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Economists have studied the impact of immigration on a variety of host country out-

comes. For example, Card (2007) considers U.S. immigration’s impact on population

growth, skill composition, internal migration, wages, rents, taxes and the ethnic and

income composition of neighborhoods and schools. In contrast, the impact of immigra-

tion on innovation has received less attention. In addition to the direct contributions of

immigrants to research, immigration could boost innovation indirectly through positive

spill–overs on fellow researchers, the achievement of critical mass in specialized research

areas, and the provision of complementary skills such as management and entrepreneur-

ship. Some tantalizing facts hint at the possible importance of these effects for the United

States. Compared to a foreign–born population of 12% in 2000, 26% of U.S.–based Nobel

Prize recipients from 1990–2000 were immigrants (Peri 2007), as were 25% of founders of

public venture–backed U.S. companies in 1990–2005 (Anderson and Platzer 2006), and

founders of 25% of new high–tech companies with more than one million dollars in sales

in 2006 (Wadhwa et al. 2007). Immigrants are over–represented among members of the

National Academy of Sciences and the National Academy of Engineering, among authors

of highly–cited science and engineering journal articles, and among founders of bio–tech

companies undergoing IPOs (Stephan and Levin 2001). Kerr (2007) documents the surge

in the share of U.S. patents awarded to U.S.–based inventors with Chinese and Indian

names to 12% of the total by 2004, and Wadhwa et al. (2007) find that non–U.S. citizens

account for 24% of international patent applications from the United States.

The goal of our paper is to assess the impact of skilled immigration on innovation

as measured by U.S. patents. The purpose of studying patents is to gain insight into

technological progress, a driver of productivity growth and ultimately economic growth.

If immigrants increase patents per capita, they may increase output per capita and make

natives better off. This is an important consideration for the debate concerning how many

and what type of immigrants should be admitted to the United States, and particularly

for the discussion of the appropriate number of employer–sponsored H–1B visas for skilled

(especially science and engineering) workers. The context of the discussion is the shift from

European to low and middle–income source countries since the Immigration Act of 1965,
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and the concomitant faster increase in unskilled immigration than skilled immigration.

The share of skilled immigrants that are scientists and engineers will clearly be an

important determinant of the impact of skilled immigration on patenting. We therefore

begin by examining theoretically the conditions under which foreigners with science and

engineering education are more likely to move to the United States than other skilled

foreigners. We then use the 2003 National Survey of College Graduates (NSCG) to ex-

amine whether immigrants patent more than natives because they have higher ability or

merely more science and engineering education, and to gauge the impact of immigrants on

patents per capita under the assumption that immigrants do not influence the behavior

of natives or other immigrants.

In order to account for immigrants’ possible influence on natives or other immigrants,

we turn to a panel of U.S. states from 1950–2000, based on data from the U.S. Patent

and Trademark Office, the decennial censuses and other sources. We test whether skilled

immigrants crowd out skilled natives from the states (and occupations) to which they

move, and we provide estimates of skilled immigrants’ impact on patents per capita that

encompass both immigrants’ own patenting and any positive spill–overs immigrants might

have. To obtain the causal effect of immigrants despite their endogenous choice of des-

tination state, we difference the data across census years, and instrument the change in

the share of skilled immigrants in a state with the state’s initial share of immigrant high

school dropouts from Europe, China and India, the origin regions of at least 40% of skilled

immigrants throughout the period.

We contribute to two understudied areas, the impact of immigration on innovation

and the individual determinants of innovation, as well as to the study of the regional

determinants of innovation. Our work is also relevant for the macroeconomic growth

literature, where the link between innovation and the number of researchers is the key to

growth.1

We go beyond the most closely related paper linking immigration and innovation, Peri

(2007), by adding individual–level analysis, extending the state panel, using instrumental

1Aghion and Howitt (1992), Grossman and Helpman (1991a,b), Jones (1995), Romer (1990).
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variables, defining skilled immigration consistently across time and more broadly, and

testing for crowd–out of natives. These considerations also distinguish our paper from

the time–series analysis of Chellaraj, Maskus and Mattoo (2008). Both of these papers

find skilled immigration increases U.S. patenting. Our analysis is more general than

that of Stuen, Mobarak and Maskus (2007), who find that immigrant students increase

U.S. university patenting and science and engineering publishing. A related paper by

Niebuhr (2006) concludes that German regions with more diverse worker nationalities

(as measured by the Herfindahl index) patent more. The result is not robust to region

fixed effects, however, no doubt in part because she has only two years of data close

in time (1997 and 1999). Paserman (2008) finds no effect of skilled immigration on

Israeli manufacturing productivity. We are not aware of previous papers with regression

analysis of the individual determinants of patenting, though Morgan, Kruytbosch and

Kannankutty (2003) note in passing the immigrant advantage in patenting in the 1995

NSCG, and economic historians have studied the characteristics of nineteenth century

inventors (e.g. Khan and Sokoloff 1993).

There is a large literature on the regional determinants of patenting, but the analysis

relies primarily on cross–section variation or qualitative analysis. The literature considers

the effects of private and public R&D spending, the presence of a university, the presence of

small firms, the competitiveness of product markets, the presence of an airport, geographic

centrality, population density and size and the presence of skilled workers, especially

scientists and engineers.2 The most closely related paper (other than those by Peri and

Niebuhr) is by Zucker and Darby (2006): they pool data on Bureau of Economic Analysis

regions for 1981–2004, and find that non–university patenting is affected by neither the

presence of star scientists, a high wage (proxying for education) nor a high stock of relevant

journal publications (representing the stock of knowledge).3

2See, for example, Acs (2002), Bottazzi and Peri (2003), Hicks et al. (2001), and the papers in Acs et

al. (2002); Jaffe, Trajtenberg and Henderson (1993) and successor papers study geographic patterns of

patent citations.
3Other relevant papers include Agrawal, Kapur and McHale (2002), who find that emigration from

India reduces access to knowledge in India, Zucker et al. (2006), who examine the determinants of
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Our theoretical analysis shows that workers with science and engineering education are

more likely to emigrate than other (“professional”) skilled workers if the expected wage

premium commanded by professional over unskilled jobs in the destination is smaller

than the cost of adapting professional skills to the destination institutions. Our empirical

analysis of the NSCG data shows that immigrants account for 24% of patents, twice their

share in the population, and that the skilled immigrant patenting advantage over skilled

natives is entirely accounted for by immigrants’ disproportionately holding degrees in

science and engineering fields. The data imply that a one percentage point increase in

college–graduate immigrants’ share of the population increases patents per capita by 6%.

This could overestimate the contribution of immigrants, if immigrants crowd out na-

tives, but using the panel of states we show this does not happen. This is consistent with

Borjas (2006), who finds that immigrants do not crowd out natives as a whole from grad-

uate school. Instead, the state panel data show evidence of positive spill–overs of natives,

since the estimates of the immigrant impact on patents per capita are higher than in the

NSCG: a one percentage point rise in the share of immigrant college graduates in the

population increases patents per capita by about 15%. The state–level results mean that

the 1990–2000 increase in the population share of this group from 2.2% to 3.5% increased

patents per capita by about 20%. Consistent with the individual–level analysis, we find

that immigrants have more than double the impact on innovation that natives do. We

find that immigrants who are scientists and engineers or who have post–college education

boost patents per capita more than immigrant college graduates.

1 Theory

The share of skilled immigrants with science and engineering education will clearly be an

important determinant of the impact of skilled immigration on patenting. It is likely that

scientists and engineers are over–represented among migrants, since scientific and engi-

a region’s publications in nanotechnology, and Marx, Strumsky and Fleming (2007) and Stuart and

Sorenson (2003), who examine the effect of a state’s enforcing non–compete laws on inventor inter–firm

mobility and biotech IPOs respectively.

4



neering knowledge transfers easily across countries: it does not rely on institutional or

cultural knowledge, is not associated with occupations with strict licensing requirements

like medicine, and does not require the sophisticated language skills of a field like law.

Chiswick and Taengnoi (2007) show immigrants work in less language–intensive occupa-

tions than natives. In this section, we show under what conditions foreign scientists and

engineers are more likely to choose to migrate to the United States than other skilled

foreigners.

Immigration to the United States does not depend only upon the choices of poten-

tial immigrants, of course. U.S. employers and universities, for example, influence the

allocation of visas. Also, scientists and engineers might be common among immigrants

because market conditions in the sending countries lead a larger share of foreigners than

Americans to study science and engineering. Nevertheless, it is likely that self–selection

is in part responsible for the fact that skilled immigrants of all visa types are more likely

than skilled natives to have studied science and engineering (as shown by the NSCG).

We consider a world with two countries, the origin o and the potential destination

d, and three types of labor Lk: scientific labor Ls, professional labor Lp and unskilled

labor Lu. We assume that wages for each type of labor are higher in country d, so that

immigration goes in one direction only: wdk > wok for all k. The migration cost is Md

with a distribution g(Md) on [Md
L,M

d
H ]. The cost may vary for an individual for many

reasons such as relatives in the destination country, number of children, language skills,

adaptation capacity, etc.

Consider the decision of an origin worker to emigrate. If she chooses to stay in the

origin country, a worker of skill category k will receive a real net wage wok with certainty.

