Skip to main content

Advertisement

Log in

Effect of different concentrations of phosphorus and nitrogen on the growth of the microalgae Chlorella vulgaris

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope

Abstract

The growth curve is an important characteristic to estimate microalgae biomass production for biofuel generation, since they can measure the variation between concentrations of limiting factors of culture medium. Therefore, this work aimed to evaluate the development of Chlorella vulgaris with triplicate cultivation of three different concentrations of nitrogen and phosphorus (Treatment 1: 0.50 g L−1 Ca(NO3)2·4H2O and 0.13 g L−1 KH2PO4, Treatment 2: 0.50 g L−1 Ca(NO3)2·4H2O and 0.39 g L−1 KH2PO4, Treatment 3: 1.50 g L−1 Ca(NO3)2·4H2O and 0.13 g L−1 KH2PO4,). Growth curve using Gompertz model presented high R2 (0.96 ≤ R2 ≤ 0.99) in the three studied treatments. In the thirteenth day, turbidity in the treatment with higher nitrogen concentration (203.67 NTU) was 2.15 times higher than the first treatment (94.56 NTU) and 1.78 times higher than the treatment with higher level of phosphorus (113.9 NTU). We therefore observed a major biomass production, chlorophylls and carotenoids in the treatment with higher concentration of nitrogen, while in high levels of phosphorus the growth is not statistically significant from the first treatment with lower nitrogen and phosphorus concentration (p value > 0.05). In the end of cultivation, there was an increase of 203.12% in chlorophyll-a in the third treatment compared to the first treatment and of 246.42% in comparison with the second treatment. For carotenoids, the highest increase was seen compared to the first treatment (192%) than for the second treatment (137.5%). Therefore the treatment with lower phosphorous concentration in the cultivation medium presented slightly higher chlorophyll concentration and smaller carotenoids with the treatment with higher phosphorus concentration. The ash content demonstrated that this microalgae have a great potential for energy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Machado, I.M., Atsumi, S.: Cyanobacterial biofuel production. J. Biotechnol. 162(1), 50–56 (2012)

    Google Scholar 

  2. Rodionova, M.V., Poudyal, R.S., Tiwari, I., Voloshin, R.A., Zharmukhamedov, S.K., Nam, H.G., et al.: Biofuel production: challenges and opportunities. Int. J. Hydrogen Energy 42(12), 8450–8461 (2017)

    Google Scholar 

  3. Hossain, N., Mahlia, T.M.I., Saidur, R.: Latest development in microalgae-biofuel production with nano-additives. Biotechnol. Biofuels 12(1), 1–16 (2019)

    Google Scholar 

  4. Chen, H., Wang, X., Wang, Q.: Microalgal biofuels in China: the past, progress and prospects. GCB Bioenergy 12(12), 1044–1065 (2020)

    Google Scholar 

  5. Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C., Pugazhendhi, A.: Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci. Total Environ. 808, 151969 (2022)

    Google Scholar 

  6. Peralta-Yahya, P.P., Keasling, J.D.: Advanced biofuel production in microbes. Biotechnol. J. 5(2), 147–162 (2010)

    Google Scholar 

  7. Miao, X., Wu, Q.: Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841–846 (2006)

    Google Scholar 

  8. Sousa-Aguiar, E.F., Appel, L.G., Bicudo, A.A., Fonseca, I., Fraga, A.C., Zonetti, P.C.: Some important catalytic challenges in the bioethanol integrated biorefinery. Catal. Today 234, 13–23 (2014)

    Google Scholar 

  9. Moshood, T.D., Nawanir, G., Mahmud, F.: Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Chall. 5, 100207 (2021)

    Google Scholar 

  10. Wojciechowski, J., Straube, A., Cavalcante, K.P., Miranda, F.E.: Isolamento e Cultivo de Microalga (Microalgae Isolation and Cultivation). Univerdade Federal do Paraná, Curitiba (2013)

