Skip to main content
Log in

Advanced Oxidation Processes for Wastewater Treatment: State of the Art

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The protection and conservation of natural resources is one of the main priorities of modern society. Water is perhaps our most valuable resource, and thus should be recycled. Many of the current recycling techniques for polluted water only concentrate the pollutant without degrading it or eliminating it. In this sense, advanced oxidation processes are possibly one of the most effective methods for the treatment of wastewater containing organic products (effluents from chemical and agrochemical industries, the textile industry, paints, dyes, etc.). More conventional techniques cannot be used to treat such compounds because of their high chemical stability and/or low biodegradability. This article describes, classifies, and analyzes different types of advanced oxidation processes and their application to the treatment of polluted wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alaton, I. A., Balcioglu, I. A., & Bahnemann, D. W. (2002). Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36, 1143–1154. doi:10.1016/S0043-1354(01)00335-9.

    Article  CAS  Google Scholar 

  • Alsheyab, M. A., & Muñoz, A. H. (2006). Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H2O2/O3). Desalination, 194, 121–126. doi:10.1016/j.desal.2005.10.028.

    Article  CAS  Google Scholar 

  • Amadelli, R., Battisti, A. D., Girenko, D. V., Kovalyov, S. V., & Velichenko, A. B. (2000). Electrochemical oxidation of trans-3, 4-dihydroxycinnamic acid at PbO2 electrodes: direct electrolysis and ozone mediated reactions compared. Electrochimica Acta, 46, 341–347. doi:10.1016/S0013-4686(00)00590-9.

    Article  CAS  Google Scholar 

  • Amat, A. M., Miranda, M. A., Vincente, R., & Segui, S. (2007). Degradation of two commercial anionic surfactants by means of ozone and/or UV irradiation. Environmental Engineering Science, 24(6), 790–794. doi:10.1089/ees.2006.0030.

    Article  CAS  Google Scholar 

  • Cañizares, P., Louhichi, B., Gadri, A., Nasr, B., Paz, R., Rodrigo, M. A., et al. (2007). Electrochemical treatment of the pollutants generated in an ink-manufacturing process. Journal of Hazardous Materials, 146(3), 552–557. doi:10.1016/j.jhazmat.2007.04.085.

    Article  Google Scholar 

  • Cañizares, P., Paz, R., Saez, C., & Rodrigo, M. A. (2009). Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90, 410–420. doi:10.1016/j.jenvman.2007.10.010.

    Article  Google Scholar 

  • Carbajo, M., Beltrán, F. J., Gimeno, O., Acebo, B., & Rivas, F. J. (2007). Ozonation of phenolic wastewater in the presence of a perovskite type catalyst. Applied Catalysis B Environmental, 74, 203–210. doi:10.1016/j.apcatb.2007.02.007.

    Article  CAS  Google Scholar 

  • Černigoj, U., Štangar, U. L., & Trebše, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B Environmental, 75, 229–238. doi:10.1016/j.apcatb.2007.04.014.

    Article  Google Scholar 

  • Chen, W., Juan, C., & Wei, K. (2007). Decomposition of dinitrotoluene isomers and 2, 4, 6-trinitrotoluene in spent acid from toluene nitration process by ozonation and photo-ozonation. Journal of Hazardous Materials, 147, 97–104. doi:10.1016/j.jhazmat.2006.12.052.

    Article  CAS  Google Scholar 

  • Chen, W., & Liang, J. (2009). Electrochemical destruction of dinitrotoluene isomers and 2, 4, 6-trinitrotoluene in spent acid from toluene nitration process. Journal of Hazardous Materials, 161, 1017–1023. doi:10.1016/j.jhazmat.2008.04.048.

    Article  CAS  Google Scholar 

  • Chen, W., Shi, H., & Lu, J. (2007). Electrochemical treatment of ammonia in wastewater by RuO2–IrO2–TiO2/Ti electrodes. Journal of Applied Electrochemistry, 37, 1137–1144. doi:10.1007/s10800-007-9373-6.