Workers of all three skill categories can find an unskilled job with certainty if they move

to country d, but professional migrants can only find a professional job in country d with

probability P d
pp, and scientific migrants can only find a scientific job with probability P d

ss

(and scientific workers cannot work as professionals and vice–versa). Moreover, while

scientific knowledge is equivalent in the two countries, a professional migrant needs to

adapt her skills at cost Cd
p > 0 in order to get a professional job in country d. Thus,
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P d
pp = 0 unless the worker adapts her skills.

We assume workers are risk neutral, have perfect access to credit, care only about

consumption, and therefore maximize the expected present value of lifetime income. The

expected wage of an worker in the origin country is

E[w|k] = P (emigrate to d)[E(wd|k)−Md|emigrate to d]+(1−P (emigrate to d))wok, (1)

where P (emigrate to d) is the probability of migration. Assuming that the worker prefers

the status quo in case of indifference, she will migrate if

E(wd|k)−Md > wok ⇐⇒ Γdk ≡ E(wd|k)− wok > Md. (2)

Thus, the worker will emigrate to country d with probability G(Γdk). The expected gain

from emigration to country d for unskilled workers is

Γdu = wdu − wou, (3)

for professional workers is

Γdp =

E[wd|k=p]︷ ︸︸ ︷
max{wdu, P d

ppw
d
p + (1− P d

pp)w
d
u − Cd

p}−wop

= wdu + max{0, P d
pp(w

d
p − wdu)− Cd

p} − wop (4)

= wdu − wou + max{0, P d
pp(w

d
p − wdu)− Cd

p} − wop + wou

= Γdu +max{0, P d
pp(w

d
p − wdu)︸ ︷︷ ︸

Expected productive skill premium in country d

−Cd
p}

︸ ︷︷ ︸
Net expected productive skill premium in country d

− (wop − wou)︸ ︷︷ ︸
Productive skill premium at home

,

and for scientific workers is

Γds =

E[wd|k=s]︷ ︸︸ ︷
P d
ssw

d
s + (1− P d

ss)w
d
u−wos

= wdu + P d
ss(w

d
s − wdu)− wos (5)

= wdu − wou + P d
ss(w

d
s − wdu)− wos + wou

= Γdu + P d
ss(w

d
s − wdu)︸ ︷︷ ︸

Net expected innovative skill premium in country d

− (wos − wou)︸ ︷︷ ︸
Innovative skill premium at home

.
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We assume that the cost of acquiring professional and scientific skills is the same, and

that the expected benefits must therefore be the same. If this were not the case, workers

in the origin country would all choose the more profitable skill category. This would

decrease the marginal value of labor of this category, and thus its wage, until equality was

attained again. Therefore, we have

G(Γds)E(Γds −Md|Md < Γds) + wos = G(Γdp)E(Γdp −Md|Md < Γdp) + wop, (6)

which can be rearranged as

G(Γds)E(Γds −Md|Md < Γds)−G(Γdp)E(Γdp −Md|Md < Γdp) = wop − wos . (7)

Let ϕ(Γdk) ≡ G(Γdk)E(Γdk −Md|Md < Γdk). Noting4 that
∂ϕ(Γd

k)

∂Γd
k
> 0 (strict inequality if

Γdk > IdL), we have that Γds −Γdp is of opposite sign from wos −wop. We can use this to show

that, under some conditions, we must have Γds > Γdp i.e. a greater return to migration for

scientific than professional workers.

Proposition 1. If wdu < wos, then a necessary condition that Γds > Γdp is

Ppp(w
d
p −wdu)−Cd

p <
1

G(Γdp)
[(wos −wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s −wdu)],

and a sufficient condition is

Cd
p > Ppp(w

d
p − wdu).

Proof. See the Appendix.

Focusing on the simpler sufficient condition, we see that for an origin country whose

scientific workers earn more at home than unskilled workers in the destination, scientific

workers have a larger expected gain from migration than professional workers if the skill

adaptation costs for professional migrants are larger than the expected professional skill

premium in the destination. Therefore, scientific workers are more likely to migrate than

professional workers. No correspondingly simple condition exists for the case of wdu > wos ,

4For the proof, see the Appendix.
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where unskilled workers in the destination earn more than scientific workers in the origin

country.5

2 Empirical methodology

We use individual–level data to measure and explain differences in patenting behavior

between immigrants and natives, and to gauge the contribution of immigrants to patenting

per capita under the assumption that immigrants do not affect the behavior of natives

or other immigrants. We then use state–level data to test for crowding out of natives by

immigrants, and to estimate the effect of immigrants on patenting per capita, including

any positive spill–overs.

2.1 Individual–level data

A measure of the increase in patenting per capita owing to skilled immigrants can be

calculated as follows. Let the skilled immigrant share of patents be α0 (we obtain this

value from the NSCG) and the skilled immigrant share of the population be α1 (we

obtain this value from the census). Let MS be the number of skilled immigrants and

PMS their patents. If the skilled immigrant share of the population increases by one

percentage point, the percent increase in skilled immigrants is ∆MS

MS = 1
α1

0.01
0.99−α1

, the

percent increase in the population is ∆MS

POP
= 0.01

0.99−α1
and the percent increase in patents

is ∆PMS

P
= 1

P
PMS

MS ∆MS = α0
∆MS

MS . The percent increase in patents per capita is therefore

1 + ∆PMS

P

1 + ∆MS

POP

− 1 = (0.01)
α0 − α1

α1(1− α1)
. (8)

We shall establish below that skilled immigrants patent more than skilled natives,

and that this difference is driven by the difference in patenting at all. For policy–makers

contemplating reducing skilled immigration and inducing more natives to study science

5In principle, we can maximize discounted lifetime income of workers in the origin country, taking

the migration option into account and assuming a distribution of the cost of skilled education relative to

unskilled education, and calculate the share of workers at each skill level, for migrants and non–migrants.

In practice, the resulting non–linear equations cannot be solved analytically.
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and engineering, it may be interesting to understand the reasons for the immigrant ad-

vantage. To explore these reasons, we estimate a probit for the probability of having a

patent granted, or the probability of commercializing or licensing a patent, weighted by

the survey weights:

P (patentj) = β0 + β1IMj +Xjβ2 + εj, (9)

where j indexes individuals and IM is a dummy for the foreign–born. The coefficient

of interest is β1. We are interested in how much of the raw patenting gap between

immigrants and natives (the value of β1 with no X covariates) can be explained by adding

the covariates X: field of study of the highest degree, the highest degree, and demographic

variables. We perform the regressions for three samples: college graduates, post–college

degree holders, and scientists and engineers.

2.2 State–level data

We supplement the analysis using a panel of U.S. states with decennial data from 1950–

2000. By extending the period of observation back to 1950, we are able to distinguish

long run and short run effects by differencing the data in lengths varying from ten to 50

years.6 We do not extend the data to prior decades as patenting in the years of the Great

Depression and the Second World War was probably atypical.

In order to obtain an estimate of the impact of immigrants on innovation that encom-

passes both their own inventions and any positive spill–over effects, we estimate

∆log
Pi,t+1

POPi,t+1

= γ0 + γ1∆ISit + γ2∆NS
it + ∆Xitγ3 + γ4Zi,1950 + µt + ∆ηit, (10)

where i indexes states, P is the number of patents, POP is state population, IS is

the share of the population or workforce (18–65) composed of skilled immigrants, NS

is the corresponding share for natives, Zi,1950 are characteristics of the state in 1950, X

are contemporaneous state characteristics and µt are year dummies. The coefficient of

interest is γ1, though its size relative to γ2 is also of interest. We also present results from

specifications where the dependent variable is not in logs.

6Strictly speaking, we should refer to low–frequency and high–frequency effects.
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We define a skilled person variously as one with a college degree or more, one with post–

college education, or one working in a science, engineering or computer science occupation.

We include characteristics of the state in 1950 (including land area), as the other covariates

do not appear to capture the convergence in patents per capita occurring over the time

period. The X covariates comprise the log of defense procurement spending and the log of

the average age of state residents (18–65). We deliberately do not include R&D spending,

as we believe this to instead be a potential outcome variable. We lead the dependent

variable by one year to allow for a year of research time between the change in the inputs

and the patent application, as anecdotal evidence suggests the lag can vary between a few

months and two years.

There were several major changes to the patent system between 1980 and 1998 (see

Hall 2005). One change led to a large increase in patenting in electrical engineering

relative to other fields. To capture potentially differential effects of this by state, we

include among the X’s the share of employment in electrical engineering–related fields in

1980, interacted with year dummies.7 We use state populations to weight the regressions,8

since in some small states one company drives the time series of patenting,9 and we cluster

standard errors by state to allow for serial correlation.

