Abstract
The growth curve is an important characteristic to estimate microalgae biomass production for biofuel generation, since they can measure the variation between concentrations of limiting factors of culture medium. Therefore, this work aimed to evaluate the development of Chlorella vulgaris with triplicate cultivation of three different concentrations of nitrogen and phosphorus (Treatment 1: 0.50 g L−1 Ca(NO3)2·4H2O and 0.13 g L−1 KH2PO4, Treatment 2: 0.50 g L−1 Ca(NO3)2·4H2O and 0.39 g L−1 KH2PO4, Treatment 3: 1.50 g L−1 Ca(NO3)2·4H2O and 0.13 g L−1 KH2PO4,). Growth curve using Gompertz model presented high R2 (0.96 ≤ R2 ≤ 0.99) in the three studied treatments. In the thirteenth day, turbidity in the treatment with higher nitrogen concentration (203.67 NTU) was 2.15 times higher than the first treatment (94.56 NTU) and 1.78 times higher than the treatment with higher level of phosphorus (113.9 NTU). We therefore observed a major biomass production, chlorophylls and carotenoids in the treatment with higher concentration of nitrogen, while in high levels of phosphorus the growth is not statistically significant from the first treatment with lower nitrogen and phosphorus concentration (p value > 0.05). In the end of cultivation, there was an increase of 203.12% in chlorophyll-a in the third treatment compared to the first treatment and of 246.42% in comparison with the second treatment. For carotenoids, the highest increase was seen compared to the first treatment (192%) than for the second treatment (137.5%). Therefore the treatment with lower phosphorous concentration in the cultivation medium presented slightly higher chlorophyll concentration and smaller carotenoids with the treatment with higher phosphorus concentration. The ash content demonstrated that this microalgae have a great potential for energy use.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Machado, I.M., Atsumi, S.: Cyanobacterial biofuel production. J. Biotechnol. 162(1), 50–56 (2012)
Rodionova, M.V., Poudyal, R.S., Tiwari, I., Voloshin, R.A., Zharmukhamedov, S.K., Nam, H.G., et al.: Biofuel production: challenges and opportunities. Int. J. Hydrogen Energy 42(12), 8450–8461 (2017)
Hossain, N., Mahlia, T.M.I., Saidur, R.: Latest development in microalgae-biofuel production with nano-additives. Biotechnol. Biofuels 12(1), 1–16 (2019)
Chen, H., Wang, X., Wang, Q.: Microalgal biofuels in China: the past, progress and prospects. GCB Bioenergy 12(12), 1044–1065 (2020)
Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C., Pugazhendhi, A.: Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci. Total Environ. 808, 151969 (2022)
Peralta-Yahya, P.P., Keasling, J.D.: Advanced biofuel production in microbes. Biotechnol. J. 5(2), 147–162 (2010)
Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841–846 (2006)
Sousa-Aguiar, E.F., Appel, L.G., Bicudo, A.A., Fonseca, I., Fraga, A.C., Zonetti, P.C.: Some important catalytic challenges in the bioethanol integrated biorefinery. Catal. Today 234, 13–23 (2014)
Moshood, T.D., Nawanir, G., Mahmud, F.: Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Chall. 5, 100207 (2021)
Wojciechowski, J., Straube, A., Cavalcante, K.P., Miranda, F.E.: Isolamento e Cultivo de Microalga (Microalgae Isolation and Cultivation). Univerdade Federal do Paraná, Curitiba (2013)
Nagappan, S., Devendran, S., Tsai, P.C., Dahms, H.U., Ponnusamy, V.K.: Potential of two-stage cultivation in microalgae biofuel production. Fuel 252, 339–349 (2019)
Salama, E.S., Govindwar, S.P., Khandare, R.V., Roh, H.S., Jeon, B.H., Li, X.: Can omics approaches improve microalgal biofuels under abiotic stress? Trends Plant Sci. 24(7), 611–624 (2019)
Han, W., Jin, W., Li, Z., Wei, Y., He, Z., Chen, C., et al.: Cultivation of microalgae for lipid production using municipal wastewater. Process Saf. Environ. Prot. 155, 155–165 (2021)
