancesd Camber Sweep 1/8 in. × (total length, ft) , applied to either leg 5 Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject to negotiation between the manufacturer and purchaser for the individual sections involved. Other Permissible Rolling Variations Area and Weight Ends Out of Square a −2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weight 3/128 in. per in. of leg length, or 11/2°. Variations based on the longer leg of unequal angle. For unequal leg angles, longer leg determines classification. b 3/128 in. per in. = 11/2° c The permitted variation d under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft. The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 124 1–124 DIMENSIONS AND PROPERTIES Table 1-26 ASTM A6 Tolerances for Angles, < 3 in. Permissible Cross-Sectional Variations Variations in Thickness for Thicknesses Given, Over and Under, in. Specified Leg Sizea, in. 3/ 16 and Under Over 3/16 to 3/8 incl. Over 3/8 B Leg Size, Over and Under, in. 1 and Under 0.008 0.010 — 1/ 32 Over 1 to 2, incl. 0.010 0.010 0.012 3/ 64 0.015 1/ 16 Over 2 to 3, excl. 0.012 0.015 T Out of Square per Inch of B, in. 3/ b 128 Permissible Variations in Length Variations Over Specified Length for Lengths Givenc, in. Section 5 to 10 ft, excl. All bar-size angles 5/ 8 10 to 20 ft, excl. 20 to 30 ft, incl. Over 30 to 40 ft, incl. 40 to 65 ft, incl. 1 11/2 2 21/2 Mill Straightness Tolerancesd Camber Sweep 1/ 4 in. in any 5 ft, or 1/4 in. × (total length, ft) , applied to either leg 5 Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject to negotiation between the manufacturer and purchaser for the individual sections involved. Other Permissible Rolling Variations Ends Out of Square 3/ 128 in. per in. of leg length, or 11/2°. Variations based on the longer leg of unequal angle. — Indicates that there is no requirement. a For unequal angles, longer leg determines classification. b 3/128 in. per in. = 11/2° c The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft. d The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 125 DIMENSIONS AND PROPERTIES 1–125 Table 1-27 Tolerances for Rectangular and Square HSS ASTM A500, ASTM A501, ASTM A618 and ASTM A847 The outside dimensions, measured across the flats at positions at least 2 in. from either end, shall not vary from the specified dimensions by more than the applicable amount given in the following table: Outside Dimensions Largest Outside Dimension Across Flats, in. Permissible Variation Over and Under Specified Dimensionsa,b, in. 21/ 2 and under Over 21/ 2 to 31/ 2, incl. Over 31/ 2 to 51/ 2, incl. Over 51/ 2 0.020 0.025 0.030 1%c HSS are commonly produced in random lengths, in multiple lengths, and in specific lengths. When specific lengths are ordered for HSS, the length tolerances shall be in accordance with the following table: Length tolerance for specific lengths, in. Length Over 22 ft f 22 ft and under Over Under Over Under 1/ 2 1/4 3/4 1/4 Wall Thickness ASTM A500 and ASTM A847 only: The tolerance for wall thickness exclusive of the weld area shall be plus and minus 10% of the nominal wall thickness specified. The wall thickness is to be measured at the center of the flat. Weight ASTM A501 only: The weight of HSS, as specified in ASTM A501 Tables 3 and 4, shall not be less than the specified value by more than 3.5%. Mass Straightness Squareness of Sides Radius of Corners ASTM A618 only: The mass shall not be less than the specified value by more than 3.5%. The permissible variation for straightness shall be 1/8 in. times the number of ft of total length divided by 5. Adjacent sides may deviate from 90° by a tolerance of ± 2° maximum. The radius of any outside corner of the section shall not exceed 3 times the specified wall thicknessd. The tolerances for twist with respect to axial alignment of the section shall be as shown in the following table: Twist Specified Dimension of Longer Side, in. Maximum Twist per 3 ft of length, in. 11/ 2 and under Over 11/ 2 to 21/ 2, incl. Over 21/ 2 to 4, incl. Over 4 to 6, incl. Over 6 to 8, incl. Over 8 0.050 0.062 0.075 0.087 0.100 0.112 Twist shall be determined by holding one end of the HSS down on a flat surface plate, measuring the height that each corner on the bottom side of the tubing extends above the surface plate near the opposite end of the HSS, and calculating the difference in the measured heights of such cornerse. a The respective outside dimension tolerances include the allowances for convexity and concavity. ASTM A500 and ASTM A847 HSS only: The tolerances given are for the large flat dimension only. For HSS having a ratio of outside large to small flat dimension less than 1.5, the tolerance on the small flat dimesion shall be identical to those given. For HSS having a ratio of outside large to small flat dimension in the range of 1.5 to 3.0 inclusive, the tolerance on the small flat dimesion shall be 1.5 times those given. For HSS having a ratio of outside large to small flat dimension greater than 3.0, the tolerance on the small flat dimension shall be 2.0 times those given. c This value is 0.01 times the large flat dimension. ASTM A501 only: Over 51/2 to 10 incl., this value is 0.01 times large flat dimension; over 10, this value is 0.02 times the large flat dimension. d ASTM A501 HSS only: The radius of any outside corner must not exceed 3 times the calculated nominal wall thickness. e ASTM A500, ASTM A501, and ASTM A847 HSS only: For heavier sections it shall be permissible to use a suitable measuring device to determine twist. Twist measurements shall not be taken within 2 in. of the ends of the HSS. f ASTM A501 and A618: The upper limit on specific length is 44 ft. b AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 126 1–126 DIMENSIONS AND PROPERTIES Table 1-28 Tolerances for Round HSS and Pipe ASTM A53 Weight The weight as specified in ASTM A53 Table X2.2 and Table X2.3 or as calculated from the relevant equation in ASME B36.10M shall not vary by more than ± 10%. Note that the weight tolerance is determined from the weights of the customary lifts of pipe as produced for shipment by the mill, divided by the number of ft of pipe in the lift. On pipe sizes over 4 in. where individual lengths may be weighed, the weight tolerance is applicable to the individual length. Diameter For pipe 2 in. and over in nominal diameter, the outside diameter shall not vary more than ± 1% from the outside diameter specified. Thickness The minimum wall thickness at any point shall not be more than 12.5% under the nominal wall thickness specified. ASTM A500 and ASTM A847 Diametera Thickness For HSS 1.900 in. and under in specified diameter, the outside diameter shall not vary more than ± 0.5%, rounded to the nearest 0.005 in., from the specified diameter. For HSS 2.000 in. and over in specified diameter, the outside diameter shall not vary more than ± 0.75%, rounded to the nearest 0.005 in., from the specified diameter. The wall thickness at any point, excluding the weld seam of welded tubing, shall not be more than 10% under or over the specified wall thickness. ASTM A501 and ASTM A618 Outside Dimensions For HSS 11/ 2 in. and under in nominal size, the outside diameter shall not vary more than 1/ 64 in. over nor more than 1/ 32 in. under the specified diameter. For round hot-formed HSS 2 in. and over in nominal size, the outside diameter shall not vary more than ± 1% from the specified diameter. Weight (A501 only) The weight of HSS, as specified in ASTM A501 Table 5, shall not be less than the specified value by more than 3.5%. Mass (A618 only) The mass of HSS shall not be less than the specified value by more than 3.5%. The mass tolerance shall be determined from individual lengths or, for HSS 41/ 2 in. and under in outside diameter, shall be determined from masses of customary lifts produced by the mill. ASTM A500, ASTM A501, ASTM A618 and ASTM A847 HSS are commonly produced in random mill lengths, in multiple lengths, and in specific lengths. When specific lengths are ordered for HSS, the length tolerances shall be in accordance with the following table: Length tolerance for specific cut lengths, in. Length Straightness a b Over 22 ft b 22 ft and under Over Under Over Under 1/ 2 1/ 4 3/4 1/ 4 The permissible variation for straightness of HSS shall be 1/ 8 in. times the number of ft of total length divided by 5. The outside diameter measurements shall be taken at least 2 in. from the end of the HSS. ASTM A501 and A618: The upper limit and specific length is 44 ft. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 127 DIMENSIONS AND PROPERTIES 1–127 Table 1-29 Rectangular Plates Permissible Variations from Flatness(Carbon Steel Only) Variations from Flatness for Specified Widths, in. Specified Thickness, in. To 36, excl. 36 to 48, excl. 48 to 60, excl. 60 to 72, excl. 72 to 84, excl. 84 to 96, excl. 96 to 108, excl. 108 to 120, excl. To 1/4, excl. 9/16 3/4 15/16 11/4 13/8 11/2 15/8 13/4 12 / 58 / 34 / 15 16 / 11/8 11/4 1 3/8 11/2 12 / 9 16 / 58 / 58 / 34 / 78 / 1 11/8 7 16 / 12 / 9 16 / 58 / 58 / 34 / 1 1 to 1, excl. 7 16 / 12 / 9 16 / 58 / 58 / 58 / 34 / 78 1 to 2, excl. 38 / 12 / 12 / 9 16 / 9 16 / 58 / 58 / 58 / 2 to 4, excl. 5 16 / 38 / 7 16 / 12 / 12 / 12 / 12 / 9 16 / 4 to 6, excl. 38 / 7 16 / 12 / 12 / 9 16 / 9 16 / 58 / 34 / 6 to 8, excl. 7 16 12 12 58 / 11 16 34 / 78 78 1/4 to 3/8, excl. 3/8 to 1/ 2, excl. 1/ 2 to 3/4, excl. 3/4 / / / / / / / Notes: 1. The longer dimension specified is considered the length, and permissible variations in flatness along the length shall not exceed the tabular amount for the specified width for plates up to 12 ft in length, or in any 12 ft for longer plates. 2. The flatness variations across the width shall not exceed the tabular amount for the specified width. 3. When the longer dimension is under 36 in., the permissible variation shall not exceed 1/4 in. When the longer dimension is from 36 to 72 in., inclusive, the permissible variation should not exceed 75% of the tabular amount for the specified width, but in no case less than 1/4 in. 4. These variations apply to plates which have a specified minimum tensile strength of not more than 60 ksi or comparable chemistry or hardness. The limits in the table are increased 50% for plates specified to a higher minimum tensile strength or comparable chemistry or hardness. 5. For plates 8 in. and over in thickness or 120 in. and over in width, see ASTM A6 Table 13. 6. Plates must be in a horizontal position on a flat surface when flatness is measured. Permissible Variations in Cambera for Carbon Steel Sheared and Gas Cut Rectangular Plates Maximum permissible camber, in. (all thicknesses) = 1/8 in. × (total length, ft) 5 Permissible Variations in in Cambera for High-Strength Low-Alloy and Alloy Steel Sheared, Special-Cut, or Gas-Cut Rectangular Plates Specified Dimension, in. Permitted Camber, in. Thickness Width To 2, incl. All 1/8 in. × (total length, ft) 5 To 30, incl. 3/16 in. × (total length, ft) 5 Over 30 to 60, incl. 1/4 in. × (total length, ft) 5 Over 2 to 15, incl. a Camber as it relates to plates is the horizontal edge curvature in the length, measured over the entire length of the plate in the flat position. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_PART 01B:14th Ed._ 1–128 1/20/11 7:35 AM Page 128 DIMENSIONS AND PROPERTIES AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 4/1/11 8:43 AM Page 1 2–1 PART 2 GENERAL DESIGN CONSIDERATIONS SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4 APPLICABLE SPECIFICATIONS, CODES AND STANDARDS . . . . . . . . . . . . . . . . 2–4 Specifications, Codes and Standards for Structural Steel Buildings . . . . . . . . . . . . . 2–4 Additional Requirements for Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . 2–4 Other AISC Reference Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5 OSHA REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6 Columns and Column Base Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6 Safety Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6 Beams and Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7 Cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7 Joists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7 Walking/Working Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8 Controlling Contractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8 USING THE 2010 AISC SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8 Load and Resistance Factor Design (LRFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9 Allowable Strength Design (ASD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9 DESIGN FUNDAMENTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10 Loads, Load Factors and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10 Load and Resistance Factor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10 Allowable Strength Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11 Superposition of Loads in Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . 2–12 Nominal Strengths, Resistance Factors, Safety Factors and Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12 Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12 Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13 Progressive Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14 Required Strength, Stability, Effective Length, and Second-Order Effects . . . . . . 2–14 Simplified Determination of Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16 Table 2-1. Multipliers for Use With the Simplified Method . . . . . . . . . . . . . . . . 2–17 STABILITY BRACING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17 Simple-Span Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 2 2–2 GENERAL DESIGN CONSIDERATIONS Beam Ends Supported on Bearing Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17 Beams and Girders Framing Continuously Over Columns . . . . . . . . . . . . . . . . . . . 2–19 PROPERLY SPECIFYING MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25 Material Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25 Other Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25 Anchor rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25 Raised-Pattern Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25 Sheet and Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Filler Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Steel Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Open-Web Steel Joists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Castellated Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Steel Castings and Forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Forged Steel Structural Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26 Crane Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27 CONTRACT DOCUMENT INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27 Design Drawings, Specifications and Other Contract Documents . . . . . . . . . . . . . 2–27 Required Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28 Information Required Only When Specified . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28 Approvals Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29 Establishing Criteria for Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29 Simple Shear Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30 Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31 Horizontal and Vertical Bracing Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31 Strut and Tie Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32 Truss Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32 Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32 CONSTRUCTABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32 TOLERANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33 Mill Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33 Fabrication Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33 Erection Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33 Building Façade Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–34 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 3 2–3 GENERAL DESIGN CONSIDERATIONS QUALITY CONTROL AND QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . . . . . . 2–36 CAMBERING, CURVING AND STRAIGHTENING . . . . . . . . . . . . . . . . . . . . . . . . 2–37 Beam Camber and Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37 Cold Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37 Hot Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37 Truss Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38 Straightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2–38 FIRE PROTECTION AND ENGINEERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38 CORROSION PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38 RENOVATION AND RETROFIT OF EXISTING STRUCTURES . . . . . . . . . . . . . . 2–38 THERMAL EFFECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39 Expansion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39 Elevated-Temperature Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40 FATIGUE AND FRACTURE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40 Avoiding Brittle Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40 Avoiding Lamellar Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42 WIND AND SEISMIC DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42 Wind and Low-Seismic Applications High-Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42 PART 2 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–44 TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–47 Table 2-2. Summary Comparison of Methods for Stability Analysis and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–47 Table 2-3. AISI Standard Nomenclature for Flat-Rolled Carbon Steel . . . . . . . . . . 2–47 Table 2-4. Applicable ASTM Specifications for Various Structural Shapes . . . . . . 2–48 Table 2-5. Applicable ASTM Specifications for Plate and Bars . . . . . . . . . . . . . . . 2–49 Table 2-6. Applicable ASTM Specifications for Various Types of Structural Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–50 Table 2-7. Metal Fastener Compatibility to Resist Corrosion . . . . . . . . . . . . . . . . . 2–51 Table 2-8. Summary of Surface Preparation Specifications . . . . . . . . . . . . . . . . . . 2–52 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM 2–4 Page 4 GENERAL DESIGN CONSIDERATIONS SCOPE The specification requirements and other design considerations summarized in this Part apply in general to the design and construction of steel buildings. The specifications, codes and standards listed below are referenced throughout this manual. APPLICABLE SPECIFICATIONS, CODES AND STANDARDS Specifications, Codes and Standards for Structural Steel Buildings Subject to the requirements in the applicable building code and the contract documents, the design, fabrication and erection of structural steel buildings is governed as indicated in the AISC Specification Sections A1 and B2 as follows: 1. ASCE/SEI 7: Minimum Design Loads for Buildings and Other Structures, ASCE/ SEI 7-10 (ASCE, 2010). Available from the American Society of Civil Engineers, ASCE/SEI 7 provides the general requirements for loads, load factors and load combinations. 2. AISC Specification: The 2010 AISC Specification for Structural Steel Buildings (ANSI/ AISC 360-10), included in Part 16 of this Manual and available at www.aisc.org, provides the general requirements for design and construction (AISC, 2010a). 3. AISC Code of Standard Practice: The 2010 AISC Code of Standard Practice for Steel Buildings and Bridges (AISC, 2010c) included in Part 16 of this manual and available at www.aisc.org, provides the standard of custom and usage for the fabrication and erection of structural steel. Other referenced standards include: 1. RCSC Specification: The 2009 RCSC Specification for Structural Joints Using High-Strength Bolts, reprinted in Part 16 of this Manual with the permission of the Research Council on Structural Connections and available at www.boltcouncil.org, provides the additional requirements specific to bolted joints with high-strength bolts (RCSC, 2009). 2. AWS D1.1: Structural Welding Code – Steel, AWS D1.1:2010 (AWS, 2010). Available from the American Welding Society, AWS D1.1 provides additional requirements specific to welded joints. Requirements for the proper specification of welds can be found in AWS A2.4: Standard Symbols for Welding, Brazing, and Nondestructive Examination (AWS, 2007). 3. ACI 318: Building Code Requirements for Structural Concrete and Commentary (ACI, 2008). Available from the American Concrete Institute, ACI 318 provides additional requirements for reinforced concrete, including composite design and the design of steel-to-concrete anchorage. Various other specifications and standards from ASME, ASTM and ACI are also referenced in AISC Specification Section A2. Additional Requirements for Seismic Applications The 2010 AISC Seismic Provisions for Structural Steel Buildings (AISC, 2010b) apply as indicated in Section A1.1 of the 2010 AISC Specification and in the Scope provided at the front of this Manual. The AISC Seismic Provisions are available at www.aisc.org. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 12, 2013 12/02/13 7:56 AM Page 5 APPLICABLE SPECIFICATIONS, CODES, AND STANDARDS 2–5 Other AISC Reference Documents The following other AISC publications may be of use in the design and construction of structural steel buildings: 1. AISC Detailing for Steel Construction, Third Edition, covers the standard practices and recommendations for steel detailing, including preparation of shop and erection drawings (AISC, 2009). 2. The AISC Seismic Design Manual (AISC, 2006) provides guidance on steel design in seismic applications, in accordance with the 2005 AISC Seismic Provisions for Structural Steel Buildings. 3. The AISC Design Examples is a web-based companion to this Manual and can be found at www.aisc.org (AISC, 2011). It includes design examples outlining the application of design aids and AISC Specification provisions developed in coordination with this Manual. Additionally, the following AISC Design Guides are available at www.aisc.org for in-depth coverage of specific topics in steel design: 1. Base Plate and Anchor Rod Design, Design Guide 1 (Fisher and Kloiber, 2006) 2. Steel and Composite Beams with Web Openings, Design Guide 2 (Darwin, 1990) 3. Serviceability Design Considerations for Steel Buildings, Design Guide 3 (West et al., 2003) 4. Extended End-Plate Moment Connections—Seismic and Wind Applications, Design Guide 4 (Murray and Sumner, 2003) 5. Low- and Medium-Rise Steel Buildings, Design Guide 5 (Allison, 1991). 6. Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide 6 (Griffis, 1992) 7. Industrial Buildings—Roofs to Anchor Rods, Design Guide 7 (Fisher, 2004) 8. Partially Restrained Composite Connections, Design Guide 8 (Leon et al., 1996) 9. Torsional Analysis of Structural Steel Members, Design Guide 9 (Seaburg and Carter, 1997) 10. Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10 (Fisher and West, 1997) 11. Floor Vibrations Due to Human Activity, Design Guide 11 (Murray et al., 1997) 12. Modification of Existing Welded Steel Moment Frame Connections for Seismic Resistance, Design Guide 12 (Gross et al., 1999) 13. Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13 (Carter, 1999) 14. Staggered Truss Framing Systems, Design Guide 14 (Wexler and Lin, 2002) 15. AISC Rehabilitation and Retrofit Guide—A Reference for Historic Shapes and Specifications, Design Guide 15 (Brockenbrough, 2002) 16. Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16 (Murray and Shoemaker, 2002) 17. High Strength Bolts—A Primer for Structural Engineers, Design Guide 17 (Kulak, 2002) 18. Steel-Framed Open-Deck Parking Structures, Design Guide 18 (Churches et al. 2003) 19. Fire Resistance of Structural Steel Framing, Design Guide 19 (Ruddy et al., 2003) 20. Steel Plate Shear Walls, Design Guide 20 (Sabelli and Bruneau, 2006) AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:13 AM Page 6 2–6 21. 22. 23. 24. 25. (Black plate) GENERAL DESIGN CONSIDERATIONS Welded Connections—A Primer for Engineers, Design Guide 21 (Miller, 2006) Façade Attachments to Steel-Framed Buildings, Design Guide 22 (Parker, 2008) Constructability of Structural Steel Buildings, Design Guide 23 (Ruby, 2008) Hollow Structural Section Connections, Design Guide 24 (Packer et al., 2010) Web-Tapered Frame Design, Design Guide 25 (Kaehler et al., 2010) OSHA REQUIREMENTS OSHA Safety and Health Standards for the Construction Industry, 29 CFR 1926 Part R Safety Standards for Steel Erection (OSHA, 2001) must be addressed in the design, detailing, fabrication and erection of steel structures. These regulations became effective on July 18, 2001. Following is a brief summary of selected provisions and related recommendations. The full text of the regulations should be consulted and can be found at www.osha.gov. See also Barger and West (2001) for further information. Columns and Column Base Plates 1. All column base plates must be designed and fabricated with a minimum of four anchor rods. 2. Posts (which weigh less than 300 lb) are distinguished from columns and excluded from the four-anchor-rod requirement. 