Because we account for state fixed effects by estimating equations differenced across

time, we elect not to include the change in the patent stock among the regressors as would

be suggested by patent models. Furthermore, because we analyze long–run changes, we

have chosen not to use a partial adjustment model.10

Equation (10) suffers from an endogeneity problem. Skilled workers are likely to

migrate to states which are growing or innovating, causing γ̂1 and γ̂2 to be biased upward

7We use 1980 values as electrical engineering employment was still tiny in most states in 1950–1970.
8Specifically, we weight by 1/(1/popi,t+1 + 1/popi,t−k+1), where k is the length of the difference.
9Idaho’s emergence as the state with most patents per capita has been driven by one semi–conductor

company, Micron Technology Inc., founded in 1978, which was granted 1643 patents in 2001 and was the

fourth–ranked company in this regard.
10We have estimated these models. The coefficient on the change in the stock of patents is close to

one, rendering all other coefficients insignificant, while the coefficient on the partial adjustment term is

insignificant.
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in least squares estimation. On the other hand, γ̂1 in particular could be biased towards

zero owing to measurement error.11 We use several sets of instruments to address these

problems for skilled immigrants. To instrument ∆IS = ISt − ISt−k, we use IHSDt−k , the

share of the population that is an immigrant high school dropout at time t − k, and

its square. The presence of immigrant high school dropouts in a state will mean the

existence of cultural amenities attractive also to skilled immigrants. On the other hand,

high school dropouts should play a minimal role in innovation, justifying their exclusion

from equation (10). A (preferred) variant of this instrument set is three variables for the

share of high school dropouts at t − k who were born in Europe, China and India, the

most common source regions for skilled immigrants. Alternatively, we use the values of

the variables at time t − k − 10 as instruments so as to be more confident that they are

unaffected by unobserved factors influencing the change in patenting between t − k and

t.12

We also use the state panel to test for crowd–out of natives, which if present would

bias upward the impacts calculated using both the individual–level and state–level data.

Natives may choose not to enter careers in science and engineering, or to work less, or to

avoid certain states, owing to competition from immigrants whose comparative advantage

is in less language–intensive and less institution–specific occupations. Any drop in native

inventors must be taken into account when calculating the net benefit of immigrants. We

test for crowd–out using the approach of Card (2005) by running the regression

∆Sit = δ0 + δ1∆ISit + δ2∆Ageit + µt + ∆νit, (11)

where S is the share of the population or workforce (aged 18–65) composed of skilled

natives and immigrants, IS is again the share of skilled immigrants, and Age is the

average age of the state’s population between 18 and 65. We control for the average age

11There is considerable measurement error for small states in the 1950 census, which was a smaller

sample than later years and which asked certain key questions of only one quarter of the sample. There

may also be measurement error for the share of immigrant scientists and engineers in all years.
12For ∆NS (native skilled workers), we have experimented unsuccessfully with lagged college enroll-

ments as an instrument. The enrollment data only begin in the 1970s in any case.
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of the state since birth cohort is the strongest determinant of schooling. If increases in

the skilled immigrant share translate into one for one increases in the total skilled share,

there is no crowd–out and δ̂1 = 1. Complete crowd–out would be represented by δ̂1 = 0,

while δ̂1 > 1 would indicate that skilled natives were attracted to states with many skilled

immigrants. Measurement error could cause δ̂1 to be biased towards zero.

It seems reasonable to think that the change in the share of less skilled immigrants

would affect the share of the population that is skilled. We therefore do not use the

instrumental variables described above which are based on shares of unskilled immigrants

(the instruments would be correlated with the error term), but rather extend the covariates

to include the change in the share of the population which is foreign–born with a high–

school degree or less.

3 Data and Descriptive Statistics

3.1 Individual–level data

We use the individual–level data from the 2003 National Survey of College Graduates

(NSCG). These data are a stratified random sample of people reporting having a bachelor’s

degree or higher on the long form of the 2000 census. In 2003, all respondents who had

ever worked were asked whether they had applied for a U.S. patent since October 1998,

whether they had been granted any U.S. patent since October 1998, and if so, how many,

and how many had been commercialized or licensed.13 The survey will not capture patents

by those with less than a college degree, but we assume that most patents are captured.

The Data Appendix provides more information on the NSCG. We include in our sample

respondents 65 or younger (the youngest respondent is 23, but few are younger than 26).

Immigrants are those born outside the United States.

We define three (not mutually exclusive) skill categories, motivated in part by con-

13Questions on patents were also asked in the 1995 NSCG, but only of respondents who said they

worked in research and development in the survey week, which will cause the patents of job changers to

be missed.
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sistency with categories that can be distinguished in the censuses: college graduates (i.e.

the full sample); holders of a post–college degree; and those working as scientists and

engineers in the survey week. Only 51% of respondents who had been granted a patent

reported working in a science or engineering occupation. Another 18% reported a man-

agement occupation: a research team’s manager is sometimes listed as a co–inventor on

a patent, and all inventors listed are captured in the data, and many inventors will have

been promoted to management since obtaining a patent. Science and engineering tech-

nicians represent 2.5% of patent holders, and respondents in health–related occupations

represent another 3.0%.

Table 1 shows details of how patenting varies by immigrant status for the three skill

groups. For college graduates (the whole sample, columns 1–2), 1.8% of immigrants were

granted patents compared to 0.9% of natives, a ratio of 2.0, and patents per capita were

0.054 for immigrants and 0.028 for natives, a ratio of 1.9. Immigrants therefore patent

at about twice the native rate, with the difference being principally in the probability of

patenting at all. Immigrants held a slightly smaller advantage in patents commercialized

or licensed, patents likely to benefit society more than others: 1.1% immigrants had

commercialized a patent compared to 0.6% for natives, and commercialized patents per

capita were 0.027 for immigrants and 0.017 for natives. The immigrant–native gap is

larger for the sample with post–college education (columns 3–4), but much smaller for

the sample working in science and engineering occupations (columns 5–6). For example,

6.1% immigrants in the latter sample had been granted a patent, compared to 4.9%

natives, and immigrants hold 1.32 times the patents per capita of natives. Appendix

Table 1 contains the means of variables used in the regression analysis below.

3.2 State–level data

The patent data used in the state–level analysis come from the U.S. Patent and Trademark

Office (USPTO). Patents are attributed to states based on the home address of the first

inventor on the patent. We merge a series based on electronic data from 1963 onwards
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with a series from paper records for 1883–1976 (see the Data Appendix for the merging

procedure). Patents are classified according to application (filing) date. Figure 1 shows

the evolution of total patents and patents per 100,000 residents from 1951-2001, our

principal study period.

In Figure 2 we use patent data from 1929 to 2001 to display the long–run convergence

across states in patenting, as measured by changes in the (unweighted) standard deviation

of log patents. The convergence in patents, shown by the downward slope of the top line, is

not merely a function of convergence in population, as is demonstrated by the convergence

in patents per capita (bottom line). However, there is divergence in patents per capita

from 1990–2001, and there have historically been other periods of divergence. California

is a force for divergence, as may be seen by the growing gap between the inequality of

state patent counts (top line) and the inequality of counts without California (middle

line).14

We have also used an extract from the Harvard Business School patent data file,

which contains information on patents granted from 1975 to 2007, arranged by year of

application and patent class.15 We have aggregated the patent classes to six categories

using the classification of Hall, Jaffe and Trajtenberg (2001) and our own classification of

patent classes created since 1999. The extract contains the number of citations made to

patents in each patent class, state and application year. These may be viewed as a proxy

for the quality of the patent. We analyze 1971–2001 data using this extract (see the Data

Appendix for how we approximate 1971 values).

To compute the shares of the population in various education and occupation classes,

to divide these into immigrant and native, to calculate the average age of the state’s

population and to obtain weekly wages, we use the IPUMS microdata of the decen-

nial censuses. We base most calculations on the population or workforce aged 18–65.

Post–college education is the highest education level that can be measured consistently

throughout 1950–2000. We define immigrants to be the foreign born. Information for

14Papers such as Co et al. (2006) have previously noted cross–state convergence in patents per capita.
15We are very grateful to Bill Kerr for making this extract for us.
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Alaska and Hawaii is not available in 1950.

The variable means for the full 1950–2000 sample, weighted by population, are re-

ported in Table 2. Between 1950 and 2000, the share of the population 18–65 composed

of immigrants with college education or more increased eightfold to 3.5%, while the equiv-

alent share for post–college increased eightfold to 1.6%. The population shares comprising

natives with at least college and with post–college increased from 6.2% to 20.0% and from

2.3% to 7.7% respectively. The share of workers composed of immigrant scientists and

engineers multiplied ninefold to 0.9%, while the native share rose from 1.2% to 3.5%. The

Appendix Table 2 contains the means of the variables used as instruments.

4 Results

4.1 Individual determinants of patenting

The NSCG data may be used to estimate the direct effect of immigration on patenting,

ignoring possible crowd–out or spill–over effects, using (8). Immigrants hold 24.2% of

patents in the (weighted) data (α0 = 0.242), and in the 2000 census (the basis of the

NSCG sampling frame), college–graduate immigrants were 3.5% of the U.S. population

(α1 = 0.035). A one percentage point rise in the share of college immigrants in the

population therefore implies an increase in patents per capita of 0.061, or 6.1%. The same

exercise may be performed for natives, with the result that a one percentage point rise in

the share of college natives increases patents per capita by 3.5%. As immigrants with post–

college education have 2.0 (=0.108/0.054) times as many patents per capita as immigrants

with only a college degree (see Table 1), the direct impact of an extra percentage point

of post–college immigrants in the population is likely to be 2.0 times higher, or an extra

2.0×6.1 = 12.2%. Similarly, the contribution of an additional percentage point immigrant

scientists and engineers is likely to be 3.2× 6.1 = 19.5%.

To assess the reasons for the immigrant patenting superiority, we first observe that

in Table 1 immigrants’ patenting advantage over natives is much smaller in the scientist

and engineer sample (columns 5 and 6) than in the overall sample (columns 1 and 2).
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This suggests that immigrants’ advantage is due in large part to a greater science and

engineering orientation. Table 3 lends further support to this. Column 1 shows that, for

the whole sample, 6.6% of those with a highest degree in physical science and 6.0% of those

with a highest degree in engineering had patented, far ahead of other fields. Column 2

shows a qualitatively similar picture for commercialized or licensed patents. Immigrants’

education is therefore well–suited to patenting, since columns 3 and 4 show that the share

of immigrants with physical science and engineering degrees is more than twice as high

as for natives.

