Skip to main content
Log in

Incidence and risk factors of drug-induced kidney injury in children: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To comprehensively summarize the incidence and risk factors of drug-induced kidney injury (DIKI) in children.

Methods

We systematically searched seven databases from inception to November 2022. Two independent reviewers selected studies, extracted data, and assessed the risk of bias. Meta-analyses were conducted to quantify the incidence and risk factors of DIKI in children.

Results

A total of 69 studies comprising 195,894 pediatric patients were included. Overall, the incidence of DIKI in children was 18.2% (95%CI: 16.4%-20.1%). The incidence of DIKI in critically ill children (19.6%, 95%CI: 15.9%-23.3%) was higher than that in non-critically ill children (16.1%, 95%CI: 12.9%-19.4%). Moreover, the risk factors for DIKI in children were intensive care unit (ICU) admission (OR = 1.59, 95% CI: 1.42–1.78, P = 0.000), treatment days (OR = 1.04, 95% CI: 1.03–1.05, P = 0.000), surgical intervention (OR = 1.43, 95% CI: 1.00–2.02, P = 0.048), infection (OR = 2.30, 95% CI: 1.44–3.66, P = 0.000), patent ductus arteriosus (OR = 4.78, 95% CI: 1.82–12.57, P = 0.002), chronic kidney disease (OR = 2.78, 95% CI: 1.92–4.02, P = 0.000), combination with antibacterial agents (OR = 1.98, 95% CI: 1.54–2.55, P = 0.000), diuretics (OR = 1.97, 95% CI: 1.51–2.56, P = 0.000), combination with antiviral agents (OR = 1.50, 95% CI: 1.11–2.04, P = 0.008), combination with non-steroidal anti-inflammatory drugs (OR = 1.79, 95% CI: 1.40–2.28, P = 0.000), and combination with immunosuppressive agents (OR = 2.84, 95% CI: 1.47–5.47, P = 0.002).

Conclusion

The incidence of DIKI in children is high, especially in critically ill children. Identifying high-risk groups and determining safer treatments is critical to reducing the incidence of DIKI in children. In clinical practice, clinicians should adjust medication regimens for high-risk pediatric groups, such as ICU admission, some underlying diseases, combination with nephrotoxic drugs, etc., and regularly evaluate kidney function throughout treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380(9843):756–766. https://doi.org/10.1016/s0140-6736(11)61454-2

    Article  PubMed  Google Scholar 

  2. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376(1):11–20. https://doi.org/10.1056/NEJMoa1611391

    Article  PubMed  Google Scholar 

  3. Xu X, Nie S, Liu Z et al (2015) Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol 10(9):1510–1518. https://doi.org/10.2215/cjn.02140215

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS (2014) Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol 9(1):12–20. https://doi.org/10.2215/cjn.02730313

    Article  CAS  PubMed  Google Scholar 

  5. Susantitaphong P, Cruz DN, Cerda J et al (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8(9):1482–1493. https://doi.org/10.2215/cjn.00710113

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eckardt KU, Coresh J, Devuyst O et al (2013) Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382(9887):158–169. https://doi.org/10.1016/s0140-6736(13)60439-0

    Article  PubMed  Google Scholar 

  7. Faught LN, Greff MJ, Rieder MJ, Koren G (2015) Drug-induced acute kidney injury in children. Br J Clin Pharmacol 80(4):901–909. https://doi.org/10.1111/bcp.12554

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen N, Aleksa K, Woodland C, Rieder M, Koren G (2006) Ontogeny of drug elimination by the human kidney. Pediatr Nephrol 21(2):160–168. https://doi.org/10.1007/s00467-005-2105-4

    Article  PubMed  Google Scholar 

  9. Hoste EA, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41(8):1411–1423. https://doi.org/10.1007/s00134-015-3934-7

    Article  PubMed  Google Scholar 

  10. Mehta RL, Pascual MT, Soroko S et al (2004) Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int 66(4):1613–1621. https://doi.org/10.1111/j.1523-1755.2004.00927.x