    Google Scholar 

  11. Nagappan, S., Devendran, S., Tsai, P.C., Dahms, H.U., Ponnusamy, V.K.: Potential of two-stage cultivation in microalgae biofuel production. Fuel 252, 339–349 (2019)

    Google Scholar 

  12. Salama, E.S., Govindwar, S.P., Khandare, R.V., Roh, H.S., Jeon, B.H., Li, X.: Can omics approaches improve microalgal biofuels under abiotic stress? Trends Plant Sci. 24(7), 611–624 (2019)

    Google Scholar 

  13. Han, W., Jin, W., Li, Z., Wei, Y., He, Z., Chen, C., et al.: Cultivation of microalgae for lipid production using municipal wastewater. Process Saf. Environ. Prot. 155, 155–165 (2021)

    Google Scholar 

  14. Pugazhendhi, A., Nagappan, S., Bhosale, R.R., Tsai, P.C., Natarajan, S., Devendran, S., et al.: Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel—a review. Sci. Total Environ. 749, 142218 (2020)

    Google Scholar 

  15. Correa, D.F., Beyer, H.L., Possingham, H.P., Thomas-Hall, S.R., Schenk, P.M.: Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy 11(8), 914–929 (2019)

    Google Scholar 

  16. Suparmaniam, U., Lam, M.K., Uemura, Y., Lim, J.W., Lee, K.T., Shuit, S.H.: Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew. Sustain. Energy Rev. 115, 109361 (2019)

    Google Scholar 

  17. Jaiswal, K.K., Banerjee, I., Singh, D., Sajwan, P., Chhetri, V.: Ecological stress stimulus to improve microalgae biofuel generation: a review. Octa J. Biosci. 8, 48–54 (2020)

    Google Scholar 

  18. Parente, E.S.: Biodiesel: uma aventura tecnológica num país engraçado (Biodiesel: a technological adventure in a funny country). Editora Tecbio, Fortaleza (2003)

    Google Scholar 

  19. Andrade, D.S., Filho, A.C.: Microalgas de águas continentais (Microalgae of continental waters). Londrina: IAPAR. v.3 (2014)

  20. Sforza, E., Pastore, M., Spagni, A., Bertucco, A.: Microalgae-bacteria gas exchange in wastewater: how mixotrophy may reduce the oxygen supply for bacteria. Environ. Sci. Pollut. Res. 25(28), 28004–28014 (2018)

    Google Scholar 

  21. Romero-Martínez, L., Moreno-Andrés, J., Acevedo-Merino, A., Nebot, E.: Photocatalytic inactivation of microalgae: efficacy and cell damage evaluation by growth curves modeling. J. Appl. Phycol. 31(3), 1835–1843 (2019)

    Google Scholar 

  22. González, J.F., Cuello, T.B., Calderón, A.J., Calderón, M., González, J., Carmona, D.: Cultivation of autochthonous microalgae for biomass feedstock: Growth curves and biomass characterization for their use in biorefinery products. Energies 14(15), 4567 (2021)

    Google Scholar 

  23. Islam, Z., Khatoon, H., Minhaz, T.M., Rahman, M.R., Hasan, S., Mahmud, Y., et al.: Data on growth, productivity, pigments and proximate composition of indigenous marine microalgae isolated from Cox’s Bazar Coast. Data Brief 35, 106860 (2021)

    Google Scholar 

  24. Chuka-ogwude, D., Ogbonna, J.C., Moheimani, N.R.: Depth optimization of inclined thin layer photobioreactor for efficient microalgae cultivation in high turbidity digestate. Algal Res. 60, 102509 (2021)

    Google Scholar 

  25. Hermadi, I., Setiadianto, I.R., Al Zahran, D.F.I., Simbolon, M.N., Saefurahman, G., Wibawa, D.S., Arkeman, Y.: Development of smart algae pond system for microalgae biomass production. In: IOP Conference Series: Earth and Environmental Science, vol. 749(1), p. 012068). IOP Publishing (2021)