In Table 4, we pursue this explanation with the aid of a probit for the probability of

patenting. Column 1 shows that immigrants are 0.9 percentage points more likely to have

been granted a patent in the sample of college graduates (top panel), 2.1 percentage points

more likely in the sample of post–college educated (second panel) and 1.2 percentage

points more likely in the sample of scientists and engineers (third panel). In the second

column, we control for 30 dummies for the field of study of the highest degree obtained

by the respondent. For all three samples, the gap becomes small and insignificant (5–

7% of the original size for college and post–college graduates). In the third column,

we control for the highest degree obtained by the respondent. For college graduates and

scientists and engineers, the direction of the gap is reversed: immigrants are a statistically

significant 0.9–1.0 percentage points less likely to patent than natives. Controlling for

age, age squared, sex and current employment status in column 4 changes little. Skilled

immigrants’ advantage is therefore entirely due to the nature of their education, and not

to any selection on unobservables such as ability.16 In columns 5 and 6 we show that

the same conclusions may be drawn for the probability of commercializing or licensing a

patent.

16It is possible that unobservable effects cancel out e.g. immigrants may have higher ability but lower

quality education.
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4.2 Crowd–out

To test for crowd–out, we estimate equation (11). The results with college or more as an

indicator of skill are reported in Panel A of Table 5. Column 1 shows that with weighted

least squares and ten–year differences, a one percentage point increase in the share of the

population that is immigrant college graduates only increases the overall share of college

graduates by 0.51 percentage points. This indicates crowd–out, though the coefficient

is not statistically significantly different from one. As we increase the length of the

differences, evidence of crowd–out disappears: the coefficient is 0.75 for 30–year differences

in column 2, and 0.95 for 50–year differences in column 3. In columns 4–6, we report the

corresponding results after controlling for the change in the share of the population which

is foreign–born with a high–school diploma or less. This addition increases the coefficient

on the change in skilled immigration to 0.79 for ten–year differences (column 4), and

to 1.2 for 30 and 50–year differences (columns 5 and 6), with none of the coefficients

significantly different from one. The specifications of columns 4–6 are preferred to those

of columns 1–3, so the preferred point estimates indicate at most about 20% crowd–out.

In panel B, we repeat the regressions using post–college education as the measure

of skill. The coefficients in all columns are significantly greater than one, suggesting

that skilled natives are attracted to states (or education levels) with many immigrants.

In panel C, we repeat the regressions using the share of workers who are scientists and

engineers. The coefficients indicate no (columns 1 and 3–6) or little (column 2) crowd–out,

with none of the point estimates significantly different from one.

We have repeated all the regressions including dummies for seven BEA regions and the

results change little, except that the coefficient when skill is measured by a college degree

falls back to 0.55 for ten–year differences (the coefficient is 0.92 for the unreported 20–year

differences). In summary, with the exception of one coefficient, there is no evidence of

crowd–out, and for post–graduates it appears that natives attract immigrants.
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4.3 State determinants of patenting

In Table 6, we estimate the state determinants of patenting using differences of different

lengths, with a college degree as the measure of skill. In columns 1–4 the dependent

variable is the log of patents per capita. The coefficients on the share of immigrant

college graduates are positive and significant. In columns 1–3, where we use weighted

least squares, a one percentage point increase in the share of the population composed

of immigrant college graduates is associated with an 11–12% increase in patenting for

ten and 30 year differences, and a 15.6 log point (17%) increase for 50 year differences.

These effects are larger than the 6% impact calculated based on the NSCG data, implying

positive spill–over effects of immigrants.

In column 4, we present the results of instrumenting the ten–year change in skilled

immigrant share with the share of European, Chinese and Indian high–school dropouts

at t− 10 (the initial year of the pair of years differenced). The coefficient on the change

in the immigrant share is a statistically significant 17.7, and larger than its least squares

counterpart of 11.4 in column 1 (though not statistically significantly so). This may

indicate that in least squares, measurement error’s bias towards zero is more important

than upward bias due to the endogenous location choice of immigrants, a possibility

mooted by Card and DiNardo (2000) in a similar context. Another possibility is that the

instrumental variables estimators place more weight on later years of the sample when

the effects seem to be higher. It seems less likely that skilled immigrants whose behavior

is affected by the instrument (skilled immigrants whose location decision is affected by

the presence of other immigrants) are more inventive than other immigrants. We do

not present instrumental variables estimates for longer differences for this or most later

specifications: results are generally similar for 20–year differences, whereas for 30–50 year

differences the instruments are not strong in the first stage.

In columns 5–7 the dependent variable is simply the change in patents per capita (in

these columns the coefficients are multiplied by 100). The least squares effects for ten and

50–year differences are similar: a one percentage point increase in the skilled immigrant
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share is associated with a 0.000039 increase in patents per capita, which is a 17% increase

compared to the mean. The corresponding impact for the unreported 30–year differences

is 13%, so the results are similar to those of the log specification in columns 1–3. The

instrumental variables coefficient in column 7 is larger than its least squares counterpart

in column 5, but insignificant. The skilled immigrant coefficients in columns 5–7 are not

very sensitive to the covariates included, while the results in columns 1–4 are much smaller

if the 1950 covariates (and land area) are not included.

By contrast, most of the coefficients on the change in the share of native college grad-

uates are small and insignificant. The point estimate increases as the difference length

increases, and for 50–year differences the coefficient is a significant 6.7 in column 3 (about

half the immigrant effect, as in the NSCG). As the share of native college graduates

changes only gradually (i.e. at low frequency), the absence of significance at short differ-

ences probably reflects the emphasis of short differences on high–frequency events (Baker,

Benjamin and Stanger 1999). The coefficient suggests that skilled natives too have posi-

tive spill–overs, as the effect of a one percentage point increase in their population share

based on the NSCG data was 3.5%.

Older populations appear to be more innovative, as indicated by the positive coeffi-

cients on the average age of the state in the log specifications of columns 1–4. This may

reflect the importance of management or other skills complementary to innovation. As

suggested by time series work in Griliches (1990), Department of Defense procurement

spending lowers patenting in the log specifications, presumably in part because military

invention is primarily protected by secrecy rather than patents. Finally, the importance

of the 1950 conditions (and land area) increases with the difference length.

These regressions are repeated in Table 7 with post–college education (panel A) and

a science and engineering occupation (panel B) as measures of skill. The least squares

coefficients for immigrant post–college range from 17–27 in columns 1–3, where the de-

pendent variable is in logs. These estimates are almost twice as high as for immigrant

college graduates in Table 6, consistent with the NSCG data. The ten–year difference

instrumental variables coefficient in column 4 is higher, at 38.1, but statistically insignif-
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icant. The coefficients in columns 5–6 are insignificant, but are also about double their

counterparts in Table 6. The instrumental variables coefficient in column 7 is larger than

its least squares counterpart in column 5, but also insignificant. The coefficients on the

share of native post–college educated are never statistically significant, though the point

estimates are higher for the longer differences. The immigrant/native ratio at 50–year

differences is 2.8–3.3, compared to 3.0 in the NSCG.

In panel B, the coefficients are significant in all columns for immigrants and most

columns for natives, and are larger than for the other skill groups. For immigrants in

columns 1–3, a one percentage point increase raises patents by 48–59 log points, or 62–

80%. Unlike for college graduates and post–college educated, the instrumental variables

estimates (columns 4 and 7) are fairly similar to the least squares estimates (columns 1

and 5). The coefficients are high compared with the direct NSCG effect of about 19.5%

and compared with that of natives at 50–year differences (29 log points), given that in the

NSCG the immigrant patenting advantage over natives was only 32% amongst scientists

and engineers. However, the discrepancy is smaller in the specification we present below

as our preferred specification.

We have repeated all the least squares regressions of Tables 6 and 7, splitting the

skilled natives according to whether they lived in the state of their birth or not (these

results are not reported). For short differences, the coefficients on the change in the share

of both skilled native groups are small, for all three skill measures. As the difference

length increases, it is the coefficient on the change in the share of skilled natives born in

another state that increases.

In Table 8 we present various alternative estimates of the effects of skilled immigrants,

concentrating on the college–educated and the scientists and engineers, on ten-year dif-

ferences, and on the log specification (results without logs display similar patterns). We

report only the coefficient on the change in the skilled immigrant share, each from a differ-

ent regression. In the first row, we reproduce the baseline least squares and instrumental

variables results from Tables 6 and 7. In the next three rows, we vary the instruments

used. In the second row we use as instruments the shares of the population composed of
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European, Chinese and Indian high school dropouts at t − 20, instead of at t − 10 as in

the baseline. The resulting coefficients are slightly larger than the baseline instrumental

variables coefficients, which in turn were higher than the least squares results. In rows 3

and 4, we use as instruments the share of all foreign–born high school dropouts and its

square, at t − 10, and at t − 20. With these instruments, the point estimates are quite

similar to the baseline least squares results for college graduates, but for scientists and

engineers are slightly higher than the baseline instrumental variables results.