    Article  PubMed  Google Scholar 

  11. Naughton CA (2008) Drug-induced nephrotoxicity. Am Fam Physician 78(6):743–750

    PubMed  Google Scholar 

  12. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294(7):813–818. https://doi.org/10.1001/jama.294.7.813

    Article  CAS  PubMed  Google Scholar 

  13. Bentley ML, Corwin HL, Dasta J (2010) Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 38(6 Suppl):S169–S174. https://doi.org/10.1097/CCM.0b013e3181de0c60

    Article  CAS  PubMed  Google Scholar 

  14. Patzer L (2008) Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol 23(12):2159–2173. https://doi.org/10.1007/s00467-007-0721-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mehta RL, Awdishu L, Davenport A et al (2015) Phenotype standardization for drug-induced kidney disease. Kidney Int 88(2):226–234. https://doi.org/10.1038/ki.2015.115

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27(3):363–373. https://doi.org/10.1007/s00467-011-1939-1

    Article  PubMed  Google Scholar 

  17. Kane-Gill SL, Goldstein SL (2015) Drug-induced acute kidney injury: a focus on risk assessment for prevention. Crit Care Clin 31(4):675–684. https://doi.org/10.1016/j.ccc.2015.06.005

    Article  PubMed  Google Scholar 

  18. McCullough PA, Bouchard J, Waikar SS et al (2013) Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury: executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol 182:5–12. https://doi.org/10.1159/000349962

    Article  PubMed  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  21. Rostom A, Dubé C, Cranney A et al (2004) Rockville (MD): Agency for Healthcare Research and Quality (US). Celiac Disease. (Evidence Reports/Technology Assessments, No. 104.) Appendix D. Quality Assessment Forms. Available from: https://www.ncbi.nlm.nih.gov/books/NBK35156/. Accessed 10 Jan 2023

  22. Yang JX, Zhang YY, Yang J (2022) Analysis of the related risk factors in liver and kidney injury and electrolyte disorder induced by cytarabine hydrochloride for injection used in children with tumor. Chin Pharm 25(3):462–467. https://doi.org/10.19962/j.cnki.issn1008-049X.2022.03.014

  23. Al-Jebawi Y, Karalic K, Shekhawat P, Mhanna MJ (2022) The concomitant use of vancomycin and piperacillin-tazobactam is associated with acute kidney injury (AKI) in extremely low birth weight infants (ELBW). J Neonatal Perinatal Med 15(2):303–309. https://doi.org/10.3233/npm-210866

    Article  CAS  PubMed  Google Scholar 

  24. Mohamed TH, Abdi HH, Magers J, Prusakov P, Slaughter JL (2022) Nephrotoxic medications and associated acute kidney injury in hospitalized neonates. J Nephrol 35(6):1679–1687. https://doi.org/10.1007/s40620-022-01264-6

    Article  CAS  PubMed  Google Scholar 

  25. Dawoud TH, Khan N, Afzal U, Varghese N, Rahmani A, Abu-Sa’da O (2022) Assessment of initial vancomycin trough levels and risk factors of vancomycin-induced nephrotoxicity in neonates. Eur J Hosp Pharm 29(1):44–49. https://doi.org/10.1136/ejhpharm-2019-002181

    Article  PubMed  Google Scholar 

  26. Meysam S, Khosravi Z, Rashti R et al (2022) Colistin induced acute kidney injury in critically ill children: a prospective study utilizing RIFLE criteria. Daru 30(1):11–15. https://doi.org/10.1007/s40199-021-00421-9

    Article  CAS  PubMed  Google Scholar 

  27. Khera S, Sharma G, Negi V, Shaw SC (2022) Hypoalbuminemia and not undernutrition predicts high-dose methotrexate-induced nephrotoxicity in children with acute lymphoblastic leukemia in resource-constrained centers. Pediatr Blood Cancer 69(9):e29738. https://doi.org/10.1002/pbc.29738

    Article  CAS  PubMed  Google Scholar 

  28. Sravani M, Krishnamurthy S, Parameswaran N, Rajappa M (2022) Assessment of causality in hospitalized children With aminoglycoside-related nephrotoxicity. Indian Pediatr 59(3):226–229. https://doi.org/10.1007/s13312-022-2475-8