Pugazhendhi, A., Nagappan, S., Bhosale, R.R., Tsai, P.C., Natarajan, S., Devendran, S., et al.: Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel—a review. Sci. Total Environ. 749, 142218 (2020)
Correa, D.F., Beyer, H.L., Possingham, H.P., Thomas-Hall, S.R., Schenk, P.M.: Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy 11(8), 914–929 (2019)
Suparmaniam, U., Lam, M.K., Uemura, Y., Lim, J.W., Lee, K.T., Shuit, S.H.: Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew. Sustain. Energy Rev. 115, 109361 (2019)
Jaiswal, K.K., Banerjee, I., Singh, D., Sajwan, P., Chhetri, V.: Ecological stress stimulus to improve microalgae biofuel generation: a review. Octa J. Biosci. 8, 48–54 (2020)
Parente, E.S.: Biodiesel: uma aventura tecnológica num país engraçado (Biodiesel: a technological adventure in a funny country). Editora Tecbio, Fortaleza (2003)
Andrade, D.S., Filho, A.C.: Microalgas de águas continentais (Microalgae of continental waters). Londrina: IAPAR. v.3 (2014)
Sforza, E., Pastore, M., Spagni, A., Bertucco, A.: Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. Environ. Sci. Pollut. Res. 25(28), 28004–28014 (2018)
Romero-Martínez, L., Moreno-Andrés, J., Acevedo-Merino, A., Nebot, E.: Photocatalytic inactivation of microalgae: efficacy and cell damage evaluation by growth curves modeling. J. Appl. Phycol. 31(3), 1835–1843 (2019)
González, J.F., Cuello, T.B., Calderón, A.J., Calderón, M., González, J., Carmona, D.: Cultivation of autochthonous microalgae for biomass feedstock: Growth curves and biomass characterization for their use in biorefinery products. Energies 14(15), 4567 (2021)
Islam, Z., Khatoon, H., Minhaz, T.M., Rahman, M.R., Hasan, S., Mahmud, Y., et al.: Data on growth, productivity, pigments and proximate composition of indigenous marine microalgae isolated from Cox’s Bazar Coast. Data Brief 35, 106860 (2021)
Chuka-ogwude, D., Ogbonna, J.C., Moheimani, N.R.: Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate. Algal Res. 60, 102509 (2021)
Hermadi, I., Setiadianto, I.R., Al Zahran, D.F.I., Simbolon, M.N., Saefurahman, G., Wibawa, D.S., Arkeman, Y.: Development of smart algae pond system for microalgae biomass production. In: IOP Conference Series: Earth and Environmental Science, vol. 749(1), p. 012068). IOP Publishing (2021)
Thoré, E.S., Schoeters, F., Spit, J., Van Miert, S.: Real-time monitoring of microalgal biomass in pilot-scale photobioreactors using nephelometry. Processes 9(9), 1530 (2021)
Franco, A.L.C., Lôbo, I.P., Almeida J.A.N., Cruz, R.S., Menezes, R.S., Teixeira, C.M.L.L.: Biodiesel de microalgas: avanços e desafios (Microalgae Biofuel: advances and challenges). Química Nova (2013)
Lourenço, S.O.: Cultivo de Microalgas Marinhas (Cultivation of marine microalgae). 1. ed. São Carlos: RIMA (2006)
Leite, L.S., Hoffmann, M.T., Daniel, L.A.: Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J. Water Process Eng. 31, 100821 (2019)
Khanzada, Z.T.: Phosphorus removal from landfill leachate by microalgae. Biotechnol. Rep. 25, e00419 (2020)
Wu, Y.H., Hu, H.Y., Yu, Y., Zhang, T.Y., Zhu, S.F., Zhuang, L.L., Zhang, X., Lu, Y.: Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew. Sustain. Energy Rev. 33, 675–688 (2014)
Fadeyi, O., Dzantor, K., Adeleke, E.: Assessment of biomass productivities of Chlorella vulgaris and Scenedesmus obliquus in defined media and municipal wastewater at varying concentration of nitrogen. J. Water Resour. Prot. 8(2), 217–225 (2016)
Arabian, D.: Investigation of Effective Parameters on the Productivity of Biomass and Bio-cement as a Soil Improver from Chlorella vulgaris. Geomicrobiol. J. (2022). https://doi.org/10.1080/01490451.2022.2078445