In the next two rows we experiment with adding covariates. In row 5 we allow for

(seven) BEA–region specific trends in patents per capita. This reduces the coefficients to

68–84% of the magnitudes of the baseline row and renders them statistically insignificant,

though the least squares coefficients are significant at the 10% level. In row 6, we add

instead the interactions of the 1980 share of employment in electrical engineering–related

sectors interacted with year dummies. This yields estimates that are also lower than

those in the baseline row, though generally statistically significant, this time 79–86% of

the baseline magnitudes.

In row 7 we investigate the influence of California in the baseline specification by

dropping that state. This reduces the estimates greatly. Finally, we assess the robustness

to dropping the 1990–2000 differences (while retaining California), using the baseline

specification. This causes the weighted least squares coefficients to become much smaller

and insignificant, with point estimates of 6.5 and 21.2 in columns 1 and 3. However,

for the college educated, the larger instrumental variables estimate of 12.5 is statistically

significant in column 2. Instrumental variables point estimates are also much larger than

least squares estimates for scientists and engineers. The sensitivity to the dropping of

the year 2000 is present at all lengths of differences (these results are not reported). The

coefficient on the change in the share of skilled natives, by contrast, is not greatly affected

by the dropping of the year 2000 (these results are also not reported). The influence of the

year 2000 for immigrants reflects either a genuine change in the effect (perhaps caused by

an increase in the quality of skilled immigrants through the expansion of the H–1B cap),

reduced measurement error owing to larger numbers of skilled immigrants in the census,
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or the presence of a confounding factor correlated with increases in skilled immigrants in

the 1990s. The results are not sensitive to the dropping of the 1980–1990 changes (these

results are not reported).

Our preferred specification is the instrumental variables specification of row 6 in Ta-

ble 8, which includes controls for the importance of electrical engineering in the state

economy: instrumental variables estimation is preferred to least squares, the instrument

using specific ethnicities is preferred to the instrument based on the share of all immi-

grant dropouts, and some controls for what is driving the growth in patents in recent

years are desirable. A similar justification could be made for the specification of row 5,

where regional trends are accounted for (and the results are similar to those of row 6).

The preferred specifications mean that a one percentage point rise in the share of immi-

grant college graduates increases patenting per capita by 14 log points (15%), the same

rise in the share of immigrant scientists and engineers increases patenting per capita by

45 log points (57%), and the same rise in the share of immigrant post–college educated

increases patenting per capita by 27 log points (31%; this coefficient is not reported in

the table). These effects imply large spill–overs, as they are considerably larger than the

impacts calculated with the individual data of 6%, 12% and 19.5% for a one percentage

point increase in immigrant college graduates, post–college graduates and scientists and

engineers respectively.

In Table 9 we investigate further using the Harvard Business School patent data for

1971–2001. We report only the coefficient on the change in the skilled immigrant share,

each from a different regression, with log patents per capita as the dependent variable.

In the odd columns we use the preferred instrumental variables specification of row 6 in

Table 8, while in the even columns we use the 20–year difference counterpart, as these

results are more statistically significant. In row 1, we repeat the row 6 Table 8 regressions

with the reduced number of years available, to serve as a benchmark: the results are

similar. In row 2, we use patent citations, or quality–adjusted patents, instead of patent

counts. The point estimates do fall slightly: immigrants are slightly less beneficial than

they appear from the raw patent counts. This is consistent with the NSCG there was a
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slightly lower immigrant patenting advantage for commercialized or licensed patents than

for all patents (see Table 1).

In the remaining rows 3–8, we examine patent counts for six different categories of

patent. Splitting patents into categories increases the standard errors considerably, and

most coefficients are insignificant. However, the the results do suggest a large impact

of skilled immigrants on computer and communications patents (row 3), and no positive

impact on drug and medical patents (row 5) and “other” patents (row 8).

5 Conclusions

In this paper we have combined individual and aggregate data to demonstrate the im-

portant boost to innovation provided by skilled immigration to the United States in

1950–2000. A calculation for 1990–2000 puts the magnitudes of the effects in context.

The 1.3 percentage point increase in the share of the population composed of immigrant

college graduates increased patenting per capita by about 20%.17 The 0.7 percentage

point increase in the share of post–college immigrants increased patenting per capita by

about 21%18, and the 0.45 percentage point increase in immigrant scientists and engi-

neers increased patenting per capita by about 22%.19 These impacts include the positive

spill–overs of skilled immigrants, which are a substantial share of the total impact: calcu-

lations based on individual–level data of the impacts without spill–overs suggest impacts

of about 8–9% for all three skill groups.20 We do not find evidence that immigrants crowd

out natives from certain occupations or states.

We find that a college graduate immigrant contributes at least twice as much to

patenting as his or her native counterpart. The difference is fully explained by the greater

share of immigrants with science and engineering education, implying immigrants are

not innately more able than natives. Indeed, immigrants are less likely to have patented

1714× 1.3 = 18.2 log points= 20%.
1827× 0.7 = 18.9 log points= 21%.
1945× 0.45 = 20.3 log points= 22%.
206.1%× 1.3 = 7.9%; 12.2%× 0.7 = 8.5%; 19.5%× 0.45 = 8.8%
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recently than observably similar native scientists and engineers. Despite this, the fact

that immigrants increase patenting per capita without reducing native patenting shows

that their presence in the United States provides a previously undocumented benefit to

natives, assuming the immigrants would have been less innovative or less able to commer-

cialize their innovation elsewhere or that U.S. natives benefit more from innovation and

commercialization in the United States than abroad.

If natives are making optimal career decisions, subsidies to induce them to enter sci-

ence and engineering in greater numbers would not be beneficial even if the marginal

native had higher patenting ability than immigrants in science and engineering. Policies

to encourage natives to enter science and engineering are warranted only if they address

obstacles to optimal decision–making, such as a lack of information about available ca-

reers, inadequate primary and secondary education or excessively high discount rates.

The results do not make clear precisely which immigration policies are appropriate to

take advantage of the contributions of immigrants demonstrated in the paper. While

allocating more visas based on whether the applicant has studied science or engineering

may seem appealing, such a policy ignores potential benefits of immigrants without a

science or engineering background. Furthermore, admitting scientists and engineers on

work visas should be weighed against an alternative of admitting foreign students to study

science and engineering at U.S. universities.
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Appendix

A.1 Proof of Proposition 1

Proposition 1. If wdu < wos, then a necessary condition that Γds > Γdp is

Ppp(w
d
p −wdu)−Cd

p <
1

G(Γdp)
[(wos −wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s −wdu)],

and a sufficient condition is
Cd
p > Ppp(w

d
p − wdu).

Proof. This is a proof by contradiction. First, replace (4) and (5) in (6). This gives

G(Γds)[Γ
d
u + Pss(w

d
s − wdu)− (wos − wou)− E(Md|Md < Γds)] + wos =

G(Γdp)[Γ
d
u + max{0, Ppp(wdp − wdu)− Cd

p} − (wop − wou)− E(Md|Md < Γdp)] + wop.

Using (3) and rearranging, we get

G(Γds)[w
d
u + Pss(w

d
s − wdu] + [1−G(Γds)]w

o
s − φ(Γds) =

G(Γdp)[w
d
u + max{0, Ppp(wdp − wdu)− Cd

p}] + [1−G(Γdp)]w
o
p − φ(Γdp),

where
φ(Γdk) ≡ G(Γdk)E(Md|Md < Γdk).

Also, using the Fundamental Theorem of Calculus, we have that
∂φ(Γd

k)

∂Γd
k
> 0.

Adding and subtracting G(Γdp)w
o
s on the right side and rearranging gives

(wdu − wos)[G(Γds)−G(Γdp)] = (wop − wos)[1−G(Γdp)] + φ(Γds)− φ(Γdp)

+G(Γdp) max{0, Ppp(wdp − wdu)− Cd
p} −G(Γds)Pss(w

d
s − wdu).

Now, suppose that wdu < wos and Γdp > Γds. We have that the left side of the equation is
positive, since G(�) is a density function, so it is increasing. Now, let us look at the right
side of the equation. We have:

(wop − wos)︸ ︷︷ ︸
60, since Γd

p>Γd
s

[1−G(Γdp)]︸ ︷︷ ︸
>0, since G(�) is a density︸ ︷︷ ︸
60

+φ(Γds)− φ(Γdp)︸ ︷︷ ︸
60, since Γd

p>Γd
s

+G(Γdp) max{0, Ppp(wdp − wdu)− Cd
p} −G(Γds)Pss(w

d
s − wdu)︸ ︷︷ ︸

<0, else, no one wants skilled job

.
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Therefore, the right side is negative if

max{0, Ppp(wdp − wdu)− Cd
p} <

1

G(Γdp)
[(wos − wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s − wdu)]︸ ︷︷ ︸

>0

.

Thus, a necessary condition to have the right side negative is

Ppp(w
d
p −wdu)−Cd

p <
1

G(Γdp)
[(wos −wop)[1−G(Γdp)] + φ(Γdp)− φ(Γds) +G(Γds)Pss(w

d
s −wdu)],

and a sufficient condition is
Cd
p > Ppp(w

d
p − wdu).

Under these conditions, we get a contradiction, since the left side is strictly positive,
but the right side is negative. As long as either of these conditions holds, we must have
Γdp < Γds if wdu < wos .