3. Columns, column base plates, and their foundations must be designed to resist a minimum eccentric gravity load of 300 lb located 18 in. from the extreme outer face of the column in each direction at the top of the column shaft. 4. Column splices must be designed to meet the same load-resisting characteristics as columns. 5. Double connections through column webs or at beams that frame over the tops of columns must be designed to have at least one installed bolt remain in place to support the first beam while the second beam is being erected. Alternatively, the fabricator must supply a seat or equivalent device with a means of positive attachment to support the first beam while the second beam is being erected. These features should be addressed in the construction documents. Items 1 through 4 are prescriptive, and alternative means such as guying are time consuming and costly. There are several methods to address the condition in item 5, as shown in Chapter 2 of AISC Detailing for Steel Construction. Safety Cables 1. On multi-story structures, perimeter safety cables (two lines) are required at final interior and exterior perimeters of floors as soon as the deck is installed. 2. Perimeter columns must extend 48 in. above the finished floor (unless constructability does not allow) to allow the installation of perimeter safety cables. 3. The regulations prohibit field welding of attachments for installation of perimeter safety cables once the column has been erected. 4. Provision of some method of attaching the perimeter cable is required, but responsibility is not assigned either to the fabricator or to the erector. While this will be subject AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 7 2–7 OSHA REQUIREMENTS to normal business arrangements between the fabricator and the erector, holes for these cables are often punched or drilled in columns by the fabricator. The primary consideration in the design of the frame based on these rules is that the position of the column splice is set with respect to the floor. Beams and Bracing 1. Solid-web members (beams) must be connected with a minimum of two bolts or their equivalent before the crane load line is released. 2. Bracing members must be connected with a minimum of one bolt or its equivalent before the crane load line is released. The OSHA regulations allow an alternative to these minimums, if an “equivalent as specified by the project structural engineer of record” is provided. If the project requirements do not permit the use of bolts as described in items 1 and 2, then the “equivalent” means should be provided in the construction documents. It is recommended that the “equivalent” means should utilize bolts and removable connection material, and should provide requirements for the final condition of the connection. Solutions that employ shoring or the need to hold the member on the crane should be avoided. Cantilevers 1. The erector is responsible for the stability of cantilevers and their temporary supports until the final cantilever connection is completed. OSHA 1926.756(a)(2) requires that a competent person shall determine if more than two bolts are necessary to ensure the stability of cantilevered members. Cantilever connections must be evaluated for the loads imposed on them during erection and consideration must be made for the intermediate states of completion, including the connection of the backspan member opposing the cantilever. Certain cantilever connections can facilitate the erector’s work in this regard, such as shop attaching short cantilevers, one piece cantilever/backspan beams carried through or over the column at the cantilever and field bolted flange plates or end plate connections to the supporting member. To the extent allowed by the contract documents, the selection of details is up to the fabricator, subject to normal business relations between the fabricator and the erector. Joists 1. Unless panelized, all joists 40 ft long and longer and their bearing members must have holes to allow for initial connections by bolting. 2. Establishment of bridging terminus points for joists is mandated according to OSHA and manufacturer guidelines. 3. A vertical stabilizer plate to receive the joist bottom chord must be provided at columns. Minimum sizes are given and the stabilizer plate must have a hole for the attachment of guying or plumbing cables. These features should be addressed in the construction documents and shop drawings. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM 2–8 Page 8 GENERAL DESIGN CONSIDERATIONS Walking/Working Surfaces 1. Framed metal deck openings must have structural members configured with projecting elements turned down to allow continuous decking, except where not allowed by design constraints or constructability. The openings in the metal deck are not to be cut until the hole is needed. 2. Steel headed stud anchors, threaded studs, reinforcing bars and deformed anchors that will project vertically from or horizontally across the top flange of the member are not to be attached to the top flanges of beams, joists or beam attachments until after the metal decking or other walking/working surface has been installed. Framing at openings with down turned elements and shop versus field attachment of anchors should be addressed in the construction documents and the shop drawings. Controlling Contractor 1. The controlling contractor must provide adequate site access and adequate storage. 2. The controlling contractor must notify the erector of repairs or modifications to anchor rods in writing. Such modifications and repairs must be approved by the owner’s designated representative for design. 3. The controlling contractor must give notice that the supporting foundations have achieved sufficient strength to allow safe steel erection. 4. The controlling contractor must either provide overhead protection or prohibit other trades from working under steel erection activities. These provisions establish relationships among the erector, controlling contractor and owner’s representative for design that all parties need to be aware of. USING THE 2010 AISC SPECIFICATION The 2010 AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) continues the format established in the 2005 edition of the Specification (AISC, 2005), ANSI/AISC 360-05, which unified the design provisions formerly presented in the 1989 Specification for Structural Steel Buildings—Allowable Stress Design and Plastic Design and the 1999 Load and Resistance Factor Design Specification for Structural Steel Buildings. The 2005 Specification for Structural Steel Buildings also integrated into a single document the information previously provided in the 1993 Load and Resistance Factor Design Specification for Single-Angle Members and the 1997 Specification for the Design of Steel Hollow Structural Sections. The 2010 AISC Specification, in combination with the 2010 Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-10), brings together all of the provisions needed for the design of structural steel in buildings and other structures. The 2010 AISC Specification continues to present two approaches for the design of structural steel members and connections. Chapter B establishes the general requirements for analysis and design. It states that “designs shall be made according to the provisions for Load and Resistance Factor Design (LRFD) or to the provisions for Allowable Strength Design (ASD).” These two approaches are equally valid for any structure for which the Specification is applicable. There is no preference stated or implied in the provisions. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 9 2–9 USING THE 2010 AISC SPECIFICATION The required strength of structural members and connections may be determined by elastic, inelastic or plastic analysis for the load combinations associated with LRFD and by elastic analysis for load combinations associated with ASD and as stipulated by the applicable building code. In all cases, the available strength must exceed the required strength. The AISC Specification gives provisions for determining the available strength as summarized below. Load and Resistance Factor Design (LRFD) The load combinations appropriate for LRFD are given in the applicable building code or, in its absence, ASCE/SEI 7 Section 2.3. For LRFD, the available strength is referred to as the design strength. All of the LRFD provisions are structured so that the design strength must equal or exceed the required strength. This is presented in AISC Specification Section B3.3 as Ru ≤ φRn (2–1) In this equation, Ru is the required strength determined by analysis for the LRFD load combinations, Rn is the nominal strength determined according to the AISC Specification provisions, and φ is the resistance factor given by the AISC Specification for a particular limit state. Throughout this Manual, tabulated values of φRn, the design strength, are given for LRFD. These values are tabulated as blue numbers in columns with the heading LRFD. If there is a desire to use the LRFD provisions in the form of stresses, the strength provisions can be transformed into stress provisions by factoring out the appropriate section property. In many cases, the provisions are already given directly in terms of stress. Allowable Strength Design (ASD) Allowable strength design is similar to what is known as allowable stress design in that they are both carried out at the same load level. Thus, the same load combinations are used. The difference is that for strength design, the primary provisions are given in terms of forces or moments rather than stresses. In every situation, these strength provisions can be transformed into stress provisions by factoring out the appropriate section property. In many cases, the provisions are already given directly in terms of stress. The load combinations appropriate for ASD are given by the applicable building code or, in its absence, ASCE/SEI 7 Section 2.4. For ASD, the available strength is referred to as the allowable strength. All of the ASD provisions are structured so that the allowable strength must equal or exceed the required strength. This is presented in AISC Specification Section B3.4 as Ra ≤ Rn Ω (2–2) In this equation, Ra is the required strength determined by analysis for the ASD load combinations, Rn is the nominal strength determined according to the AISC Specification provisions and Ω is the safety factor given by the Specification for a particular limit state. Throughout this Manual, tabulated values of Rn /Ω, the allowable strength, are given for ASD. These values are tabulated as black numbers on a green background in columns with the heading ASD. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 10 2–10 GENERAL DESIGN CONSIDERATIONS DESIGN FUNDAMENTALS It is commonly believed that ASD is an elastic design method based entirely on a stress format without limit states and LRFD is an inelastic design method based entirely on a strength format with limit states. Traditional ASD was based on limit-states principles too, but without the use of the term. Additionally, either method can be formulated in a stress or strength basis, and both take advantage of inelastic behavior. The AISC Specification highlights how similar LRFD and ASD are in its formulation, with identical provisions throughout for LRFD and ASD. Design according to the AISC Specification, whether it is according to LRFD or ASD, is based on limit states design principles, which define the boundaries of structural usefulness. Strength limit states relate to load carrying capability and safety. Serviceability limit states relate to performance under normal service conditions. Structures must be proportioned so that no applicable strength or serviceability limit state is exceeded. Normally, several limit states will apply in the determination of the nominal strength of a structural member or connection. The controlling limit state is normally the one that results in the least available strength. As an example, the controlling limit state for bending of a simple beam may be yielding, local buckling, or lateral-torsional buckling for strength and deflection, or vibration for serviceability. The tabulated values may either reflect a single limit state or a combination of several limit states. This will be clearly stated in the introduction to the particular tables. Loads, Load Factors and Load Combinations Based on AISC Specification Sections B3.3 and B3.4, the required strength (either Pu, Mu, Vu, etc. for LRFD or Pa, Ma, Va, etc. for ASD) is determined for the appropriate load magnitudes, load factors and load combinations given in the applicable building code. These are usually based on ASCE/SEI 7, which may be used when there is no applicable building code. The common loads found in building structures are: D L Lr S R W E = = = = = = = dead load live load due to occupancy roof live load snow load nominal load due to initial rainwater or ice exclusive of the ponding contribution wind load earthquake load Load and Resistance Factor Design For LRFD, the required strength is determined from the following factored combinations,1 which are based on ASCE/SEI 7 Section 2.3: 1. 2. 3. 4. 1.4D 1.2D + 1.6L + 0.5(Lr or S or R) 1.2D + 1.6(Lr or S or R) + (0.5L or 0.5W) 1.2D + 1.0W + 0.5L + 0.5(Lr or S or R) (2-3a) (2-3b) (2-3c) (2-3d) 1 Exception: Per ASCE/SEI 7, the load factor on L in combinations 3, 4 and 5 shall equal 1.0 for garages, areas occupied as places of public assembly, and all areas where the live load is greater than 100 psf. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 11 2–11 DESIGN FUNDAMENTALS 5. 1.2D + 1.0E + 0.5L + 0.2S 6. 0.9D + 1.0W 7. 0.9D + 1.0E (2-3e) (2-3f) (2-3g) The load combinations for LRFD recognize that, when several transient loads act in combination, only one assumes its maximum lifetime value,2 while the other(s) are at their “arbitrary-point-in-time” (APT) values. Each combination models the total design loading condition when a different load is at its maximum. Thus, the maximum-lifetime load effect is amplified by an amount that is proportional to its relative variability and the APT load effect(s) are factored to their mean value(s). With this approach, the margin of safety varies with the load combination yielding a more uniform reliability than would be expected when nominal loads are combined directly. Dead load, D, is present in each load combination with a load factor of 1.2, except in load combination 1, where it is the dominant (only) load effect, and load combinations 6 and 7, where it is reduced for calculation of the overturning or uplift effect. The 1.2 load factor accounts for the statistical variability of the dead load. The designer must independently account for other contributions to dead load, such as the weight of additional concrete, if any, added to adjust for concrete ponding effects (Ruddy, 1986) or differing framing elevations. Allowable Strength Design For ASD, the required strength is determined from the following combinations, which are also based on ASCE/SEI 7 Section 2.4: 1. 2. 3. 4. 5. 6a. 6b. 7. 8. D D+L D + (Lr or S or R) D + 0.75L + 0.75(Lr or S or R) D + (0.6W or 0.7E) D + 0.75L + 0.75(0.6W) + 0.75(Lr or S or R) D + 0.75L + 0.75(0.7E) + 0.75S 0.6D + 0.6W 0.6D + 0.7E (2-4a) (2-4b) (2-4c) (2-4d) (2-4e) (2-4f) (2-4g) (2-4h) (2-4i) The load combinations for ASD combine the code-specified nominal loads directly with no factors for those cases where loads with minimal variation with time are combined, cases 1, 2 and 3. For those cases where multiple time-variable loads are included, a 0.75 reduction factor is applied to the time-variable loads only. Since all of the safety in an ASD design comes through the introduction of the safety factor on the resistance side of the equation, each load case uses the same safety factor for a given limit state. In ASD, when considering members subjected to gravity loading only, it is clear that the controlling load combination is the one that adds the larger live load to the dead load. Thus, for a floor that does not carry roof load, the controlling combination will be D + L while for a roof the controlling combination will be D + (Lr or S or R). For gravity columns, after live load reductions have been accounted for, the floor and roof live loads may be reduced to 0.75 of their nominal values. A similar reduction is permitted for live loads in combination with lateral loads. 2 Usually based upon a 50-year recurrence, except for seismic loads. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 12 2–12 GENERAL DESIGN CONSIDERATIONS Superposition of Loads in Load Combinations Whether the loads themselves or the effects of those loads are used in these combinations, LRFD or ASD, the results are the same, provided the principle of superposition is valid. This is true when deflections are small and the stress-strain behavior is nominally elastic. However, when second-order effects are significant or the behavior is inelastic, superposition is not valid and the loads, rather than the load effects, should be used in these combinations. Nominal Strengths, Resistance Factors, Safety Factors and Available Strengths The AISC Specification requires that the available strength must be greater than or equal to the required strength for any element. The available strength is a function of the nominal strength given by the Specification and the corresponding resistance factor or safety factor. As discussed earlier, the required strength can be determined either with LRFD or ASD load combinations. The available strength for LRFD is the design strength, which is calculated as the product of the resistance factor φ and the nominal strength (φPn, φMn, φVn, etc.) The available strength for ASD is the allowable strength, which is calculated as the quotient of the nominal strength and the corresponding safety factor Ω (Pn / Ω, Mn / Ω, Vn / Ω, etc.). In LRFD, the margin of safety for the loads is contained in the load factors, and resistance factors, φ, to account for unavoidable variations in materials, design equations, fabrication and erection. In ASD, a single margin of safety for all of these effects is contained in the safety factor, Ω. The resistance factors, φ, and safety factors, Ω, in the AISC Specification are based upon research, as discussed in the AISC Specification Commentary to Chapter B, and the experience and judgment of the AISC Committee on Specifications. In general, φ is less than unity and Ω is greater than unity. The higher the variability in the test data for a given nominal strength, the lower its φ factor and the higher its Ω factor will be. Some examples of φ and Ω factors for steel members are as follows: φ = 0.90 for limit states involving yielding φ = 0.75 for limit states involving rupture Ω = 1.67 for limit states involving yielding Ω = 2.00 for limit states involving rupture The general relationship between the safety factor, Ω, and the resistance factor, φ, is Ω= 1.5 φ (2–5) Serviceability Serviceability requirements of the AISC Specification are found in Section B3.9 and Chapter L. The serviceability limit states should be selected appropriately for the specific application as discussed in the Specification Commentary to Chapter L. Serviceability limit states and the appropriate load combinations for checking their conformance to AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 12, 2013 12/02/13 7:58 AM Page 13 DESIGN FUNDAMENTALS 2–13 serviceability requirements can be found in ASCE/SEI 7 Appendix C and its Commentary. It should be noted that the load combinations in ASCE/SEI 7 Section 2.3 for LRFD and Section 2.4 for ASD are both for strength design, and are not necessarily appropriate for consideration of serviceability. Guidance is also available in the Commentary to the AISC Specification, both in general and for specific criteria, including camber, deflection, drift, vibrations, wind-induced motion, expansion and contraction, and connection slip. Additionally, the applicable building code may provide some further guidance or establish requirements. See also the serviceability discussions in Parts 3 through 6, AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings (West et al., 2003) and AISC Design Guide 11, Floor Vibrations Due to Human Activity (Murray et al., 1997). Structural Integrity Structural integrity as introduced into building codes and the 2010 AISC Specification Section B3.2, is a set of prescriptive requirements for connections that, when met, are intended to provide an unknown, but satisfactory, level of performance of the finished structure. The term structural integrity has often been used interchangeably with progressive collapse, but these two concepts have widely varying interpretations that can influence design in a variety of ways. The term progressive collapse does not appear in the International Building Code (ICC, 2009) or in the 2010 AISC Specification. Progressive collapse requirements generally are intended to prevent the collapse of a structure beyond a localized area of the structure where a structural element has been compromised. Progressive collapse requirements are often mandated for government facilities, or by owners for structures which have a high probability of being subject to terrorist attack. Structural integrity has always been one of the goals for the structural engineer in engineering design, and for the committees writing design standards. However, it has only been since the collapse of the buildings at the World Trade Center that requirements with the stated purpose of addressing structural integrity have appeared in U.S. building codes. The first building code to incorporate specific structural integrity requirements was the 2008 New York City Building Code which was quickly followed by requirements in the 2009 International Building Code. Although the requirements of these two building codes are both prescriptive in nature, there are some differences in requirements and their application. The AISC Specification Section B3.2 addresses the requirements of the 2009 International Building Code. The 2009 International Building Code stipulates minimum integrity provisions for buildings classified as high-rise and assigned to Occupancy Categories III or IV. High-rise buildings are defined as those having an occupied floor greater than 75 ft above fire department vehicle access. The structural integrity requirements state that column splices must resist a minimum tension force and beam end connections must resist a minimum axial tension force. The nominal axial tension strength of the beam end connection must equal or exceed either the required vertical shear strength for ASD or 2/3 the required vertical shear strength for LRFD. These required strengths can be reduced by 50% if the beam supports a composite deck with the prescribed steel anchors (Geschwindner and Gustafson, 2010). The International Building Code structural integrity requirements for the axial tension capacity of the beam end connections use a nominal strength basis reflecting the intent of the code to avoid brittle rupture failures of the connection components, rather than limiting AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM 2–14 Page 14 GENERAL DESIGN CONSIDERATIONS deformations or yielding of those components. Section B3.2 of the 2010 AISC Specification is based on this difference in limit state requirements for resistance to the prescriptive structural integrity loads, as compared to those limit states required when designing for traditional load combinations. Progressive Collapse Progressive collapse is defined in ASCE/SEI 7-10 (ASCE, 2010) as “the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionately large part of it.” Progressive collapse requirements often involve assessment of the structure’s ability to accommodate loss of a member that has been compromised through redistribution of forces throughout the remaining structure. Design for progressive collapse poses a particularly challenging problem since it is difficult to identify the load cases to be examined or the members that may be compromised. Two main sources of requirements for evaluation of structures for progressive collapse are the Department of Defense and the General Services Administration. For facilities covered by the Department of Defense, all new and existing buildings of three stories or more must be designed to avoid progressive collapse. The specific requirements are published in United Facilities Criteria 4-023-03, “Design of Buildings to Resist Progressive Collapse” (DOD, 2009). For federal facilities under the jurisdiction of the General Services Administration, threat independent guidelines have been developed. The publication “Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects” (USGSA, 2003) provides an explicit process that any structural engineer could use to evaluate the progressive collapse potential of a multi-story facility. Required Strength, Stability, Effective Length, and Second-Order Effects As previously discussed, the AISC Specification requires that the required strength must be less than or equal to the available strength in the design of every member and connection. Chapter C also requires that stability shall be