Genetic and morphological diversity of *Tithonia diversifolia* (Hemsl.) A. Gray for use in silvopastoral systems of Latin America

4th World Congress on Agroforestry 20 – 22 May 2019. Montpellier, France

Rivera Julian¹, Lopera Jhon¹, Chará Julian², Gómez-Leyva Juan³, Barahona Rolando⁴, Murgueitio Enrique²

¹University of Antioquia, Center for Research on Sustainable Systems of Agricultural Production (CIPAV), Colombia- jerivera@fun.cipav.org.co; ²Center for Research in Sustainable Systems of Agricultural Production (CIPAV), Colombia; ³Technological Institute of Tlajomulco, Mexico; ⁴National University of Colombia, Colombia.

Introduction

Tithonia diversifolia, a tropical shrub native to Mexico and Central America, presents characteristics of great interest for ruminant production systems (Mauricio *et al.*, 2017). This species, a shrub of the Asteraceae family, is considered a forage species of great importance due to its chemical composition, productive performance, and adaptation (Tendonkeng *et al.*,

Table 3. Effect of the offer of *T. diversifolia* on the production of bovine milk solids (g).

	Without <i>T.</i> diversifolia	With <i>T.</i> diversifolia	Diff.
Fat cow day-1	17.2 ^b	21.1 ª	18.8%
P cow day-1	13.6 ^b	17.3 ^a	21.6%
SNF cow day-1	35.7 ^b	45.8 ^a	21.9%
Min cow day-1	2.68 ^b	3.4 ^a	21.6%
TS cow day-1	52.9 ^b	66.9 ^a	20.9%

2014).

In plant species, genetic and morphological variability are considered the basis for their adaptation and ability to respond to challenges and threats (Govindaraj *et al.*, 2015). The study of genetic diversity in plants allows the selection of the best ecotypes in terms of productivity and forage quality (Ruiz *et al.*, 2013).

Objective

To determine the phenotypic diversity of *Tithonia diversifolia* in Colombia and Mexico, and recognize its productivity and socio-economic potential in cattle systems.

Materials and Methods

Genetic diversity Localization

Stocking rate, milk production, and compositional quality milk.

Internal rate of return, benefit/cost ratio, and employment generation.

Results and discussion

Genetic diversity

Figure 3. UPGMA dendrogram for the 31 collections of *T. divers*ifolia from Mexico and Colombia (index of dissimilarity of Dice, high correlation coefficient (0.87) and agglomeration coefficient (0.8)).

Morphological and chemical characteristics in collections of *T. diversifolia*

NDE

P: protein; SNF: solids not fat; TS: total solids; Min: minerals. P<0.05

Systems with *T. diversifolia* can partially replace commercial feeds, approximately 15% of dry matter, in a total diet to dairy cows without any change in milk yield and composition, and intake (Ribeiro *et al.,* 2016).

UA: Animal unit = 450 kg

Figure 6. Stocking rate (animal per hectare) with and without the use of *T. diversifolia*.

Silvopastoral system with T. diversifolia

Socio-economic impact of *T. diversifolia* in cattle systems

The increase of the production and solids in milk is

The Shannon information index (I) was 0.130 to 0.67, with a mean genetic diversity of 0.4320 \pm 0.2267 indicating the high polymorphism through the loci.

Five eco-regions in Colombia. 25 collection sites in Colombia. Six collection sites in Mexico.

Figure 1. Collection sites of *T. diversifolia*

- Molecular markers: Cytochrome P450 and ISSRs (Yamanaka *et al.*, 2003), and amplification of the ITS region of ribosomal DNA using the oligos ITS1 5 '-3' and ITS4 5 '-3').
- Conglomerate analysis (Yeh *et al.*, 1999) and genetic structure evaluation (Pritchard et al., 2000). Analysis in R-Studio software (POPGEN; R-Studio Team, 2018).
- Multivariate statistical analysis in chemical and morphological evaluations (PCA).

Figure 4. Variability and correlation of morphological and chemical characteristics in collections of *T. diversifolia* in Colombia (DM: dry matter; EE: extract ether; ADF: Acid detergent fiber; NDF: neutral detergent fiber; CP: Crude protein; P: Phosphorus; Ca: Calcium; Zn: Zinc; Fe: Iron).

Table 1. Morphological characteristics of *T. diversifolia* collected in Colombia (45 days growth).