A.2 Proof that ∂ϕ(Γd
k)/∂Γd

k ≥ 0

Proof. We will show that ∂ϕ(Γdk)/∂Γdk ≥ 0 with strict inequality if Γdk > Md
L, where Md

L

is the lower bound on immigration cost. First, note that

ϕ(Γdk) = G(Γdk)E(Γdk −Md|Md < Γdk) =

∫ Γd
k

Md
L

(Γdk −Md)g(Md)dMd

= Γdk

∫ Γd
k

Md
L

g(Md)dMd

︸ ︷︷ ︸
G(Γd

k)

−
∫ Γd

k

Md
L

Mdg(Md)dMd

︸ ︷︷ ︸
φ

∂ϕ(Γdk)/∂Γk = G(Γdk) + Γkg(Γdk)− ∂φ/∂Γdk︸ ︷︷ ︸
=Γkg(Γ

d
k) using Fundamental Theorem of Calculus

= G(Γdk) ≥ 0, since G(.) is a density function
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Data Appendix

B.1 National Survey of College Graduates

The data were collected between October 2003 and August 2004 by the U.S. Bureau of
the Census, on behalf of the National Science Foundation. The data consist of a stratified
random sample of people reporting having a bachelor’s degree or higher on the long form
of the (April) 2000 census, who were under age 76 and living in the United States or its
territories including Puerto Rico in the reference week of October 1, 2003. Immigrants
are those born outside the United States. Missing information is imputed with a hot deck
procedure, and imputed values are not flagged. More information on the data is provided
at www.nsf.gov/statistics/showsrvy.cfm?srvy CatID=3&srvy Seri=7#fn1. The data are
available at www.nsf.gov/statistics/sestat/.

B.2 Patents

We combine two patent series from the U.S. Patent and Trademark Office. The first
series was compiled for me by the USPTO based on their electronic records which begin
in 1963. This series is utility patents by state and year of application. Year of application
is preferred to year of grant as it is a more accurate match to the time of invention. The
second series (U.S. Department of Commerce 1977) is from paper–based USPTO records
of patents by state and grant year 1883–1976 (application year is not available pre–1963).
Grants lag applications by a median of three years between 1950 and 1963 (according
to my US–wide calculations based on Lexis–Nexis), so we lead this series three years.
Patents grants are also more volatile than patent applications (Hall 2005), so we smooth
the series with a three year moving average. Finally, because for 1930–1960 plants and
designs cannot be separated from utility patents, we leave them in for the whole series,
calculate by state the average percent gap in the overlap years of the two series (18% on
average), and reduce the old series by this percent. We then merge the series, using the
adjusted paper series values only for pre–1963. The USPTO attributes a patent to a state
according to the home address of the first–listed inventor.

We have also used an extract from the Harvard Business School patent data file, which
contains information on utility patents granted from 1975 to 2007, arranged by year of
application and patent class. We have aggregated the patent classes to six categories
using the classification in Hall, Jaffe and Trajtenberg (2001) and our own classification
of patent classes created since 1999. In particular, we attribute classes 506 and 977 to
chemical patents; classes 398, 701–720, 725 and 726 to computers and communication
patents; and classes 901 and 903 to mechanical patents. We have not been able to find
definitions for some patent classes created in 2006 or later (which affects some patents
applied for in earlier years), and a small number of patents have a missing patent class.
For the application years we used, 0.04% of patents are not allocated to one of our six
categories. To examine patents by category, we have simply attributed 1974 values (most
patents granted in 1975 were applied for in 1974 or earlier) to 1971, then used 1971, 1981,
1991 and 2001 patent values, and 1970, 1980, 1990 and 2000 values for the dependent
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variables. Some small states do not have patents in every category in every year, and in
the analysis of log patents these observations are missing.

The extract also contains the number of citations made to patents in each patent
class, state and application year. These may be viewed as a proxy for the quality of the
patent. We calculate citations per patent from 1974 onwards for each state. We then run
a regression of this ratio on a trend for each state from 1974–1980, and use the resulting
coefficient to predict the 1971 value of citations per patent for each state. We then return
to our original, longer patent series obtained directly from the USPTO, and multiply the
patents by the ratio for 1971 onwards. We can then study citations, or quality–adjusted
patents, for 1971, 1981, 1991 and 2001.

B.3 Immigration, education, age, occupation, labor force status

We use extracts from the Integrated Public Use Microdata Series for the United States
Census, available at usa.ipums.org/usa/, and aggregate to the state level using the weights
provided. Variables computed as shares (other than the excluded instruments) are com-
puted as shares of the population or workers aged 18–65, and average population age is
the average age of people aged 18–65. Immigrants are people born outside the United
States. We use the census–provided edurec variable to identify college graduates (16 years
of education or more in the 1950–1980 censuses, and a college or higher degree in the 1990
and 2000 censuses) and high–school dropouts (11 or fewer years of education). People
with post–college education are people with 17 or more years of education in the 1950–
1980 censuses, and a post–college degree in 1990 and 2000. This is the highest level of
education that can be distinguished for the whole 1950–2000 period. We use the 1940
census to compute lagged instruments. Alaska and Hawaii are not in the 1940 and 1950
IPUMS. The SIC codes we count as electrical engineering are 321, 322, 342, 350, 371, 372.

B.4 Other data

We use Bureau of Economic Analysis data for total state population (used to weight the
regressions) and for state personal income per capita (available from 1929 onwards, unlike
gross state product which is not available for my whole period). The data are available
at www.bea.gov/regional/spi/.

Department of Defense procurement contracts by state are available on paper for the
early years in Prime Contract Awards by State, Fiscal Years 1951–1978, published by the
Department of Defense, OASD (Comptroller), Directorate for Information Operations
and Control. The later years are available online at www.fpds.gov. Some measurement
error in the attribution to states is involved, as recipient firms may subcontract the work
to firms in other states. Also, in the electronic records for 1978–1983, 1986 and 1989 (of
which only 1980 is relevant for the paper), the California numbers seem to be too small by
a factor of 1000, so we have multiplied them by 1000. (We have obtained scanned versions
of the paper documents for these years: the values for the non–problematic states and
years are only approximately the same as those online, but the problematic California
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years are indeed about 1000 times higher than the online version.)
We obtain the land area of each state from the US. Census Bureau at

www.census.gov/population/censusdata/90den stco.txt.
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Table 1: Patenting by immigrant status 
 
 (1) (2) (3) (4) (5) (6) 
 College graduates Post-college graduates Scientists and 

engineers 
 Immigrant Native Immigrant Native Immigrant Native 
Any patent granted 0.018 0.009 0.034 0.013 0.061 0.049 
Number patents 
granted 

0.054 0.028 0.108 0.036 0.174 0.132 

Any patent 
commercialized 

0.011 0.006 0.020 0.008 0.036 0.030 

Number patents 
commercialized 

0.027 0.017 0.052 0.019 0.082 0.074 

Share immigrant 0.144 0.166 0.245 
Observations 21,248 71,304 12,042 30,460 6840 15,519 
 
Notes: Shares weighted with survey weights. Patents questions only asked of respondents who had 
ever worked. Whether a patent has been granted refers to period from October 1998 to the survey 
in 2003, and whether a patent has been commercialized or licensed refers to those patents granted in 
the same period.  
 
Source: 2003 National Survey of College Graduates. 



Table 2: Means of aggregate patents and aggregate variables affecting patenting 
 
 1950-2000 1950 2000 
Patents/population, x100 0.023 

(0.015) 
0.018 

(0.011) 
0.035 

(0.020) 
Share of population 18-65 that is:    
     Immigrant, college education and above 0.016 0.004 0.035 
     Native, college education and above 0.136 0.062 0.200 
     Immigrant, post-college education 0.008 0.002 0.016 
     Native, post-college education 0.054 0.023 0.077 
Share of workers 18-65 that are:    
     Immigrant, scientists and engineers 0.004 0.001 0.009 
     Native, scientists and engineers 0.024 0.012 0.035 
Population (millions) 9.7 

(7.8) 
6.2 

(4.3) 
12.5 

(10.1) 
Age of population 18-65 38.8 

(1.0) 
38.7 
(0.9) 

39.5 
(0.6) 

DoD prime military procurement contracts 
(millions of nominal $) 

3221 
(4379) 

1500 
(1679) 

5499 
(5799) 

State personal income per capita (nominal $) 13,160 
(11005) 

1504 
(317) 

29,845 
(4080) 

Land area (millions of square kilometers) 0.193 
(0.171) 

0.174 
(0.152) 

0.209 
(0.183) 

Observations 304 49 51 
 
Notes: Means of state-level variables, weighted by state population the year after the census. Patents 
and population are led by one year. Census information is not available for Alaska and Hawaii in 
1950. Patents are classified by year filed. 
 
Sources:  
Education, age, occupation, nativity: U.S. Census Bureau, IPUMS decennial census microdata 
usa.ipums.org/usa/ 
Patents: U.S. Patent and Trademark Office, electronic and paper data. 
State income, population: Bureau of Economic Analysis www.bea.gov/regional/spi/ 
Land Area: U.S. Census Bureau www.census.gov/population/censusdata/90den_stco.txt 
 



Table 3: Patenting by field of study and field of study by immigrant status, college graduates 
 
 (1) (2) (3) (4) 
 
Field of highest degree 

Any patent 
granted 

Any patent 
commercialized 

Share 
immigrants 

Share natives 

Computer science, math 0.017 0.012 0.076 0.036 
Biological, agricultural and 
environment sciences 

0.023 0.011 0.056 0.040 

Physical sciences 0.066 0.038 0.035 0.017 
Social and related sciences 0.004 0.002 0.091 0.108 
Engineering 0.060 0.042 0.132 0.053 
Other S&E (mainly health) 0.007 0.004 0.164 0.121 
Non-S&E 0.004 0.002 0.446 0.624 
All fields 0.011 0.007 1.00 1.00 
 
Notes: Shares weighted by survey weights. “S&E” means science and engineering. Full sample (i.e. 
college graduates), 92,552 observations. Whether a patent has been granted refers to period from 
October 1998 to the survey in 2003, and whether a patent has been commercialized or licensed 
refers to those patents granted in the same period. 
 