    Article  CAS  Google Scholar 

  • Chitra, S., Paramasivan, K., Sinha, P. K., & Lal, K. B. (2004). Ultrasonic treatment of liquid waste containing EDTA. Journal of Cleaner Production, 12, 429–435. doi:10.1016/S0959-6526(03)00034-9.

    Article  Google Scholar 

  • Fan, L., Zhou, Y., Yang, W., Chen, G., & Yang, F. (2008). Electrochemical degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments, 76, 440–446. doi:10.1016/j.dyepig.2006.09.013.

    Article  CAS  Google Scholar 

  • Felis, E., Marciocha, D., Surmacz-Gorska, J., & Miksch, K. (2007). Photochemical degradation of naproxen in the aquatic environment. Water Science and Technology, 55(12), 281–286. doi:10.2166/wst.2007.417.

    Article  CAS  Google Scholar 

  • Fockedey, E., & Van Lierde, A. (2002). Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Research, 36, 4169–4175. doi:10.1016/S0043-1354(02)00103-3.

    Article  CAS  Google Scholar 

  • Fung, P. C., Poon, C. S., Chu, C. W., & Tsui, S. M. (2001). Degradation kinetics of reactive dye by UV/H2O2/US process under continuous mode operation. Water Science and Technology, 44(6), 67–72.

    CAS  Google Scholar 

  • Gao, J., Yu, J., Lu, Q., He, X., Yang, W., Li, Y., et al. (2008). Decoloration of alizarin red S in aqueous solution by glow discharge electrolysis. Dyes and Pigments, 76, 47–52. doi:10.1016/j.dyepig.2006.08.033.

    Article  Google Scholar 

  • García, J. C., Oliveira, J. L., Silva, A. E. C., Oliveira, C. C., Nozaki, J., & de Souza, N. E. (2007). Comparative study of the degradation of real textile effluents by photocatalysis reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 147, 105–110. doi:10.1016/j.jhazmat.2006.12.053.

    Article  Google Scholar 

  • Giri, R. R., Ozaki, H., Ishida, T., Takanami, R., & Taniguchi, S. (2007). Synergy ozonation and photocatalysis to mineralize low concentration 2, 4-dichlorophenoxiacetic acid in aqueous solution. Chemosphere, 66, 1610–1617. doi:10.1016/j.chemosphere.2006.08.007.

    Article  CAS  Google Scholar 

  • Glaze, W. H., Kwang, J. W., & Chapin, D. H. (1987). Chemistry of water treatment process involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Technology, 9(4), 335–352.

    CAS  Google Scholar 

  • González, O., Sans, C., & Espulgas, S. (2007). Sulfamethoxazole abatement by photo-Fenton. Toxicity, inhibition and biodegradability assessment of intermediates. Journal of Hazardous Materials, 146, 459–464. doi:10.1016/j.jhazmat.2007.04.055.

    Article  Google Scholar 

  • Guittoneau, S., Duguet, J. P., Bonnel, C., & Dore, M. (1990). Oxidation of parachloronitrobenzene in dilute aqueous solution by O3 + UV and H2O2 + UV: a comparative study. Ozone Science and Engineering, 12, 73–94.

    Google Scholar 

  • Gutowska, A., Kaluzna-Czaplińska, J., & Jóźwiak, W. K. (2007). Degradation mechanism of Reactive Orange 113 dye by H2O2/Fe2+ and ozone in aqueous solution. Dyes and Pigments, 74, 41–46. doi:10.1016/j.dyepig.2006.01.008.

    Article  CAS  Google Scholar 

  • Haseneder, R., Fdez-Navamuel, B., & Härtel, G. (2007). Degradation of polyethylene glycol by Fenton reaction: a comparative study. Water Science and Technology, 55(12), 83–87. doi:10.2166/wst.2007.391.