  26. Thoré, E.S., Schoeters, F., Spit, J., Van Miert, S.: Real-time monitoring of microalgal biomass in pilot-scale photobioreactors using nephelometry. Processes 9(9), 1530 (2021)

    Google Scholar 

  27. Franco, A.L.C., Lôbo, I.P., Almeida J.A.N., Cruz, R.S., Menezes, R.S., Teixeira, C.M.L.L.: Biodiesel de microalgas: avanços e desafios (Microalgae Biofuel: advances and challenges). Química Nova (2013)

  28. Lourenço, S.O.: Cultivo de Microalgas Marinhas (Cultivation of marine microalgae). 1. ed. São Carlos: RIMA (2006)

  29. Leite, L.S., Hoffmann, M.T., Daniel, L.A.: Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. J. Water Process Eng. 31, 100821 (2019)

    Google Scholar 

  30. Khanzada, Z.T.: Phosphorus removal from landfill leachate by microalgae. Biotechnol. Rep. 25, e00419 (2020)

    Google Scholar 

  31. Wu, Y.H., Hu, H.Y., Yu, Y., Zhang, T.Y., Zhu, S.F., Zhuang, L.L., Zhang, X., Lu, Y.: Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew. Sustain. Energy Rev. 33, 675–688 (2014)

    Google Scholar 

  32. Fadeyi, O., Dzantor, K., Adeleke, E.: Assessment of biomass productivities of Chlorella vulgaris and Scenedesmus obliquus in defined media and municipal wastewater at varying concentration of nitrogen. J. Water Resour. Prot. 8(2), 217–225 (2016)

    Google Scholar 

  33. Arabian, D.: Investigation of Effective Parameters on the Productivity of Biomass and Bio-cement as a Soil Improver from Chlorella vulgaris. Geomicrobiol. J. (2022). https://doi.org/10.1080/01490451.2022.2078445

    Article  Google Scholar 

  34. Osorio, J.H.M., Del Mondo, A., Pinto, G., Pollio, A., Frunzo, L., Lens, P.N.L., Esposito, G.: Nutrient removal efficiency of green algal strains at high phosphate concentrations. Water Sci. Technol. 80(10), 1832–1843 (2019)

    Google Scholar 

  35. Martins, C.F., Trevisi, P., Coelho, D.F., Correa, F., Ribeiro, D.M., Alfaia, C.M., et al.: Influence of Chlorella vulgaris on growth, digestibility and gut morphology and microbiota of weaned piglet. Sci. Rep. 12(1), 1–12 (2022)

    Google Scholar 

  36. Ren, H., Zhu, G., Ni, J., Shen, M., Show, P.L., Sun, F.F.: Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy. Chemosphere 307, 135533 (2022)

    Google Scholar 

  37. El-Naggar, N.E.A., Hussein, M.H., Shaaban-Dessuuki, S.A., et al.: Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep. 10, 3011 (2020). https://doi.org/10.1038/s41598-020-59945-w

    Article  Google Scholar 

  38. Lee, R.: Phycology, 4th edn. United States of America by Cambridge University Press, New York (2008)

    Google Scholar 

  39. Dalal, S.R., Hussein, M.H., El-Naggar, N.E.A., Mostafa, S.I., Shaaban-Dessuuki, S.A.: Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Sci. Rep. 11(1), 1–17 (2021)

    Google Scholar 

  40. Watanabe, A.: List of algal strains in collection at the institute of applied microbiology, University of Tokyo. J. Gen. Appl. Microbiol. 6, 283–292 (1960)

    Google Scholar 

  41. He, Q., Yang, H., Hu, C., Wu, L.: Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Biores. Technol. 191, 219–228 (2015)