Source: 2003 National Survey of College Graduates. 
 

 



Table 4: Effect of immigrant status on patenting 
 
 (1) (2) (3) (4) (5) (6) 
 Any patent granted? Any patent 

commercialized? 
College graduates 0.0089 

(0.0009) 
0.0006 

(0.0005) 
-0.0009 
(0.0004) 

-0.0006 
(0.0003) 

0.0055 
(0.0007) 

-0.0005 
(0.0003) 

     Pseudo-R2 0.01 0.15 0.19 0.21 0.01 0.18 
Post-college 
graduates 

0.0214 
(0.0018) 

0.0012 
(0.0007) 

0.0003 
(0.0006) 

0.0004 
(0.0005) 

0.0127 
(0.0014) 

0.0001 
(0.0004) 

     Pseudo-R2 0.02 0.21 0.24 0.26 0.02 0.21 
Scientists and 
engineers 

0.0117 
(0.0038) 

0.0020 
(0.0030) 

-0.0101 
(0.0026) 

-0.0080 
(0.0026) 

0.0054 
(0.0030) 

-0.0056 
(0.0020) 

     Pseudo-R2 0.00 0.08 0.12 0.13 0.00 0.09 
Major field of 
highest degree 

-- Y Y Y -- Y 

Highest degree -- -- Y Y -- Y 
Age, age2, sex, 
employed 

-- -- -- Y -- -- 

 
Notes: Marginal effect on dummy for foreign-born from weighted probits.  There are 92,552 
observations in the college graduate sample, 42,502 in the post-college sample and 22,359 in the 
scientist and engineer sample. All scientists and engineers are employed in the reference week. Post-
college degrees include master’s (including MBA), PhD and professional. There are 30 major field of 
study dummies (we combine the two S&E teacher training categories into one). Standard errors are in 
parentheses. 
 



 Table 5: Crowd-out - effect of change in immigrant skilled share on change in total skilled share  
 
 (1) (2) (3) (4) (5) (6) 
 Basic specification Control for less skilled immigration 

Difference: 10 year 30 year 50 year 10 year 30 year 50 year 
Panel A: Immigrant college+ as share of population    
Δ % Immigrant 0.51 

(0.32) 
[0.13] 

0.75 
(0.38) 
[0.52] 

0.95 
(0.35) 
[0.88] 

0.79 
(0.24) 
[0.39] 

1.22 
(0.27) 
[0.42] 

1.23 
(0.29) 
[0.44] 

R-squared 0.69 0.52 0.33 0.72 0.63 0.50 
Panel B: Immigrant post-college as share of population    
Δ % Immigrant 1.42 

(0.25) 
[0.11] 

1.50 
(0.48) 
[0.30] 

1.88 
(0.33) 
[0.01] 

1.74 
(0.16) 
[0.00] 

2.02 
(0.23) 
[0.00] 

2.08 
(0.23) 
[0.00] 

R-squared 0.80 0.38 0.58 0.84 0.60 0.75 
Panel C: Immigrant scientists and engineers as share of workers   
Δ % Immigrant  1.01 

(0.29) 
[0.98] 

0.79 
(0.35) 
[0.56] 

1.37 
(0.34) 
[0.27] 

1.13 
(0.25) 
[0.61] 

1.10 
(0.33) 
[0.76] 

1.51 
(0.38) 
[0.19] 

R-squared 0.74 0.42 0.45 0.74 0.46 0.48 
Observations 253 151 49 253 151 49 
 
Notes: The dependent variable is the change in the share of skilled people across periods ranging 
from ten to 50 years: in panel A skilled people are college graduates (as a share of the population), in 
panel B post-college educated (as a share of the population), in panel C scientists and engineers (as a 
share of workers). Regressions are weighted with weights 1/(1/popt+1/popt-k), where k is equal to 
10 in columns 1 and 4, 30 in columns 2 and 5, and 50 in columns 3 and 6. All regressions also 
include change in average age and (except columns 3 and 6) year dummies. Regressions in columns 
4-6 include the change in the share of immigrants with high school education or less as a share of 
the population. Standard errors clustered by state are in parentheses. P-value of the test that the 
coefficient is equal to one is in square brackets. 



Table 6: Effect of share of immigrant college graduates on patents per capita 
 
 (1) (2) (3) (4) (5) (6) (7) 
 Δ Log patents per capita Δ Patents per capita 

 Weighted least squares IV Weighted LS IV 
Difference: 10 year 30 year 50 year 10 year 10 year 50 year 10 year 

Δ % Immigrant college+ 
as share of population 

11.4 
(4.1) 

11.7 
(3.0) 

15.6 
(4.8) 

17.7 
(7.6) 
[16] 

0.389 
(0.173) 

0.387 
(0.186) 

0.688 
(0.389) 

[16] 
Δ % Native college+  
as share of population 

2.1 
(2.4) 

5.0 
(2.0) 

6.7 
(2.6) 

3.3 
(2.0) 

-0.007 
(0.115) 

0.173 
(0.106) 

0.050 
(0.087) 

Δ Age (average) 0.119 
(0.031) 

0.147 
(0.049) 

0.088 
(0.109) 

0.120 
(0.032) 

0.0023 
(0.0013) 

-0.0019 
(0.0032) 

0.0022 
(0.0014) 

Δ DoD procurement 
(log) 

-0.031 
(0.016) 

-0.090 
(0.034) 

-0.063 
(0.074) 

-0.039 
(0.019) 

-0.0009 
(0.0008) 

-0.0001 
(0.0024) 

-0.0013 
(0.0009) 

Land area (log) 0.071 
(0.012) 

0.207 
(0.033) 

0.404 
(0.086) 

0.078 
(0.013) 

0.0020 
(0.0005) 

0.0101 
(0.0024) 

0.0023 
(0.0006) 

Population 1950 (log) -0.049 
(0.015) 

-0.174 
(0.035) 

-0.300 
(0.087) 

-0.059 
(0.015) 

-0.0015 
0.0007) 

-0.0076 
(0.0041) 

-0.0020 
(0.0007) 

State personal income 
per capita 1950 (log) 

-0.184 
(0.076) 

-0.814 
(0.174) 

-1.483 
(0.387) 

-0.251 
(0.083) 

0.0031 
(0.0025) 

-0.0031 
(0.0114) 

0.0001 
(0.0033) 

R-squared 0.64 0.57 0.57 -- 0.47 0.34 -- 
Observations 253 151 49 253 253 49 253 
 
Notes: The dependent variable is the difference in (log) patents per capita across periods ranging 
from ten to 50 years, with a lead of one year compared to the independent variables. Weighted least 
squares (columns 1-3, 5-6) or instrumental variables (columns 4 and 7) with weights 
1/(1/popt+1+1/popt-k+1), where k the length of the difference. Regressions in columns 1,2,4, 5 and 7 
include year dummies. The instrumented variable is the change in the share of immigrant college 
graduates; the instruments are three variables for the share of high school dropouts in the 
population at time t-10 from Europe, China and India. F-statistic for test of joint significance of 
excluded instruments in the first stage in brackets. Standard errors clustered by state are in 
parentheses. Coefficients in columns 5-7 are multiplied by 100. 
 



Table 7: Effect of immigrant post-college and scientist and engineer shares on patents per capita 
 
 (1) (2) (3) (4) (5) (6) (7) 
 Δ Log patents per capita Δ Patents per capita 

 Weighted least squares IV Weighted LS IV 
Difference: 10 year 30 year 50 year 10 year 10 year 50 year 10 year 

Panel A: Immigrant post-college as share of population 
Δ % Immigrant 17.7 

(11.1) 
21.4 
(8.2) 

27.4 
(11.5) 

38.1 
(21.9) 
[16] 

0.756 
(0.526) 

0.657 
(0.481) 

1.733 
(1.160) 

[16] 
Δ % Native  -1.2 

(3.3) 
1.3 

(4.4) 
9.9 

(6.8) 
-2.2 
(3.6) 

-0.079 
(0.148) 

0.197 
(0.289) 

-0.125 
(0.172) 

R-squared 0.63 0.52 0.52 -- 0.46 0.29 -- 
Panel B: Immigrant scientists and engineers as share of workers 
Δ % Immigrant 48.7 

(20.7) 
48.6 

(16.1) 
59.2 

(15.8) 
53.6 

(25.1) 
[6] 

2.393 
(1.017) 

1.934 
(0.717) 

2.263 
(1.188) 

[6] 
Δ % Native 11.8 

(5.3) 
20.8 
(6.9) 

29.5 
(7.8) 

11.7 
(5.3) 

0.231 
(0.237) 

0.866 
(0.287) 

0.233 
(0.241) 

R-squared 0.68 0.59 0.67 -- 0.55 0.48 -- 
Observations 253 151 49 253 253 49 253 
 
Notes: The dependent variable is the difference in (log) patents per capita across periods ranging 
from ten to 50 years, with a lead of one year compared to the independent variables. Weighted least 
squares (columns 1-3, 5-6) or instrumental variables (columns 4 and 7) with weights 
1/(1/popt+1+1/popt-k+1), where k is equal to the difference length. All regressions include the 
covariates of Table 6. The instrumented variable is the change in the share of skilled immigrants; the 
instruments are three variables for the share of high school dropouts in the population at time t-10 
from Europe, China and India. F-statistic for test of joint significance of excluded instruments in the 
first stage in brackets. Standard errors clustered by state are in parentheses. Coefficients in columns 
4-6 are multiplied by 100. 
 