    Article  CAS  Google Scholar 

  • He, Z., Song, S., Ying, H., Xu, L., & Chen, J. (2007). p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism. Ultrasonics Sonochemistry, 14, 568–574. doi:10.1016/j.ultsonch.2006.10.002.

    Article  CAS  Google Scholar 

  • Iskender, G., Sezer, A., Arslan-Alaton, I., Babuna, F. G., & Okay, O. S. (2007). Treatability of cefazolin antibiotic formulation effluent with O3 and O3/H2O2 processes. Water Science and Technology, 55(10), 217–225. doi:10.2166/wst.2007.325.

    Article  CAS  Google Scholar 

  • Jung, Y. T., Oh, B. S., Kang, J. W., Page, M. A., Phillips, M. J., & Mariñas, B. J. (2007). Control of disinfection and halogenated disinfection byproducts by the electrochemical process. Water Science and Technology, 55(12), 213–219. doi:10.2166/wst.2007.409.

    Article  CAS  Google Scholar 

  • Kröger, M., & Fels, G. (2007). Combined biological–chemical procedure for the mineralization of TNT. Biodegradation, 18, 413–425. doi:10.1007/s10532-006-9076-4.

    Article  Google Scholar 

  • Lau, T., & Graham, N. (2007). Degradation of the endocrine disruptor carbofuran by UV, O3 and O3/UV. Water Science and Technology, 55(12), 275–280. doi:10.2166/wst.2007.416.

    Article  CAS  Google Scholar 

  • Lee, C., Yoon, J., & Gunten, U. V. (2007). Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Research, 41, 581–590. doi:10.1016/j.watres.2006.10.033.

    Article  CAS  Google Scholar 

  • Lei, X., & Maekawa, T. (2007). Electrochemical treatment of anaerobic digestion effluent using a Ti/Pt–IrO2 electrode. Bioresource Technology, 98, 3521–3525. doi:10.1016/j.biortech.2006.11.018.

    Article  CAS  Google Scholar 

  • Lesko, T., Colussi, A. J., & Hoffmann, M. R. (2006). Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 40, 6818–6823. doi:10.1021/es052558i.

    Article  CAS  Google Scholar 

  • Li, X. Z., Zhao, B. X., & Wang, P. (2007). Degradation of 2, 4-dichlorophenol in aqueous solution by a hybrid oxidation process. Journal of Hazardous Materials, 147, 281–287. doi:10.1016/j.jhazmat.2006.12.077.

    Article  CAS  Google Scholar 

  • Mantzavinos, D., & Psillakis, E. (2004). Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 79(5), 431–454. doi:10.1002/jctb.1020.

    Article  CAS  Google Scholar 

  • Matheswaran, M., Balaji, S., Cheng, S. J., & Moon, I. S. (2007). Studies on cerium oxidation in catalytic ozonation process: a novel approach for organic mineralization. Catalysis Communications, 8, 1497–1501. doi:10.1016/j.catcom.2006.12.017.

    Article  CAS  Google Scholar 

  • Momani, F. A. (2007). Degradation of cyanobacteria anatoxin-a by advanced oxidation processes. Separation and Purification Technology, 57, 85–93. doi:10.1016/j.seppur.2007.03.008.

    Article  Google Scholar 

  • Moreno Escobar, B., Gomez Nieto, M. A., & Hontoria García, E. (2005). Simple tertiary treatment systems. Water Science and Technology: Water Supply, 5(3–4), 35–41.

    Google Scholar 

  • Muruganandham, M., Chen, S., & Wu, J. (2007). Mineralization of N-methyl-2-purolidone by advanced oxidation process. Separation and Purification Technology, 55, 360–367. doi:10.1016/j.seppur.2007.01.009.