    Google Scholar 

  42. He, Q., Yang, H., Wu, L., Hu, C.: Effect of light intensity o physiological changes, carbon allocation and neutral lipid accumulation in oleginous microalgae. Biores. Technol. 191, 219–228 (2015)

    Google Scholar 

  43. Wychen, S.V., Laurens, L.M.L.: Summative Mass Analysis of Algal Biomass—Integration of Analytical Procedures. National Renewable Energy Laboratory, Golden (2013)

    Google Scholar 

  44. Souza, G.S.: Introdução aos modelos de regressão linear e não-linear (Introduction to linear and non-linear regression models). Brasília: Embrapa- SPI/Embrapa-SEA, 489 (1998)

  45. Flores, G., Rodriguez-Mata, A.E., Amabilis-Sosa, L.E., Gonzalez-Huitron, V.A., Hernández-González, O., Lopéz-Peréz, P.A.: A turbidity sensor development based on NL-PI observers: experimental application to the control of a Sinaloa’s River Spirulina maxima cultivation. Open Chem. 18(1), 1349–1361 (2020)

    Google Scholar 

  46. Ferrando, N.S., Benitez, H.H., Gabellone, N.A., Claps, M.C., Altamirano, P.R.: A quick and effective estimation of algal density by turbidimetry developed with Chlorella vulgaris cultures. Limnetica 34(2), 397–406 (2015)

    Google Scholar 

  47. Aguirre, R.N.J., Palacio, B.J.A., Correa, O.I.C., Hernández, A.E.: Ensayos de bioestimulación algal con diferentes relaciones nitrógeno: fósforo, bajo condiciones de laboratorio. Revista Ingenierías Universidad de Medellín 6(11), 11–21 (2007)

    Google Scholar 

  48. Praveen, K., Abinandan, S., Kavitha, M.S., Natarajan, R.: Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Braz. J. Chem. Eng. 35, 489–496 (2018)

    Google Scholar 

  49. Hanief, S., Prasakti L., Budiman, A., Cayono, R.B., Pradana, Y.S.: Growth kinetic of Botryococcus braunii microalgae using logistic and gompertz models. In: AIP Conference Proceedings, vol. 2296(1), p. 020065. AIP Publishing LLC (2020)

  50. Blanco, G.C., Stablen, M.J., Tommaso, G.: Cultivation of Chlorella vulgaris in anaerobically digested gelatin industry wastewater. Water Supply 21(5), 1953–1965 (2021)

    Google Scholar 

  51. Ajala, S.O., Alexander, M.L.: Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int. J. Energy Environ. Eng. 11(3), 311–326 (2020)

    Google Scholar 

  52. Sousa, C.A., Sousa, H., Vale, F., Simoes, M.: Microalgae-based bioremediation of wastewaters-Influencing parameters and mathematical growth modelling. Chem. Eng. J. 425, 131412 (2021)

    Google Scholar 

  53. Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2010)

    Google Scholar 

  54. Pereira, J.L., Branco, L.H.Z.: Influência do nitrato e fosfato no crescimento de Schizomeris leibleinii Kützing (Chaetophorales, Chlorophyta). Acta Bot. Bras. 21, 155–162 (2007)

    Google Scholar 

  55. Kolozlowska-Serenos, B., Zielinski, P., Maleszewski, S.: Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol. Biochem. 38(9), 727–734 (2000)

    Google Scholar 

  56. Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Aswathnarayana, G.R., Ambati, R.R.: Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10(2), 393 (2021)

    Google Scholar 

  57. Beuckels, A., Smolders, E., Muylaert, K.: Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 77, 98–106 (2015)

    Google Scholar 

  58. Chen, X., Li, Z., He, N., Zheng, Y., Li, H., Wang, H., et al.: Nitrogen and phosphorus removal from anaerobically digested wastewater by microalgae cultured in a novel membrane photobioreactor. Biotechnol. Biofuels 11(1), 1–11 (2018)