    Article  PubMed  Google Scholar 

  29. Chen QY, Wan J, Lin M (2021) Correlation analysis of vancomycin trough concentration and renal toxicity in neonates. J Modern Med Health 37(23):4053–4056. https://doi.org/10.3969/j.issn.1009-5519.2021.23.022

    Article  Google Scholar 

  30. Raknoo T, Janjindamai W, Sitaruno S, Dissaneevate S, Ratanajamit C (2021) Incidence, risk and risk factors for acute kidney injury associated with the use of intravenous indomethacin in neonatal patent ductus arteriosus: a 16-year retrospective cohort study. Pharm Pract 19(4):2409. https://doi.org/10.18549/PharmPract.2021.4.2409

  31. Salerno SN, Liao Y, Jackson W et al (2021) Association between nephrotoxic drug combinations and acute kidney injury in the neonatal intensive care unit. J Pediatr 228:213–219. https://doi.org/10.1016/j.jpeds.2020.08.035

    Article  CAS  PubMed  Google Scholar 

  32. Su L, Li Y, Xu R et al (2021) Association of ibuprofen prescription with acute kidney injury among hospitalized children in China. JAMA Netw Open 4(3):e210775. https://doi.org/10.1001/jamanetworkopen.2021.0775

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lu H, Thurnherr E, Meaney CJ, Fusco NM (2021) Incidence and risk factors for acute kidney injury in hospitalized children receiving piperacillin-tazobactam. J Pediatr Pharmacol Ther 26(6):597–602. https://doi.org/10.5863/1551-6776-26.6.597

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moffett BS, Kulik K, Khichi M, Arikan A (2021) Acetazolamide-associated acute kidney injury in critically ill pediatric patients. J Pediatr Pharmacol Ther 26(5):467–471. https://doi.org/10.5863/1551-6776-26.5.467

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cen M, Zhao D, Xiong T, Wang Q, Yang GT, Lu Y (2020) Risk Factors for Acute Kidney Injury Induced by Intravenous Infusion of Lianbizhi Injection in Children. J Pediatr Pharm 26(1):23–26. https://doi.org/10.13407/j.cnki.jpp.1672-108X.2020.01.008.

  36. Li Y, Xiong M, Yang M et al (2020) Proton pump inhibitors and the risk of hospital-acquired acute kidney injury in children. Ann Transl Med 8(21):1438. https://doi.org/10.21037/atm-20-2284

  37. Alqurashi R, Batwa M, Alghamdi B et al (2020) Acute kidney injury in pediatric patients treated with vancomycin and piperacillin-tazobactam versus vancomycin and cefotaxime: a single-center study. Cureus 12(1):e6805. https://doi.org/10.7759/cureus.6805

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao P, Guan XL, Huang R et al (2020) Risk factors and clinical characteristics of tacrolimus-induced acute nephrotoxicity in children with nephrotic syndrome: a retrospective case-control study. Eur J Clin Pharmacol 76(2):277–284. https://doi.org/10.1007/s00228-019-02781-3

    Article  CAS  PubMed  Google Scholar 

  39. McMahon KR, Rassekh SR, Schultz KR et al (2020) Epidemiologic characteristics of acute kidney injury during cisplatin infusions in children treated for cancer. JAMA Netw Open 3(5):e203639. https://doi.org/10.1001/jamanetworkopen.2020.3639

    Article  PubMed  PubMed Central  Google Scholar 

  40. Downes KJ, Boge CLK, Baro E et al (2020) Acute kidney injury during treatment with intravenous acyclovir for suspected or confirmed neonatal herpes simplex virus infection. J Pediatr 219:126-132.e2. https://doi.org/10.1016/j.jpeds.2019.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartlett JW, Gillon J, Hale J, Jimenez-Truque N, Banerjee R (2020) Incidence of acute kidney injury among infants in the neonatal intensive care unit receiving vancomycin with either piperacillin/tazobactam or cefepime. J Pediatr Pharmacol Ther 25(6):521–527. https://doi.org/10.5863/1551-6776-25.6.521