    Article  CAS  Google Scholar 

  • Naffrechoux, E., Chanoux, S., Petrier, C., & Suptil, J. (2000). Sonochemical and photochemical oxidation of organic matter. Ultrasonics Sonochemistry, 7, 255–259. doi:10.1016/S1350-4177(00)00054-7.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., Sánchez Pérez, J. A., Maldonado, M. I., Gernjak, W., & Pérez Estrada, L. A. (2007). Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant. Water Science and Technology, 55(12), 229–235. doi:10.2166/wst.2007.411.

    Article  CAS  Google Scholar 

  • Peralta-Hernández, J. M., Meas-Vong, Y., Rodríguez, F. J., Chapman, T. W., Maldonado, M. I., & Godínez, L. A. (2008). Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decoloration and destruction of Orange II azo dye in dilute solution. Dyes and Pigments, 76, 656–662. doi:10.1016/j.dyepig.2007.01.001.

    Article  Google Scholar 

  • Peternel, I. T., Koprivanac, N., Lončarić Božić, A. M., & Kušić, H. M. (2007). Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials, 148, 477–484. doi:10.1016/j.jhazmat.2007.02.072.

    Article  CAS  Google Scholar 

  • Pirkanniemi, K. (2002). Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere, 48, 1047–1060. doi:10.1016/S0045-6535(02)00168-6.

    Article  CAS  Google Scholar 

  • Quiang, Z., Chang, J., & Huang, C. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36, 85–94. doi:10.1016/S0043-1354(01)00235-4.

    Article  Google Scholar 

  • Riga, A., Soutsas, K., Ntampegliotis, K., Karayannis, V., & Papapolymerou, G. (2007). Effect of system parameters and of inorganic salts on the decoloration and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination, 211, 72–86. doi:10.1016/j.desal.2006.04.082.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Méndez-Díaz, J., Sánchez-Polo, M., Ferro-García, M. A., & Bautista-Toledo, I. (2006). Removal of the surfactant sodium dodecylbenzensulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2. Water Research, 40, 1717–1725. doi:10.1016/j.watres.2006.02.015.

    Article  CAS  Google Scholar 

  • Rosenfeldt, E. J., Chen, P. J., Kullmanc, S., & Linden, K. G. (2007). Destruction of estrogenic activity in water using UV advanced oxidation. The Science of the Total Environment, 377, 105–113. doi:10.1016/j.scitotenv.2007.01.096.

    Article  CAS  Google Scholar 

  • Sharrer, M., & Summerfelt, S. (2007). Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquacultural Engineering, 37, 180–191. doi:10.1016/j.aquaeng.2007.05.001.

    Article  Google Scholar 

  • Shemer, H., & Narkis, N. (2005). Trihalomethanes aqueous solutions sono-oxidation. Water Research, 39, 2704–2710. doi:10.1016/j.watres.2005.04.043.

    Article  CAS  Google Scholar 

  • Shu, H. Y. (2006). Degradation of dyehouse effluent containing C. I. Direct Blue 199 by processes of ozonation, UV/H2O2 and sequence of ozonation with UV/H2O2. Journal of Hazardous Materials, 133, 92–98. doi:10.1016/j.jhazmat.2005.09.056.

    Article  CAS  Google Scholar 

  • Shu, H. Y., & Chang, M. C. (2005). Pre-ozonation coupled with UV/H2O2 process for the decoloration and mineralization of cotton dyeing effluent and synthesized C. I. Direct Black 22 wastewater. Journal of Hazardous Materials, 121, 127–133. doi:10.1016/j.jhazmat.2005.01.020.

    Article  CAS  Google Scholar 

  • Skoumal, M., Cabot, P. L., Centellas, F., Arias, C., Rodríguez, R. M., Garrido, J. A., et al. (2006). Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Applied Catalysis B Environmental, 66, 228–240. doi:10.1016/j.apcatb.2006.03.016.

    Article  CAS  Google Scholar 

  • Solar Platform at Almería (PSA). http://www.psa.es (accessed 15 May 2008).