	Leaf weight (g)	Stems weight (g)	Branches (#)	Height (cm)	Stem diameter (mm)	Leaf area (cm ²)
Average	803±364	1354±855	26.8±20.9	139±46.2	11.9±2.7	178±62.2
Coef. of var. (%)	45.3	63.2	78.1	33.2	22.5	34.7

|--|

	DM	Ash	EE	ADF	NDF	СР	P Ca	a Zr	1	Fe
					%				ppm	
Average	16.4±1.5	15.4±3.2	1.57±0.67	44.9±9.4	46.8±12.5	29.3±3.3	0.63±0.14 2.43	±0.9 136.7±	71.9	120±34.3

26.75

21.82

11.22

37.16

52.63

due to the offer of nutrients such as protein and soluble carbohydrates, as well as the low fiber that increases the intake of dry matter and its degradability (Gallego-Castro *et al.*, 2017).

Benefit / Cost ratio
Figure 7. Cost-benefit ratio in milk production in systems with and without *T. diversifolia*

Internal rate of return, had values of 3.40 and -0.10 with a benefit/cost ratio of 3.20 and 0.74 (p < 0.05), favoring a higher level of employment generation (4.3 and 0.6 per ha per year, respectively), and 9% more of gross profit in systems with Tithonia (40 vs. 49%).

Conclusion

T. diversifolia has a wide phenotypic diversity and adaptation to different agro-ecological conditions, including high-quality ecotypes that offer greater nutrients in cattle systems and great potential to contribute to the income and welfare of livestock producers.

References

28.57

Figure 2. Agarose gel showing the amplification products for the molecular markers of *T. diversifolia*. A) ISSR (GA) 8YT, B) Cytochrome P450 CYP1A1F / heme2B6.

DM: dry matter; EE: extract ether; ADF: Acid detergent fiber; NDF: neutral detergent fiber; CP: Crude protein; P: Phosphorus; Ca: Calcium; Zn: Zinc; Fe: Iron.

20.96

Productive impact of *T. diversifolia* in cattle systems

42.42

Coef. of var. (%)

Figure 5. Milk productivity in systems with and without use of *T. diversifolia*

- Gallego-Castro, L.A., Mahecha-Ledesma, L., Angulo-Arizala, J. 2017. Calidad nutricional de *Tithonia diversifolia* (Hemsl.) A. Gray bajo tres sistemas de siembra en el tropico alto. Agron. Mesoam. 28(1): 213-222. doi:10.15517/am.v28i1.21671
- Govindaraj, M., Vetriventhan, M., Srinivasan, M. 2015. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genetics Research International, 1- 14. http://dx.doi.org/10.1155/2015/431487
- Mauricio, R., Calsavara, L., Ribeiro, R., De Freitas, D., Paciullo, D., Barahona, R., Chará, J., Rivera, J.E., Murgueitio, E., Pereira, L. 2017. Feed Ruminants using Tithonia diversifolia as a Forage. Journal of Dairy Research 5 (4). DOI: 10.15406/jdvar.2017.05.00146
- Pritchard, J.K., Stephens, M., Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155:945-59
- Ribeiro, R.S., Terry, S.A., Sacramento, J.P., Rocha, S., Bento, C.B., Silva, E.F., Montovani, H.C., Gama, M.A.S., Pereira, L.G., Tomich, T.R., Mauricio, R.M., Chaves, A. 2016. *Tithonia diversifolia* as a supplementary feed for dairy cows. Plos One 11: e0165751 https://doi.org/10.1371/journal.pone. 0165751
- Ruiz, T.E., Torre, SV., Febles, G., Díaz, H., González, J. 2013. Estudio del comportamiento de ecotipos destacados de *Tithonia diversifolia* en relación con algunos componentes morfológicos. Livestock Research for Rural Development. *Volume 25, Article #154* Retrieved March 22, 2018, from http:// www.lrrd.org/lrrd25/9/ruiz25154.html
- Tendonkeng, F., Fogang Zogang, B., Sawa, C., Boukila, B., Pamo, E.T. 2014 Inclusion of *Tithonia diversifolia* in multinutrient blocks for WestAfrican dwarf goats fed Brachiaria straw. Trop Anim Health Prod, 46: 981–986.
- Yamanaka, E., Suzuki, M., Tanaka, Y., Takeda, J.A., Watanabe, K.N., Watanabe. 2003. Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species. Theoretical Applied Genetics. 108:1-9.
- Yeh, F.C., Yang, R.C., Boyle, T. 1999. POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology center, University of Alberta, Alberta Canada.