provided for the structure as a whole and each of its elements. Any method that considers the influence of second-order effects, also known as P-delta effects, may be used. Thus, required strengths must be determined including second-order effects, as described in Specification Section C2.1. Note that Specification Section C2.1(2) permits an amplified first-order analysis as one method of second-order analysis, as provided in Appendix 8. Second-order effects are the additional forces, moments and displacements resulting from the applied loads acting in their displaced positions as well as the changes from the undeformed to the deformed geometry of the structure. Second-order effects are obtained by considering equilibrium of the structure within its deformed geometry. There are numerous ways of accounting for these effects. The commentary to AISC Specification Chapter C provides some guidance on methods of second-order analysis and suggests several benchmark problems for checking the adequacy of analysis methods. Since 1963, there have been provisions in the AISC Specifications to account for secondorder effects. Initially these provisions were embedded in the interaction equations. In past ASD Specifications, second-order effects were accounted for by the term AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 15 2–15 DESIGN FUNDAMENTALS 1 1− fa Fe′ found in the interaction equation. In past LRFD Specifications, the factors B1 and B2 from Chapter C of those specifications were used to amplify moments to account for secondorder effects. B1 was used to account for the second-order effects due to member curvature and B2 was used to account for second-order effects due to sidesway. In both Specifications, more exact methods were permitted. AISC Specification Section C1 and Appendix 7 provide three approaches that may be followed. • The direct analysis method is provided in Chapter C. This is the most comprehensive and, as the name suggests, most direct approach to incorporating all necessary factors in the analysis. Through the use of notional loads, reduced stiffness, and a secondorder analysis, the design can be carried out with the forces and moments from the analysis and an effective length equal to the member length, K = 1.0. Section C2 of the AISC Specification details the requirements for determination of required strengths using this method. • The effective length method is given in AISC Specification Appendix 7, Section 7.2. In this method, all gravity-only load cases have a minimum lateral load equal to 0.2% of the story gravity load applied. A second order analysis is carried out and the member strengths of columns and beam-columns are determined using effective lengths, determined by elastic buckling analysis, or more commonly, the alignment charts in the Commentary to the Specification when the associated assumptions are satisfied. The Specification permits K = 1.0 when the ratio of second order drift to first order drift is less than or equal to 1.1. • The first-order analysis method is given in AISC Specification Appendix 7, Section 7.3. With this approach, second-order effects are captured through the application of an additional lateral load equal to at least 0.42% of the story gravity load applied in each load case. No further second-order analysis is necessary. The required strengths are taken as the forces and moments obtained from the analysis and the effective length factor is K = 1.0. When a second-order analysis is called for in the above methods, AISC Specification Section C1 allows any method that properly considers P-delta effects. One such method is amplified first-order elastic analysis provided in Specification Appendix 8. This is a modified carry over of the B1-B2 approach used in previous LRFD Specifications, which was an extension of the simple approach taken in past ASD Specifications. The AISC Specification fully integrates the provisions for stability with the specified methods of design. For all framing systems, when using the direct analysis method, AISC Specification Section C3 provides that the effective length factor, K, for all members can be taken as 1.0 unless a lesser value can be justified by analysis. For the effective length method, AISC Specification Appendix 7, Section 7.2.3(a) provides that in braced frames, the effective length factor, K, may be taken as 1.0. For moment frames, Appendix 7, Section 7.2.3(b) requires that a critical buckling analysis to determine the critical buckling stress, Fe, be performed or effective length factors, K, be used. For the first-order analysis method, AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 2–16 1/20/11 7:37 AM Page 16 GENERAL DESIGN CONSIDERATIONS Appendix Section 7.3.3 stipulates that the effective length factor, K, be taken as unity for all members. This is discussed in more detail in the Commentary to Appendix 7. Simplified Determination of Required Strength When a fast, conservative solution is desired, the following simplification of the effective length method can be used with the aid of Table 2-1. The features of each of the other methods of design for stability are summarized and compared in Table 2-2. An approximate second-order analysis approach is provided in AISC Specification Appendix 8. Where the member amplification (P-δ) factor is small, that is, less than B2, it is conservative to amplify the total moment and force by B2. Thus, Equations A-8-1 and A-8-2 become Mr = B1Mnt + B2Mlt = B2Mu (2-6) Pr = Pnt + B2 Plt = B2Pu (2-7) To use this simplified method, B1 cannot exceed B2. For members not subject to transverse loading between their ends, it is very unlikely that B1 would be greater than 1.0. In addition, the simplified approach is not valid if the amplification factor, B2, is greater than 1.5, because with the exception of taking B1 = B2, this simplified method meets the provisions of the effective length method in AISC Specification Appendix 7. It is up to the engineer to ensure that the frame is proportioned appropriately to use this simplified approach. In most designs it is not advisable to have a final structure where the second order amplification is greater than 1.5, although it is acceptable. In those cases, one should consider stiffening the structure. Step 1: Perform a first-order elastic analysis. Gravity load cases must include a minimum lateral load at each story equal to 0.002 times the story gravity load where the story gravity load is the load introduced at that story, independent of any loads from above. Step 2: Establish the design story drift limit and determine the lateral load that produces that drift. This is intended to be a measure of the lateral stiffness of the structure. Step 3: Determine the ratio of the total story gravity load to the lateral load determined in Step 2. For an ASD design, this ratio must be multiplied by 1.6 before entering Table 2-1. This ratio is part of the determination of the calculation on the elastic critical buckling strength, Pe story, in AISC Specification Equation A-8-7, which includes the parameter Rm. Rm is a minimum of 0.85 for rigid frames and 1.0 for all other frames. Step 4: Multiply all of the forces and moments from the first-order analysis by the value obtained from Table 2-1. Use the resulting forces and moments as the required strengths for the designs of all members and connections. Note that B2 must be computed for each story and in each principal direction. Step 5: For all cases where the multiplier is 1.1 or less, shown shaded in Table 2-1, the effective length may be taken as the member length, K = 1.0. For cases where the multiplier is greater than 1.1 but does not exceed 1.5, determine the effective length factor through analysis, such as with the alignment charts of the AISC Specification AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 17 2–17 STABILITY BRACING TABLE 2-1 Multipliers for Use With the Simplified Method Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD) Design Story Drift Limit 0 5 10 20 30 40 H/100 H/200 H/300 H/400 H/500 1 1 1 1 1 1.1 1 1 1 1 1.1 1.1 1 1 1 1.3 1.1 1.1 1.1 1 1.5/1.4 1.2 1.1 1.1 1.1 1.3 1.2 1.1 1.1 K=1 50 60 80 100 120 When ratio exceeds 1.5, simplified method requires a stiffer 1.4/1.3 1.5/1.4 structure. 1.2 1.3 1.5/1.4 1.2 1.2 1.3 1.4/1.3 1.5 1.1 1.2 1.2 1.3 1.4 Note: Where two values are provided, the value in bold is the value associated with Rm = 0.85. Commentary. For cases where no value is shown for the multiplier, the structure must be stiffened in order to use this simplified approach. Note that the multipliers are the same value for both Rm = 0.85 and 1.0 in most instances due to rounding. Where this is not the case, two values are given consistent with the two values of Rm, respectively. Step 6: Ensure that the drift limit set in Step 2 is not exceeded and revise design as needed. STABILITY BRACING Beams, girders and trusses must be restrained against rotation about their longitudinal axes at points of support (a basic assumption stated in the General Provisions of AISC Specification Section F1). Additionally, stability bracing with adequate strength and stiffness must be provided consistent with that assumed at braced points in the analysis for frames, columns and beams (see AISC Specification Appendix 6). Some guidance for special cases follows. Simple-Span Beams In general, adequate lateral bracing is provided to the compression flange of a simple-span beam by the connections of infill beams, joists, concrete slabs, metal deck, concrete slabs on metal deck, and similar framing elements. Beam Ends Supported on Bearing Plates The stability of a beam end supported on a bearing plate can be provided in one of several ways (see Figure 2-1): 1. The beam end can be built into solid concrete or masonry using anchorage devices. 2. The beam top flange can be stabilized through interconnection with a floor or roof system, provided that system is itself anchored to prevent its translation relative to the beam bearing. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 2–18 1/20/11 7:37 AM Page 18 GENERAL DESIGN CONSIDERATIONS (a) Stability provided with transverse stiffeners (b) Stability provided with an end plate Fig. 2-1. Beam end supported on bearing plate. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 19 2–19 STABILITY BRACING 3. A top-flange stability connection can be provided. 4. An end-plate or transverse stiffeners located over the bearing plate extending to near the top-flange k-distance can be provided. Such stiffeners must be welded to the top of the bottom flange and to the beam web, but need not extend to or be welded to the top flange. In each case, the beam and bearing plate must also be anchored to the support. For the design of beam bearing plates, see Part 14. In atypical framing situations, such as when very deep beams are used, the strength and stiffness requirements in AISC Specification Appendix 6 can be applied to ensure the stability of the assembly. It may also be possible to demonstrate in a limited number of cases, such as with beams with thick webs and relatively shallow depths, that the beam has been properly designed without providing the details described above. In this case, the beam and bearing plate must still be anchored to the support. In any case, it should be noted that the assembly must also meet the requirements in AISC Specification Section J10. Beams and Girders Framing Continuously Over Columns Roof framing is commonly configured with cantilevered beams that frame continuously over the tops of columns to support drop-in beams between the cantilevered segments (Rongoe, 1996; CISC, 1989). It is also commonly desirable to provide an assembly in which the intersection of the beam and column can be considered a braced point for the design of both the continuous cantilevering beam and the column top. The required stability can be provided in several ways (see Figure 2-2): 1. When an infill beam frames into the continuous beam at the column top, the required stability normally can be provided by using connection element(s) for the infill beam that cover three-quarters or more of the T-dimension of the continuous beam. Alternatively, connection elements that cover less than three-quarters of the T-dimension of the continuous beam can be used in conjunction with partial-depth stiffeners in the beam web along with a moment connection between the column top and beam bottom to maintain alignment of the beam/column assembly. A cap plate of reasonable proportions and four bolts will normally suffice. In either case, note that OSHA requires that, if two framing infill beams share common holes through a column web or the web of a beam that frames continuously over the top of a column,3 the beam erected first must remain attached while connecting the second. 2. When joists frame into the continuous beam or girder, the required stability normally can be provided by using bottom chord extensions connected to the column top. The resulting continuity moments must be reported to the joist supplier for their use in the design of the joists and bridging. Note that the continuous beam must still be checked for the concentrated force due to the column reaction per AISC Specification Section J10. 3 This requirement applies only at the location of the column, not at locations away from the column. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 2–20 1/20/11 7:37 AM Page 20 GENERAL DESIGN CONSIDERATIONS The position of the bottom chord extension relative to the column cap plate will affect the bottom chord connection detail. When the extension aligns with the cap plate, the load path and force transfer is direct. When the extension is below the column cap plate, the column must be designed to stabilize the beam bottom flange and the connection between the extension and the column must develop the continuity/brace force. When the extension is above the column top, the beam web must have the necessary strength and stiffness to adequately brace the beam bottom/column top. Fig. 2-2a. Beam framing continuously over column top, stability provided with connections of infill beams. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 21 2–21 STABILITY BRACING 3. If connection of the joist bottom chord extensions to the column must be avoided, the required stability can be provided with a diagonal brace that satisfies the strength and stiffness requirements in AISC Specification Appendix 6. Providing a relatively shallow angle with respect to the horizontal can minimize gravity-load effects in the diagonal brace. Alternatively, the required stability can be provided with stiffeners in the beam web along with a moment connection between the column top and beam bottom to maintain alignment of the beam/column assembly. A cap plate of reasonable proportions and four bolts will normally suffice. In atypical framing situations, such as when very deep girders are used, the strength and stiffness requirements in AISC Specification Appendix 6 can be applied for both the beam Fig. 2-2b. Beam framing continuously over column top, stability provided with welded joist-chord extensions at column top. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 2–22 1/20/11 7:38 AM Page 22 GENERAL DESIGN CONSIDERATIONS and the column to ensure the stability of the assembly. It may also be possible to demonstrate in a limited number of cases, such as with continuous beams with thick webs and relatively shallow depths, that the column and beam have been properly designed without providing infill beam connections, connected joist extensions, stiffeners, or diagonal braces as described above. In this case, a properly designed moment connection is still required between the beam bottom flange and the column top. In any case, it should be noted that the assembly must also meet the requirements in AISC Specification Section J10. Fig. 2-2c. Beam framing continuously over column top, stability provided with welded joist-chord extensions above column top. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 23 2–23 STABILITY BRACING Fig. 2-2d. Beam framing continuously over column top, stability provided with transverse stiffeners, joist chord extensions located at column top not welded. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 2–24 1/20/11 7:38 AM Page 24 GENERAL DESIGN CONSIDERATIONS Fig. 2-2e. Beam framing continuously over column top, stability provided with stiffener plates, joist-chord extensions located above column top not welded. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 25 PROPERLY SPECIFYING MATERIALS 2–25 PROPERLY SPECIFYING MATERIALS Availability The general availability of structural shapes, HSS and pipe can be determined by checking the AISC database of available structural steel shapes at www.aisc.org/SteelAvailability. Generally, where many producers are listed, it is an indication that the particular shape is commonly available. However, except for the larger shapes, when only one or two producers are listed, it is prudent to consider contacting a steel fabricator to determine availability. Material Specifications Applicable material specifications are as shown in the following tables: • Structural shapes in Table 2-3 • Plate and bar products in Table 2-4 • Fastening products in Table 2-5 Preferred material specifications are indicated in black shading. Other applicable material specifications are as shown in grey shading. The availability of grades other than the preferred material specification should be confirmed prior to their specification. Cross-sectional dimensions and production tolerances are addressed as indicated under “Standard Mill Practices” in Part 1. Other Products Anchor rods Although the AISC Specification permits other materials for use as anchor rods, ASTM F1554 is the preferred specification, since all anchor rod production requirements are together in a single specification. ASTM F1554 provides three grades, namely 36 ksi, 55 ksi and 105 ksi. All Grade 36 rods are weldable. Grade 55 rods are weldable only when they are made per Supplementary Requirement S1. The project specifications must indicate if the material is to conform to Supplementary Requirement S1. As a heat-treated material, Grade 105 rods cannot be welded. Grade 105 should be used only for limited applications that require its high strength. For more information, refer to AISC Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006). Raised-Pattern Floor Plates ASTM A786 is the standard specification for rolled steel floor plates. As floor-plate design is seldom controlled by strength considerations, ASTM A786 “commercial grade” is commonly specified. If so, per ASTM A786-05 Section 5.1.3, “the product will be supplied 0.33% maximum carbon by heat analysis, and without specified mechanical properties.” Alternatively, if a defined strength level is desired, ASTM A786 raised-pattern floor plate can be ordered to a defined plate specification, such as ASTM A36, A572 or A588; see ASTM A786 Sections 5.1.3, 7.1 and 8. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 26 2–26 GENERAL DESIGN CONSIDERATIONS Sheet and Strip Sheet and strip products, which are generally thinner than structural plate and bar products are produced to such ASTM specifications as A570, A606 or A607 (see Table 2-3), Filler Metal The appropriate filler metal for structural steel is as summarized in ANSI/AWS D1.1: 2010 Table 3.1 for the various combinations of base metal specification and grade and electrode specification. Weld strengths in this Manual are based upon a tensile strength level of 70 ksi. Steel Headed Stud Anchors As specified in ANSI/AWS D1.1 Chapter 7 (Section 7.2.6 and Table 7.1), Type B shear stud connectors (referred to in the AISC Specification as steel headed stud anchors) made from ASTM A108 material are used for the interconnection of steel and concrete elements in composite construction (Fu = 65 ksi). Open Web Steel Joists The AISC Code of Standard Practice does not include steel joists in its definition of structural steel. Steel joists are designed and fabricated per the requirements of specifications published by the Steel Joist Institute. Refer to SJI literature for further information. Castellated Beams Castellated beams, also known as cellular beams, are members constructed by cutting along a staggered pattern down the web of a wide-flange member, offsetting the resulting pieces such that the deepest points of the cut are in contact, and welding the two pieces together, thereby creating a member with holes along its web. Castellated beams are currently designed and fabricated as a proprietary product. For more information, contact the manufacturer. Steel Castings and Forgings Steel castings are specified as ASTM A27 Grade 65-35 or ASTM A216 Grade 80-35. Steel forgings are specified as ASTM A668. Forged Steel Structural Hardware Forged steel structural hardware products, such as clevises, turnbuckles, eye nuts and sleeve nuts, are occasionally used in building design and construction. These products are generally forged according to ASTM A668 Class A requirements. ASTM A29, Grade 1035 material is commonly used in the manufacture of clevises and turnbuckles. ASTM A29, Grade 1030 material is commonly used in the manufacture of steel eye nuts and steel eye bolts. ASTM A29 Grade 1018 material is commonly used in the manufacture of sleeve nuts. Other products, such as steel rod ends, steel yoke ends and pins, cotter pins, and coupling nuts are commonly provided generically as “carbon steel.” The dimensional and strength characteristics of these devices are fully described in the literature provided by their manufacturer. Note that manufacturers usually provide strength characteristics in terms of a “safe working load” with a safety factor as high as 5, assuming AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 27 2–27 CONTRACT DOCUMENT INFORMATION that the product will be used in rigging or similar applications subject to dynamic loading. The manufacturer’s safe working load may be overly conservative for permanent installations and similar applications subject to static loading only. If desired, the published safe working load can be converted into an available strength with reliability consistent with that of other statically loaded structural materials. In this case, the nominal strength, Rn, is determined as: Rn = (safe working load) ⫻ (manufacturer’s safety factor) (2-8) and the available strength, φRn or Rn /Ω, is determined using φ = 0.50 (LRFD) Ω = 3.00 (ASD) Crane Rails Crane rails are furnished to ASTM A759, ASTM A1, and/or manufacturer’s specifications and tolerances. Most manufacturers chamfer the top and sides of the crane-rail head at the ends unless specified otherwise to reduce chipping of the running surfaces. Often, crane rails are ordered as end-hardened, which improves the resistance of the crane-rail ends to impact that occurs as the moving wheel contacts it during crane operation. Alternatively, the entire rail can be ordered as heat-treated. When maximum wheel loading or controlled cooling is needed, refer to manufacturers’ catalogs. Purchase orders for crane rails should be noted “for crane service.” Light 40-lb rails are available in 30-ft lengths, 60-lb rails in 30-, 33- or 39-ft lengths, standard rails in 33- or 39-ft lengths and crane rails up to 80 ft. Consult manufacturer for availability of other lengths. Rails should be arranged so that joints on opposite sides of the crane runway will be staggered with respect to each other and with due consideration to the wheelbase of the crane. Rail joints should not occur at crane girder splices. Odd lengths that must be included to complete a run or obtain the necessary stagger should be not less than 10 ft long. Rails are furnished with standard drilling in both standard and odd lengths unless stipulated otherwise on the order. CONTRACT DOCUMENT INFORMATION Design Drawings, Specifications and Other Contract Documents CASE Document 962D, A Guideline Addressing Coordination and Completeness of Structural Construction Documents (CASE, 2003), provides comprehensive guidance on the preparation of structural design drawings. Most provisions in the AISC Specification, RCSC Specification, AWS D1.1, and the AISC Code of Standard Practice are written in mandatory language. Some provisions require the communication of information in the contract documents, some provisions are invoked only when specified in the contract documents, and some provisions require the approval of the owner’s designated representative for design if they are to be used. Following is a summary of these provisions in the AISC Specification, RCSC Specification, and AISC Code of Standard Practice. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 2–28 7:38 AM Page 28 GENERAL DESIGN CONSIDERATIONS Required Information The following communication of information is required in the contract documents: 1. Required drawing information, per AISC Code of Standard Practice Sections 3.1 and 3.1.1 through 3.1.6. and RCSC Specification Section 1.4 (bolting products and joint type) 2. Drawing numbers and revision numbers, per AISC Code of Standard Practice Section 3.5 3. Structural system description, per AISC Code of Standard Practice Section 7.10.1 4. Installation schedule for nonstructural steel elements in the structural system, per AISC Code of Standard Practice Section 7.10.2 5. Project schedule, per AISC Code of Standard Practice Section 9.5.1 Information Required Only When Specified The following provisions are invoked only when specified in the contract documents: 1. Special material notch-toughness requirements, per AISC Specification Section A3.1c and Section A3.1d 2. Special connections requiring pretension, per AISC Specification Section J1.10 3. Bolted joint requirements, per AISC Specification Section J3.1 and RCSC Specification Section 1.4 4. Special cambering considerations, per AISC Specification Section L2 5. Special contours and finishing requirements for thermal cutting, per AISC Specification Sections M2.2 and M2.3, respectively 6. Corrosion protection requirements, if any, per AISC Specification Section M3 and AISC Code of Standard Practice Sections 6.5, 6.5.2 and 6.5.3 7. Responsibility for field touch-up painting, if painting is specified, per AISC Specification Section M4.6 and AISC Code of Standard Practice Section 6.5.4 8. Special quality control and inspection requirements, per AISC Specification Chapter N and AISC Code of Standard Practice Sections 8.1.3, 8.2 and 8.3 9. Evaluation procedures, per AISC Specification Section B6 10. Fatigue requirements, if any, per AISC Specification Section B3.9 11. Tolerance requirements other than those specified in the AISC Code of Standard Practice, per Code of Standard Practice Section 1.9 12. Designation of each connection as Option 1, 2 or 3, and identification of requirements for substantiating connection information, if any, per AISC Code of Standard Practice Section 3.1.2 13. Specific instructions to address items differently, if any, from requirements in the AISC Code of Standard Practice, per Code of Standard Practice Section 1.1 14. Submittal schedule for shop and erection drawings, per AISC Code of Standard Practice Section 4.2 15. Mill order timing, special mill testing, and special mill tolerances, per AISC Code of Standard Practice Sections 5.1, 5.2 and 5.2, respectively 16. Removal of backing bars and runoff tabs, per AISC Code of Standard Practice Section 6.3.2 17. Special erection mark requirements, per AISC Code of Standard Practice Section 6.6.1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 29 CONTRACT DOCUMENT INFORMATION 2–29 18. Special delivery and erection sequences, per AISC Code of Standard Practice Sections 6.7.1 and 7.1, respectively 19. Special field splice requirements, per AISC Code of Standard Practice Section 6.7.4 20. Specials loads to be considered during erection, per AISC Code of Standard Practice Section 7.10.3 21. Special safety protection treatments, per AISC Code of Standard Practice Section 7.11.1 22. Identification of adjustable items, per AISC Code of Standard Practice Section 7.13.1.3 23. Cuts, alterations and holes for other trades, per AISC Code of Standard Practice Section 7.15 24. Revisions to the contract, per AISC Code of Standard Practice Section 9.3 25. Special terms of payment, per AISC Code of Standard Practice Section 9.6 26. Identification of architecturally exposed structural steel, per AISC Code of Standard Practice Section 10 Approvals Required The following provisions require the approval of the owner’s designated representative for design if they are to be used: 1. Bolted-joint-related approvals per RCSC Specification Commentary Section 1.4 2. Use of electronic or other copies of the design drawings by the fabricator, per AISC Code of Standard Practice Section 4.3 3. Use of stock materials not conforming to a specified ASTM specification, per AISC Code of Standard Practice Section 5.2.3 4. Correction of errors, per AISC Code of Standard Practice Section 7.14 5. Inspector-recommended deviations from contract documents, per AISC Code of Standard Practice Section 8.5.6 6. Contract price adjustment, per AISC Code of Standard Practice Section 9.4.2 Establishing Criteria for Connections AISC Code of Standard Practice Section 3.1.2 provides the following three methods for the establishment of connection requirements. In the first method, the complete design of all connections is shown in the structural design drawings. In this case, AISC Code of Standard Practice Commentary Section 3.1.2 provides a summary of the information that must be included in the structural design drawings. This method has the advantage that there is no need to provide connection loads, since the connections are completely designed in the structural design drawings. Additionally, it favors greater accuracy in the bidding process, since the connections are fully described in the contract documents. In the second method, the fabricator is allowed to select or complete the connections while preparing the shop and erection drawings, using the information provided by the owner’s designated representative for design per AISC Code of Standard Practice Section 3.1.2. In this case, AISC Code of Standard Practice Commentary Section 3.1.2 clarifies the intention that connections that can be selected or completed by the fabricator include those for which tables appear in the contract documents or the Manual. Other connections should be shown in detail in the structural design drawings. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM 2–30 Page 30 GENERAL DESIGN CONSIDERATIONS In the third method, connections are designated in the contract documents to be designed by a licensed professional engineer working for the fabricator. The AISC Code of Standard Practice sets forth detailed provisions that, in the absence of contract provisions to the contrary, serve as the basis of the relationships among the parties. One feature of these provisions is that the fabricator is required to provide representative examples of connection design documentation early in the process, and the owner’s designated representative for design is obliged is to review these submittals for conformity with the requirements of the contract documents. These early submittals are required in an attempt to avoid additional costs and/or delays as the approval process proceeds through subsequent shop drawings with connections developed from the original representative samples. Methods one and two have the advantage that the fabricator’s standard connections normally can be used, which often leads to project economy. However, the loads or other connection design criteria must be provided in the structural design drawings. Design loads and required strengths for connections should be provided in the structural design drawings and the design method used in the design of the frame (ASD or LRFD) must be indicated on the drawings. In all three methods, the resulting shop and erection drawings must be submitted to the owner’s designated representative for design for review and approval. As stated in the AISC Code of Standard Practice Section 4.4.1, the approval of shop and erection drawings constitutes “confirmation that the Fabricator has correctly interpreted the Contract Documents” and that the reviewer has “reviewed and approved the Connection details shown in the Shop and Erection Drawings.” Following is additional guidance for the communication of connection criteria to the connection designer. Simple Shear Connections The full force envelope should be given for each simple shear connection. Because of the potential for overestimation and underestimation inherent in approximate methods (Thornton, 1995), actual beam end reactions should be indicated on the design drawings. The most effective method to communicate this information is to place a numeric value at each end of each span in the framing plans. In the past, beam end reactions were sometimes specified as a percentage of the tabulated uniform load in Manual Part 3. This practice can result in either over- or under-specification of connection reactions and should not be used. The inappropriateness of this practice is illustrated in the following examples. Over-estimation: 1. When beams are selected for serviceability considerations or for shape repetition, the uniform load tables will often result in heavier connections than would be required by the actual design loads. 2. When beams have relatively short spans, the uniform load tables will often result in heavier connections than would be required by the actual design loads. If not addressed with the accurate load, many times the heavier connections will require extension of the connection below the bottom flange of the supported member, requiring that the flange on one or both sides of the web to be cut and chipped, a costly process. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 31 CONTRACT DOCUMENT INFORMATION 2–31 Under-estimation: 1. When beams support other framing beams or other concentrated loads occur on girders supporting beams, the end reactions can be higher than 50% of the total uniform load. 2. For composite beams, the end reactions can be higher than 50% of the total uniform load. The percentage requirement can be increased for this condition, but the resulting approach is still subject to the above considerations. Moment Connections The full force envelope should be given for each moment connection. If the owner’s designated representative for design can select the governing load combination, its effect alone should be provided. Otherwise, the effects of all appropriate load combinations should be indicated. Additionally, the maximum moment imbalance should also be given for use in the check of panel-zone web shear. Because of the potential for overestimation—and underestimation—inherent in approximate methods, it is recommended that the actual beam end reactions (moment, shear and other reactions, if any) be indicated in the structural design drawings. The most effective method to do so may be by tabulation for each joint and load combination. Although not recommended, beam end reactions are sometimes specified by more general criteria, such as by function of the beam strength. It should be noted, however, that there are several situations in which this approach is not appropriate. For example: 1. When beams are selected for serviceability considerations or for shape repetition, this approach will often result in heavier connections than would be required by the actual design loads. 2. When the column(s) or other members that frame at the joint could not resist the forces and moments determined from the criteria so specified, this approach will often result in heavier connections than would be required by the actual design loads. In some cases, the structural analysis may require that the actual connections be configured to match the assumptions used in the model. For example, it may be appropriate to release weak-axis moments in a beam-column joint where only strong-axis beam moment strength is required. Such requirements should be indicated in the structural design drawings. Horizontal and Vertical Bracing Connections The full force envelope should be given for each bracing-member end connection. If the owner’s designated representative for design can select the governing load combination for the connection, its effect alone should be provided. Otherwise, the effects of all appropriate load combinations should be indicated in tabular form. This approach will allow a clear understanding of all of the forces on any given joint. Because of the potential for overestimation—and underestimation—inherent in approximate methods, it is recommended that the actual reactions at the bracing member end (axial force and other reactions, if any) be indicated in the structural design drawings. It is also recommended that transfer forces, if any, be so indicated. The most effective method to do so may be by tabulation for each bracing member end and load combination. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM 2–32 Page 32 GENERAL DESIGN CONSIDERATIONS Although not recommended, bracing member end reactions can be specified by more general criteria, such as by maximum member forces (tension or compression) or as a function of the member strength. It should be noted, however, that there are several situations in which such approaches are not appropriate. For example: 1. The specification of maximum member forces does not permit a check of the member forces at a joint if there are different load combinations governing the member designs at that joint. Nor does it reflect the possibility of load reversal as it may influence the design. 2. The specification of a percentage of member strength may not properly account for the interaction of forces at a joint or the transfer force through the joint. Additionally, it may not allow for a cross-check of all forces at a joint. In either case, this approach will often result in heavier connections than would be required by the actual design loads. Bracing connections may involve the interaction of gravity and lateral loads on the frame. In some cases, such as V- and inverted V-bracing (also known as Chevron bracing), gravity loads alone may govern design of the braces and their connections. Thus, clarity in the specification of loads and reactions is critical to properly consider the potential interaction of gravity and lateral loads at floors and roofs. Strut and Tie Connections Floor and roof members in braced bays and adjacent bays may function as struts or ties in addition to carrying gravity loads. Therefore the recommendations for simple shear connections and bracing connections above apply in combination. Truss Connections The recommendations for horizontal and vertical bracing connections above also apply in general to bracing connections with the following additional comments. Note that it is not necessary to specify a minimum connection strength as a percent of the member strength as a default. However, when trusses are shop assembled or field assembled on the ground for subsequent erection, consideration should be given to the loads that will be induced during handling, shipping and erection. Column Splices Column splices may resist moments, shears and tensions in addition to gravity forces. Typical column splices are discussed in Part 14. As in the case of the other connections discussed above, unless the column splices are fully designed in the construction documents, forces and moments for the splice designs should be provided in the construction documents. Since column splices are located away from the girder/column joint and moments vary in the height of the column, an accurate assessment of the forces and moments at the column splices will usually significantly reduce their cost and complexity. CONSTRUCTABILITY Constructability is a relatively new word for a well established idea. The design, detailing, fabrication and erection of structural steel is a process which in the end needs to result in a safe and economical steel frame. Building codes and the AISC Specification address strength and AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 33 2–33 TOLERANCES structural integrity. Constructability addresses the need for global economy in the fabricated and erected steel frame. Constructability must be “designed in,” influencing decision making at all steps of the design process, from framing system selection, though member design, to connection selection and design. Constructability demands attention to detail and requires the designer to think ahead to the fabrication and erection of the steel frame. The goal is to design a steel frame that is relatively easy to detail, fabricate and erect. AISC provides guidance to the design community through its many publications and presentations, including the recently published Design Guide 23, Constructability of Structural Steel Buildings (Ruby, 2008). Constructability focuses on such issues as framing layout, the number of pieces in an area of framing, three-dimensional connection geometry, swinging in clearances, access to bolts, and access to welds. It involves the acknowledgement that numerous, seemingly small decisions can have an effect on the overall economy of the final erected steel frame. Fabricators and erectors have the knowledge that can assist in the design of constructible steel frames. Designers should seek their counsel. TOLERANCES The effects of mill, fabrication and erection tolerances all require consideration in the design and construction of structural steel buildings. However, the accumulation of the mill tolerances and fabrication tolerances shall not cause the erection tolerances to be exceeded, per AISC Code of Standard Practice Section 7.12. Mill Tolerances Mill tolerances are those variations that could be present in the product as-delivered from the rolling mill. These tolerances are given as follows: 1. For structural shapes and plates, see ASTM A6. 2. For HSS, see ASTM A500 (or other applicable ASTM specification for HSS). 3. For pipe, see ASTM A53. A summary of standard mill practices is also given in Part 1. Fabrication Tolerances Fabrication tolerances are generally provided in AISC Specification Section M2 and AISC Code of Standard Practice Section 6.4. Additional requirements that govern fabrication are as follows: 1. Compression joint fit-up, per AISC Specification Section M4.4 2. Roughness limits for finished surfaces, per AISC Code of Standard Practice Section 6.2.2 3. Straightness of projecting elements of connection materials, per AISC Code of Standard Practice Section 6.3.1 4. Finishing requirements at locations of removal of run-off tabs and similar devices, per AISC Code of Standard Practice Section 6.3.2 Erection Tolerances Erection tolerances are generally provided in AISC Specification Section M4 and AISC Code of Standard Practice Section 7.13. Note that the tolerances specified therein are AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM 2–34 Page 34 GENERAL DESIGN CONSIDERATIONS predicated upon the proper installation of the following items by the owner’s designated representative for construction: 1. 2. 3. 4. Building lines and benchmarks, per AISC Code of Standard Practice Section 7.4 Anchorage devices, per AISC Code of Standard Practice Section 7.5 Bearing devices, per AISC Code of Standard Practice Section 7.6 Grout, per AISC Code of Standard Practice Section 7.7 Building Façade Tolerances The preceding mill, fabrication and erection tolerances can be maintained with standard equipment and workmanship. However, the accumulated tolerances for the structural steel and the building façade must be accounted for in the design so that the two systems can be properly mated in the field. In the steel frame, this is normally accomplished by specifying adjustable connections in the contract documents, per AISC Code of Standard Practice Section 7.13.1.3. This section has three subsections. Subsection (a) addresses the vertical position of the adjustable items, subsection (b) addresses the horizontal position of the adjustable items, and subsection (c) addresses alignment of adjustable items at abutting ends. The required adjustability normally can be determined from the range of adjustment in the building façade anchor connections, tolerances for the erection of the building façade, and the accumulation of mill, fabrication and erection tolerances at the mid-span point of the spandrel beam. The actual locations of the column bases, the actual slope of the columns and the actual sweep of the spandrel beam all affect the accumulation of tolerances in the structural steel at this critical location. These conditions must be reflected in details that will allow successful erection of the steel frame and the façade, if each of these systems is properly constructed within its permitted tolerance envelope. Figures 2-3a, 2-4a and 2-5a illustrate details that are not recommended because they do not provide for adjustment. Figures 2-3b, 2-4b and 2-5b illustrate recommended alternative details that do provide for adjustability. Note that diagonal structural and stability bracing elements have been omitted in these details to improve the clarity of presentation regarding adjustability. Also, note that all elements beyond the slab edge are normally not structural steel, per AISC Code of Standard Practice Section 2.2, and are shown for the purposes of illustration only. The bolted details in Figures 2-4b and 2-5b can be used to provide field adjustability with slotted holes as shown. Further adjustability can be provided in these details, if necessary, by removing the bolts and clamping the connection elements for field welding. Alternatively, when the slab edge angle or plate in Figure 2-4b is shown as field welded and identified as adjustable in the contract documents, it can be provided to within a horizontal tolerance of ± 3/8 in., per AISC Code of Standard Practice Section 7.13.1.3. However, if the item was not shown as field welded and identified as adjustable in the contract documents, it would likely be attached in the shop or attached in the field to facilitate the concrete pour and not be suitable to provide for the necessary adjustment. The details in Figures 2-3b and 2-4b do not readily permit vertical adjustment of the adjustable material. However, the vertical position tolerance of ± 3/8 in. is less than the tolerance for the position of the spandrel member itself, see AISC Code of Standard Practice Section 7.13.1.2(b). The manufacturing tolerance for camber in the spandrel member is set by ASTM A6, as summarized in Table 1-22. The ASTM A6 limit for camber is 1/8 in. per 10 ft of length, thus, in most situations AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 35 2–35 TOLERANCES the vertical position tolerance in AISC Code of Standard Practice Section 7.13.1.3(b) should be achieved indirectly. In general, spandrel members should not be cambered. Deflection of spandrel members should be controlled by member stiffness. Figure 2-5b shows a detail in which both horizontal and vertical adjustment can be achieved. With adjustable connections specified in design and provided in fabrication, actions taken on the job site will allow for a successful façade installation. Per the AISC Code of Standard Practice definition of established column line (see Code of Standard Practice Glossary), (a) Without adjustment (not recommended) (b) With adjustment (recommended) Fig. 2-3. Attaching cold-formed steel façade systems to structural steel framing. (a) Without adjustment (not recommended) (b) With adjustment (recommended) Fig. 2-4. Attaching curtain wall façade systems to structural steel framing. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 2–36 7:38 AM Page 36 GENERAL DESIGN CONSIDERATIONS (a) Without adjustment (not recommended) (b) With adjustment (recommended) Fig. 2-5. Attaching masonry façade systems to structural steel framing. proper placement of this line by the owner’s designated representative for construction based upon the actual column-center locations will assure that all subcontractors are working from the same information. When sufficient adjustment cannot be accommodated within the adjustable connections provided, a common solution is to allow the building façade to deviate (or drift) from the theoretical location to follow the as-built locations of the structural steel framing and concrete floor slabs. A survey of the as-built locations of these elements can be used to adjust the placement of the building façade accordingly. In this case, the adjustable connections can serve to ensure that no abrupt changes occur in the façade. QUALITY CONTROL AND QUALITY ASSURANCE Prior to 2010, quality control and quality assurance were addressed in the contract documents, Chapter M of the AISC Specification, and building codes. In the 2010 AISC Specification, Chapter N, entitled Quality Control and Quality Assurance, has been added. This chapter distinguishes between quality control, which is the responsibility of the fabricator and erector, and quality assurance, which is the responsibility of the owner, usually through third party inspectors. The new provisions bring together requirements from diverse sources of quality control (QC) and quality assurance (QA), so that plans for QC and QA can be established on a project specific basis. Chapter N provides tabulated lists of inspection tasks for both QC and QA. As in the case of the AISC Seismic Provisions, these tasks are characterized as either “observe” or “perform.” Tasks identified as “observe” are general and random. Tasks identified as “perform” are specific to the final acceptance of an item in the work. The characterization of tasks as observe and perform is a substitute for the AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 37 CAMBERING, CURVING AND STRAIGHTENING 2–37 distinction between periodic and continuous inspection used in other codes and standards, such as the International Building Code. CAMBERING, CURVING AND STRAIGHTENING Beam Camber and Sweep Camber denotes a curve in the vertical plane. Sweep denotes a curve in the horizontal plane. Camber and sweep occur naturally in members as received from the mill. The deviation of the member from straight must be within the mill tolerances specified in ASTM A6/A6M. When required by the contract documents, cambering and curving to a specified amount can be provided by the fabricator per AISC Code of Standard Practice Sections 6.4.2 and 6.4.4, either by cold bending or by hot bending. Cambering and curving induce residual stresses similar to those that develop in rolled structural shapes as elements of the shape cool from the rolling temperature at different rates. These residual stresses do not affect the available strength of structural members, since the effect of residual stresses is considered in the provisions of the AISC Specification. Cold Bending The inelastic deformations required in common cold bending operations, such as for beam cambering, normally fall well short of the strain-hardening range. Specific limitations on cold-bending capabilities should be obtained from those that provide the service and from Cold Bending of Wide-Flange Shapes for Construction (Bjorhovde, 2006). However, the following general guidelines may be useful in the absence of other information: 1. The minimum radius for camber induced by cold bending in members up to a nominal depth of 30 in. is between 10 and 14 times the depth of the member. Deeper members may require a larger minimum radius. 