  • Tanaka, K., Abe, K., & Hisanaga, T. (1996). Photocatalytic water treatment on immobilized TiO2 combined with ozonation. Journal of Photochemistry and Photobiology A Chemistry, 101, 85–87. doi:10.1016/S1010-6030(96)04393-6.

    Article  CAS  Google Scholar 

  • Thiruvenkatachari, R., Kwon, T. O., Jun, J. C., Balaji, S., Matheswaran, M., & Moon, I. S. (2007). Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA). Journal of Hazardous Materials, 142, 308–314. doi:10.1016/j.jhazmat.2006.08.023.

    Article  CAS  Google Scholar 

  • Tizaoui, C., Mansouri, L., & Bousselmi, L. (2007). Ozone catalysed with solids as an advanced oxidation process for landfill leachate treatment. Water Science and Technology, 55(12), 237–243. doi:10.2166/wst.2007.414.

    Article  CAS  Google Scholar 

  • Tong, S. P., Xie, D. M., Wei, H., & Liu, W. P. (2005). Degradation of sulfosalicylic effluents by O3/UV, O3/TiO2/UV, and O3/V-O/TiO2: a comparative study. Ozone Science and Engineering, 27(3), 233–238. doi:10.1080/01919510590945804.

    Article  CAS  Google Scholar 

  • Vogelpohl, A. (2007). Applications of AOPs in wastewater treatment. Water Science and Technology, 55(12), 207–211. doi:10.2166/wst.2007.408.

    Article  CAS  Google Scholar 

  • Walid, K. L., & Al-Qodah, Z. (2006). Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. Journal of Hazardous Materials, B137, 489–497.

    Google Scholar 

  • Walling, C. (1975). Fenton’s reagent revisited. Accounts of Chemical Research, 8, 125. doi:10.1021/ar50088a003.

    Article  CAS  Google Scholar 

  • Wu, C. H., Chang, C. L., & Kuo, C. Y. (2008). Decolorization of Porción Red MX-5B in electrocoagulation (EC), UV/TiO2 and ozone-related systems. Dyes and Pigments, 76, 187–194. doi:10.1016/j.dyepig.2006.08.017.

    Article  Google Scholar 

  • Wu, J., Muruganandham, M., & Chen, S. (2007). Degradation of DMSO by ozone-based advances oxidation processes. Journal of Hazardous Materials, 149, 218–225. doi:10.1016/j.jhazmat.2007.03.071.

    Article  CAS  Google Scholar 

  • Yeber, M. C., Rodríguez, J., Freer, J., Baeza, J., Durán, N., & Mansilla, H. D. (1999). Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere, 39(10), 1679–1688. doi:10.1016/S0045-6535(99)00068-5.

    Article  CAS  Google Scholar 

  • Yonar, T., Yonar, G. K., Kestioglu, K., & Azbar, N. (2005). Decolorisation of textile effluent using homogeneous photochemical oxidation processes. Coloration Technology, 121, 258–264. doi:10.1111/j.1478-4408.2005.tb00283.x.

    Article  CAS  Google Scholar 

  • Yunrui, Z., Wanpeng, Z., Fundog, L., Jianbing, W., & Shaoxia, Y. (2007). Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution. Chemosphere, 66, 145–150. doi:10.1016/j.chemosphere.2006.04.087.

    Article  Google Scholar 

  • Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145, 227–232. doi:10.1016/j.jhazmat.2006.11.016.

    Article  CAS  Google Scholar 

  • Zhou, M., Yu, Q., Lei, L., & Barton, G. (2007). Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology, 57, 380–387. doi:10.1016/j.seppur.2007.04.021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Poyatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poyatos, J.M., Muñio, M.M., Almecija, M.C. et al. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water Air Soil Pollut 205, 187–204 (2010). https://doi.org/10.1007/s11270-009-0065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0065-1

Keywords

Navigation