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun D, Zhang T, Mi J et al (2020) Therapeutic drug monitoring and nephrotoxicity of teicoplanin therapy in Chinese children: a retrospective study. Infect Drug Resist 13:4105–4113. https://doi.org/10.2147/idr.S272982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu JY, Shi K (2019) Proton pump inhibitors on acute kidney injury in children. J Pediatr Pharm 25(12):40–43. https://doi.org/10.13407/j.cnki.jpp.1672-108X.2019.12.013

  44. Dai XM (2019) The effect of furosemide on acute kidney injury and mortality in critically ill children with fluid overload. https://doi.org/10.27351/d.cnki.gszhu.2019.002720

  45. Zhang T, Cheng H, Li Y et al (2019) Paediatric acute kidney injury induced by vancomycin monotherapy versus combined vancomycin and meropenem. J Clin Pharm Ther 44(3):440–446. https://doi.org/10.1111/jcpt.12806

    Article  CAS  PubMed  Google Scholar 

  46. Cook KM, Gillon J, Grisso AG et al (2019) Incidence of nephrotoxicity among pediatric patients receiving vancomycin with either piperacillin-tazobactam or cefepime: a cohort study. J Pediatric Infect Dis Soc 8(3):221–227. https://doi.org/10.1093/jpids/piy030

    Article  PubMed  Google Scholar 

  47. Buhlinger KM, Fuller KA, Faircloth CB, Wallace JR (2019) Effect of concomitant vancomycin and piperacillin-tazobactam on frequency of acute kidney injury in pediatric patients. Am J Health Syst Pharm 76(16):1204–1210. https://doi.org/10.1093/ajhp/zxz125

    Article  PubMed  Google Scholar 

  48. Fitzgerald JC, Zane NR, Himebauch AS et al (2019) Vancomycin prescribing and therapeutic drug monitoring in children with and without acute kidney injury after cardiac arrest. Paediatr Drugs 21(2):107–112. https://doi.org/10.1007/s40272-019-00328-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Quach HT, Esbenshade AJ, Zhao Z, Banerjee R (2019) Incidence of acute kidney injury among pediatric hematology/oncology patients receiving vancomycin in combination with piperacillin/tazobactam or cefepime. Pediatr Blood Cancer 66(7):e27750. https://doi.org/10.1002/pbc.27750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feiten HDS, Okumura LM, Martinbiancho JK et al (2019) Vancomycin-associated nephrotoxicity and risk factors in critically ill children without preexisting renal injury. Pediatr Infect Dis J 38(9):934–938. https://doi.org/10.1097/inf.0000000000002391

    Article  PubMed  Google Scholar 

  51. Shen XJ, Zeng JW, Wu HY, Chen J, Chen X (2018) Analysis of occurrence and risk factors of vancomycin-associated acute kidney injury in patients in the pediatric intensive care unit. Adverse Drug React 20(2):83–90. https://doi.org/10.3760/cma.j.issn.1008-5734.2018.02.002

    Article  Google Scholar 

  52. Al Nuhait M, Abu Esba LC, Al Harbi K, Al Meshary M, Bustami RT (2018) Acute kidney injury in pediatric treated with vancomycin and piperacillin-tazobactam in tertiary care hospital. Int J Pediatr 2018:9256528. https://doi.org/10.1155/2018/9256528

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abouelkheir M, Alsubaie S (2018) Pediatric acute kidney injury induced by concomitant vancomycin and piperacillin-tazobactam. Pediatr Int 60(2):136–141. https://doi.org/10.1111/ped.13463

    Article  CAS  PubMed  Google Scholar 

  54. Woldu H, Guglielmo BJ (2018) Incidence and risk factors for vancomycin nephrotoxicity in acutely ill pediatric patients. J Pharm Technol 34(1):9–16. https://doi.org/10.1177/8755122517747088

    Article  PubMed  Google Scholar 

  55. Barnoud D, Pinçon C, Bruno B et al (2018) Acute kidney injury after high dose etoposide phosphate: a retrospective study in children receiving an allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer 65(7):e27038. https://doi.org/10.1002/pbc.27038