Osorio, J.H.M., Del Mondo, A., Pinto, G., Pollio, A., Frunzo, L., Lens, P.N.L., Esposito, G.: Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Sci. Technol. 80(10), 1832–1843 (2019)
Martins, C.F., Trevisi, P., Coelho, D.F., Correa, F., Ribeiro, D.M., Alfaia, C.M., et al.: Influence of Chlorella vulgaris on growth, digestibility and gut morphology and microbiota of weaned piglet. Sci. Rep. 12(1), 1–12 (2022)
Ren, H., Zhu, G., Ni, J., Shen, M., Show, P.L., Sun, F.F.: Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy. Chemosphere 307, 135533 (2022)
El-Naggar, N.E.A., Hussein, M.H., Shaaban-Dessuuki, S.A., et al.: Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep. 10, 3011 (2020). https://doi.org/10.1038/s41598-020-59945-w
Lee, R.: Phycology, 4th edn. United States of America by Cambridge University Press, New York (2008)
Dalal, S.R., Hussein, M.H., El-Naggar, N.E.A., Mostafa, S.I., Shaaban-Dessuuki, S.A.: Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Sci. Rep. 11(1), 1–17 (2021)
Watanabe, A.: List of algal strains in collection at the institute of applied microbiology, University of Tokyo. J. Gen. Appl. Microbiol. 6, 283–292 (1960)
He, Q., Yang, H., Hu, C., Wu, L.: Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Biores. Technol. 191, 219–228 (2015)
He, Q., Yang, H., Wu, L., Hu, C.: Effect of light intensity o physiological changes, carbon allocation and neutral lipid accumulation in oleginous microalgae. Biores. Technol. 191, 219–228 (2015)
Wychen, S.V., Laurens, L.M.L.: Summative Mass Analysis of Algal Biomass—Integration of Analytical Procedures. National Renewable Energy Laboratory, Golden (2013)
Souza, G.S.: Introdução aos modelos de regressão linear e não-linear (Introduction to linear and non-linear regression models). Brasília: Embrapa- SPI/Embrapa-SEA, 489 (1998)
Flores, G., Rodriguez-Mata, A.E., Amabilis-Sosa, L.E., Gonzalez-Huitron, V.A., Hernández-González, O., Lopéz-Peréz, P.A.: A turbidity sensor development based on NL-PI observers: experimental application to the control of a Sinaloa’s River Spirulina maxima cultivation. Open Chem. 18(1), 1349–1361 (2020)
Ferrando, N.S., Benitez, H.H., Gabellone, N.A., Claps, M.C., Altamirano, P.R.: A quick and effective estimation of algal density by turbidimetry developed with Chlorella vulgaris cultures. Limnetica 34(2), 397–406 (2015)
Aguirre, R.N.J., Palacio, B.J.A., Correa, O.I.C., Hernández, A.E.: Ensayos de bioestimulación algal con diferentes relaciones nitrógeno: fósforo, bajo condiciones de laboratorio. Revista Ingenierías Universidad de Medellín 6(11), 11–21 (2007)
Praveen, K., Abinandan, S., Kavitha, M.S., Natarajan, R.: Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Braz. J. Chem. Eng. 35, 489–496 (2018)
Hanief, S., Prasakti L., Budiman, A., Cayono, R.B., Pradana, Y.S.: Growth kinetic of Botryococcus braunii microalgae using logistic and gompertz models. In: AIP Conference Proceedings, vol. 2296(1), p. 020065. AIP Publishing LLC (2020)
Blanco, G.C., Stablen, M.J., Tommaso, G.: Cultivation of Chlorella vulgaris in anaerobically digested gelatin industry wastewater. Water Supply 21(5), 1953–1965 (2021)
Ajala, S.O., Alexander, M.L.: Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int. J. Energy Environ. Eng. 11(3), 311–326 (2020)
Sousa, C.A., Sousa, H., Vale, F., Simoes, M.: Microalgae-based bioremediation of wastewaters-Influencing parameters and mathematical growth modelling. Chem. Eng. J. 425, 131412 (2021)
Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2010)
Pereira, J.L., Branco, L.H.Z.: Influência do nitrato e fosfato no crescimento de Schizomeris leibleinii Kützing (Chaetophorales, Chlorophyta). Acta Bot. Bras. 21, 155–162 (2007)
Kolozlowska-Serenos, B., Zielinski, P., Maleszewski, S.: Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol. Biochem. 38(9), 727–734 (2000)
Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Aswathnarayana, G.R., Ambati, R.R.: Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10(2), 393 (2021)
Beuckels, A., Smolders, E., Muylaert, K.: Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 77, 98–106 (2015)
Chen, X., Li, Z., He, N., Zheng, Y., Li, H., Wang, H., et al.: Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor. Biotechnol. Biofuels 11(1), 1–11 (2018)
Slinksienė, R., Sendzikiene, E., Mikolaitiene, A., Makareviciene, V., Paleckiene, R., Ragauskaite, D.: Use of microalgae biomass for production of granular nitrogen biofertilizers. Green Chem. Lett. Rev. 15(2), 415–425 (2022)
Zhuang, L.L., Azimi, Y., Yu, D., Wu, Y.H., Hu, H.Y.: Effects of nitrogen and phosphorus concentrations on the growth of microalgae Scenedesmus. LX1 in suspended-solid phase photobioreactors (ssPBR). Biomass Bioenergy 109, 47–53 (2018)
Fu, L., Li, Q., Yan, G., Zhou, D., Crittenden, J.C.: Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnol. Biofuels 12(1), 1–9 (2019)
Mostert, E.S., Grobbelaar, J.U.: The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass 13(4), 219–233 (1987)
Figler, A., Márton, K., Bácsi, I.: Effects of nutrient content and nitrogen to phosphorous ratio on the growth, nutrient removal and desalination properties of the green alga Coelastrum morus on a laboratory scale. Energies 14(8), 2112 (2021)
Kozłowska-Szerenos, B., Bialuk, I., Maleszewski, S.: Enhancement of photosynthetic O2 evolution in Chlorella vulgaris under high light and increased CO2 concentration as a sign of acclimation to phosphate deficiency. Plant Physiol. Biochem. 42(5), 403–409 (2004)
Jalal, K.C.A., Shamsuddin, A.A., Nurzatul, N.Z., Rahman, M.F., Rozihan, M.: Growth and total carotenoid, chlorophyll a and chlorophyll b of tropical microalgae (Isochrysis sp.) in laboratory cultured conditions. J. Biol. Sci. 13(1), 10 (2013)
Markou, G., Nerantzis, E.: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol. Adv. 31, 1532–1542 (2013)
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A.: Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)
Rrodrigues, T.T.M., Seckler, M.M.: Investigação dos produtos de pirólise da microalga Chlorella vulgaris usando PY-GC/MS (Investigation of the pyrolysis products of the microalgae Chlorella vulgaris using PY-GC/MS). Anais do XV Safety, Health and Environment World Congress. Porto, Portugal, 2015, pp. 298–301 (2015)
Braga, R.M., Almeida, H.N., Calixto, G.Q., Freitas, J.C.O., Melo, D.M.A., Resende, F.M.: Caracterização energética e pirólise rápida Py-CG/MS das microalgas chlorella vulgaris e spirulina platensis (Energetic characterization and rapid Py-CG/MS pyrolysis of the microalgae Chlorella vulgaris and Spirulina platensis) . In: 8° Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás, 2002, Curitiba, PR. Anais do 8° PDPETRO. Curitiba: [s.n.] (2002)
Liu, J., Pan, Y., Cao, X., Xue, S., Yao, C., Wang, H.: Determination of ash content and concomitant acquisition of cell compositions in microalgae via thermogravimetric (TG) analysis. Algal Res. 12, 149–155 (2015)
Acknowledgements
We authors would like to thank the help and suggestions provided by the professors Dr. Emerson Luiz Botelho Lourenço and Dr. Ricardo Puziol de Oliveira for the elaboration of this work.
Funding
The authors did not receive support from any organization for the submitted work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tavares, L., Nudi, M.H., Arroyo, P.A. et al. Effect of different concentrations of phosphorus and nitrogen on the growth of the microalgae Chlorella vulgaris. Int J Energy Environ Eng 14, 563–572 (2023). https://doi.org/10.1007/s40095-022-00535-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40095-022-00535-z