Table 8: Effect of skilled immigration on patents per capita - specification checks 
 
 (1) (2) (3) (4) 
 Δ Log patents per capita, 10-year differences 

Skilled group: College graduates Scientists and engineers 
Δ % Immigrant WLS IV WLS IV 
1. Base specifications 
(Tables 6,7) 

11.4 
(4.1) 

17.7 
(7.6) 
[16] 

48.7 
(20.7) 

53.6 
(25.1) 

[6] 
2. Instrument is % population which is 
European, Chinese, Indian-born high 
school dropouts at t-20 

-- 23.1 
(8.4) 
[10] 

-- 56.5 
(23.8) 
[10] 

3. Instrument is % population which is 
foreign-born high school dropout at t-10, 
and its square 

-- 10.4 
(6.2) 
[28] 

-- 58.8 
(22.7) 
[15] 

4. Instrument is % population which is 
foreign-born high school dropout at t-20, 
and its square 

-- 10.6 
(7.9) 
[17] 

-- 60.5 
(30.7) 

[5] 
5. Covariates include BEA region dummies 
 

8.1 
(4.4) 

13.6 
(9.5) 
[24] 

40.8 
(24.1) 

36.3 
(30.3) 

[7] 
6. Covariates include % workers in 
electrical sectors 1980*year dummies 

9.8 
(4.0) 

14.0 
(5.9) 
[14] 

41.5 
(18.1) 

44.5 
(23.1) 

[5] 
7. Sample without California 
(248 obs) 

7.4 
(3.9) 

6.9 
(5.0) 
[19] 

17.4 
(12.4) 

7.0 
(20.1) 

[6] 
8. Sample without year 2000 
(202 obs) 

6.5 
(3.4) 

12.5 
(4.7) 
[23] 

21.2 
(16.4) 

72.2 
(41.7) 

[5] 
 
Notes: Each coefficient reported is the effect of a change in skilled immigrant share from a different 
regression. The dependent variable is the difference in (log) patents across ten years, with a lead of 
one year compared to the independent variables. Weighted least squares (columns 1 and 3) or 
instrumental variables (columns 2 and 4) with weights 1/(1/popt+1+1/popt-9). The instruments are 
three variables for the share of high school dropouts in the population at time t-10 from Europe, 
China and India unless otherwise specified. F-statistic for test of joint significance of excluded 
instruments in the first stage in brackets. All regressions also include the covariates of Table 6 
including the appropriate differenced share of skilled natives. Standard errors clustered by state are 
in parentheses. 253 observations unless otherwise noted.  



Table 9: Effect of skilled immigration on patent citations per capita and patents by type 1970-2000 
 
 (1) (2) (3) (4) (5) (6) 

 Δ Log patents per capita, instrumental variables 
Skilled group: College graduates Post-college Scientists/engineers 

Difference: 10 year 20 year 10 year 20 year 10 year 20 year 
1. Patents 13.5 

(6.5) 
18.0 
(3.7) 

20.6 
(16.0) 

38.6 
(12.9) 

40.2 
(23.9) 

54.5 
(21.1) 

2. Patent citations  
   

7.4 
(8.0) 

12.2 
(4.7) 

15.5 
(21.0) 

22.0 
(11.6) 

34.5 
(26.2) 

45.9 
(20.6) 

3. Computer and  
   communications patents 

21.8 
(11.7) 

35.4 
(9.9) 

23.1 
(26.9) 

80.7 
(28.7) 

35.0 
(34.4) 

63.1 
(35.5) 

4. Electrical and  
    electronic patents 

17.5 
(10.5) 

16.8 
(7.6) 

26.2 
(23.1) 

37.0 
(21.6) 

25.8 
(36.9) 

45.7 
(31.4) 

5. Drug and medical 
     patents 

3.2 
(12.7) 

-0.9 
(11.8) 

-19.1 
(28.4) 

-27.7 
(33.2) 

-0.7 
(35.0) 

12.7 
(39.7) 

6. Chemical patents 9.1 
(8.8) 

17.3 
(7.9) 

0.7 
(19.9) 

31.2 
(20.8) 

1.0 
(29.4) 

28.0 
(25.0) 

7. Mechanical patents 1.3 
(5.7) 

11.1 
(7.7) 

-5.8 
(12.9) 

32.4 
(23.3) 

-1.8 
(19.5) 

16.7 
(15.8) 

8. Other patents -4.6 
(3.3) 

0.2 
(4.1) 

-15.4 
(7.50) 

-6.2 
(11.9) 

-25.1 
(12.8) 

-20.1 
(13.0) 

First stage F-statistic for 
excluded instruments 

7 9 10 7 6 8 

Observations  
(rows 1,2,7,8) 

153 102 153 102 153 102 

 
Notes: Each coefficient reported is the effect of a change in skilled immigrant share from a different 
regression. The dependent variable is the difference in log patents per capita across ten or twenty 
years, or log of patent citations per capita, with a lead of one year compared to the independent 
variables. Weighted instrumental variables for 1970-2000 with weights 1/(1/popt+1+1/popt-k+1), 
where k the length of the difference. All regressions include the share of employment in electrical 
sectors in 1980 interacted with year dummies and the other covariates included in Table 6. The 
instrumented variable is the change in the share of skilled immigrants; the instruments are three 
variables for the share of high school dropouts in the population at time t-10 from Europe, China 
and India. Standard errors clustered by state are in parentheses. Observations for ten and twenty 
year differences are 141 and 95 for computer patents, 149 and 99 for electrical patents, 150 and 99 
for drug patents, and 150 and 100 for chemical patents.  



Appendix Table 1: Means of individual-level variables 
 
 College graduates Post-college Scientists/engineers 
 Immigrant Native Immigrant Native Immigrant Native 
Highest degree:       
   Bachelor’s 0.58 0.65 -- -- 0.44 0.68 
   Master’s 0.28 0.26 0.66 0.74 0.39 0.26 
   Doctorate 0.07 0.03 0.17 0.08 0.16 0.06 
   Professional 0.07 0.06 0.17 0.17 0.01 0.01 
Field of highest degree      
   Computer  
   science, math 

0.076 0.036 0.091 0.027 0.219 0.168 

   Biological, agri- 
   cultural, environ- 
   ment science 

0.056 0.040 0.061 0.030 0.092 0.093 

   Physical science 0.035 0.017 0.044 0.017 0.077 0.072 
   Social science 0.091 0.108 0.069 0.078 0.026 0.046 
   Engineering 0.132 0.053 0.131 0.037 0.397 0.321 
   Other S&E  0.164 0.121 0.199 0.157 0.069 0.058 
   Non-S&E 0.446 0.624 0.406 0.653 0.120 0.243 
Sex (female) 0.48 0.50 0.43 0.49 0.24 0.23 
Age  43.4 

(9.9) 
44.7 

(10.3) 
43.8 
(9.9) 

46.6 
(10.3) 

40.4 
(9.0) 

42.4 
(9.5) 

Employed 0.86 0.85 0.89 0.87 1.00 1.00 
Observations 21,248 71,304 12,042 30,460 6840 15,519 
 
Notes: Means weighted with survey weights. S&E means science and engineering. “Other S&E” 
includes the social sciences. 
 
Source: National Survey of College Graduates 



Appendix Table 2: Means of aggregate instruments for change in skilled immigrant share 
 
 1950-2000 1950 2000 
Share of population 18-65 that is:    
     Immigrant, high school dropouts 0.041 0.066 0.046 
Share of population 18+ that is:    
     European-born, high school dropouts 0.023 0.067 0.004 
     Chinese-born, high school dropouts 0.0008 0.0006 0.0013 
     Indian-born, high school dropouts 0.0002 0.0000 0.0006 
Observations 304 49 51 
 
Notes: Means of state-level variables, weighted by state population. Census information is not 
available for Alaska and Hawaii in 1950.  
 
Source:  U.S. Census Bureau, IPUMS decennial census microdata usa.ipums.org/usa/ 



Patents

Patents

Patents per 100,000

Patents per 100,000

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

Patents per 100,000 residents

Pa
te

nt
s 

pe
r 1

00
,0

00
 re

sid
en

ts

0

0

20000

20000

40000

40000

60000

60000

80000

80000

100000

100000

Number of patents

Nu
m

be
r o

f p
at

en
ts

1950

1950

1960

1960

1970

1970

1980

1980

1990

1990

2000

2000

Year (Application Date)

Year (Application Date)

Source: USPTO, BEA and author's calculations

Source: USPTO, BEA and author's calculations

Figure 1: U.S. Origin U.S. Patents 1951-2001
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Figure 2: Convergence in Patenting Across States 1929-2001
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