    Article  CAS  PubMed  Google Scholar 

  56. Moffett BS, Morris J, Kam C, Galati M, Dutta A, Akcan-Arikan A (2018) Vancomycin associated acute kidney injury in pediatric patients. PLoS ONE 13(10):e0202439. https://doi.org/10.1371/journal.pone.0202439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhargava V, Malloy M, Fonseca R (2017) The association between vancomycin trough concentrations and acute kidney injury in the neonatal intensive care unit. BMC Pediatr 17(1):50. https://doi.org/10.1186/s12887-017-0777-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holsen MR, Meaney CJ, Hassinger AB, Fusco NM (2017) Increased risk of acute kidney injury in critically ill children treated with vancomycin and piperacillin/tazobactam. Pediatr Crit Care Med 18(12):e585–e591. https://doi.org/10.1097/pcc.0000000000001335

    Article  PubMed  Google Scholar 

  59. LeCleir LK, Pettit RS (2017) Piperacillin-tazobactam versus cefepime incidence of acute kidney injury in combination with vancomycin and tobramycin in pediatric cystic fibrosis patients. Pediatr Pulmonol 52(8):1000–1005. https://doi.org/10.1002/ppul.23718

    Article  PubMed  Google Scholar 

  60. Downes KJ, Cowden C, Laskin BL et al (2017) Association of acute kidney injury with concomitant vancomycin and piperacillin/tazobactam treatment among hospitalized children. JAMA Pediatr 171(12):e173219. https://doi.org/10.1001/jamapediatrics.2017.3219

    Article  PubMed  PubMed Central  Google Scholar 

  61. Constance JE, Reith D, Ward RM et al (2017) Risk of nonsteroidal anti-inflammatory drug-associated renal dysfunction among neonates diagnosed with patent ductus arteriosus and treated with gentamicin. J Perinatol 37(10):1093–1102. https://doi.org/10.1038/jp.2017.80

    Article  CAS  PubMed  Google Scholar 

  62. Saban JA, Pizzi M, Caldwell J, Palijan A, Zappitelli M (2017) Previous aminoglycoside use and acute kidney injury risk in non-critically ill children. Pediatr Nephrol 32(1):173–179. https://doi.org/10.1007/s00467-016-3471-9

    Article  PubMed  Google Scholar 

  63. Hundeshagen G, Herndon DN, Capek KD et al (2017) Co-administration of vancomycin and piperacillin-tazobactam is associated with increased renal dysfunction in adult and pediatric burn patients. Crit Care 21(1):318. https://doi.org/10.1186/s13054-017-1899-3

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li ZL, Xv F, Hu WJ, Xiao ZJ, Liu HX, Li J (2016) Comparison of the nephrotoxicity of low trough concentration and high trough concentration of vancomycin in neonates. Pharm Care Res 16(1):29–33. https://doi.org/10.5428/pcar20160109

    Article  CAS  Google Scholar 

  65. Bonazza S, Bresee LC, Kraft T, Ross BC, Dersch-Mills D (2016) Frequency of and risk factors for acute kidney injury associated with vancomycin use in the pediatric intensive care unit. J Pediatr Pharmacol Ther 21(6):486–493. https://doi.org/10.5863/1551-6776-21.6.486

    Article  PubMed  PubMed Central  Google Scholar 

  66. Constance JE, Balch AH, Stockmann C et al (2016) A propensity-matched cohort study of vancomycin-associated nephrotoxicity in neonates. Arch Dis Child Fetal Neonatal Ed 101(3):F236–F243. https://doi.org/10.1136/archdischild-2015-308459

    Article  PubMed  Google Scholar 

  67. Seixas GT, Araujo OR, Silva DC, Arduini RG, Petrilli AS (2016) Vancomycin therapeutic targets and nephrotoxicity in critically ill children with cancer. J Pediatr Hematol Oncol 38(2):e56–e62. https://doi.org/10.1097/mph.0000000000000470