    Google Scholar 

  59. Slinksienė, R., Sendzikiene, E., Mikolaitiene, A., Makareviciene, V., Paleckiene, R., Ragauskaite, D.: Use of microalgae biomass for production of granular nitrogen biofertilizers. Green Chem. Lett. Rev. 15(2), 415–425 (2022)

    Google Scholar 

  60. Zhuang, L.L., Azimi, Y., Yu, D., Wu, Y.H., Hu, H.Y.: Effects of nitrogen and phosphorus concentrations on the growth of microalgae Scenedesmus. LX1 in suspended-solid phase photobioreactors (ssPBR). Biomass Bioenergy 109, 47–53 (2018)

    Google Scholar 

  61. Fu, L., Li, Q., Yan, G., Zhou, D., Crittenden, J.C.: Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnol. Biofuels 12(1), 1–9 (2019)

    Google Scholar 

  62. Mostert, E.S., Grobbelaar, J.U.: The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass 13(4), 219–233 (1987)

    Google Scholar 

  63. Figler, A., Márton, K., Bácsi, I.: Effects of nutrient content and nitrogen to phosphorous ratio on the growth, nutrient removal and desalination properties of the green alga Coelastrum morus on a laboratory scale. Energies 14(8), 2112 (2021)

    Google Scholar 

  64. Kozłowska-Szerenos, B., Bialuk, I., Maleszewski, S.: Enhancement of photosynthetic O2 evolution in Chlorella vulgaris under high light and increased CO2 concentration as a sign of acclimation to phosphate deficiency. Plant Physiol. Biochem. 42(5), 403–409 (2004)

    Google Scholar 

  65. Jalal, K.C.A., Shamsuddin, A.A., Nurzatul, N.Z., Rahman, M.F., Rozihan, M.: Growth and total carotenoid, chlorophyll a and chlorophyll b of tropical microalgae (Isochrysis sp.) in laboratory cultured conditions. J. Biol. Sci. 13(1), 10 (2013)

    Google Scholar 

  66. Markou, G., Nerantzis, E.: Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol. Adv. 31, 1532–1542 (2013)

    Google Scholar 

  67. Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A.: Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)

    Google Scholar 

  68. Rrodrigues, T.T.M., Seckler, M.M.: Investigação dos produtos de pirólise da microalga Chlorella vulgaris usando PY-GC/MS (Investigation of the pyrolysis products of the microalgae Chlorella vulgaris using PY-GC/MS). Anais do XV Safety, Health and Environment World Congress. Porto, Portugal, 2015, pp. 298–301 (2015)

  69. Braga, R.M., Almeida, H.N., Calixto, G.Q., Freitas, J.C.O., Melo, D.M.A., Resende, F.M.: Caracterização energética e pirólise rápida Py-CG/MS das microalgas chlorella vulgaris e spirulina platensis (Energetic characterization and rapid Py-CG/MS pyrolysis of the microalgae Chlorella vulgaris and Spirulina platensis) . In: 8° Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás, 2002, Curitiba, PR. Anais do 8° PDPETRO. Curitiba: [s.n.] (2002)

  70. Liu, J., Pan, Y., Cao, X., Xue, S., Yao, C., Wang, H.: Determination of ash content and concomitant acquisition of cell compositions in microalgae via thermogravimetric (TG) analysis. Algal Res. 12, 149–155 (2015)

    Google Scholar 

Download references

Acknowledgements

We authors would like to thank the help and suggestions provided by the professors Dr. Emerson Luiz Botelho Lourenço and Dr. Ricardo Puziol de Oliveira for the elaboration of this work.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Tavares.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, L., Nudi, M.H., Arroyo, P.A. et al. Effect of different concentrations of phosphorus and nitrogen on the growth of the microalgae Chlorella vulgaris. Int J Energy Environ Eng 14, 563–572 (2023). https://doi.org/10.1007/s40095-022-00535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00535-z

Keyword