2. Cold bending may be used to provide curving in members to practically any radius desired. 3. A minimum length of 25 ft is commonly practical due to manufacturing/fabrication equipment. When curvatures and the resulting inelastic deformations are significant and corrective measures are required, the effects of cold work on the strength and ductility of the structural steels largely can be eliminated by thermal stress relief or annealing. Hot Bending The controlled application of heat can be used in the shop and field to provide camber or curvature. The member is rapidly heated in selected areas that tend to expand, but are restrained by the adjacent cooler areas, causing inelastic deformations in the heated areas and a change in the shape of the cooled member. The mechanical properties of steels are largely unaffected by such heating operations, provided the maximum temperature does not exceed the temperature limitations given in AISC Specification Section M2.1. Temperature-indicating crayons or other suitable means should be used during the heating process to ensure proper regulation of the temperature. Heat curving induces residual stresses that are similar to those that develop in hot-rolled structural shapes as they cool from the rolling temperature because all parts of the shape do not cool at the same rate. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM 2–38 Page 38 GENERAL DESIGN CONSIDERATIONS Truss Camber Camber is provided in trusses, when required, by the fabricator per AISC Code of Standard Practice Section 6.4.5, by geometric relocation of panel points and adjustment of member lengths based upon the camber requirements as specified in the contract documents. Straightening All structural shapes are straightened at the mill after rolling, either by rotary or gag straightening, to meet the aforementioned mill tolerances. Similar processes and/or the controlled application of heat can be used in the shop or field to straighten a curved or distorted member. These processes are normally applied in a manner similar to those used to induce camber and curvature and described above. FIRE PROTECTION AND ENGINEERING Provisions for structural design for fire conditions are found in Appendix 4 of the AISC Specification. Complete coverage of fire protection and engineering for steel structures is included in AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003). CORROSION PROTECTION In building structures, corrosion protection is not required for steel that will be enclosed by building finish, coated with a contact-type fireproofing, or in contact with concrete. When enclosed, the steel is trapped in a controlled environment and the products required for corrosion are quickly exhausted, as indicated in AISC Specification Commentary Section M3. A similar situation exists when steel is fireproofed or in contact with concrete. Accordingly, shop primer or paint is not required unless specified in the contract documents, per AISC Specification Section M3.1. Per AISC Code of Standard Practice Section 6.5, steel that is to remain unpainted need only be cleaned of heavy deposits of oil and grease by appropriate means after fabrication. Corrosion protection is required, however, in exterior exposed applications. Likewise, steel must be protected from corrosion in aggressively corrosive applications, such as a paper processing plant, a structure with oceanfront exposure, or when temperature changes can cause condensation. Corrosion should also be considered when connecting steel to dissimilar metals. Guidance on steel compatibility with metal fasteners is provided in Table 2-7. When surface preparation other than the cleaning described above is required, an appropriate grade of cleaning should be specified in the contract documents according to the Society for Protective Coatings (SSPC). A summary of the SSPC surface preparation specifications (SSPC, 2000) is provided in Table 2-8. SSPC SP 2 is the normal grade of cleaning when cleaning is required. For further information, refer to the publications of SSPC, the American Galvanizers Association (AGA), and the National Association of Corrosion Engineers International (NACE). RENOVATION AND RETROFIT OF EXISTING STRUCTURES The provisions in AISC Specification Section B6 govern the evaluation of existing structures. Historical data on available steel grades and hot-rolled structural shapes, including AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 12, 2013 12/02/13 7:59 AM Page 39 THERMAL EFFECTS 2–39 dimensions and properties, is available in AISC Design Guide 15, Rehabilitation and Retrofit Guide (Brockenbrough, 2002) and the companion database of historic shape properties from 1873-1999 available at www.aisc.org. See also Ricker (1988) and Tide (1990). THERMAL EFFECTS Expansion and Contraction The average coefficient of expansion, ε, for structural steel between 70 °F and 100 °F is 0.0000065 for each °F (Camp et al., 1951). This value is a reasonable approximation of the coefficient of thermal expansion for temperatures less than 70 °F. For temperatures from 100 to 1, 200 °F, the change in length per unit length per °F, ε, is: ε = (6.1 + 0.0019t)10-6 (2-9) where t is the initial temperature in °F. The coefficients of expansion for other building materials can be found in Table 17-11. Although buildings are typically constructed of flexible materials, expansion joints are often required in roofs and the supporting structure when horizontal dimensions are large. The maximum distance between expansion joints is dependent upon many variables, including ambient temperature during construction and the expected temperature range during the lifetime of the building. Figure 2-6 (Federal Construction Council, 1974) provides guidance based on design temperature change for maximum spacing of structural expansion joints in beam-andcolumn-framed buildings with pinned column bases and heated interiors. The report includes data for numerous cities and gives five modification factors to be applied as appropriate: Fig. 2-6. Recommended maximum expansion-joint spacing. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 40 2–40 GENERAL DESIGN CONSIDERATIONS 1. If the building will be heated only and will have pinned column bases, use the maximum spacing as specified. 2. If the building will be air-conditioned as well as heated, increase the maximum spacing by 15% provided the environmental control system will run continuously. 3. If the building will be unheated, decrease the maximum spacing by 33%. 4. If the building will have fixed column bases, decrease the maximum spacing by 15%. 5. If the building will have substantially greater stiffness against lateral displacement in one of the plan dimensions, decrease the maximum spacing by 25%. When more than one of these design conditions prevail in a building, the percentile factor to be applied is the algebraic sum of the adjustment factors of all the various applicable conditions. Most building codes include restrictions on location and maximum spacing of fire walls, which often become default locations for expansion joints. The most effective expansion joint is a double line of columns that provides a complete and positive separation. Alternatively, low-friction sliding elements can be used. Such systems, however, are seldom totally friction-free and will induce some level of inherent restraint to movement. Elevated-Temperature Service For applications involving short-duration loading at elevated temperature, the variations in yield strength, tensile strength, and modulus of elasticity are given in AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003). For applications involving long-duration loading at elevated temperatures, the effects of creep must also be considered. For further information, see Brockenbrough and Merritt (1999; pp. 1.20–1.22). FATIGUE AND FRACTURE CONTROL Avoiding Brittle Fracture By definition, brittle fracture occurs by cleavage at a stress level below the yield strength. Generally, a brittle fracture can occur when there is a sufficiently adverse combination of tensile stress, temperature, strain rate and geometrical discontinuity (notch). The exact combination of these conditions and other factors that will cause brittle fracture cannot be readily calculated. Consequently, the best guide in selecting steel material that is appropriate for a given application is experience. The steels listed in AISC Specification Section A3.1a, Section A3.1c and Section A3.1d have been successfully used in a great number of applications, including buildings, bridges, transmission towers and transportation equipment, even at the lowest atmospheric temperatures encountered in the United States. Nonetheless, it is desirable to minimize the conditions that tend to cause brittle fracture: triaxial state-of-stress, increased strain rate, strain aging, stress risers, welding residual stresses, areas of reduced notch toughness, and low-temperature service. 1. Triaxial state-of-stress: While shear stresses are always present in a uniaxial or biaxial state-of-stress, the maximum shear stress approaches zero as the principal stresses approach a common value in a triaxial state-of-stress. A triaxial state-of-stress can also result from uniaxial loading when notches or geometrical discontinuities are present. A triaxial state-of-stress will cause the yield stress of the material to increase above its AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 41 FATIGUE AND FRACTURE CONTROL 2. 3. 4. 5. 6. 7. 2–41 nominal value, resulting in brittle fracture by cleavage, rather than ductile shear deformations. As a result, in the absence of critical-size notches, the maximum stress is limited by the yield stress of the nearby unaffected material. Triaxial stress conditions should be avoided, when possible. Increased strain rate: Gravity loads, wind loads and seismic loads have essentially similar strain rates. Impact loads, such as those associated with heavy cranes, and blast loads normally have increased strain rates, which tend to increase the possibility of brittle fracture. Note, however, that a rapid strain rate or impact load is not a required condition for the occurrence of brittle fracture. Strain aging: Cold working of steel and the strain aging that normally results generally increases the likelihood of brittle fracture, usually due to a reduction in ductility and notch toughness. The effects of cold work and strain aging can be minimized by selecting a generous forming radius to eliminate or minimize strain hardening. Stress risers: Fabrication operations, such as flame cutting and welding, may induce geometric conditions or discontinuities that are crack-like in nature, creating stress risers. Intersecting welds from multiple directions should be avoided with properly sized weld access holes to minimize the interaction of these various stress fields. Such conditions should be avoided, when possible, or removed or repaired when they occur. Welding residual stresses: In the as-welded condition, residual stresses near the yield strength of the material will be present in any weldment. Residual stresses and the possible accompanying distortions can be minimized through controlled welding procedures and fabrication methods, including the proper positioning of the components of the joint prior to welding, the selection of welding sequences that will minimize distortions, the use of preheat as appropriate, the deposition of a minimum volume of weld metal with a minimum number of passes for the design condition, and proper control of interpass temperatures and cooling rates. In fracture-sensitive applications, notch-toughness should be specified for both the base metal and the filler metal. Areas of reduced notch toughness: Such areas can be found in the core areas of heavy shapes and plates and the k-area of rotary-straightened W-shapes. Accordingly, AISC Specification Sections A3.1c and Section A3.1d include special requirements for material notch toughness. Low-temperature service: While steel yield strength, tensile strength, modulus of elasticity, and fatigue strength increase as temperature decreases, ductility and toughness decrease. Furthermore, there is a temperature below which steel subjected to tensile stress may fracture by cleavage, with little or no plastic deformation, rather than by shear, which is usually preceded by considerable inelastic deformation. Note that cleavage and shear are used in the metallurgical sense to denote different fracture mechanisms. When notch-toughness is important, Charpy V-notch testing can be specified to ensure a certain level of energy absorption at a given temperature, such as 15 ft-lb at 70 °F. Note that the appropriate test temperature may be higher than the lowest operating temperature depending upon the rate of loading. Although it is primarily intended for bridge-related applications, the information in ASTM A709 Section S83 (including Tables S1.1, S1.2 and S1.3) may be useful in determining the proper level of notch toughness that should be specified. In many cases, weld metal notch toughness exceeds that of the base metal. Filler metals can be selected to meet a desired minimum notch-toughness value. For each welding AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 42 2–42 GENERAL DESIGN CONSIDERATIONS process, electrodes exist that have no specified notch toughness requirements. Such electrodes should not be assumed to possess any minimum notch-toughness value. When notch toughness is necessary for a given application, the desired value or an appropriate electrode should be specified in the contract documents. For further information, refer to Fisher et al. (1998), Barsom and Rolfe (1999), and Rolfe (1977). Avoiding Lamellar Tearing Although lamellar tearing is less common today, the restraint against solidified weld deposit contraction inherent in some joint configurations can impose a tensile strain high enough to cause separation or tearing on planes parallel to the rolled surface of the element being joined. The incidence of this phenomenon can be reduced or eliminated through greater understanding by designers, detailers and fabricators of the inherent directionality of rolled steel, the importance of strains associated with solidified weld deposit contraction in the presence of high restraint (rather than externally applied design forces), and the need to adopt appropriate joint and welding details and procedures with proper weld metal for through-thickness connections. Dexter and Melendrez (2000) demonstrate that W-shapes are not susceptible to lamellar tearing or other through-thickness failures when welded tee joints are made to the flanges at locations away from member ends. When needed for other conditions, special production practices can be specified for steel plates to assist in reducing the incidence of lamellar tearing by enhancing through-thickness ductility. For further information, refer to ASTM A770. However, it must be recognized that it is more important and effective to properly design, detail and fabricate to avoid highly restrained joints. AISC (1973) provides guidelines that minimize potential problems. WIND AND SEISMIC DESIGN In general, nearly all building design and construction can be classified into one of two categories: wind and low-seismic applications, and high-seismic applications. For additional discussion regarding seismic design and the applicability of the AISC Seismic Provisions, see the Scope statement at the front of this manual. Wind and Low-Seismic Applications Wind and low-seismic applications are those in which the AISC Seismic Provisions are not applicable. Such buildings are designed to meet the provisions in the AISC Specification based upon the code-specified forces distributed throughout the framing assuming a nominally elastic structural response. The resulting systems have normal levels of ductility. It is important to note that the applicable building code includes seismic design requirements even if the AISC Seismic Provisions are not applicable. See the AISC Seismic Design Manual for additional discussion. High-Seismic Applications High-seismic applications are those in which the building is designed to meet the provisions in both the AISC Seismic Provisions and the AISC Specification. Note that it does not matter if wind or earthquake controls in this case. High-seismic design and construction will AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 43 WIND AND SEISMIC DESIGN 2–43 generally cost more than wind and low-seismic design and construction, as the resulting systems are designed to have high levels of ductility. High-seismic lateral framing systems are configured to be capable of withstanding strong ground motions as they undergo controlled ductile deformations to dissipate energy. Consider the following three examples: 1. Special Concentrically Braced Frames (SCBF)—SCBF are generally configured so that any inelasticity will occur by tension yielding and/or compression buckling in the braces. The connections of the braces to the columns and beams and between the columns and beams themselves must then be proportioned to remain nominally elastic as they undergo these deformations. 2. Eccentrically Braced Frames (EBF)—EBF are generally configured so that any inelasticity will occur by shear yielding and/or flexural yielding in the link. The beam outside the link, connections, braces and columns must then be proportioned to remain nominally elastic as they undergo these deformations. 3. Special Moment Frames (SMF)—SMF are generally configured so that any inelasticity will occur by flexural yielding in the girders near, but away from, the connection of the girders to the columns. The connections of the girders to the columns and the columns themselves must then be proportioned to remain nominally elastic as they undergo these deformations. Intermediate moment frames (IMF) and ordinary moment frames (OMF) are also configured to provide improved seismic performance, although successively lower than that for SMF. The code-specified base accelerations used to calculate the seismic forces are not necessarily maximums, but rather, they represent the intensity of ground motions that have been selected by the code-writing authorities as reasonable for design purposes. Accordingly, the requirements in both the AISC Seismic Provisions and the AISC Specification must be met so that the resulting frames can then undergo controlled deformations in a ductile, welldistributed manner. The design provisions for high-seismic systems are also intended to result in distributed deformations throughout the frame, rather than the formation of story mechanisms, so as to increase the level of available energy dissipation and corresponding level of ground motion that can be withstood. The member sizes in high-seismic frames will be larger than those in wind and lowseismic frames. The connections will also be much more robust so they can transmit the member-strength-driven force demands. Net sections will often require special attention so as to avoid having fracture limit states control. Special material requirements, design considerations and construction practices must be followed. For further information on the design and construction of high-seismic systems, see the AISC Seismic Provisions, which are available at www.aisc.org. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM 2–44 Page 44 GENERAL DESIGN CONSIDERATIONS PART 2 REFERENCES Much of the material referenced in the Steel Construction Manual may be found at www.aisc.org. ACI (2008), Building Code Requirements for Structural Concrete and Commentary, ACI 318, American Concrete Institute, Farmington Hills, MI. Allison, H. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, AISC, Chicago, IL. AISC (1973), “Commentary on Highly Restrained Welded Connections,” Engineering Journal, Vol. 10, No. 3, 3rd Quarter, American Institute of Steel Construction, Chicago, IL. AISC (2005), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American Institute of Steel Construction, Chicago, IL. AISC (2006), Seismic Design Manual, American Institute of Steel Construction, Chicago, IL. AISC (2009), Detailing for Steel Construction, 3rd Ed., American Institute of Steel Construction, Chicago, IL. AISC (2010a), Specification for Structural Steel Buildings, ANSI/AISC 360-10, American Institute of Steel Construction, Chicago, IL. AISC (2010b), Seismic Provisions for Structural Steel Buildings, AISI/AISC 341-10, American Institute of Steel Construction, Chicago, IL. AISC (2010c), Code of Standard Practice for Steel Buildings and Bridges, American Institute of Steel Construction, Chicago, IL. AISC (2011), Design Examples, V. 14.0, American Institute of Steel Construction, Chicago, IL. ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, American Society of Civil Engineers, Reston, VA. AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination, AWS A2.4, American Welding Society, Miami, FL. AWS (2010), Structural Welding Code—Steel, AWS D1.1:2010, American Welding Society, Miami, FL. Barger, B.L. and West, M.A. (2001), “New OSHA Erection Rules: How They Affect Engineers, Fabricators and Contractors,” Modern Steel Construction, May, AISC, Chicago, IL. Barsom, J.A. and Rolfe, S.T. (1999), Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd Edition, ASTM, West Conshohocken, PA. Bjorhovde, R, (2006), “Cold Bending of Wide-Flange Shapes for Construction,” Engineering Journal, AISC, Vol. 43, No. 4, 4th Quarter, Chicago, IL, pp 271-286. Brockenbrough, R.L. and Merritt, F.S. (1999), Structural Steel Designer’s Handbook, 3rd Edition, McGraw-Hill, New York, NY. Brockenbrough, R.L. (2002), AISC Rehabilitation and Retrofit Guide—A Reference for Historic Shapes and Specifications, Design Guide 15, AISC, Chicago, IL. Camp, J.M., Francis, C.B. and McGannon H.E. (1951), The Making, Shaping and Treating of Steel, 6th Edition, U.S. Steel, Pittsburgh, PA. Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13, AISC, Chicago, IL. CASE (2003), A Guideline Addressing Coordination and Completeness of Structural Construction Documents, Document 962D, Council of American Structural Engineers. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:15 AM Page 45 (Black plate) PART 2 REFERENCES 2–45 Churches, C.H., Troup, E.W.J. and Angeloff, C. (2003), Steel-Framed Open-Deck Parking Structures, Design Guide 18, AISC, Chicago, IL. CISC (1989), Roof Framing with Cantilever (Gerber) Girders & Open Web Joists, Canadian Institute of Steel Construction, Willowdale, Ontario, Canada. Darwin, D. (1990), Steel and Composite Beams with Web Openings, Design Guide 2, AISC, Chicago, IL. Dexter, R.J. and Melendrez, M.I. (2000), “Through-Thickness Properties of Column Flanges in Welded Moment Connections,” Journal of Structural Engineering, ASCE, Vol. 126, No. 1, pp. 24–31. DOD (2009), Design of Buildings to Resist Progressive Collapse, UFC 4-023-03, July. Federal Construction Council (1974), Technical Report No. 65 Expansion Joints in Buildings, National Research Council, Washington, DC. Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10, AISC, Chicago, IL. Fisher, J.M. (2004), Industrial Buildings—Roofs to Anchor Rods, Design Guide 7, 2nd Ed., AISC, Chicago, IL. Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, Design Guide 1, 2nd Ed., AISC, Chicago, IL. Fisher, J.W., Kulak, G.L. and Smith, I.F.C. (1998), A Fatigue Primer for Structural Engineers, NSBA/AISC, Chicago, IL. Geschwindner, L.F. and Gustafson, K. (2010), “Single-Plate Shear Connection Design to meet Structural Integrity Requirements,” Engineering Journal, AISC, Vol. 47, No. 3, 3rd Quarter, pp. 189–202. Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide 6, AISC, Chicago, IL. Gross, J.L., Engelhardt, M.D., Uang, C.M., Kasai, K. and Iwankiw, N.R. (1999), Modification of Existing Welded Steel Moment Frame Connections for Seismic Resistance, Design Guide 12, AISC, Chicago, IL. ICC (2009), International Building Code, International Code Council, Falls Church, VA. Kaehler, R.C., White, D.W. and Kim, Y.K. (2010), Web-Tapered Frame Design, Design Guide 25, AISC, Chicago, IL. Kulak, G.L. (2002), High Strength Bolts—A Primer for Structural Engineers, Design Guide 17, AISC, Chicago, IL. Leon, R.T., Hoffman, J.J. and Staeger, T. (1996), Partially Restrained Composite Connections, Design Guide 8, AISC, Chicago, IL. Miller, D.K. (2006), Welded Connections—A Primer for Engineers, Design Guide 21, AISC, Chicago, IL. Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections—Seismic and Wind Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL. Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity, Design Guide 11, AISC, Chicago, IL. Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16, AISC, Chicago, IL. OSHA (2001), Safety and Health Standards for the Construction Industry, 29 CFR 1926 Part R Safety Standards for Steel Erection, Occupational Safety and Health Administration, Washington, DC. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 2–46 2/17/12 7:18 AM Page 46 GENERAL DESIGN CONSIDERATIONS Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections, Design Guide 24, AISC, Chicago, IL. Parker, J.C. (2008), Façade Attachments to Steel-Framed Buildings, Design Guide 22, AISC, Chicago, IL. RCSC (2009), Specification for Structural Joints Using High-Strength Bolts, Research Council on Structural Connections, Chicago, IL. Ricker, D.T. (1988), “Field Welding to Existing Structures,” Engineering Journal, AISC, Vol. 25, No. 1, 1st Quarter, pp. 1–16. Rolfe, S.T. (1977), “Fracture and Fatigue Control in Steel Structures,” Engineering Journal, AISC, Vol. 14, No. 1, 1st Quarter, pp. 2–15. Rongoe, J. (1996), “Design Guidelines for Continuous Beams Supporting Steel Joist Roof Structures,” Proceedings of the AISC National Steel Construction Conference, pp. 23.1–23.44, AISC, Chicago, IL. Ruby, D.I. (2008), Constructability of Structural Steel Buildings, Design Guide 23, AISC, Chicago, IL. Ruddy, J.L. (1986), “Ponding of Concrete Deck Floors,” Engineering Journal, AISC, Vol. 23, No. 3, 3rd Quarter, pp. 107–115. Ruddy, J.L., Marlo, J.P., Ioannides, S.A and Alfawakhiri, F. (2003), Fire Resistance of Structural Steel Framing, Design Guide 19, AISC, Chicago, IL. Sabelli, R. and Bruneau, M. (2006), Steel Plate Shear Walls, Design Guide 20, AISC, Chicago, IL. Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members, Design Guide 9, AISC, Chicago, IL. SSPC (2000), Systems and Specifications: SSPC Painting Manual, Volume II, 8th Edition, The Society for Protective Coatings, Pittsburgh, PA. Thornton, W.A. (1995), “Connections: Art, Science, and Information in the Quest for Economy and Safety,” Engineering Journal, AISC, Vol 32, No. 4, 4th Quarter, pp. 132–144. Tide, R.H.R. (1990), “Reinforcing Steel Members and the Effects of Welding,” Engineering Journal, AISC, Vol. 27, No. 4, 4th Quarter, pp. 129–131. USGSA (2003), “Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects,” U.S. General Services Administration, Washington, DC. West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL. Wexler, N. and Lin, F.B. (2002), Staggered Truss Framing Systems, Design Guide 14, AISC, Chicago, IL. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 47 2–47 TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS Table 2-2 Summary Comparison of Methods for Stability Analysis and Design Direct Analysis Method Effective Length Method None Δ2nd /Δ1st ≤ 1.5 Limitations on Usea First-Order Analysis Method Δ2nd /Δ1st ≤ 1.5 α Pr /Py ≤ 0.5 Second-order elasticb Analysis Type Geometry of Structure First-order elastic All three methods use the undeformed geometry in the analysis. Minimum or Additional Lateral Loads Required in the Analysis Minimum;c 0.2% of the story gravity load Minimum; 0.2% of the story gravity load Additive; at least 0.42% of the story gravity load Member Stiffnesses Used in the Analysis Reduced EA and EI Design of Columns K = 1 for all frames K = 1 for braced frames. For moment frames, determine K from sidesway buckling analysisd K = 1 for all framese Chapter C Appendix Section 7.2 Appendix Section 7.3 Specification Reference for Method a b c d e Nominal EA and EI Δ2nd ⁄Δ1st is the ratio of second-order drift to first-order drift, which can be taken to be equal to B2 calculated per Appendix 8. Δ2nd ⁄Δ1st is determined using LRFD load combinations or a multiple of 1.6 times ASD load combinations. Either a general second-order analysis method or second-order analysis by amplified first-order analysis (the “B1-B2 method” described in Appendix 8) can be used. This notional load is additive if Δ2nd ⁄Δ1st >1.5. K = 1 is permitted for moment frames when Δ2nd ⁄Δ1st ≤1.1. An additional amplification for member curvature effects is required for columns in moment frames. Table 2-3 AISI Standard Nomenclature for Flat-Rolled Carbon Steel Width, in. 1 Thickness, in. To 3 1⁄2 incl. Over 3 ⁄2 To 6 Over 6 To 8 Over 8 To 12 Over 12 To 48 Over 48 0.2300 & thicker Bar Bar Bar Plate Plate Plate 0.2299 to 0.2031 Bar Bar Strip Strip Sheet Plate 0.2030 to 0.1800 Strip Strip Strip Strip Sheet Plate 0.1799 to 0.0449 Strip Strip Strip Strip Sheet Sheet 0.0448 to 0.0344 Strip Strip 0.0343 to 0.0255 Strip 0.0254 & thinner Hot-rolled sheet and strip not generally produced in these widths and thicknesses AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:18 AM Page 48 2–48 (Black plate) GENERAL DESIGN CONSIDERATIONS Table 2-4 Applicable ASTM Specifications for Various Structural Shapes ASTM Designation A36 36 35 60 42 58 46 58 Gr. B Carbon Gr. C A501 A529c A572 HighStrength LowAlloy A618f Corrosion Resistant HighStrength Low-Alloy 46 62 50 62 58 Gr. A 36 50 70 Gr. 50 50 65-100 Gr. 55 55 70-100 Gr. 42 42 60 Gr. 50 50 65 d Gr. 55 55 70 Gr. 60e 60 75 Gr. 65e 65 80 Gr. I & II 50g 70 g Gr. III 50 65 50 50h 60 h 60 60 75 65 65 80 70 70 90 50 65 i 42j 63 j 46k 67 k l 50 70 l A588 50 70 A847 50 70 A992 A242 W M S HP C MC L Rect. Pipe 58-80 Gr. B A913 HSS b A53 Gr. B A500 Applicable Shape Series Round Steel Type Fy Min. Fu Yield Tensile Stress Stressa (ksi) (ksi) = Preferred material specification = Other applicable material specification, the availability of which should be confirmed prior to specification = Material specification does not apply a b c d e f g h i j k l Minimum unless a range is shown. For shapes over 426 lb/ft, only the minimum of 58 ksi applies. For shapes with a flange thickness less than or equal to 11⁄2 in. only. To improve weldability, a maximum carbon equivalent can be specified (per ASTM Supplementary Requirement S78). If desired, maximum tensile stress of 90 ksi can be specified (per ASTM Supplementary Requirement S79). If desired, maximum tensile stress of 70 ksi can be specified (per ASTM Supplementary Requirement S81). For shapes with a flange thickness less than or equal to 2 in. only. ASTM A618 can also be specified as corrosion-resistant; see ASTM A618. Minimum applies for walls nominally 3⁄4-in. thick and under. For wall thicknesses over 3⁄4 in., Fy = 46 ksi and Fu = 67 ksi. If desired, maximum yield stress of 65 ksi and maximum yield-to-tensile strength ratio of 0.85 can be specified (per ASTM Supplementary Requirement S75). A maximum yield-to-tensile strength ratio of 0.85 and carbon equivalent formula are included as mandatory in ASTM A992. For shapes with a flange thickness greater than 2 in. only. For shapes with a flange thickness greater than 11⁄2 in. and less than or equal to 2 in. only. For shapes with a flange thickness less than or equal to 11⁄2 in. only. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:21 AM Page 49 (Black plate) TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2–49 Table 2-5 Applicable ASTM Specifications for Plates and Bars Steel Type ASTM Designation A36 Carbon A529 HighStrength LowAlloy A572 Gr. 50 32 58-80 36 58-80 50 70-100 b b b b Gr. 55 55 70-100 Gr. 42 42 60 Gr. 50 50 65 Gr. 55 55 70 Gr. 60 60 75 Gr. 65 Corrosion Resistant HighStrength Low-Alloy Thickness of Plates and Bars, in. Fy Min. Fu over over over over over over over over Yield Tensile to 0.75 1.25 1.5 2 to 2.5 4 to 5 to 6 to Stress Stressa 0.75 to to to 2 2.5 to 4 5 6 8 over (ksi) (ksi) incl. 1.25 1.5 incl. incl. incl. incl. incl. incl. 8 A242 A588 Quenched and Tempered Alloy A514c Quenched and Tempered Low-Alloy A852c 65 80 42 63 46 67 50 70 42 63 46 67 50 70 90 100-130 100 110-130 70 90-110 b b = Preferred material specification = Other applicable material specification, the availability of which should be confirmed prior to specification = Material specification does not apply a b c Minimum unless a range is shown. Applicable to bars only above 1-in. thickness. Available as plates only. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02_14th Ed._ 22/02/12 2:47 PM Page 50 2–50 GENERAL DESIGN CONSIDERATIONS Table 2-6 Applicable ASTM Specifications for Various Types of Structural Fasteners A108 d A325 A490d F1852d F2280d A194 Gr. 2H A563 F436b F959 A36 A193 Gr. B7e A307 Gr. A A354 Gr. BD A449 A572 Gr. 42 Gr. 50 Gr. 55 Gr. 60 Gr. 65 A588 A687 F1554 Gr. 36 Gr. 55 Gr. 105 — — — — — — — — — — — 36 — — — — — — — — — 42 50 55 60 65 42 46 50 105 36 55 105 65 0.375 to 0.75, incl. 105 over 1 to 1.5, incl. 120 0.5 to 1, incl. 150 0.5 to 1.5 105 1.125 120 0.5 to 1, incl. 150 0.5 to 1.125, incl. — 0.25 to 4 — 0.25 to 4 — 0.25 to 4 — 0.5 to 1.5 58-80 to 10 100 over 4 to 7 115 over 2.5 to 4 125 2.5 and under 60 0.25 to 4 140 2.5 to 4, incl. 150 0.25 to 2.5, incl. 90 1.75 to 3, incl. 105 1.125 to 1.5, incl. 120 0.25 to 1, incl. 60 to 6 65 to 4 70 to 2 75 to 1.25 80 to 1.25 63 Over 5 to 8, incl. 67 Over 4 to 5, incl. 70 4 and under 150 max. 0.625 to 3 58-80 0.25 to 4 75-95 0.25 to 4 125-150 0.25 to 3 Threaded & Nutted Headed Hooked Steel Headed Stud Anchors Threaded Rods Direct-TensionIndicator Washers Washers Nuts Anchor Rods Common Bolts Twist-Off-Type Tension-Control ASTM Designation Fy Min. Fu Yield Tensile Stress Stressa Diameter Range (ksi) (ksi) (in.) Conventional HighStrength Bolts c c c = Preferred material specification = Other applicable material specification, the availability of which should be confirmed prior to specification = Material specification does not apply — Indicates that a value is not specified in the material specification. a Minimum unless a range is shown or maximum (max.) is indicated. b Special washer requirements may apply per RCSC Specification Table 6.1 for some steel-to-steel bolting applications and per Part 14 for anchor-rod applications. c See AISC Specification Section J3.1 for limitations on use of ASTM A449 bolts. d When atmospheric corrosion resistance is desired, Type 3 can be specified. e For anchor rods with temperature and corrosion resistance characteristics. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 51 2–51 TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS Table 2-7 Metal Fastener Compatibility to Resist Corrosion Fastener Metal Base Metal Zinc and Galvanized Steel Aluminum and Aluminum Alloys Steel and Cast Iron Martensitic Stainless Steel (Type 410) Austenitic Stainless Steel (Type 302/304, 303, 305) C C C B Zinc and Galvanized Steel Aluminum and Aluminum Alloys Steel and Cast Iron Brasses, Copper, Bronzes, Monel A B B A A B C Not Recommended A, D A A C C B Terne (Lead-Tin) Plated Steel Sheets A, D, E A, E A, E C C B Brasses, Copper, Bronzes, Monel A, D, E A, E A, E A A B Ferritic Stainless Steel (Type 430) A, D, E A, E A, E A A A Austenitic Stainless Steel (Type 302/304) A, D, E A, E A, E A, E A A KEY A. B. C. D. E. The corrosion of the base metal is not increased by the fastener. The corrosion of the base metal is marginally increased by the fastener. The corrosion of the base metal may be markedly increased by the fastener material. The plating on the fastener is rapidly consumed, leaving the bare fastener metal. The corrosion of the fastener is increased by the base metal. NOTE: Surface treatment and environment can change activity. For a more thorough understanding of metal corrosion in construction materials, please consult a full listing of the galvanic series of metals and alloys. Note: Reprinted from the Specialty Steel Industry of North America Stainless Steel Fasteners Designer’s Handbook. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 52 2–52 GENERAL DESIGN CONSIDERATIONS Table 2-8 Summary of Surface Preparation Specifications SSPC Specification No. Title Description SP1 Solvent Cleaning Removal of oil, grease, dirt, soil, salts and contaminants by cleaning with solvent, vapor, alkali, emulson or steam. SP2 Hand-Tool Cleaning Removal of all loose rust, loose mill scale and loose paint to degree specified, by hand-chipping, scraping, sanding and wire brushing. SP3 Power-Tool Cleaning Removal of all loose rust, loose mill scale and loose paint to degree specified, by power-tool chipping, descaling, sanding, wire brushing, and grinding. SP5/NACE No.1 Metal Blast Cleaning Removal of all visible rust, mill scale, paint and foreign matter by blast-cleaning by wheel or nozzle (dry or wet) using sand, grit or shot. (For very corrosive atmospheres where high cost of cleaning is warranted.) SP6/NACE No.3 Commercial BlastCleaning SP7/NACE No. 4 Brush-Off BlastCleaning Blast-cleaning of all except tightly adhering residues of mill scale, rust and coatings, exposing numerous evenly distributed flecks of underlying metal. SP8 Pickling Complete removal of rust and mill scale by acid-pickling, duplex-pickling or electrolytic pickling. SP10/NACE No.2 Near-White Blast-Cleaning SP11 Power-Tool Cleaning to Bare Metal Blast-cleaning until at least two-thirds of the surface area is free of all visible residues. (For conditions where thoroughly cleaned surface is required.) Blast-cleaning to nearly white metal cleanliness, until at least 95% of the surface area is free of all visible residues. (For high humidity, chemical atmosphere, marine or other corrosive environments.) Complete removal of all rust, scale and paint by power tools, with resultant surface profile. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 4/1/11 8:45 AM Page 1 3–1 PART 3 DESIGN OF FLEXURAL MEMBERS SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 SECTION PROPERTIES AND AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 For Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 For Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 FLEXURAL STRENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 Braced, Compact Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 Unbraced Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 Noncompact or Slender Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 Available Flexural Strength for Weak-Axis Bending . . . . . . . . . . . . . . . . . . . . . . . . . 3–4 LOCAL BUCKLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6 Determining the Width-to-Thickness Ratios of the Cross Section . . . . . . . . . . . . . . . 3–6 Classification of Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6 LATERAL-TORSIONAL BUCKLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6 Classification of Spans for Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6 Consideration of Moment Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6 AVAILABLE SHEAR STRENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7 STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS . . . . . . . . . . . . . . . . . . . . . . 3–7 Concrete Slab Effective Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7 Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7 Available Flexural Strength for Positive Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7 Shored and Unshored Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8 Available Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8 OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8 Special Requirements for Heavy Shapes and Plates . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8 Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8 DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9 Flexural Design Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9 W-Shape Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9 Maximum Total Uniform Load Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 3–2 2/24/11 8:39 AM Page 2 DESIGN OF FLEXURAL MEMBERS Plots of Available Flexural Strength vs. Unbraced Length . . . . . . . . . . . . . . . . . . . . 3–11 Available Flexural Strength of HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11 Strength of Other Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12 Composite Beam Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12 Beam Diagrams and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16 PART 3 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17 DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18 Flexural Design Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18 Table 3-1. Values of Cb for Simply Supported Beams . . . . . . . . . . . . . . . . . . . . 3–18 W-Shape Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19 Table 3-2. W-Shapes—Selection by Zx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19 Table 3-3. W-Shapes—Selection by Ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–28 Table 3-4. W-Shapes—Selection by Zy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–30 Table 3-5. W-Shapes—Selection by Iy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–33 Maximum Total Uniform Load Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–35 Table 3-6. W-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . . 3–35 Table 3-7. S-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . . . 3–80 Table 3-8. C-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . . . 3–85 Table 3-9. MC-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . 3–91 Plots of Available Flexural Strength vs. Unbraced Length . . . . . . . . . . . . . . . . . . . 3–99 Table 3-10. W-Shapes—Plots of Available Moment vs. Unbraced Length . . . . 3–99 Table 3-11. C- and MC-Shapes—Plots of Available Moment vs. Unbraced Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–135 Available Flexural Strength of HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–143 Table 3-12. Rectangular HSS—Available Flexural Strength . . . . . . . . . . . . . . 3–143 Table 3-13. Square HSS—Available Flexural Strength . . . . . . . . . . . . . . . . . . . 3–147 Table 3-14. Round HSS—Available Flexural Strength . . . . . . . . . . . . . . . . . . . 3–148 Table 3-15. Pipe—Available Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . 3–151 Strength of Other Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–152 Tables 3-16 and 3-17. Available Shear Stress in Plate Girders . . . . . . . . . . . . . 3–152 Table 3-18. Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–156 Composite Beam Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–158 Table 3-19. Composite W-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–158 Table 3-20. Lower-Bound Elastic Moment of Inertia . . . . . . . . . . . . . . . . . . . . 3–192 Table 3-21. Nominal Horizontal Shear Strength for One Steel Headed Stud Anchor, Qn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–209 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 3 DESIGN OF FLEXURAL MEMBERS 3–3 Beam Diagrams and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–210 Table 3-22a. Concentrated Load Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . 3–210 Table 3-22b. Cantilevered Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–211 Table 3-22c. Continuous Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–212 Table 3-23. Shears, Moments and Deflections . . . . . . . . . . . . . . . . . . . . . . . . . 3–213 AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 4 3–4 DESIGN OF FLEXURAL MEMBERS SCOPE The specification requirements and other design considerations summarized in this Part apply to the design of flexural members subject to uniaxial flexure without axial forces or torsion. For the design of members subject to biaxial flexure and/or flexure in combination with axial tension or compression and/or torsion, see Part 6. SECTION PROPERTIES AND AREAS For Flexure Flexural design properties are based upon the full cross section with no reduction for bolt holes when the limitations in AISC Specification Section F13.1(a) are satisfied. Otherwise, the flexural design properties are based upon a flexural rupture check given in AISC Specification Section F13.1(b). For Shear For shear, the area is determined per AISC Specification Chapter G. FLEXURAL STRENGTH The nominal flexural strength of W-shapes is illustrated as a function of the unbraced length, Lb, in Figure 3-1. The available strength is determined as φMn or Mn /Ω, which must equal or exceed the required strength (bending moment), Mu or Ma, respectively. The available flexural strength, φMn or Mn /Ω, is determined per AISC Specification Chapter F. Table User Note F1.1 outlines the sections of Chapter F and the corresponding limit states applicable to each member type. Braced, Compact Flexural Members When flexural members are braced (Lb ≤ Lp) and compact (λ ≤ λp), yielding must be considered in the nominal moment strength of the member, in accordance with the requirements of AISC Specification Chapter F. Unbraced Flexural Members When flexural members are unbraced (Lb > Lp), have flange width-to-thickness ratios such that λ > λp, or have web width-to-thickness ratios such that λ > λp, lateral-torsional and elastic buckling effects must be considered in the calculation of the nominal moment strength of the member. Noncompact or Slender Cross Sections For flexural members that have width-to-thickness ratios such that λ > λp, local buckling must be considered in the calculation of the nominal moment strength of the member. Available Flexural Strength for Weak-Axis Bending The design of flexural members subject to weak-axis bending is similar to that for strongaxis bending, except that lateral-torsional buckling and web local buckling do not apply. See AISC Specification Section F6. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 5 3–5 FLEXURAL STRENGTH Lp =1.76ry Lr = 1.95rts E 0.7Fy E Fy (Spec. Eq. F2-5) 2 ⎛ 0.7Fy ⎞ ⎛ Jc ⎞ Jc + ⎜ + 6.76 ⎜ ⎟ ⎟ S x ho ⎝ S x ho ⎠ ⎝ E ⎠ 2 (Spec. Eq. F2-6) (3-1) M r = 0.7Fy S x For cross sections with noncompact flanges: ⎛ λ − λ pf ⎞ M p′ = M n = M p − M p − 0.7Fy S x ⎜ ⎟ ⎝ λrf − λ pf ⎠ ) ( ( Lp′ = Lp + Lr − Lp (from Spec. Eq. F3-1) M −M′ ) ((Mp − Mp )) p r Fig. 3-1. General available flexural strength of beams. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (3-2) AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 6 3–6 DESIGN OF FLEXURAL MEMBERS LOCAL BUCKLING Determining the Width-to-Thickness Ratios of the Cross Section Flexural members are classified for flexure on the basis of the width-to-thickness ratios of the various elements of the cross section. The width-to-thickness ratio, λ, is determined for each element of the cross section per AISC Specification Section B4.1. Classification of Cross Sections Cross sections are classified as follows: • Flexural members are compact (the plastic moment can be reached without local buckling) when λ is equal to or less than λp and the flange(s) are continuously connected to the web(s). • Flexural members are noncompact (local buckling will occur, but only after initial yielding) when λ exceeds λ p but is equal to or less than λr. • Flexural members are slender-element cross sections (local buckling will occur prior to yielding) when λ exceeds λr. The values of λp and λr are determined per AISC Specification Section B4.1. LATERAL-TORSIONAL BUCKLING Classification of Spans for Flexure Flexural members bent about their strong axis are classified on the basis of the length, Lb , between braced points. Braced points are points at which support resistance against lateraltorsional buckling is provided per AISC Specification Appendix 6, Section 6.3. Classifications are determined as follows: • If L b ≤ L p , flexural member is not subject to lateral-torsional buckling. • If L p < L b ≤ L r , flexural member is subject to inelastic lateral-torsional buckling. • If L b > Lr , flexural member is subject to elastic lateral-torsional buckling. The values of Lp and Lr are determined per AISC Specification Chapter F. These values are presented in Tables 3-2, 3-6, 3-7, 3-8, 3-9, 3-10 and 3-11. Note that for cross sections with noncompact flanges, the value given for Lp in these tables is L′p as given in Equation 3-2 of Figure 3-1. In Tables 3-10 and 3-11, Lp is defined by • and Lr by °. Lateral-torsional buckling does not apply to flexural members bent about their weak axis or HSS bent about either axis, per AISC Specification Sections F6, F7 and F8. Consideration of Moment Gradient When Lb > Lp, the moment gradient between braced points can be considered in the determination of the available strength using the lateral-torsional buckling modification factor, Cb, herein referred to as the LTB modification factor. In the case of a uniform moment between braced points causing single-curvature of the member, Cb = 1.0. This represents the worst case and Cb can be conservatively taken equal to 1.0 for use with the maximum moment between braced points in most designs. See AISC Specification Commentary AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 7 STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS 3–7 Section F1 for further discussion. A nonuniform moment gradient between braced points can be considered using Cb calculated as given in AISC Specification Equation F1-1. Exceptions are provided as follows: 1. As an alternative, when the moment diagram between braced points is a straight line, Cb can be calculated as given in AISC Specification Commentary Equation C-F1-1. 