    Article  CAS  PubMed  Google Scholar 

  68. Gao X, Li J, Li ZP (2015) Comparison of the incidence of vancomycin-induced nephrotoxicity in hospitalized children with or without concomitant piperacillin-tazobactam. Fudan Univ J Med Sci 42(6):743–748. https://doi.org/10.3969/j.issn.1672-8467.2015.06.009

    Article  CAS  Google Scholar 

  69. Cheng DH, Lu H, Huang ZG, Qin XK (2015) Influence of drug combinations on high-dose methotrexate-induced nephrotoxicity and blood concentrations of childhood acute lymphoblastic leukemia. Cancer Res Prev Treat 42(11):1148–1151. https://doi.org/10.3971/j.issn.1000-8578.2015.11.020

    Article  CAS  Google Scholar 

  70. Lim Y, Lyall H, Foster C (2015) Tenofovir-associated nephrotoxicity in children with perinatally-acquired HIV infection: a single-centre cohort study. Clin Drug Investig 35(5):327–333. https://doi.org/10.1007/s40261-015-0287-5

    Article  CAS  PubMed  Google Scholar 

  71. Matson KL, Shaffer CL, Beck GL, Simonsen KA (2015) Assessment of initial serum vancomycin trough concentrations and their association with initial empirical weight-based vancomycin dosing and development of nephrotoxicity in children: a multicenter retrospective study. Pharmacotherapy 35(3):337–343. https://doi.org/10.1002/phar.1552

    Article  CAS  PubMed  Google Scholar 

  72. Knoderer CA, Gritzman AL, Nichols KR, Wilson AC (2015) Late-occurring vancomycin-associated acute kidney injury in children receiving prolonged therapy. Ann Pharmacother 49(10):1113–1119. https://doi.org/10.1177/1060028015594190

    Article  CAS  PubMed  Google Scholar 

  73. Jiménez-Triana CA, Castelán-Martínez OD, Rivas-Ruiz R et al (2015) Cisplatin nephrotoxicity and longitudinal growth in children with solid tumors. Medicine 94(34):e1413. https://doi.org/10.1097/MD.0000000000001413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moffett BS, Hilvers PS, Dinh K, Arikan AA, Checchia P, Bronicki R (2015) Vancomycin-associated acute kidney injury in pediatric cardiac intensive care patients. Congenit Heart Dis 10(1):E6–E10. https://doi.org/10.1111/chd.12187

    Article  PubMed  Google Scholar 

  75. Balestracci A, Ezquer M, Elmo ME et al (2015) Ibuprofen-associated acute kidney injury in dehydrated children with acute gastroenteritis. Pediatr Nephrol 30(10):1873–1878. https://doi.org/10.1007/s00467-015-3105-7

    Article  PubMed  Google Scholar 

  76. Lindle KA, Dinh K, Moffett BS et al (2014) Angiotensin-converting enzyme inhibitor nephrotoxicity in neonates with cardiac disease. Pediatr Cardiol 35(3):499–506. https://doi.org/10.1007/s00246-013-0813-2

    Article  PubMed  Google Scholar 

  77. Sinclair EA, Yenokyan G, McMunn A, Fadrowski JJ, Milstone AM, Lee CK (2014) Factors associated with acute kidney injury in children receiving vancomycin. Ann Pharmacother 48(12):1555–1562. https://doi.org/10.1177/1060028014549185

    Article  CAS  PubMed  Google Scholar 

  78. Knoderer CA, Nichols KR, Lyon KC, Veverka MM, Wilson AC (2014) Are elevated vancomycin serum trough concentrations achieved within the first 7 days of therapy associated with acute kidney injury in children? J Pediatric Infect Dis Soc 3(2):127–131. https://doi.org/10.1093/jpids/pit076

    Article  PubMed  Google Scholar 

  79. Goldstein SL, Kirkendall E, Nguyen H et al (2013) Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132(3):e756–e767. https://doi.org/10.1542/peds.2013-0794

    Article  PubMed  Google Scholar 

  80. Misurac JM, Knoderer CA, Leiser JD, Nailescu C, Wilson AC, Andreoli SP (2013) Nonsteroidal anti-inflammatory drugs are an important cause of acute kidney injury in children. J Pediatr 162(6):1153-1159.e1. https://doi.org/10.1016/j.jpeds.2012.11.069