2. For cantilevers or overhangs where the free end is unbraced, Cb = 1.0 per AISC Specification Section F1. 3. For tees with the stem in compression, Cb = 1.0 as recommended in AISC Specification Commentary Section F9. AVAILABLE SHEAR STRENGTH For flexural members, the available shear strength, φVn or Vn /Ω, which must equal or exceed the required strength, Vu or Va, respectively, is determined in accordance with AISC Specification Chapter G. Values of φVn and Vn /Ω can be found in Tables 3-2, 3-6, 3-7, 3-8 and 3-9. STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS The following pertains to W-shapes with composite concrete slabs in regions of positive moment. For composite flexural members in regions of negative moment, see AISC Specification Chapter I. For further information on composite design and construction, see Viest et al. (1997). Concrete Slab Effective Width The effective width of a concrete slab acting compositely with a steel beam is determined per AISC Specification Section I3.1a. Steel Anchors Material, placement and spacing requirements for steel anchors are given in AISC Specification Chapter I. The nominal shear strength, Qn, of one steel headed stud anchor is determined per AISC Specification Section I8.2a and is tabulated for common design conditions in Table 3-21. The horizontal shear strength, V r′, at the steel-concrete interface will be the least of the concrete crushing strength, steel tensile yield strength, or the shear strength of the steel anchors. Table 3-21 considers only the limit state of shear strength of a steel headed stud anchor. Available Flexural Strength for Positive Moment The available flexural strength of a composite beam subject to positive moment is determined per AISC Specification Section I3.2a assuming a uniform compressive stress of 0.85fc′ and zero tensile strength in the concrete, and a uniform stress of Fy in the tension area (and compression area, if any) of the steel section. The position of the plastic neutral axis (PNA) can then be determined by static equilibrium. Per AISC Specification Section I3.2d, enough steel anchors must be provided between a point of maximum moment and the nearest point of zero moment to transfer the total horizontal shear force, V r′, between the steel beam and concrete slab, where V r′ is determined per AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A_14th Ed._February 12, 2013 12/02/13 8:06 AM Page 8 3–8 DESIGN OF FLEXURAL MEMBERS AISC Specification Section I3.2d(1). For partial composite design, the horizontal shear strength, V r′, controls the available flexural strength of the composite flexural member. Shored and Unshored Construction The available flexural strength is identical for both shored and unshored construction. In unshored construction, issues such as lateral support during construction and constructionload deflection may require consideration. Available Shear Strength Per AISC Specification Section I4, the available shear strength for composite beams is determined as illustrated previously for steel beams. OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS The following other specification requirements and design considerations apply to the design of flexural members. Special Requirements for Heavy Shapes and Plates For beams with complete-joint-penetration groove welded joints and made from heavy shapes with a flange thickness exceeding 2 in., see AISC Specification Sections A3.1c. For built-up sections consisting of plates with a thickness exceeding 2 in., see Section A3.1d. Serviceability Serviceability requirements, per AISC Specification Chapter L, should be appropriate for the application. This includes an appropriate limit on the deflection of the flexural member and the vibration characteristics of the system of which the flexural member is a part. See also AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings (West et al., 2003), AISC Design Guide 5, Low- and Medium-Rise Steel Buildings (Allison, 1991) and AISC Design Guide 11, Floor Vibrations Due to Human Activity (Murray et al., 1997). The maximum vertical deflection, Δ, can be calculated using the equations given in Tables 3-22 and 3-23. Alternatively, for common cases of simple-span beams and I-shaped members and channels, the following equation can be used: Δ = ML2 /(C1Ix ) (3-3) where M = maximum service-load moment, kip-ft L = span length, ft Ix = moment of inertia, in.4 C1 = loading constant (see Figure 3-2) which includes the numerical constants appropriate for the given loading pattern, E (29,000 ksi), and a ft-to-in. conversion factor of 1,728 in.3/ft3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 9 3–9 DESIGN TABLE DISCUSSION DESIGN TABLE DISCUSSION Flexural Design Tables Table 3-1. Values of Cb for Simply Supported Beams Values of the LTB modification factor, Cb, are given for various loading conditions on simple-span beams in Table 3-1. W-Shape Selection Tables Table 3-2. W-Shapes—Selection by Zx W-shapes are sorted in descending order by strong-axis flexural strength and then grouped in ascending order by weight with the lightest W-shape in each range in bold. Strong-axis available strengths in flexure and shear are given for W-shapes with Fy = 50 ksi (ASTM A992). Cb is taken as unity. For compact W-shapes, when Lb ≤ Lp, the strong-axis available flexural strength, φb Mpx or Mpx /Ωb, can be determined using the tabulated strength values. When L p < L b ≤ Lr , linearly interpolate between the available strength at L p and the available strength at L r as follows: LRFD ASD φb Mn = Cb [φb Mpx ⫺ φb BF(Lb − Lp)] ≤ φb Mpx (3-4a) Mn BF ⎡ M px ⎤ = Cb ⎢ – (Lb – L p ) ⎥ Ωb Ω Ω b ⎣ b ⎦ (3-4b) M px ≤ Ωb Fig. 3-2. Loading constants for use in determining simple beam deflections. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 10 3–10 DESIGN OF FLEXURAL MEMBERS where BF = ( M px − Mrx ) ( Lr − L p ) (3-5) L p = for compact sections, see Figure 3-1, AISC Specification Equation F2-5 = for noncompact sections, L p = L ′p , see Figure 3-1, Equation 3-2 Lr M px = see Figure 3-1, AISC Specification Equation F2-6 = Fy Z x for compact sections (Spec. Eq. F2-1) = M ′p as given in Figure 3-1, AISC Specification Equation F3-1, for noncompact sectionss Mrx = Mr , see Figure 3-1 φ b = 0.90 Ω b = 1.67 When Lb > Lr, see Table 3-10. The strong-axis available shear strength, φvVnx or Vnx /Ωv , can be determined using the tabulated value. Table 3-3. W-Shapes—Selection by Ix W-shapes are sorted in descending order by strong-axis moment of inertia, Ix, and then grouped in ascending order by weight with the lightest W-shape in each range in bold. Table 3-4. W-Shapes—Selection by Zy W-shapes are sorted in descending order by weak-axis flexural strength and then grouped in ascending order by weight with the lightest W-shape in each range in bold. Weak-axis available strengths in flexure are given for W-shapes with Fy = 50 ksi (ASTM A992). Cb is taken as unity. For noncompact W-shapes, the tabulated values of Mny /Ωb and φb Mny have been adjusted to account for the noncompactness. The weak-axis available shear strength must be checked independently. Table 3-5. W-Shapes—Selection by Iy W-shapes are sorted in descending order by weak-axis moment of inertia, Iy, and then grouped in ascending order by weight with the lightest W-shape in each range in bold. Maximum Total Uniform Load Tables Table 3-6. W-Shapes—Maximum Total Uniform Load Maximum total uniform loads on braced (Lb ≤ Lp) simple-span beams bent about the strong axis are given for W-shapes with Fy = 50 ksi (ASTM A992). The uniform load constant, φbWc or Wc /Ω b (kip-ft), divided by the span length, L (ft), provides the maximum total uniform load (kips) for a braced simple-span beam bent about the strong axis. This is based on the available flexural strength as discussed for Table 3-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 11 DESIGN TABLE DISCUSSION 3–11 The strong-axis available shear strength, φvVn or Vn /Ωv , can be determined using the tabulated value. Above the heavy horizontal line in the tables, the maximum total uniform load is limited by the strong-axis available shear strength. The tabulated values can also be used for braced simple-span beams with equal concentrated loads spaced as shown in Table 3-22a if the concentrated loads are first converted to an equivalent uniform load. Table 3-7. S-Shapes—Maximum Total Uniform Load Table 3-7 is similar to Table 3-6, except it covers S-shapes with Fy = 36 ksi (ASTM A36). Table 3-8. C-Shapes—Maximum Total Uniform Load Table 3-8 is similar to Table 3-6, except it covers C-shapes with Fy = 36 ksi (ASTM A36). Table 3-9. MC-Shapes—Maximum Total Uniform Load Table 3-9 is similar to Table 3-6, except it covers MC-shapes with Fy = 36 ksi (ASTM A36). Plots of Available Flexural Strength vs. Unbraced Length Table 3-10. W-Shapes—Plots of Available Moment vs. Unbraced Length The strong-axis available flexural strength, φb Mn or Mn /Ω b, is plotted as a function of the unbraced length, Lb, for W-shapes with Fy = 50 ksi (ASTM A992). The plots show the total available strength for an unbraced length, Lb. The moment demand due to all applicable load combinations on that segment may not exceed the strength shown for Lb. Cb is taken as unity. When the plotted curve is solid, the W-shape for that curve is the lightest cross section for a given combination of available flexural strength and unbraced length. When the plotted curve is dashed, a lighter W-shape than that for the plotted curve exists. The plotted curves are arbitrarily terminated at a span-to-depth ratio of 30 in most cases. Lp is indicated in each curve by a solid dot (•). Lr is indicated in each curve by an open dot (°). Table 3-11. C- and MC-Shapes—Plots of Available Moment vs. Unbraced Length Table 3-11 is similar to Table 3-10, except it covers C- and MC-shapes with Fy = 36 ksi (ASTM A36). Available Flexural Strength of HSS Table 3-12. Rectangular HSS—Available Flexural Strength The available flexural strength is tabulated for rectangular HSS with Fy = 46 ksi (ASTM A500 Grade B) as determined by AISC Specification Section F7. For noncompact and slender cross sections, the tabulated values of Mn /Ωb and φb Mn have been adjusted to account for the noncompactness or slenderness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 12 3–12 DESIGN OF FLEXURAL MEMBERS Table 3-13. Square HSS—Available Flexural Strength Table 3-13 is similar to Table 3-12, except it covers square HSS with Fy = 46 ksi (ASTM A500 Grade B). Table 3-14. Round HSS—Available Flexural Strength Table 3-14 is similar to Table 3-12, except it covers round HSS with Fy = 42 ksi (ASTM A500 Grade B) and the available flexural strength is determined from AISC Specification Section F8. Table 3-15. Pipe—Available Flexural Strength Table 3-15 is similar to Table 3-14, except it covers Pipe with Fy = 35 ksi (ASTM A53 Grade B). Strength of Other Flexural Members Tables 3-16 and 3-17. Available Shear Stress in Plate Girders The available shear stress for plate girders is plotted as a function of a/h and h/tw in Tables 3-16 (for Fy = 36 ksi) and 3-17 (for Fy = 50 ksi). In part a of each table, tension field action is neglected. In part b of each table, tension field action is considered. Table 3-18. Floor Plates The recommended maximum uniformly distributed loads are given in Table 3-18 based upon simple-span bending between supports. Table 3-18a is for deflection-controlled applications and should be used with the appropriate serviceability load combinations. The tabulated values correspond to a maximum deflection of L/100. Table 3-18b is for flexural-strength-controlled applications and should be used with LRFD or ASD load combinations. The tabulated values correspond to a maximum bending stress of 24 ksi in LRFD and 16 ksi in ASD. Composite Beam Selection Tables Table 3-19. Composite W-Shapes The available flexural strength is tabulated for W-shapes with Fy = 50 ksi (ASTM A992). The values tabulated are independent of the specific concrete flange properties allowing the designer to select an appropriate combination of concrete strength and slab geometry. The location of the plastic neutral axis (PNA) is uniquely determined by the horizontal shear force, ΣQn , at the interface between the steel section and the concrete slab. With the knowledge of the location of the PNA and the distance to the centroid of the concrete flange force, ΣQn, the available flexural strength can be computed. Available flexural strengths are tabulated for PNA locations at the seven locations shown. Five of these PNA locations are in the beam flange. The seventh PNA location is computed AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 13 3–13 DESIGN TABLE DISCUSSION at the point where ΣQn equals 0.25Fy As, and the sixth PNA location is halfway between the location of ΣQn at point five and point seven. Use of beams with a PNA below location seven is discouraged. Table 3-19 can be used to design a composite beam by entering with a required flexural strength and determining the corresponding required ΣQn. Alternatively, Table 3-19 can be used to check the flexural strength of a composite beam by selecting a valid value of ΣQn, using Table 3-21. With the effective width of the concrete flange, b, determined per AISC Specification Section I3.1a, the appropriate value of the distance from concrete flange force to beam top flange, Y2, can be determined as Y 2 = Ycon − a 2 (3-6) where Ycon = distance from top of steel beam to top of concrete, in. a = ΣQn (3-7) 0.85 fc′b and the available flexural strength, φb Mn or Mn /Ωb, can then be determined from Table 3-19. Values for the distance from the PNA to the beam top flange, Y1, are also tabulated for convenience. The parameters Y1 and Y2 are illustrated in Figure 3-3. Note that the model of the steel beam used in the calculation of the available strength assumes that As Af Aw Kdep Karea = cross-sectional area of the steel section, in.2 = flange area, in.2 = bf tf = web area, in.2 = (d ⫺ 2k)tw = k ⫺ tf , in. = (As ⫺ 2Af ⫺ Aw)/2, in.2 Table 3-20. Lower-Bound Elastic Moment of Inertia The lower-bound elastic moment of inertia of a composite beam can be used to calculate deflection. If calculated deflections using the lower-bound moment of inertia are acceptable, a more complete elastic analysis of the composite section can be avoided. The lowerbound elastic moment of inertia is based upon the area of the beam and an equivalent concrete area equal to ΣQn /Fy as illustrated in Figure 3-4, where Fy = 50 ksi. The analysis includes only the horizontal shear force transferred by the steel anchors supplied. Thus, only the portion of the concrete flange used to balance ΣQn is included in the determination of the lower-bound moment of inertia. The lower bound moment of inertia, therefore, is the moment of inertia of the cross section at the required strength level. This is smaller than the corresponding moment of inertia at the service load where deflection is calculated. The value for the lower bound moment of inertia can be calculated as illustrated in AISC Specification Commentary Section I3.2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 14 3–14 DESIGN OF FLEXURAL MEMBERS (a) (b) (c) Fig. 3-3. Strength design models for composite beams. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 15 DESIGN TABLE DISCUSSION 3–15 Table 3-21. Nominal Horizontal Shear Strength for One Steel Headed Stud Anchor, Qn The nominal shear strength of steel headed stud anchors is given in Table 3-21, in accordance with AISC Specification Chapter I. Nominal horizontal shear strength values are presented based upon the position of the steel anchor, profile of the deck, and orientation of the deck relative to the steel anchor. See AISC Specification Commentary Figure C-I8.1. Fig. 3-4. Deflection design model for composite beams. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 16 3–16 DESIGN OF FLEXURAL MEMBERS Beam Diagrams and Formulas Table 3-22a. Concentrated Load Equivalents Concentrated load equivalents are given in Table 3-22a for beams with various support conditions and loading characteristics. Table 3-22b. Cantilevered Beams Coefficients are provided in Table 3-22b for cantilevered beams with various support conditions and loading characteristics. Table 3-22c. Continuous Beams Coefficients are provided in Table 3-22c for continuous beams with various support conditions and loading characteristics. Table 3-23. Shears, Moments and Deflections Shears, moments and deflections are given in Table 3-23 for beams with various support conditions and loading characteristics. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A_14th Ed._February 12, 2013 12/02/13 8:09 AM Page 17 PART 3 REFERENCES 3–17 PART 3 REFERENCES Allison, H.R. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, American Institute for Steel Construction, Chicago, IL. Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity, Design Guide 11, American Institute for Steel Construction, Chicago, IL. Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr. (1997), Composite Construction: Design for Buildings, McGraw-Hill, New York, NY. West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for Steel Buildings, Design Guide 3, 2nd Ed., American Institute of Steel Construction, Chicago, IL. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 18 3–18 DESIGN OF FLEXURAL MEMBERS Table 3-1 Values of Cb for Simply Supported Beams Note: Lateral bracing must always be provided at points of support per AISC Specification Chapter F. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 19 W-SHAPE SELECTION TABLES 3–19 Table 3-2 Zx W-Shapes Fy = 50 ksi Selection by Zx Zx Shape in.3 Mpx /Ωb φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF kip-ft kip-ft kip-ft kip-ft kips kips ASD LRFD ASD LRFD ASD LRFD Lp Lr Ix ft ft in.4 Vnx /Ωv φvVnx kips kips ASD LRFD W36×652 h 2910 7260 10900 4300 6460 46.8 70.3 14.5 77.7 50600 1620 2430 W40×593 h 2760 6890 10400 4090 6140 55.4 84.4 13.4 63.9 50400 1540 2310 W36×529h 2330 5810 8740 3480 5220 46.4 70.1 14.1 64.3 39600 1280 1920 W40×503 h 2320 5790 8700 3460 5200 55.3 83.1 13.1 55.2 41600 1300 1950 W36×487 h 2130 5310 7990 3200 4800 46.0 69.5 14.0 59.9 36000 1180 1770 h W40×431 W36×441h W27×539h 1960 1910 1890 4890 4770 4720 7350 7160 7090 2950 2880 2740 4440 4330 4120 53.6 45.3 26.2 80.4 67.9 39.3 12.9 13.8 12.9 49.1 34800 55.5 32100 88.5 25600 1110 1060 1280 1660 1590 1920 W40×397h 1800 4490 6750 2720 4100 52.4 78.4 12.9 46.7 32000 1000 1500 h W40×392 W36×395h 1710 1710 4270 4270 6410 6410 2510 2600 3780 3910 60.8 44.9 90.8 67.2 9.33 13.7 38.3 29900 50.9 28500 1180 937 1770 1410 W40×372h W14×730h 1680 1660 4190 4140 6300 6230 2550 2240 3830 3360 51.7 7.35 77.9 11.1 12.7 16.6 44.4 29600 275 14300 942 1380 1410 2060 44.0 28900 W40×362h 1640 4090 6150 2480 3730 51.4 77.3 12.7 909 1360 W44×335 W33×387h W36×361h W14×665h 1620 1560 1550 1480 4040 3890 3870 3690 6080 5850 5810 5550 2460 2360 2360 2010 3700 3540 3540 3020 59.4 38.3 43.6 7.10 89.5 57.8 65.6 10.7 12.3 13.3 13.6 16.3 38.9 53.3 48.2 253 31100 24300 25700 12400 906 907 851 1220 1360 1360 1280 1830 W40×324 W30×391h W40×331h W33×354h 1460 1450 1430 1420 3640 3620 3570 3540 5480 5440 5360 5330 2240 2180 2110 2170 3360 3280 3180 3260 49.0 31.4 59.1 37.4 74.1 47.2 88.2 56.6 12.6 13.0 9.08 13.2 41.2 58.8 33.8 49.8 25600 20700 24700 22000 804 903 996 826 1210 1350 1490 1240 W44×290 W40×327h W36×330 W40×297 W30×357h W14×605h W36×302 1410 1410 1410 1330 1320 1320 1280 3520 3520 3520 3320 3290 3290 3190 5290 5290 5290 4990 4950 4950 4800 2170 2100 2170 2040 1990 1820 1970 3260 3150 3260 3070 2990 2730 2970 54.9 58.0 42.2 47.8 31.3 6.81 40.5 82.5 87.4 63.4 71.6 47.2 10.3 60.8 12.3 9.11 13.5 12.5 12.9 16.1 13.5 36.9 33.6 45.5 39.3 54.4 232 43.6 27000 24500 23300 23200 18700 10800 21100 754 963 769 740 813 1090 705 1130 1440 1150 1110 1220 1630 1060 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 20 3–20 DESIGN OF FLEXURAL MEMBERS Table 3-2 (continued) Zx W-Shapes Selection by Zx W44×262 W40×294 W33×318 W40×277 W27×368h W40×278 W36×282 W30×326h W14×550h W33×291 W40×264 W27×336h W24×370h in.3 1270 1270 1270 1250 1240 1190 1190 1190 1180 1160 1130 1130 1130 Mpx /Ωb kip-ft ASD 3170 3170 3170 3120 3090 2970 2970 2970 2940 2890 2820 2820 2820 W40×249 Zx Shape Fy = 50 ksi φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF Lp Lr Ix ft ft in.4 24100 21900 19500 21900 16200 20500 19600 16800 9430 17700 19400 14600 13400 kip-ft kip-ft kip-ft LRFD ASD LRFD kips ASD kips LRFD 4760 4760 4760 4690 4650 4460 4460 4460 4430 4350 4240 4240 4240 1940 1890 1940 1920 1850 1780 1830 1820 1630 1780 1700 1700 1670 2910 2840 2910 2890 2780 2680 2760 2730 2440 2680 2550 2550 2510 52.6 56.9 36.8 45.8 24.9 55.3 39.6 30.3 6.65 36.0 53.8 25.0 20.0 79.1 85.4 55.4 68.7 37.6 82.8 59.0 45.6 10.1 54.2 81.3 37.7 30.0 12.3 35.7 9.01 31.5 13.1 46.5 12.6 38.8 12.3 62.0 8.90 30.4 13.4 42.2 12.7 50.6 15.9 213 13.0 43.8 8.90 29.7 12.2 57.0 11.6 69.2 1020 1280 1100 989 1260 1240 985 1110 1440 1000 1150 1130 1280 591 887 kips LRFD 1120 2790 4200 1730 2610 42.9 64.4 12.5 v W44×230 W36×262 W30×292 W14×500h W36×256 W33×263 W36×247 W27×307h W24×335h W40×235 1100 1100 1060 1050 1040 1040 1030 1030 1020 1010 2740 2740 2640 2620 2590 2590 2570 2570 2540 2520 4130 4130 3980 3940 3900 3900 3860 3860 3830 3790 1700 1700 1620 1460 1560 1610 1590 1550 1510 1530 2550 2550 2440 2200 2350 2410 2400 2330 2270 2300 46.8 38.1 29.7 6.43 46.5 34.1 37.4 25.1 19.9 51.0 71.2 57.9 44.9 9.65 70.0 51.9 55.7 37.7 30.2 76.7 12.1 34.3 13.3 40.6 12.6 46.9 15.6 196 9.36 31.5 12.9 41.6 13.2 39.4 12.0 52.6 11.4 63.1 8.97 28.4 20800 17900 14900 8210 16800 15900 16700 13100 11900 17400 547 620 653 858 718 600 587 687 759 659 822 930 979 1290 1080 900 881 1030 1140 989 W40×215 W36×231 W30×261 W33×241 W36×232 W27×281 W14×455h W24×306h 964 963 943 940 936 936 936 922 2410 2400 2350 2350 2340 2340 2340 2300 3620 3610 3540 3530 3510 3510 3510 3460 1500 1490 1450 1450 1410 1420 1320 1380 2250 2240 2180 2180 2120 2140 1980 2070 39.4 35.7 29.1 33.5 44.8 24.8 6.24 19.7 59.3 53.7 44.0 50.2 67.0 36.9 9.36 29.8 12.5 35.6 13.1 38.6 12.5 43.4 12.8 39.7 9.25 30.0 12.0 49.1 15.5 179 11.3 57.9 16700 15600 13100 14200 15000 11900 7190 10700 507 555 588 568 646 621 768 683 761 832 882 852 968 932 1150 1020 W40×211 906 2260 3400 1370 2060 48.6 73.1 27.2 15500 591 887 ASD Ωb = 1.67 Ωv = 1.50 LRFD h φ b = 0.90 φ v = 1.00 v 8.87 37.2 19600 φvVnx Vnx /Ωv kips ASD 680 856 732 659 839 828 657 739 962 668 768 756 851 Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, φv = 0.90 and Ωv = 1.67. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 21 W-SHAPE SELECTION TABLES 3–21 Table 3-2 (continued) Zx W-Shapes Fy = 50 ksi Selection by Zx W40×199 W14×426h W33×221 W27×258 W30×235 W24×279h W36×210 W14×398h in.3 869 869 857 852 847 835 833 801 Mpx /Ωb kip-ft ASD 2170 2170 2140 2130 2110 2080 2080 2000 W40×183 W33×201 W27×235 W36×194 W18×311h W30×211 W24×250 W14×370h 774 773 772 767 754 751 744 736 W36×182 W27×217 Shape Zx φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF Lp Lr Ix ft ft φvVnx Vnx /Ωv kips ASD 503 703 525 568 520 619 609 648 755 1050 788 853 779 929 914 972 kip-ft kip-ft kip-ft LRFD ASD LRFD kips ASD kips LRFD 3260 3260 3210 3200 3180 3130 3120 3000 1340 1230 1330 1300 1310 1250 1260 1150 2020 1850 1990 1960 1960 1880 1890 1720 37.6 6.16 31.8 24.4 28.0 19.7 42.3 5.95 56.1 9.23 47.8 36.5 42.7 29.6 63.4 8.96 12.2 34.3 15.3 168 12.7 38.2 11.9 45.9 12.4 41.0 11.2 53.4 9.11 28.5 15.2 158 in.4 14900 6600 12900 10800 11700 9600 13200 6000 1930 1930 1930 1910 1880 1870 1860 1840 2900 2900 2900 2880 2830 2820 2790 2760 1180 1200 1180 1160 1090 1160 1120 1060 1770 1800 1780 1740 1640 1750 1690 1590 44.1 30.3 24.1 40.4 11.2 26.9 19.7 5.87 66.5 45.6 36.0 61.4 16.8 40.5 29.3 8.80 8.80 25.8 12.6 36.7 11.8 42.9 9.04 27.6 10.4 81.1 12.3 38.7 11.1 48.7 15.1 148 13200 11600 9700 12100 6970 10300 8490 5440 507 482 522 558 678 479 547 594 761 723 784 838 1020 718 821 891 718 711 1790 1770 2690 2670 1090 1100 1640 1650 38.9 23.0 58.4 35.1 9.01 11.7 27.0 11300 40.8 8910 526 471 790 707 W40×167 W18×283h W30×191 W24×229 W14×342h W36×170 W27×194 W33×169 693 676 675 675 672 668 631 629 1730 1690 1680 1680 1680 1670 1570 1570 2600 2540 2530 2530 2520 2510 2370 2360 1050 987 1050 1030 975 1010 976 959 1580 1480 1580 1540 1460 1530 1470 1440 41.7 11.1 25.6 19.0 5.73 37.8 22.3 34.2 62.5 16.7 38.6 28.9 8.62 56.1 33.8 51.5 8.48 24.8 11600 10.3 73.6 6170 12.2 36.8 9200 11.0 45.2 7650 15.0 138 4900 8.94 26.4 10500 11.6 38.2 7860 8.83 26.7 9290 502 613 436 499 539 492 422 453 753 920 654 749 809 738 632 679 W36×160 W18×258h W30×173 W24×207 W14×311h W12×336h 624 611 607 606 603 603 1560 1520 1510 1510 1500 1500 2340 2290 2280 2270 2260 2260 947 898 945 927 884 844 1420 1350 1420 1390 1330 1270 36.1 10.9 24.1 18.9 5.59 4.76 54.2 16.5 36.8 28.6 8.44 7.19 8.83 25.8 10.2 67.3 12.1 35.5 10.9 41.7 14.8 125 12.3 150 468 550 398 447 482 598 702 826 597 671 723 897 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 h 9760 5510 8230 6820 4330 4060 kips LRFD Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 22 3–22 DESIGN OF FLEXURAL MEMBERS Table 3-2 (continued) Zx W-Shapes Selection by Zx Zx Shape in.3 v Fy = 50 ksi Mpx /Ωb φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF kip-ft kip-ft kip-ft kip-ft kips kips ASD LRFD ASD LRFD ASD LRFD Lp Lr Ix ft ft in.4 Vnx /Ωv φvVnx kips kips ASD LRFD W40×149 W36×150 W27×178 W33×152 W24×192 W18×234h W14×283h W12×305h W21×201 W27×161 598 581 570 559 559 549 542 537 530 515 1490 1450 1420 1390 1390 1370 1350 1340 1320 1280 2240 2180 2140 2100 2100 2060 2030 2010 1990 1930 896 880 882 851 858 814 802 760 805 800 1350 1320 1330 1280 1290 1220 1200 1140 1210 1200 38.3 34.4 21.6 31.7 18.4 10.8 5.52 4.64 14.5 20.6 57.4 51.9 32.5 48.3 28.0 16.4 8.36 6.97 22.0 31.3 8.09 23.6 8.72 25.3 11.5 36.4 8.72 25.7 10.8 39.7 10.1 61.4 14.7 114 12.1 137 10.7 46.2 11.4 34.7 9800 9040 7020 8160 6260 4900 3840 3550 5310 6310 432 449 403 425 413 490 431 531 419 364 650 673 605 638 620 734 646 797 628 546 W33×141 W24×176 514 511 1280 1270 1930 1920 782 786 1180 1180 30.3 18.1 45.7 27.7 8.58 10.7 25.0 37.4 7450 5680 403 378 604 567 W36×135v W30×148 W18×211 W14×257 W12×279h W21×182 W24×162 509 500 490 487 481 476 468 1270 1250 1220 1220 1200 1190 1170 1910 1880 1840 1830 1800 1790 1760 767 761 732 725 686 728 723 1150 1140 1100 1090 1030 1090 1090 31.7 29.0 10.7 5.54 4.50 14.4 17.9 47.8 43.9 16.2 8.28 6.75 21.8 26.8 8.41 24.3 8.05 24.9 9.96 55.7 14.6 104 11.9 126 10.6 42.7 10.8 35.8 7800 6680 4330 3400 3110 4730 5170 384 399 439 387 487 377 353 577 599 658 581 730 565 529 W33×130 W27×146 W18×192 W30×132 W14×233 W21×166 W12×252h W24×146 467 464 442 437 436 432 428 418 1170 1160 1100 1090 1090 1080 1070 1040 1750 1740 1660 1640 1640 1620 1610 1570 709 723 664 664 655 664 617 648 1070 1090 998 998 984 998 927 974 29.3 19.9 10.6 26.9 5.40 14.2 4.43 17.0 43.1 29.5 16.1 40.5 8.15 21.2 6.68 25.8 8.44 24.2 11.3 33.3 9.85 51.0 7.95 23.8 14.5 95.0 10.6 39.9 11.8 114 10.6 33.7 6710 5660 3870 5770 3010 4280 2720 4580 384 332 392 373 342 338 431 321 576 497 588 559 514 506 647 482 W33×118v W30×124 W18×175 W27×129 W14×211 W12×230h 415 408 398 395 390 386 1040 1020 993 986 973 963 1560 1530 1490 1480 1460 1450 627 620 601 603 590 561 942 932 903 906 887 843 27.2 26.1 10.6 23.4 5.30 4.31 40.6 8.19 23.4 39.0 7.88 23.2 15.8 9.75 46.9 35.0 7.81 24.2 7.94 14.4 86.6 6.51 11.7 105 5900 5360 3450 4760 2660 2420 325 353 356 337 308 390 489 530 534 505 462 584 ASD Ωb = 1.67 Ωv = 1.50 LRFD h φ b = 0.90 φ v = 1.00 v Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, φv = 0.90 and Ωv = 1.67. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 23 W-SHAPE SELECTION TABLES 3–23 Table 3-2 (continued) Zx W-Shapes Fy = 50 ksi Selection by Zx W30×116 W21×147 W24×131 W18×158 W14×193 W12×210 in.3 378 373 370 356 355 348 Mpx /Ωb kip-ft ASD 943 931 923 888 886 868 W30×108 W27×114 W21×132 W24×117 W18×143 W14×176 346 343 333 327 322 320 W30×99 W12×190 W21×122 W27×102 W18×130 W24×104 W14×159 Shape Zx φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF Lp Lr Ix ft ft Vnx /Ωv φvVnx kips kips ASD LRFD 339 509 318 477 296 445 319 479 276 414 347 520 kip-ft kip-ft kip-ft LRFD ASD LRFD kips ASD kips LRFD 1420 1400 1390 1340 1330 1310 575 575 575 541 541 510 864 864 864 814 814 767 24.8 13.7 16.3 10.5 5.30 4.25 37.4 20.7 24.6 15.9 7.93 6.45 7.74 10.4 10.5 9.68 14.3 11.6 22.6 36.3 31.9 42.8 79.4 95.8 in.4 4930 3630 4020 3060 2400 2140 863 856 831 816 803 798 1300 1290 1250 1230 1210 1200 522 522 515 508 493 491 785 785 774 764 740 738 23.5 21.7 13.2 15.4 10.3 5.20 35.5 7.59 32.8 7.70 19.9 10.3 23.3 10.4 15.7 9.61 7.83 14.2 22.1 23.1 34.2 30.4 39.6 73.2 4470 4080 3220 3540 2750 2140 325 311 283 267 285 252 487 467 425 401 427 378 312 311 307 305 290 289 287 778 776 766 761 724 721 716 1170 1170 1150 1140 1090 1080 1080 470 459 477 466 447 451 444 706 690 717 701 672 677 667 22.2 4.18 12.9 20.1 10.2 14.3 5.17 33.4 6.33 19.3 29.8 15.4 21.3 7.85 7.42 11.5 10.3 7.59 9.54 10.3 14.1 21.3 87.3 32.7 22.3 36.6 29.2 66.7 3990 1890 2960 3620 2460 3100 1900 309 305 260 279 259 241 224 463 458 391 419 388 362 335 W30×90v W24×103 W21×111 W27×94 W12×170 W18×119 W14×145 W24×94 W21×101 283 280 279 278 275 262 260 254 253 706 699 696 694 686 654 649 634 631 1060 1050 1050 1040 1030 983 975 953 949 428 428 435 424 410 403 405 388 396 643 643 654 638 617 606 609 583 596 20.6 18.2 12.4 19.1 4.11 10.1 5.13 17.3 11.8 30.8 27.4 18.9 28.5 6.15 15.2 7.69 26.0 17.7 7.38 7.03 10.2 7.49 11.4 9.50 14.1 6.99 10.2 20.9 21.9 31.2 21.6 78.5 34.3 61.7 21.2 30.1 3610 3000 2670 3270 1650 2190 1710 2700 2420 249 270 237 264 269 249 201 250 214 374 404 355 395 403 373 302 375 321 W27×84 W12×152 W14×132 W18×106 244 243 234 230 609 606 584 574 915 911 878 863 372 365 365 356 559 549 549 536 17.6 4.06 5.15 9.73 26.4 7.31 6.10 11.3 7.74 13.3 14.6 9.40 20.8 70.6 55.8 31.8 2850 1430 1530 1910 246 238 190 221 368 358 284 331 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 v Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, φv = 0.90 and Ωv = 1.67. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 24 3–24 DESIGN OF FLEXURAL MEMBERS Table 3-2 (continued) Zx W-Shapes Selection by Zx W24×84 W21×93 W12×136 W14×120 W18×97 in.3 224 221 214 212 211 Mpx /Ωb kip-ft ASD 559 551 534 529 526 W24×76 W16×100 W21×83 W14×109 W18×86 W12×120 200 198 196 192 186 186 W24×68 W16×89 W14×99f W21×73 W12×106 W18×76 Shape Fy = 50 ksi Zx φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF kip-ft kip-ft kip-ft LRFD ASD LRFD kips ASD kips LRFD Lp Lr Ix ft ft Vnx /Ωv φvVnx kips kips ASD LRFD 227 340 251 376 212 318 171 257 199 299 840 829 803 795 791 342 335 325 332 328 515 504 488 499 494 16.2 14.6 4.02 5.09 9.41 24.2 6.89 22.0 6.50 6.06 11.2 7.65 13.2 14.1 9.36 20.3 21.3 63.2 51.9 30.4 in.4 2370 2070 1240 1380 1750 499 494 489 479 464 464 750 743 735 720 698 698 307 306 299 302 290 285 462 459 449 454 436 428 15.1 7.86 13.8 5.01 9.01 3.94 22.6 6.78 11.9 8.87 20.8 6.46 7.54 13.2 13.6 9.29 5.95 11.1 19.5 32.8 20.2 48.5 28.6 56.5 2100 1490 1830 1240 1530 1070 210 199 220 150 177 186 315 298 331 225 265 279 177 175 173 172 164 163 442 437 430 429 409 407 664 656 646 645 615 611 269 271 274 264 253 255 404 407 412 396 381 383 14.1 7.76 4.91 12.9 3.93 8.50 21.2 6.61 11.6 8.80 7.36 13.5 19.4 6.39 5.89 11.0 12.8 9.22 18.9 30.2 45.3 19.2 50.7 27.1 1830 1300 1110 1600 933 1330 197 176 138 193 157 155 295 265 207 289 236 232 W21×68 W14×90f 160 157 399 382 600 574 245 250 368 375 12.5 4.82 18.8 6.36 7.26 15.1 18.7 42.5 1480 999 181 123 272 185 W24x62 W16×77 W12×96 W10×112 W18×71 153 150 147 147 146 382 374 367 367 364 574 563 551 551 548 229 234 229 220 222 344 352 344 331 333 16.1 7.34 3.85 2.69 10.4 24.1 4.87 11.1 8.72 5.78 10.9 4.03 9.47 15.8 6.00 14.4 27.8 46.7 64.1 19.6 1550 1110 833 716 1170 204 150 140 172 183 306 225 210 258 275 W21×62 W14×82 144 139 359 347 540 521 222 215 333 323 11.6 5.40 17.5 8.10 6.25 8.76 18.1 33.2 1330 881 168 146 252 219 W24×55v W18×65 W12×87 W16×67 W10×100 W21×57 134 133 132 130 130 129 334 332 329 324 324 322 503 499 495 488 488 484 199 204 206 204 196 194 299 307 310 307 294 291 14.7 9.98 3.81 6.89 2.64 13.4 22.2 4.73 15.0 5.97 5.73 10.8 10.4 8.69 4.00 9.36 20.3 4.77 13.9 18.8 43.1 26.1 57.9 14.3 1350 1070 740 954 623 1170 167 166 129 129 151 171 252 248 193 193 226 256 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 f v Shape exceeds compact limit for flexure with Fy = 50 ksi. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, φv = 0.90 and Ωv = 1.67. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:29 AM Page 25 W-SHAPE SELECTION TABLES 3–25 Table 3-2 (continued) Zx W-Shapes Fy = 50 ksi Selection by Zx W21×55 W14×74 W18×60 W12×79 W14×68 W10×88 in.3 126 126 123 119 115 113 Mpx /Ωb kip-ft ASD 314 314 307 297 287 282 W18×55 112 W21×50 W12×72 Shape Zx φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF kip-ft kip-ft kip-ft LRFD ASD LRFD Lp Lr Ix ft ft Vnx /Ωv φvVnx kips kips ASD LRFD 156 234 128 192 151 227 117 175 116 174 131 196 kips ASD kips LRFD 16.3 6.11 8.05 8.76 14.4 5.93 5.67 10.8 7.81 8.69 3.94 9.29 17.4 31.0 18.2 39.9 29.3 51.2 in.4 1140 795 984 662 722 534 13.8 5.90 17.6 890 141 212 473 473 461 446 431 424 192 196 189 187 180 172 289 294 284 281 270 259 10.8 5.31 9.62 3.78 5.19 2.62 279 420 172 258 9.15 110 108 274 269 413 405 165 170 248 256 12.1 3.69 18.3 4.59 5.56 10.7 13.6 37.5 984 597 158 106 237 159 W21×48f W16×57 W14×61 W18×50 W10×77 W12×65f 107 105 102 101 97.6 96.8 265 262 254 252 244 237 398 394 383 379 366 356 162 161 161 155 150 154 244 242 242 233 225 231 9.89 7.98 4.93 8.76 2.60 3.58 14.8 5.86 12.0 5.65 7.48 8.65 13.2 5.83 3.90 9.18 5.39 10.7 16.5 18.3 27.5 16.9 45.3 35.1 959 758 640 800 455 533 144 141 104 128 112 94.4 216 212 156 192 169 142 W21×44 W16×50 W18×46 W14×53 W12×58 W10×68 W16×45 95.4 92.0 90.7 87.1 86.4 85.3 82.3 238 230 226 217 216 213 205 358 345 340 327 324 320 309 143 141 138 136 136 132 127 214 213 207 204 205 199 191 11.1 7.69 9.63 5.22 3.82 2.58 7.12 16.8 11.4 14.6 7.93 5.69 3.85 10.8 4.45 5.62 4.56 6.78 8.87 9.15 5.55 13.0 17.2 13.7 22.3 29.8 40.6 16.5 843 659 712 541 475 394 586 145 124 130 103 87.8 97.8 111 217 186 195 154 132 147 167 W18×40 W14×48 W12×53 W10×60 78.4 78.4 77.9 74.6 196 196 194 186 294 294 292 280 119 123 123 116 180 184 185 175 8.94 5.09 3.65 2.54 13.2 7.67 5.50 3.82 4.49 6.75 8.76 9.08 13.1 21.1 28.2 36.6 612 484 425 341 113 93.8 83.5 85.7 169 141 125 129 W16×40 W12×50 W8×67 W14×43 W10×54 73.0 71.9 70.1 69.6 66.6 182 179 175 174 166 274 270 263 261 250 113 112 105 109 105 170 169 159 164 158 6.67 3.97 1.75 4.88 2.48 10.0 5.98 2.59 7.28 3.75 5.55 6.92 7.49 6.68 9.04 15.9 23.8 47.6 20.0 33.6 518 391 272 428 303 97.6 90.3 103 83.6 74.7 146 135 154 125 112 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 f Shape exceeds compact limit for flexure with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 26 3–26 DESIGN OF FLEXURAL MEMBERS Table 3-2 (continued) Zx Shape W-Shapes Fy = 50 ksi Selection by Zx Zx Mpx /Ωb kip-ft ASD 166 160 160 153 151 149 142 137 φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF Lp Lr Ix ft ft kip-ft kip-ft kip-ft LRFD ASD LRFD kips ASD kips LRFD 249 241 240 231 227 224 214 206 101 101 98.7 95.4 95.4 90.8 89.9 85.8 151 151 148 143 143 137 135 129 8.14 3.80 6.24 5.37 2.46 1.70 3.66 2.59 12.3 5.80 9.36 8.20 3.71 2.55 5.54 3.89 4.31 6.89 5.37 5.47 8.97 7.42 6.85 7.10 12.3 22.4 15.2 16.2 31.6 41.6 21.1 26.9 in.4 510 348 448 385 272 228 307 248 φvVnx Vnx /Ωv kips ASD 106 81.1 93.8 87.4 68.0 89.3 70.2 70.7 159 122 141 131 102 134 105 106 kips LRFD W18×35 W12×45 W16×36 W14×38 W10×49 W8×58 W12×40 W10×45 in.3 66.5 64.2 64.0 61.5 60.4 59.8 57.0 54.9 W14×34 54.6 136 205 84.9 128 5.01 7.55 5.40 15.6 340 79.8 120 W16×31 W12×35 W8×48 54.0 51.2 49.0 135 128 122 203 192 184 82.4 79.6 75.4 124 120 113 6.86 4.34 1.67 10.3 6.45 2.55 4.13 5.44 7.35 11.8 16.6 35.2 375 285 184 87.5 75.0 68.0 131 113 102 W14×30 W10×39 47.3 46.8 118 117 177 176 73.4 73.5 110 111 4.63 2.53 6.95 3.78 5.26 6.99 14.9 24.2 291 209 74.5 62.5 112 93.7 W16×26v W12×30 44.2 43.1 110 108 166 162 67.1 67.4 101 101 5.93 3.97 8.98 5.96 3.96 5.37 11.2 15.6 301 238 70.5 64.0 106 95.9 W14×26 W8×40 W10×33 40.2 39.8 38.8 100 99.3 96.8 151 149 146 61.7 62.0 61.1 92.7 93.2 91.9 5.33 1.64 2.39 8.11 2.46 3.62 3.81 7.21 6.85 11.0 29.9 21.8 245 146 171 70.9 59.4 56.4 106 89.1 84.7 W12×26 W10×30 W8×35 37.2 36.6 34.7 92.8 91.3 86.6 140 137 130 58.3 56.6 54.5 87.7 85.1 81.9 3.61 3.08 1.62 5.46 4.61 2.43 5.33 4.84 7.17 14.9 16.1 27.0 204 170 127 56.1 63.0 50.3 84.2 94.5 75.5 W14×22 W10×26 W8×31f 33.2 31.3 30.4 82.8 78.1 75.8 125 117 114 50.6 48.7 48.0 76.1 73.2 72.2 4.78 2.91 1.58 7.27 4.34 2.37 3.67 4.80 7.18 10.4 14.9 24.8 199 144 110 63.0 53.6 45.6 94.5 80.3 68.4 W12×22 W8×28 29.3 27.2 73.1 67.9 110 102 44.4 42.4 66.7 63.8 4.68 1.67 7.06 2.50 3.00 5.72 9.13 21.0 156 98.0 64.0 45.9 95.9 68.9 W10×22 26.0 64.9 97.5 40.5 60.9 2.68 4.02 4.70 13.8 118 49.0 73.4 W12×19 W8×24 24.7 23.1 61.6 57.6 92.6 86.6 37.2 36.5 55.9 54.9 4.27 1.60 6.43 2.40 2.90 5.69 8.61 18.9 130 82.7 57.3 38.9 86.0 58.3 W10×19 W8×21 21.6 20.4 53.9 50.9 81.0 76.5 32.8 31.8 49.4 47.8 3.18 1.85 4.76 2.77 3.09 4.45 9.73 14.8 96.3 75.3 51.0 41.4 76.5 62.1 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 f v Shape exceeds compact limit for flexure with Fy = 50 ksi. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, φv = 0.90 and Ωv = 1.67. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 27 W-SHAPE SELECTION TABLES 3–27 Table 3-2 (continued) Zx W-Shapes Fy = 50 ksi Selection by Zx φb Mpx Mrx /Ωb φb Mrx BF/ Ωb φb BF W12×16 W10×17 Mpx /Ωb kip-ft ASD in.3 20.1 50.1 18.7 46.7 W12×14v W8×18 W10×15 W8×15 17.4 17.0 16.0 13.6 W10×12f W8×13 W8×10f Shape Zx Lp Lr ft ft Vnx /Ωv kips ASD in.4 103 52.8 81.9 48.5 Ix φvVnx kip-ft kip-ft kip-ft LRFD ASD LRFD kips ASD kips LRFD 75.4 70.1 29.9 28.3 44.9 42.5 3.80 2.98 5.73 4.47 2.73 2.98 8.05 9.16 43.4 42.4 39.9 33.9 65.3 63.8 60.0 51.0 26.0 26.5 24.1 20.6 39.1 39.9 36.2 31.0 3.43 1.74 2.75 1.90 5.17 2.61 4.14 2.85 2.66 4.34 2.86 3.09 7.73 13.5 8.61 10.1 88.6 61.9 68.9 48.0 42.8 37.4 46.0 39.7 64.3 56.2 68.9 59.6 12.6 11.4 31.2 28.4 46.9 42.8 19.0 17.3 28.6 26.0 2.36 1.76 3.53 2.67 2.87 2.98 8.05 9.27 53.8 39.6 37.5 36.8 56.3 55.1 8.87 21.9 32.9 13.6 20.5 1.54 2.30 3.14 8.52 30.8 26.8 40.2 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 f v kips LRFD 79.2 72.7 Shape exceeds compact limit for flexure with Fy = 50 ksi. Shape does not meet the h /tw limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, φv = 0.90 and Ωv = 1.67. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 28 3–28 DESIGN OF FLEXURAL MEMBERS Table 3-3 Ix W-Shapes Selection by Ix Ix Shape Shape 4 50600 W40×593h 50400 W40×503h W36×529h 41600 39600 W36×487h 36000 W40×431h W36×441h 34800 32100 W40×397h W36×652 h Shape 4 in. h Ix 32000 20800 20700 20500 19600 19600 19500 19400 18700 17900 17700 17400 16800 16800 W44×335 W40×392h W40×372h W40×362h W36×395h 31100 29900 29600 28900 28500 W40×215 W36×247 W27×368h W33×263 W36×231 16700 16700 16200 15900 15600 W44×290 W36×361h W40×324 W27×539h W40×331h W40×327h W33×387h 27000 25700 25600 25600 24700 24500 24300 W40×211 W36×232 15500 15000 W44×262 W36×330 W40×297 W33×354h W40×277 W40×294 W36×302 24100 23300 23200 22000 21900 21900 21100 W40×199 W30×292 W27×336h W14×730h W33×241 W24×370h 14900 14900 14600 14300 14200 13400 W40×183 W36×210 W30×261 W27×307h W33×221 W14×665h W36×194 W27×281 W24×335h W30×235 13200 13200 13100 13100 12900 12400 12100 11900 11900 11700 Shape 4 in. W44×230 W30×391h W40×278 W40×249 W36×282 W33×318 W40×264 W30×357h W36×262 W33×291 W40×235 W36×256 W30×326h Ix in.4 in. W40×167 W33×201 W36×182 W27×258 W14×605h W24×306h W36×170 W30×211 11600 11600 11300 10800 10800 10700 10500 10300 W40×149 W36×160 W27×235 W24×279h W14×550h W33×169 W30×191 W36×150 W27×217 W24×250 W30×173 W14×500h W33×152 W27×194 9800 9760 9700 9600 9430 9290 9200 9040 8910 8490 8230 8210 8160 7860 W36×135 W24×229 W33×141 W14×455h W27×178 W18×311h W24×207 7800 7650 7450 7190 7020 6970 6820 W33×130 W30×148 W14×426h W27×161 W24×192 W18×283h W14×398h 6710 6680 6600 6310 6260 6170 6000 W33×118 W30×132 W24×176 W27×146 W18×258h W14×370h W30×124 W21×201 W24×162 5900 5770 5680 5660 5510 5440 5360 5310 5170 W30×116 W18×234h W14×342h W27×129 W21×182 W24×146 4930 4900 4900 4760 4730 4580 W30×108 W18×211 W14×311h W21×166 W27×114 W12×336h W24×131 4470 4330 4330 4280 4080 4060 4020 W30×99 W18×192 W14×283h W21×147 W27×102 3990 3870 3840 3630 3620 Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. AMERICAN INSTITUTE OF STEEL CONSTRUCTION Ix AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 29 W-SHAPE SELECTION TABLES 3–29 Table 3-3 (continued) Ix W-Shapes Selection by Ix Shape Ix Shape 4 h 3610 3550 3540 3450 3400 3270 3220 3110 3100 3060 3010 3000 2960 W27×84 W18×143 W12×252h W24×94 W21×111 W14×211 W18×130 W21×101 W12×230h W14×193 Shape 4 in. W30×90 W12×305h W24×117 W18×175 W14×257 W27×94 W21×132 W12×279h W24×104 W18×158 W14×233 W24×103 W21×122 Ix 1830 1830 1750 1710 1650 1600 W24×62 W18×86 W14×132 W16×100 W21×68 W12×152 W14×120 1550 1530 1530 1490 1480 1430 1380 2850 2750 2720 2700 2670 2660 2460 2420 2420 2400 W24×55 W21×62 W18×76 W16×89 W14×109 W12×136 W21×57 W18×71 1350 1330 1330 1300 1240 1240 1170 1170 W24×84 W18×119 W14×176 W12×210 2370 2190 2140 2140 W21×55 W16×77 W14×99 W18×65 W12×120 W14×90 1140 1110 1110 1070 1070 999 W24×76 W21×93 W18×106 W14×159 W12×190 2100 2070 1910 1900 1890 W21×50 W18×60 984 984 W21×48 W16×67 W12×106 W18×55 W14×82 959 954 933 890 881 Shape 4 in. W24×68 W21×83 W18×97 W14×145 W12×170 W21×73 Ix in.4 in. W21×44 W12×96 W18×50 W14×74 W16×57 W12×87 W14×68 W10×112 W18×46 W12×79 W16×50 W14×61 W10×100 843 833 800 795 758 740 722 716 712 662 659 640 623 W18×40 W12×72 W16×45 W14×53 W10×88 W12×65 612 597 586 541 534 533 W16×40 518 W18×35 W14×48 W12×58 W10×77 W16×36 W14×43 W12×53 W10×68 W12×50 W14×38 510 484 475 455 448 428 425 394 391 385 W16×31 W12×45 W10×60 W14×34 W12×40 W10×54 375 348 341 340 307 303 W16×26 W14×30 W12×35 W10×49 W8×67 W10×45 301 291 285 272 272 248 W14×26 W12×30 W8×58 W10×39 245 238 228 209 W12×26 204 W14×22 W8×48 W10×33 W10×30 199 184 171 170 W12×22 W8×40 W10×26 156 146 144 W12×19 W8×35 W10×22 W8×31 130 127 118 110 W12×16 W8×28 W10×19 103 98.0 96.3 W12×14 W8×24 W10×17 W8×21 W10×15 W8×18 88.6 82.7 81.9 75.3 68.9 61.9 W10×12 W8×15 W8×13 53.8 48.0 39.6 W8×10 30.8 Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. AMERICAN INSTITUTE OF STEEL CONSTRUCTION Ix AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 30 3–30 DESIGN OF FLEXURAL MEMBERS Table 3-4 Zy W-Shapes Selection by Zy Zy Shape Mny /Ωb φb Mny in.3 ASD kip-ft LRFD Shape W14×730h 816 2040 3060 h W14×665 730 1820 2740 W14×605h 652 1630 2450 h W14×550 W36×652h 583 581 1450 1450 2190 2180 W14×500h W40×593h 522 481 1300 1200 1960 1800 W14×455h W36×529h W27×539h 468 454 437 1170 1130 1090 1760 1700 1640 W14×426h W36×487h 434 412 1080 1030 1630 1550 W14×398h W40×503h 402 394 1000 983 1510 1480 W14×370h W36×441h 370 368 923 918 1390 1380 h W14×342 W40×431h W36×395h W33×387h W30×391h 338 328 325 312 310 843 818 811 778 773 1270 1230 1220 1170 1160 W14×311h W40×397h W36×361h W33×354h W30×357h W27×368h W40×372h 304 300 293 282 279 279 277 758 749 731 704 696 696 691 1140 1130 1100 1060 1050 1050 1040 ASD kip-ft LRFD f h Ωb = 1.67 Ωv = 1.50 Fy = 50 ksi φ b = 0.90 φ v = 1.00 Zy Mny /Ωb φb Mny in.3 ASD kip-ft LRFD Shape W14×283h W12×336h W40×362h W24×370h W36×330 W30×326h W27×336h W33×318 274 274 270 267 265 252 252 250 684 684 674 666 661 629 629 624 1030 1030 1010 1000 994 945 945 938 W14×257 W12×305h W36×302 W40×324 W24×335h W44×335 W27×307h W33×291 W36×282 W30×292 246 244 241 239 238 236 227 226 223 223 614 609 601 596 594 589 566 564 556 556 923 915 904 896 893 885 851 848 836 836 W14×233 W12×279h W40×297 W24×306h W40×392h W18×311h W27×281 W44×290 W40×277 W36×262 W33×263 221 220 215 214 212 207 206 205 204 204 202 551 549 536 534 519 516 514 511 509 509 504 829 825 806 803 780 776 773 769 765 765 758 kip-ft Zy Mny /Ωb φb Mny kip-ft kip-ft LRFD W14×211 W30×261 W12×252h W24×279h W36×247 W27×258 W18×283h W44×262 W40×249 W33×241 in.3 198 196 196 193 190 187 185 182 182 182 ASD 494 489 489 482 474 467 462 454 454 454 W14×193 W12×230h W36×231 W30×235 W40×331h W24×250 W27×235 W18×258h W33×221 180 177 176 175 172 171 168 166 164 449 442 439 437 423 427 419 414 409 675 664 660 656 636 641 630 623 615 W14×176 W12×210 W44×230f W40×215 W30×211 W27×217 W24×229 W40×294 W18×234h W33×201 163 159 157 156 155 154 154 150 149 147 407 397 392 389 387 384 384 373 372 367 611 596 589 585 581 578 578 561 559 551 743 735 735 724 713 701 694 683 683 683 Shape exceeds compact limit for flexure with Fy = 50 ksi. Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 31 W-SHAPE SELECTION TABLES 3–31 Table 3-4 (continued) Zy W-Shapes Fy = 50 ksi Selection by Zy Shape Mny /Ωb φb Mny Zy kip-ft kip-ft LRFD Shape 548 536 523 518 514 514 514 510 499 W14×159 W12×190 W40×278 W30×191 W40×199 W36×256 W24×207 W27×194 W21×201 in.3 146 143 140 138 137 137 137 136 133 ASD 364 357 348 344 342 342 342 339 332 W14×145 W40×264 W18×211 W24×192 W12×170 W30×173 W36×232 W27×178 W21×182 W18×192 W40×235 W24×176 133 132 132 126 126 123 122 122 119 119 118 115 332 329 329 314 314 307 304 304 297 297 294 287 499 495 495 473 473 461 458 458 446 446 443 431 W14×132 W12×152 W27×161 W21×166 W36×210 W18×175 W40×211 W24×162 113 111 109 108 107 106 105 105 282 277 272 269 267 264 262 262 424 416 409 405 401 398 394 394 W14×120 W12×136 W36×194 W27×146 W18×158 W24×146 102 98.0 97.7 97.7 94.8 93.2 254 245 244 244 237 233 383 368 366 366 356 350 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 f Zy Mny /Ωb φb Mny kip-ft kip-ft LRFD Shape 348 347 340 331 320 320 317 314 W14×109 W21×147 W36×182 W40×183 W18×143 W12×120 W33×169 W36×170 in.3 92.7 92.6 90.7 88.3 85.4 85.4 84.4 83.8 ASD 231 231 226 220 213 213 211 209 W14×99f W21×132 W24×131 W36×160 W18×130 W40×167 W21×122 83.6 82.3 81.5 77.3 76.7 76.0 75.6 207 205 203 193 191 190 189 311 309 306 290 288 285 283 W14×90f W12×106 W33×152 W24×117 W36×150 W10×112 W18×119 W21×111 W30×148 W12×96 W33×141 W24×104 W40×149 W21×101 W10×100 W18×106 75.6 75.1 73.9 71.4 70.9 69.2 69.1 68.2 68.0 67.5 66.9 62.4 62.2 61.7 61.0 60.5 181 187 184 178 177 173 172 170 170 168 167 156 155 154 152 151 273 282 277 268 266 260 259 256 255 253 251 234 233 231 229 227 Zy Mny /Ωb φb Mny kip-ft kip-ft LRFD W12×87 W36×135 W33×130 W30×132 W27×129 W18×97 W16×100 in.3 60.4 59.7 59.5 58.4 57.6 55.3 54.9 ASD 151 149 148 146 144 138 137 W12×79 W30×124 W10×88 W33×118 W27×114 W30×116 54.3 54.0 53.1 51.3 49.3 49.2 135 135 132 128 123 123 204 203 199 192 185 185 W12×72 W18×86 W16×89 W10×77 W14×82 49.2 48.4 48.1 45.9 44.8 123 121 120 115 112 185 182 180 172 168 W12×65f W30×108 W27×102 W18×76 W24×103 W16×77 W14×74 W10×68 W27×94 W30×99 W24×94 W14×68 W16×67 44.1 43.9 43.4 42.2 41.5 41.1 40.5 40.1 38.8 38.6 37.5 36.9 35.5 107 110 108 105 104 103 101 100 96.8 96.3 93.6 92.1 88.6 161 165 163 158 156 154 152 150 146 145 141 138 133 Shape exceeds compact limit for flexure with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 227 224 223 219 216 207 206 AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 32 3–32 DESIGN OF FLEXURAL MEMBERS Table 3-4 (continued) Zy Shape W-Shapes Fy = 50 ksi Selection by Zy Zy Mny /Ωb φb Mny kip-ft kip-ft LRFD W10×60 W30×90 W21×93 W27×84 W14×61 W8×67 W24×84 in.3 35.0 34.7 34.7 33.2 32.8 32.7 32.6 ASD 87.3 86.6 86.6 82.8 81.8 81.6 81.3 131 130 130 125 123 123 122 W12×58 32.5 81.1 122 W10×54 W21×83 31.3 30.5 78.1 76.1 117 114 W12×53 W24×76 29.1 28.6 72.6 71.4 109 107 W10×49 W8×58 W21×73 W18×71 W24×68 W21×68 28.3 27.9 26.6 24.7 24.5 24.4 70.6 69.6 66.4 61.6 61.1 60.9 106 105 99.8 92.6 91.9 91.5 W8×48 W18×65 W14×53 W21×62 W12×50 W18×60 22.9 22.5 22.0 21.7 21.3 20.6 57.1 56.1 54.9 54.1 53.1 51.4 85.9 84.4 82.5 81.4 79.9 77.3 W10×45 W14×48 20.3 19.6 50.6 48.9 76.1 73.5 W12×45 W16×57 W18×55 19.0 18.9 18.5 47.4 47.2 46.2 71.3 70.9 69.4 ASD LRFD Ωb = 1.67 Ωv = 1.50 φ b = 0.90 φ v = 1.00 f Shape Zy Mny /Ωb φb Mny kip-ft kip-ft LRFD W8×40 W21×55 W14×43 in.3 18.5 18.4 17.3 ASD 46.2 45.9 43.2 W10×39 W12×40 W18×50 W16×50 17.2 16.8 16.6 16.3 42.9 41.9 41.4 40.7 64.5 63.0 62.3 61.1 W8×35 W24×62 W21×48f W21×57 W16×45 16.1 15.7 14.9 14.8 14.5 40.2 39.1 36.7 36.9 36.2 60.4 58.8 55.2 55.5 54.4 W8×31f W10×33 W24×55 W16×40 W21×50 W14×38 W18×46 W12×35 W16×36 W14×34 W21×44 14.1 14.0 13.3 12.7 12.2 12.1 11.7 11.5 10.8 10.6 10.2 35.1 34.9 33.1 31.7 30.4 30.2 29.2 28.7 26.9 26.4 25.4 52.8 52.5 49.8 47.6 45.8 45.4 43.9 43.1 40.5 39.8 38.2 W8×28 W18×40 W12×30 W14×30 W10×30 10.1 10.0 9.56 8.99 8.84 25.2 25.0 23.9 22.4 22.1 37.9 37.5 35.9 33.7 33.2 69.4 69.0 64.9 Shape Zy Mny /Ωb φb Mny kip-ft kip-ft LRFD W8×24 W12×26 W18×35 W10×26 W16×31 in.3 8.57 8.17 8.06 7.50 7.03 ASD 21.4 20.4 20.1 18.7 17.5 W10×22 6.10 15.2 22.9 W8×21 W14×26 W16×26 5.69 5.54 5.48 14.2 13.8 13.7 21.3 20.8 20.6 W8×18 W14×22 W12×22 W10×19 W12×19 4.66 4.39 3.66 3.35 2.98 11.6 11.0 9.13 8.36 7.44 17.5 16.5 13.7 12.6 11.2 W10×17 2.80 6.99 10.5 W8×15 2.67 6.66 10.0 W10×15 W12×16 2.30 2.26 5.74 5.63 8.63 8.46 W8×13 W12×14 2.15 1.90 5.36 4.74 8.06 7.13 W10×12f 1.74 4.30 6.46 W8×10f 1.66 4.07 6.12 Shape exceeds compact limit for flexure with Fy = 50 ksi. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 32.1 30.6 30.2 28.1 26.4 AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 33 W-SHAPE SELECTION TABLES 3–33 Table 3-5 Iy W-Shapes Selection by Iy Iy Shape Iy Shape 4 in. h h W14×730 4720 W14×665h 4170 W14×605h 3680 W14×550h W36×652h 3250 3230 W14×500h 2880 W14×455h W40×593h 2560 2520 W36×529h 2490 W14×426h W36×487h 2360 2250 W14×398h W27×539h W40×503h W36×441h 2170 2110 2040 1990 W14×370h 1990 W14×342h W36×395h W40×431h W33×387h 1810 1750 1690 1620 W14×311h W36×361h W30×391h W40×397h W33×354h 1610 1570 1550 1540 1460 Shape 4 W14×283 W40×372h W36×330 W30×357h W40×362h W27×368h W36×302 W33×318 1440 1420 1420 1390 1380 1310 1300 1290 W14×257 W30×326h W40×324 W44×335 W36×282 W12×336h W27×336h W33×291 W24×370h 1290 1240 1220 1200 1200 1190 1180 1160 1160 W14×233 W30×292 W40×297 W36×262 W27×307h W12×305h W44×290 W40×277 W33×263 W24×335h 1150 1100 1090 1090 1050 1050 1040 1040 1040 1030 W14×211 W3