    Article  CAS  PubMed  Google Scholar 

  81. Totapally BR, Machado J, Lee H, Paredes A, Raszynski A (2013) Acute kidney injury during vancomycin therapy in critically ill children. Pharmacotherapy 33(6):598–602. https://doi.org/10.1002/phar.1259

    Article  CAS  PubMed  Google Scholar 

  82. Ragab AR, Al-Mazroua MK, Al-Harony MA (2013) Incidence and predisposing factors of vancomycin-induced nephrotoxicity in children. Infect Dis Ther 2(1):37–46. https://doi.org/10.1007/s40121-013-0004-8

    Article  PubMed  PubMed Central  Google Scholar 

  83. Phelps CM, Eshelman J, Cruz ED et al (2012) Acute kidney injury after cardiac surgery in infants and children: evaluation of the role of angiotensin-converting enzyme inhibitors. Pediatr Cardiol 33(1):1–7. https://doi.org/10.1007/s00246-011-0046-1

    Article  PubMed  Google Scholar 

  84. Zappitelli M, Moffett BS, Hyder A et al (2011) Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. Nephrol Dial Transplant 26(1):144–150. https://doi.org/10.1093/ndt/gfq375

    Article  PubMed  Google Scholar 

  85. Kim JH, Park SJ, Yoon SJ et al (2011) Predictive factors for ciclosporin-associated nephrotoxicity in children with minimal change nephrotic syndrome. J Clin Pathol 64(6):516–519. https://doi.org/10.1136/jclinpath-2011-200005

    Article  CAS  PubMed  Google Scholar 

  86. Moffett BS, Goldstein SL, Adusei M, Kuzin J, Mohan P, Mott AR (2011) Risk factors for postoperative acute kidney injury in pediatric cardiac surgery patients receiving angiotensin-converting enzyme inhibitors. Pediatr Crit Care Med 12(5):555–559. https://doi.org/10.1097/PCC.0b013e31820ac40a

    Article  PubMed  Google Scholar 

  87. Stöhr W, Paulides M, Bielack S et al (2007) Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer 48(4):447–452. https://doi.org/10.1002/pbc.20858

    Article  PubMed  Google Scholar 

  88. McCune JS, Friedman DL, Schuetze S, Blough D, Magbulos M, Hawkins DS (2004) Influence of age upon Ifosfamide-induced nephrotoxicity. Pediatr Blood Cancer 42(5):427–432. https://doi.org/10.1002/pbc.20011

    Article  PubMed  Google Scholar 

  89. Yang FZ, Xv CH, Zhong RL (2002) Mannitol induced renal function impairment in children: a report of 267 cases. Chin Pediatr Emerg Med 9(1):28

    Google Scholar 

  90. Bhatt-Mehta V, Schumacher RE, Faix RG, Leady M, Brenner T (1999) Lack of vancomycin-associated nephrotoxicity in newborn infants: a case-control study. Pediatrics 103(4):e48. https://doi.org/10.1542/peds.103.4.e48

    Article  CAS  PubMed  Google Scholar 

  91. Hosohata K (2016) Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci 17(11):1826. https://doi.org/10.3390/ijms17111826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perazella MA (2012) Drug use and nephrotoxicity in the intensive care unit. Kidney Int 81(12):1172–1178. https://doi.org/10.1038/ki.2010.475

    Article  CAS  PubMed  Google Scholar 

  93. Chan JC, Williams DM, Roth KS (2002) Kidney failure in infants and children. Pediatr Rev 23(2):47–60. https://doi.org/10.1542/pir.23-2-47

    Article  PubMed  Google Scholar 

  94. Dennen P, Douglas IS, Anderson R (2010) Acute kidney injury in the intensive care unit: an update and primer for the intensivist. Crit Care Med 38(1):261–275. https://doi.org/10.1097/CCM.0b013e3181bfb0b5

    Article  PubMed  Google Scholar 

  95. Bagshaw SM, George C, Bellomo R (2007) Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care 11(3):R68. https://doi.org/10.1186/cc5949

    Article  PubMed  PubMed Central  Google Scholar 

  96. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34(7):1913–1917. https://doi.org/10.1097/01.Ccm.0000224227.70642.4f

    Article  PubMed  Google Scholar 

  97. Uchino S (2006) The epidemiology of acute renal failure in the world. Curr Opin Crit Care 12(6):538–543. https://doi.org/10.1097/01.ccx.0000247448.94252.5a

    Article  PubMed  Google Scholar 

  98. Yu YC, Peng XX, Nie XL et al (2021) Application of real-world data in the monitoring of drug-induced renal injury in children: progress and strategies. Chin Food Drug Admin Mag 214(11):83–87. https://doi.org/10.3969/j.issn.1673-5390.2021.11.010

    Article  Google Scholar 

  99. Pan KM, Chen C, Jiang Y et al (2021) Systematic review of drug-induced acute kidney injury in Chinese population. Chin Pharm 32(09):1100–1107. https://doi.org/10.6039/j.issn.1001-0408.2021.09.13

    Article  Google Scholar 

  100. Che ML, Yan YC, Zhang Y et al (2009) Analysis of drug-induced acute renal failure in Shanghai. 89(11):744–749. https://doi.org/10.3760/cma.j.issn.0376-2491.2009.11.007

  101. Yang JY (2005) Drug-induced kidney injury. Chin J Pract Pediatr 7:387–390

    Google Scholar 

  102. Perazella MA, Rosner MH (2022) Drug-Induced Acute Kidney Injury. Clin J Am Soc Nephrol 17(8):1220–1233. https://doi.org/10.2215/CJN.11290821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Williams C, Hankinson C, McWilliam SJ, Oni L (2022) Vancomycin-associated acute kidney injury epidemiology in children: a systematic review. Arch Dis Child 107(10):947–954. https://doi.org/10.1136/archdischild-2021-323429

    Article  Google Scholar 

  104. Bagshaw SM, Bellomo R, Devarajan P et al (2010) Review article: Acute kidney injury in critical illness. Can J Anaesth 57(11):985–998. https://doi.org/10.1007/s12630-010-9375-4

    Article  PubMed  Google Scholar 

  105. Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N (2009) Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr Nephrol 24(5):991–997. https://doi.org/10.1007/s00467-009-1133-x

    Article  PubMed  Google Scholar 

  106. Andreoli SP (2009) Acute kidney injury in children. Pediatr Nephrol 24(2):253–263. https://doi.org/10.1007/s00467-008-1074-9

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hui-Stickle S, Brewer ED, Goldstein SL (2005) Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis 45(1):96–101. https://doi.org/10.1053/j.ajkd.2004.09.028

    Article  PubMed  Google Scholar 

  108. Goldstein SL (2012) Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 33(1–3):131–137. https://doi.org/10.1159/000334143

    Article  PubMed  Google Scholar 

  109. Goldstein SL, Mottes T, Simpson K et al (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90(1):212–221. https://doi.org/10.1016/j.kint.2016.03.031

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation for Young Scholars of China (72004151) and the Sichuan Natural Science Foundation Youth Fund Project (23NSFSC4810).

Author information

Authors and Affiliations

Authors

Contributions

YZ, HL, and LL Z designed the study; MZ, BL, and LH participated in drafting and writing the study; MZ, BL, and HG participated in the formulation of retrieval strategies, data acquisition, data analysis, and quality assessment; MZ and ZJ participated in the drawing of tables and figures. performed the data analysis; LZ, HL, YZ, and LL Z participated in the critical revision of the manuscript. All authors contributed to the research and approved the final manuscript.

Corresponding authors

Correspondence to Yu Zhu or Lingli Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 187 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Lang, B., Li, H. et al. Incidence and risk factors of drug-induced kidney injury in children: a systematic review and meta-analysis. Eur J Clin Pharmacol 79, 1595–1606 (2023). https://doi.org/10.1007/s00228-023-03573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-023-03573-6

Keywords

Navigation